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Optimum length of multimode optical branching waveguide for

reducing its mode dependence

Y. Kokubun, T. Fuse, and K. Iga

In this paper, we theoretically analyze the loss and branching ratio of multimode optical branching wave-
guides by using a ray tracing method to obtain less mode-dependent branching characteristics. First,a2 X 2

optical mixing and branching waveguide with a step-index profile are considered.

It is found that an

optimum length to achieve a low loss and stable branching ratio exists. Second, a waveguide with mode
scrambler is investigated. By sacrificing some amount of insertion loss, the mode dependence can be

minimized.

I. Introduction

Multimode optical branching circuits and access de-
vices are important in sophisticated optical communi-
cation network systems such as subscriber systems and
local area networks. Several types of optical branch-
ing device such as microlens,! fiber,2 and waveguide3-6
devices have been reported. In particular, the optical
waveguide-type devices seem promising because of
their inherent low loss and the potential for mass fabri-
cation with good reproducibility. A main problem,
however, is that the branching ratio at the Y-junction
is not always unity because of its dependence on mode
distribution.

To eliminate this problem, we have proposed a new
waveguide mode scrambler integrated with mixing and
branching waveguides.” We fabricated this mode
scrambler by using the electromigration technique®
and obtained a stable branching ratio.” However, an
optimum waveguide design to minimize the loss and
device size has not been studied.

On the other hand, for conventional mixing and
branching waveguides with a straight mixing region,
the optimum design was not fully investigated either.
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Thus there remains the possibility of obtaining stable
branching characteristics with low loss by the conven-
tional mixing and branching waveguide.

In this study, we investigate the branching charac-
teristics of multimode waveguides to obtain optimum
design conditions. We have used a ray tracing tech-
nique to analyze (1) tapered waveguides, (2) conven-
tional mixing and branching waveguides with straight
mixing region, and (3) waveguides with mode scram-
blers.

ll. Principle of Ray Tracing

A. Incident Condition

Let us consider the case when a light source is cou-
pled into a graded-index multimode optical fiber. Af-
ter a sufficiently long distance propagation in the fiber,
the mode distribution in the fiber would reach a steady
state with a definite mode distribution, which can be
approximated by a uniform mode distribution. The
output end of the fiber is butt-jointed to the input end
of a 2 X 2 multimode mixing and branching waveguide
with a square cross section and step-index profile as
shown in Fig. 1.

When we project the 3-D ray trajectory in a wave-
guide separately onto a vertical Y-Z plane and a hori-
zontal X-Z plane, respectively, only the ray propaga-
tion in the X-Z plane is concerned with the branching
characteristics since the ray propagation in the Y-Z
plane repeats only the relection between the upper and
lower claddings and has no influence on branching.
Thus we consider only the projection of the 3-D ray
trajectory on the 2-D X-Z plane.

Figure 2 shows a light emittance profile at the end of
a GI multimode fiber, which has a parabolic refractive-
index distribution given by Eq. (Al). The position
and trend of a ray are normalized by the fiber core
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Fig.1. Projection from 3-D ray trajectory to 2-D ray trajectory. GI
fiber is butt-jointed to the branching waveguide with a square cross
section.
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Fig. 2. Light emittance profile at the end of a GI multimode fiber.

radius a and by the trend of ray with critical angle 6.,
respectively, which are denoted by capital leters. For
example, the X components of position and trend with
propagation angle 8 are written by

= x/a,
{X = tanf/tand, ®

Allowed values of X and X emitted from the GI fiber
must always satisfy the next condition (see the Appen-
dix):

X2+ X2<1 (2)

Since there exist many guided modes in a multimode
fiber, we assume that the propagation modes are con-
tinuous, although actually they form a discrete set of
eigenmodes. Here we image a cone extended from a
point on the end of fiber and assume that the line
which is connected with this point and the center of the
fiber end corresponds to the X axis. In terms of the
direction along the X axis, the extension angle is re-
stricted from the condition of inequality (2), while in
terms of the perpendicular direction to the X axis, it
does not suffer from any restriction. Therefore, the
cross section of the cone will be elliptical. Thus the
output rays are emitted from all points on the output
end of a fiber, and the allowed region of the beam
extends from a point P(X,Y) constructing an elliptical
cone as shown in Fig. 2. Since the rays which have the
same X and X and different Y and Y at the input end
take the same trajectory in the X-Z plane, we must
take this degeneracy into account by introducing a
weight function which can be derived from the integra-
tion of rays with respect to Yand Y. Thus we have the
weight function using two solutions Y* of Eq. (B1) as

Fig. 4. Saw function S(X).

v+

W(X,X) = JC-—if

1-X2 /Yy~

F(X.Y.X.Y)dYdY, 3)

where F(X,Y,X,Y) is the density of rays.

If F(X,Y,X,Y) is equal to 1, which corresponds to
uniform mode distribution like LED, we can easily
integrate Eq. (3):

WX, X) = r(1 — X2 - X312, ()

Using this weight function, we deal with a 3-D wave-
guide which has a square cross section.

B. Ray Tracing of Step-Index Waveguides

As for the projected branching waveguide in Fig. 1,
we determine the position and trend of each ray on the
input and output ends of the waveguide, which is di-
vided into straight and bent parts.

Figure 3 shows the ray propagation in a step-index
slab straight waveguide. Here we define the normal-
ized position and trend of input and output rays as X;,
X;, Xo, and Xo, respectlvely Furthermore, X; is the
hypothetical X assuming that the ray propagates
through a distance ! along the beam axis without re-

flection from the waveguide walls. The relation of X,
X, X0, and X, can be written as
X, =S8(X),
X = X (-p)lIXe+1 7 3)

= X, + X,(l/a) tand,,

where [ X] is the Gaussian sign which means the integer
part of X, and S is the saw function of which the range
is from —1 to 1 as shown in Fig. 4.

Figure 5 shows a propagating ray in the waveguide at
a bent portion. Although the axis of the waveguide is
bent, it can be assumed that only the propagation
angle is changed with the position of the ray remaining
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Fig. 5. Ray propagation in a bent waveguide.

Fig. 6. Ray propagation in a tapered waveguide.

unaltered. Therefore, when we express the ray in the
coordinate of bent waveguide, we obtain the ray equa-

tions at the bend:
XH = XD,
X = XO) 45X, (6)
§X = tand,/tand,,

where the superscripts (—) and (+) designate the ray
before and after the bend, respectively, and we used
the approximation that for ; < 1

tan(f + 6,) ~ tanf & tanf,. (7

For a tapered waveguide, we use the same idea as
mentioned above. The core width of the imput side is
always twice that of the output side, and X, is defined
similarly for a straight waveguide, as shown in Fig. 6.
Since the propagation angle of a ray increases by ta-
pered angle 6; whenever it is reflected from a wave-
guide wall, we obtain

X, =S(X),
XO =lXi + sgn(Xi) O tan(Gt o [lX[ + 1| /2])/tan0c}
) (_1)[|X‘+1|/2]’

X, =X, + X; (l/a) tand,,
where sgn(X) expresses the sign of X.

C. Estimation of Branching Characteristics

Connecting the straight and bent parts, we trace
each ray trajectory emitted from the GI fiber model.
In our simulation, both the position and trend are
divided equally into 101 parts. The rays whose propa-
gation angle exceeds the critical angle oc (i.e., X > 1)
areradiated out from the waveguide core, and these are
regarded as radiation loss (I;4¢). In the case of the
branching waveguide, the branching ratio R and radi-
ation loss « are calculated in terms of input power I,
two output powers I; and I,, and radiation power I,,q as

Rb = II/I,., (9)
a=1,,4/1, = =10 log[(I, + I)/I,][dB], (10)
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Fig. 7. Loss vs normalized tapered (branching) angle of tapered

waveguide.

where we do not consider the coupling loss which is
caused by the mismatch of the cross sections between
the output fibers and the branching waveguides. That
is, output power is counted as the quantity of rays with
weight function given by Eq. (4), which can reach to
the output ends of waveguide.

ll. Results

A. Radiation Loss of the Tapered Waveguide

We simulated the radiation loss at the Y-junction
with a tapered section. It is assumed that GI fiber is
butt-jointed perpendicularly to the input surface of
the 3-D tapered waveguide so that the edge of the fiber
core is tangent to the inner edge of the waveguide core.
The radiation loss is produced in the mixing taper
since the propagation angle is forced to increase as the
ray is reflected.

Figure 7 shows the loss vs tapered (branching) angle
normalized by the critical angle of the waveguide. We
selected the critical angle 6. of 10° for which the nu-
merical aperture (N.A.) is to be 0.26. The loss is ~1.65
dB and is almost constant in the range of 0.1-0.6.
(Most of the actual tapered angles seem to lie in this
range.) This seems to be caused by the fact that the
change in the propagation angle of rays by one reflec-
tion decreases with a decrease of the tapered angle,
while the smaller tapered angle results in a longer
propagation length. Thus the total change of propa-
gation angle is almost constant, and the loss does not
depend on the tapered angle. If the tapered angle
approaches critical angle 6., the number of rays which
is to be radiated by an increase of a few reflections.
Therefore, the loss increases linearly as the normalized
tapered angle exceeds 0.6, as shown in the figure. If we
select the critical angle to be smaller than 10°, the
range of the applicable tapered angle is expected to be
narrow.

B. Branching Characteristics of a 2 X 2 Mixing and
Branching Waveguide

To reduce the radiation loss in the Y-junction as
mentioned above, the width of the mixing waveguide is
assumed to be twice that of the branching waveguide.
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We traced some ray trajectories in a 2 X 2 mixing and
branching waveguide with a conventional straight
waveguide and investigated the branching characteris-
tics of this type of waveguide.

Figure 8 shows these ray trajectories that are pro-
jected on the X-Z plane. The branching angle is 4°,
and the mixing length normalized by half of the mixing
core width is 21, a nominal value, and N.A. is assumed
to be 0.26. The scale of longitudinal direction is re-
duced to 0.3 of that of the transverse direction. It is
seen that the rays emitted from the GI fiber, which
have the normalized input position X and trend X

Output

Fig. 8. Ray trajectories in 2 X 2 mixing and
branching waveguide with a straight waveguide
(projected on the X-Z plane).
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satisfying the condition given by Eq. (2), are distribut-
ed in two output ports.

Figure 9 shows the branching ratio and loss vs the
normalized length of the mixing waveguide. It is seen
that the branching ratio and radiation loss depend on
waveguide parameters such as mixing length and
branching angle. We define the fluctuation of the
branching ratio as £ AR as shown in Fig. 9(b). [, and
Imax are the minimum and maximum values of the
normalized mixing length in the region 2AR, respec-
tively, and [, represents the first length we can obtain
with a 1:1 branching ratio. Although the values of [, is
~16, independent of the branching angle, the loss is
not minimum at this value. We hence define the
optimum value of normalized mixing length as I, by
which one can obtain a minimum loss in the region
2AR. Figure 10 shows the variations of lyin, lmax, and
lopt vs the normalized branching angle. At the branch-
ing angle of 4°, the tolerance of normalized mixing
length (which is half of the difference between /2, and
Imin) 1s larger than that at an angle of 1-3°. The
smaller the branching angle is, the longer the device
size is. Thus we determine the optimum branching
angle as 4°. To obtain a 1:1 stable branching ratio and
minimum loss, the normalized mixing length is to be
19.4 from Fig. 9(a) when the branching angle is 4°.

Itis desirable that the branching ratio not vary when
we change the input conditions, such as position or
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angle of input fiber. Therefore, for several waveguide
parameters including /.5y and [,, we simulated the
branching characteristic vs normalized input position
(Fig. 11). The branching ratio is stable over all input
positions at the optimum value.

C. Branching Characteristic of a Mode Scrambler

To obtain optimum design conditions for our wave-
guide mode scrambler, we also investigated the depen-
dence of the waveguide parameter on the branching
characterisitcs by the same ray tracing technique.
This mode scrambler consists of builtin zigzag wave-
guides connected alternately with a small bend angle
as shown in Fig. 12. It reduces the branching ratio’s
dependence on mode distribution by converting modes
at portions of the scrambling bend.

Figure 13 shows the branching ratio and loss vs bend
number. We selected a branching angle of 4°, a bend
angle of 2°, an N.A. of 0.26, and a pitch of 12, which is
the normalized periodic length of a mode scrambler.
The branching ratio has severe fluctuations dependent
on bend number M and approaches 1:1 although the
loss increases slightly when M becomes large. For a
small bend number, the branching characteristic is
asymmetric between the right input case and left input
case because of the asymmetric structure of the mode
scrambler as shown in Fig. 12. To obtain 1:1 stable
branching ratio, the minimum number of scrambling
bends should be 11 with AR equal to +5%, resulting in
< 1.0 dB of insertion loss.

Utilizing the asymmetric branching characteristics,
furthermore, there is an ample possibility of realizing a
new optical device in which the output power from a
particular port is always higher compared with the
other ports.

IV. Conclusion

We have numerically analyzed the radiation loss at
the Y-junction and branching characteristics of a2 X 2
multimode mixing and branching waveguide by using
aray tracing method. The simulated waveguide has a
3-D structure with a square cross section, and its re-
fractive-index profile is of a step-index type. The
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waveguide is assumed to be illuminated by a uniformly
excited graded-index multimode fiber.

As a result, we have found that the branching ratio
depends on the waveguide parameter, and there exists
suitable length in a conventional straight mixing wave-
guide for the purpose of reducing the radiation loss at a
Y-junction to which much attention has not been paid.
We have also obtained a requirement of a waveguide
mode scrambler for 1:1 branching, which results in less
mode dependence by sacrificing an insertion loss of
~1.0dB.

The ray tracing technique used here for a step-index
waveguide could be extended to the analysis of graded-
index-type waveguides.
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Appendix A: Derivation of Inequality (2)

We consider the ray trajectory in a cylindrical dis-
tributed index waveguide such as GI fiber, whose re-
fractive-index distribution is given by

n*(r) = n2(0)[1 — (gr)?], (A1)

where r [=(x)2 + y2)1/2] is the radial distance from the
center, and g is a focusing constant. Treating the x
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Fig. 14. Cross section of the elliptical cone.

component for simplicity 7 and using the ray equation,
the position x and angle # of the ray at distance z from
the input end can be written as follows:

{x = x; cos(gz) + (1,/g) sin(gz),

X = —gx; sin(gz) + %, cos(gz), (A2)

where x; is the position, and x; = tan; is the trend of the
ray at the input end. We normalize x and x to the core
radius and the trend of the critical angular ray as

X = X, cos(gz) + X, sin(gz), A3)
= —X; sin(gz) + X, cos(gz), (
where we used next approximation for paraxial rays,
ag = sinf_,, =~ tanf_ .. (A4)

From Eq. (A3), we can obtain

X =X+ X? cos(gz — o),
X =—X*+ X?singz — a), (A5)
a=cos HX; / X2+ XD).

Thus the allowed propagation ray in GI fiber is ob-
tained from the condition

X2+ X2=X2+X2<1. (A6)

Appendix B: Derivation of the Elliptical Equation

We show in Fig. 14 the cross section of the elliptical
cone which is extended from the point C(X,Y) and
described on the X-Y plane. This elliptical equation,
which gives the relation of the position coordinates X
and Y and the beam tends X and Y, can be obtained
geometrically as

I-Y)X2+ (1 - X)V?+2XYXY+ X2+ Y2 -1=0. (B1)
Thus we obtain a quadratic equation with respect to Y:
(1-X)YV2+2XYXY+ X’ (1 - Y) + X2+ Y2 —1=0. (B2)
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