
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 3, MARCH 2021 1003

Optimum MDC FFT Hardware Architectures in
Terms of Delays and Multiplexers

Mario Garrido , Senior Member, IEEE, and Pedro Paz

Abstract—In this brief, we show how to derive all the optimum
multi-path delay commutator (MDC) fast Fourier transform
(FFT) hardware architectures in terms of delays and multiplex-
ers and calculate the number of such architectures. The proposed
approach is based on analyzing the orders at the FFT stages that
lead to optimum number of delays and multiplexers. The results
show that there exist a large number of optimum MDC FFTs.
This large design space can be explored in the future in order
to design efficient MDC architectures that not only optimize the
number of delays and multiplexers, but also other figures of merit
such as the number of rotators or the input/output data order.

Index Terms—Bit-dimension permutations, FFT, MDC.

I. INTRODUCTION

IN THE research field of fast Fourier transform (FFT) hard-
ware architectures [1], multi-path delay commutator (MDC)

architectures [2]–[11] are among the most popular ones. They
allow for very high throughput in the range of giga samples
per second (GS/s) and a relatively small area for such a high
data rate. Indeed, recent designs [7] report rates over 1 GS/s,
while using only around 1% of a Virtex-6 field-programmable
gate array (FPGA).

MDC FFT architectures consist of a series of stages with
butterflies, rotators and shuffling circuits. They calculate the
FFT in a continuous flow, and the parallelization of the archi-
tecture, P, is directly related to the throughput, which is equal
to P times the clock frequency.

In the last years, it has been observed that MDC FFT archi-
tectures allow for different data orders at each stage of the
architecture [7]. This flexibility in the order at each stage
enables the search for orders that are more favorable in terms
of the complexity of the rotators, as was done in [7]. However,
not every set of orders at the FFT stages leads to the opti-
mum number of delays and multiplexers. In fact, although
some previous works present MDC architectures with opti-
mum number of delays and multiplexers [2]–[7], the design
space for optimum MDC FFTs is much wider and has not
been explored in depth yet.

Manuscript received April 22, 2020; revised July 7, 2020; accepted
September 2, 2020. Date of publication September 8, 2020; date of current
version February 26, 2021. This work was supported by the Spanish Ministry
of Science, Innovation and Universities under Ramón y Cajal Grant RYC2018-
025384-I. This brief was recommended by Associate Editor J. H. Xie.
(Corresponding author: Mario Garrido.)

The authors are with the Department of Electronic Engineering, ETSI de
Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
(e-mail: mario.garrido@upm.es; p.pazm@alumnos.upm.es).

Digital Object Identifier 10.1109/TCSII.2020.3022528

The goal of this brief is to determine which orders lead
to the optimum number of delays and multiplexers and how
many optimum architectures in terms of delays and multiplex-
ers exist, which is a step towards the exploration of the design
space for optimum MDC FFTs. In order to accomplish this
goal, we base this brief on the knowledge about the optimum
circuits for bit-dimension permutations [12], as this is the type
of permutations carried out in FFT architectures. Furthermore,
the analysis in this brief is valid for any radix, due to the fact
that radices only differ in the rotations, being any data order
valid for any radix.

This brief is organized as follows. In Section II, we review
the FFT algorithm. In Section III, we review the concepts
related to optimum circuits for bit-dimension permutations that
are used to derive the optimum FFT architectures in this brief.
In Section IV, we review the MDC architecture and set up
the context for the research in this brief. In Section V, we
calculate the optimum number of delays and multiplexers for
an MDC FFT architecture. In Section VI, we derive all the
feasible orders that lead to optimum MDC FFT architectures
in terms of delays and multiplexers. In Section VII, we count
the number of these architectures. Finally, in Section VIII we
summarize the main conclusions of this brief.

II. THE FFT ALGORITHM

Figure 1 shows the flow graph of a 16-point radix-22 FFT
according to the Cooley-Tukey algorithm, decomposed using
decimation in frequency (DIF) [1]. The FFT consists of n =
log2 N stages. At each stage s ∈ {1, . . . , n} butterflies and
rotations are calculated. The lower edges of the butterflies are
always multiplied by −1. These −1 are not depicted in order
to simplify the graphs.

The numbers at the input of the flow graph represent the
index of the input sequence, whereas those at the output are the
frequencies, k, of the output signal X[k]. Finally, each number,
φ, in between the stages indicates a rotation by Wφ

N = e−j 2π
N φ .

An index I ≡ bn−1 . . . b0 is also added to the left and to
the right of the flow graph, where bn−1 . . . b0 is the binary
representation of I. It can be observed that the butterflies at
stage s operate on pairs of data that differ in bit bn−s [5].

III. BIT-DIMENSION PERMUTATIONS IN THE FFT

This section summarizes the main ideas presented in [12]
that are needed for developing this brief. More detailed insight
in this topic can be found in [12].

Let us consider an n-dimensional space xn−1 . . . x0. In this
space, a bit-dimension permutation σ is a permutation on the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5739-3544
https://orcid.org/0000-0002-9461-8906

1004 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 3, MARCH 2021

Fig. 1. Flow graph of a 16-point radix-22 DIF FFT.

n dimensions that infers a permutation on N = 2n elements.
It has the form

σ(un−1un−2 . . . u0) = uσ(n−1)uσ(n−2) . . . uσ(0), (1)

where un−1un−2 . . . u0 are the bits permuted into
uσ(n−1)uσ(n−2) . . . uσ(0). The position of an element is
calculated as

P =
n−1∑
i=0

xi2
i. (2)

Thus, there are 2n positions numbered from 0 to 2n − 1
and occupied by the N elements. And the bit-dimension
permutation σ changes the position of these elements.

In an FFT architecture, each dimensions xi can be serial
or parallel. Serial dimensions refer to data arriving in series
at different time instants, whereas parallel dimensions refer to
data arriving in parallel at the same time at different terminals.

In a P-parallel FFT, the number of parallel dimensions is
p = log2 P and correspond to the dimensions xp−1 . . . x0. The
other n − p dimensions xn−1 . . . xp are serial dimensions. In
order to highlight the nature of the dimensions, serial and par-
allel dimensions are generally separated by a vertical bar (|),
i.e., it is suggested to represent them as xn−1 . . . xp|xp−1 . . . x0.

In the FFT, data are permuted in order to change the data
order and adapt it between stages. The most basic permu-
tations are those that only exchange two dimensions. These
permutations are called elementary bit-exchanges (EBEs). As
dimensions are only serial or parallel, there are three types of
EBEs: Serial-serial (ss), which exchanges two serial dimen-
sions, serial-parallel (sp), which exchanges a serial dimension
with a parallel one, and parallel-parallel (pp), which exchanges
two parallel dimensions.

Fig. 2 shows the circuits used to calculate elementary bit-
exchanges for ss and sp permutations. The circuits consist in
multiplexers and delays of length L. For pp permutations, the
circuit is simply an interconnection between the inputs and
outputs and, therefore, it does not have any hardware cost.

Fig. 2. Circuits for elementary bit-exchanges. (a) Serial-serial permutation.
(b) Serial-parallel permutation.

TABLE I
COSTS OF ELEMENTARY BIT-EXCHANGES

Fig. 3. A 4-parallel 16-point radix-22 MDC FFT architecture.

TABLE II
DATA ORDER FOR THE MDC FFT ARCHITECTURE IN FIG. 3

Table I summarizes the costs of the EBEs in terms of delays
(D), length of the buffers (L) and multiplexers (M), for EBEs
that exchange dimensions xj and xk, where j > k.

IV. THE MDC FFT ARCHITECTURE

Figure 3 shows a 4-parallel 16-point radix-22 MDC FFT
architecture. It consists of butterflies (R2), rotators (⊕ and
diamond-shaped) and shuffling circuits like those described in
Section III.

The data order at each stage of the architecture is shown
at the bottom of the figure in terms of the bits bi and it is
summarized in Table II. The architecture has two serial dimen-
sions, x3x2, and two parallel dimensions, x1x0. The lowest
parallel dimension, x0, corresponds to the pairs of data that
arrive simultaneously at the inputs of the butterflies. It can be
observed that ∀s, x0 = bn−s. This guarantees that butterflies
operate correctly at each stage.

The transformation between the orders at stages s and s+1
is carried out by means of the shuffling circuits in the architec-
ture. For instance, the permutation between stages 2 and 3 is

GARRIDO AND PAZ: OPTIMUM MDC FFT HARDWARE ARCHITECTURES IN TERMS OF DELAYS AND MULTIPLEXERS 1005

σ(b1b0|b3b2) = b3b0|b2b1. By applying the variable changes
u3 = b1, u2 = b0, u1 = b3 and u0 = b2, the permutation σ can
be rewritten as σ(u3u2|u1u0) = u1u2|u0u3. This permutation is
calculated by means of two EBEs. The first one exchanges the
parallel dimensions x1 and x0 and the second one exchanges
the serial dimension x3 with the parallel dimension x0.

It is important to realize that an MDC FFT architecture
can have any order at each stage, as long as the condition
x0 = bn−s is met. However, not every set of orders at different
FFT stages leads to the optimum number of delays and mul-
tiplexers. In Sections V to VII, we study which sets of orders
allow for the optimum number of delays and multiplexers, and
how many different such sets there are.

V. OPTIMUM NUMBER OF DELAYS AND MULTIPLEXERS

Considering the FFT flow graph in Fig. 1, it can be observed
that it consists of N input data and N output data. All the
inputs are used in the calculation of each of the ouputs. This
means that we cannot produce any output before all the inputs
have been received. Furthermore, each intermediate computa-
tion keeps the amount of data due to the fact that each pair of
data produces another pair of data in the butterflies. Therefore,
even when some of the inputs have arrived and intermediate
calculations have been carried out, the amount of data is never
reduced below N until some outputs are provided.

According to this, in a P-parallel architecture, the first
outputs can be produced when N data are available, which
happens when P input data are at the input of the architecture
and, at the same time, N−P data are inside the architecture. As
a consequence, the optimum number of delays for a P-parallel
N-point FFT is

Dmin = N − P. (3)

From another point of view, a P-parallel N-point FFT has n
stages and n dimensions, where p of them are parallel and n−p
are serial. The minimum number of EBEs needed to calculate
the FFT is n − 1, which comes from the fact that all bi must
be moved to x0 at the corresponding stage of the architecture.
This minimum number of EBEs occurs when x0 = bn−1 is
already provided at the first stage of the architecture. Thus,
each EBE fetches a bi and brings it to x0, at the same time
that another bit of the index is placed in the dimension where
bi comes from. As each EBE fetches a bi that has not been
fetched yet, each of the n−1 dimensions xn−1 . . . xp|xp−1 . . . x1
is exchanged with x0. The EBEs between parallel dimension
do not have any hardware cost according to Table I, whereas
the cost for exchanging the parallel dimension x0 with each
serial dimension xj is D = 2j delays, which results in a total
number of delays for the MDC architecture:

Dmin =
n−1∑
j=p

2j = 2n − 2p = N − P. (4)

This result is the same as in (3), which confirms that the opti-
mum number of delays is achieved for the optimum number
of EBEs.

Regarding the number of multiplexers, for an sp permutation
it is fulfilled [12] that Msp = sCP, and for a pp permutation,
Mpp = 0. As sC = 1 for a sp EBE, the total number of

TABLE III
OPTIMUM NUMBER OF DELAYS/MULTIPLEXERS FOR A P-PARALLEL

N-POINT MDC FFT

multiplexers in the MDC architecture is

Mmin =
n−1∑
i=p

P = P · (n − p) = P log2

(
N

P

)
. (5)

This is, indeed, the minimum number of multiplexers for an
MDC FFT. We might wonder if an even smaller number of
multiplexers could be achieved. However, all the serial dimen-
sions must be accessed and the only way to access them is
through an ss or an sp permutation. Among them, the sp per-
mutation requires less multiplexers according to Table I, which
is then the less costly way to access them and, therefore, no
other set of permutations can decrease the multiplexer cost
below (5).

Furthermore, the alternatives with a number of EBEs that
is larger than the minimum one must be considered. First, in
case of adding an ss EBE, both the number of delays and
multiplexers increase, so this option is not feasible. Second,
in case of adding an sp EBE, the number of delays may not
increase, because delays in consecutive sp permutations may
be simplified if they share a parallel dimension [12]. However,
the number of multiplexers always increases when adding an
sp EBE. Therefore, this option is not feasible either. Finally,
in case of adding a pp EBE, neither the number of delays
nor the number of multiplexers increase, as pp EBEs have no
hardware cost.

As a result, the optimum number of delays and multiplexers
is achieved when the architecture includes any number of pp
EBEs and n − p sp EBEs, where each sp EBE involves a dif-
ferent serial dimension. Table III shows the optimum number
of delays/multiplexers for a P-parallel N-point MDC FFT.

VI. FEASIBLE ORDERS IN OPTIMUM MDC FFTS

A P-parallel N-point MDC FFT architecture has n = log2 N
dimensions from which p = log2 P are parallel dimensions.
As x0 = bn−s, the bit at stage s for the parallel dimension
x0 is fixed. For the rest of parallel dimensions, the bit can
be any other bi. Furthermore, the order in which the bits bi
at the parallel dimensions appear does not matter, because
pp permutations can obtain any permutation of the orders in
parallel dimension at no cost. This results in the fact that the
number of possible combinations of parallel dimensions is

C(n − 1, p − 1) = (n − 1)!

(n − p)!(p − 1)!
. (6)

Note that these are combinations of n − 1 elements taken in
groups of p−1, because the element bn−s is always a parallel
dimension.

The number of combinations of parallel dimensions at any
stage of a P-parallel N-point FFT is shown in Table IV.

1006 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 68, NO. 3, MARCH 2021

TABLE IV
ALTERNATIVES FOR THE PARALLEL DIMENSIONS AT EACH STAGE OF A

P-PARALLEL N-POINT MDC FFT

Fig. 4. Allowed transitions of parallel dimensions for a 4-parallel 64-point
MDC FFT, and calculation of the number of sequences of parallel dimensions.

Let us consider the case of a 4-parallel 64-point FFT, which
has n = 6 stages and 5 possible combinations of parallel
dimensions per stage. These combinations are shown in Fig. 4.
Each number in a square represents one such combination. For
clarity, we have written ij instead of bibj.

From the combinations of parallel dimensions in Fig. 4, we
have to determine which transitions between stages allow for
an optimum number of delays and multiplexers. In Section V,
we showed that the optimum number of delays and multi-
plexers is obtained when the architecture carries out n − p sp
EBEs plus any number of pp EBEs or, in other words, any
serial dimension is permuted only once with a parallel dimen-
sion. This means that any transition that results in an increase
in the number of sp EBEs must be discarded. For instance,
if the order 15 is considered at the first stage of Fig. 4, and
the order 54 at the second stage, the bit b1, which is at the
first stage in a parallel dimension, is moved to a serial one.
However, this serial dimension will have to be moved again
to the parallel dimensions once b1 must be computed by the
butterflies. This will force to access the same serial dimension
twice and, therefore, it will not lead to the optimum number
of delays and multiplexeres.

In general, the rules that hold are:
• A bit bi can only be moved from a serial to a parallel

dimension before it has been processed at stage s = n− i.
• A bit bi can only be moved move from a parallel to a

serial dimension after it has been processed at stage s =
n − i.

Any movement that contradicts these rules will increase the
number of sp EBEs and, therefore, will not result in an

Algorithm 1 Checking if a Transition Between the Order Os
at Stage s and the Order Os+1 at Stage s + 1 for an FFT With
n Stages is a Valid Transition

for i = 0 : n − (s + 1) do
if i ∈ Os & i /∈ Os+1 then

return false;
for i = n − s : n − 1 do

if i /∈ Os & i ∈ Os+1 then
return false;

return true;

TABLE V
EXAMPLE OF CALCULATION OF THE ORDERS AT FFT STAGES

architecture with the optimum number of delays and multi-
plexers.

According to these rules, the arrows in Fig. 4 show the
allowed transitions between different orders. This means that
any architecture that starts with one of the orders of stage 1
and follows the arrows results in the optimum number of
delays and multiplexers. For instance, the sequence of orders
[45, 34, 13, 12, 21, 10] results in the optimum number of
delays and multiplexers.

Algorithm 1 shows the algorithm used to check if a transi-
tion between the order Os at stage s and the order Os+1 at stage
s+1 for an FFT with n stages is a valid transition. Here Os and
Os+1 are arrays of numbers that include the values i for the bits
bi that are in parallel dimensions at the corresponding stages.

The algorithm is based on the rules presented before.
Therefore, if a certain i that fulfills 0 ≤ i ≤ n − (s + 1) is
in Os, it must also be in Os+1. Otherwise, the transition is not
valid. Likewise, a certain i that fulfills n − s ≤ i ≤ n − 1 and
is in Os+1 must also be in Os. Otherwise, the transition is not
valid. In the end, if all the conditions are met and no false
condition is reported, the transition is valid.

The previous explanation has dealt with the transitions
between parallel dimensions, but it remains to analyze the
serial dimensions. Indeed, the order of the serial dimensions at
stage 1, or any other stage, can be chosen arbitrarily, leading
to (n−p)! alternative orders. For instance, the orders 0123|45,
3201|45, and any other permutation of 0123 followed by |45
is a feasible input order at stage 1. However, once the order
at stage 1, or another stage, and the sequence of orders of the
parallel dimensions are fixed, to achieve an optimum number
of delays and multiplexers forces to fix the orders at the other
FFT stages. The only degree of freedom happens when more
than one parallel dimension changes between two consecu-
tive stages. In this case, any of the parallel dimensions can be
moved to any serial position, being the number of alternatives
multiplied by d!, where d is the number dimensions that
change.

GARRIDO AND PAZ: OPTIMUM MDC FFT HARDWARE ARCHITECTURES IN TERMS OF DELAYS AND MULTIPLEXERS 1007

Algorithm 2 Counting the Number of Optimum MDC FFTs
in Terms of Delays and Multiplexers

Seq = zeros(C,n);
Seq(:,1) = 1;
for s = 1 : n − 1 do,

for i = 1 : OrdersPerStage do
for j = 1 : OrdersPerStage do

if transition(Os(i), Os+1(j)) == true then
d = diffDim(Os(i), Os+1(j));
Seq(j,s + 1) = Seq(j,s + 1) + d! · Seq(i,s);

numOptMDC = sum(Seq(:,n)) · (n − p)!;

As an example, let us consider the order 0123|45 at stage 1
and the sequence of orders [45, 34, 43, 12, 21, 10] for the par-
allel dimensions. Then, the orders of the FFT are according to
Table V. It can be noted that from stage 1 to stage 2, b3 needs
to be moved to a parallel dimension. This forces to store b5
where b3 was and the rest of the dimensions are unchanged.
Between stages 2 and 3, there is no permutation. Between
stages 3 and 4, b3 and b4 are exchanged with b2 and b1, which
leads to d! = 2! = 2 alternatives that lead to orders A and B
in the table. The orders for the rest of stages are obtained by
following the same reasoning.

As a result, each sequence of orders of the parallel dimen-
sions where ds dimensions change between stage s and s + 1
allows for a number of orders for the serial dimensions that
is equal to

(n − p)! ·
∏

s

(ds!). (7)

VII. NUMBER OF OPTIMUM MDC FFTS IN TERMS OF

DELAYS AND MULTIPLEXERS

The calculation of the number of optimum MDC archi-
tectures in terms of delays and multiplexers is based on
counting the feasible orders. For this purpose, Fig. 4 includes
small numbers outside the squares that keep track of the
number of alternatives, whereas numbers in circles keep track
of d! Starting from stage 1 and moving down in the graph
of Fig. 4, the count at a certain node of the graph is equal
to the sum of the counts of the predecessors multiplied by
values d! of the transitions. For instance, the node 12 comes
from 53, 43, 23 and 13, whose counts are 1, 3, 6 and 6,
and d! is 2, 2, 1, 1, respectively. As a result, the count for
node 12 is 1 · 2 + 3 · 2 + 6 · 1 + 6 · 1 = 20. In the end, the
total count is the sum of all the counts at the last stage, e.g.,
1 + 3 + 10 + 34 + 116 = 164 in the example of Fig 4.

Note that the previous calculations include all the combi-
nations of parallel dimensions and the effect of d! Therefore,
it remains to multiply by the (n − p)! possible orders for the
serial dimensions that can be set at the first stage.

Algorithm 2 provides the complete procedure to calcu-
late the number of optimum MDC FFT architectures, where
the function ’transition’ refers to Algorithm 1. Algorithm 2
has been validated by generating the optimum orders and
calculating the cost of the permutations of each of them
according to [12] by using MATLAB. Due to the extremely
large number of alternatives in large FFTs, the verification has
been carried out up to N = 128.

TABLE VI
NUMBER OF EXISTING MDC FFT ARCHITECTURES WITH AN OPTIMUM

NUMBER OF DELAYS AND MULTIPLEXERS, FOR A GIVEN N AND P

As a result, Table VI shows the number of existing MDC
FFT architectures with an optimum number of delays and
multiplexers, all of them with different orders. This provides
optimum results for a variety of input/output data orders.
Likewise, in combination with rotator allocation [7], the results
in this brief will allow for obtaining architectures that optimize
not only the number of delays and multiplexers, but also the
number of rotators and their complexity.

VIII. CONCLUSION

In this brief, we have explained how to derive all the
optimum MDC FFT architectures in terms of delays and mul-
tiplexers, and we have calculated the number of them as a
function of N and P. The results show that there exists a large
number of optimum MDC FFT architectures and this num-
ber grows significantly with N. This opens new horizons with
respect to designing MDC FFT architectures based on a given
input/output order, and optimizing the number of rotators and
their complexity.

REFERENCES

[1] M. Garrido, F. Qureshi, J. Takala, and O. Gustafsson, “Hardware
architectures for the fast Fourier transform,” in Handbook of Signal
Processing Systems, 3rd ed., S. S. Bhattacharyya, E. F. Deprettere,
R. Leupers, and J. Takala, Eds. Cham, Switzerland: Springer, 2019.

[2] N. L. Ba and T. T. Kim, “An area efficient 1024-point low power radix-
22 FFT processor with feed-forward multiple delay commutators,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 10, pp. 3291–3299,
Oct. 2018.

[3] K.-J. Yang, S.-H. Tsai, and G. C. H. Chuang, “MDC FFT/IFFT proces-
sor with variable length for MIMO-OFDM systems,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp. 720–731, Apr. 2013.

[4] C. Chan, H. Lin, and C. Liu, “High-throughput 64k-point FFT processor
for THz imaging radar system,” in Proc. Int. Symp. VLSI Design Autom.
Test, Apr. 2019, pp. 1–4.

[5] M. Garrido, J. Grajal, M. A. Sánchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 1, pp. 23–32, Jan. 2013.

[6] M. Garrido, M. Acevedo, A. Ehliar, and O. Gustafsson, “Challenging
the limits of FFT performance on FPGAs,” in Proc. Int. Symp. Integr.
Circuits, Dec. 2014, pp. 172–175.

[7] M. Garrido, S. J. Huang, and S. G. Chen, “Feedforward FFT hardware
architectures based on rotator allocation,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 2, pp. 581–592, Feb. 2018.

[8] W. Tsai, S. Chen, and S. Huang, “Reconfigurable radix-2k × 3 feed-
forward FFT architectures,” in Proc. IEEE Int. Symp. Circuits Syst.,
May 2019, pp. 1–5.

[9] J. K. Jang, H. Keun Kim, M. H. Sunwoo, and O. Gustafsson, “Area-
efficient scheduling scheme based FFT processor for various OFDM
systems,” in Proc. IEEE Asia–Pac. Conf. Circuits Syst., Oct. 2018,
pp. 338–341.

[10] J. K. Jang, M. G. Kim, and M. H. Sunwoo, “Efficient scheduling scheme
for eight-parallel MDC FFT processor,” in Proc. Int. SoC Design Conf.,
Nov. 2015, pp. 277–278.

[11] A. X. Glittas, M. Sellathurai, and G. Lakshminarayanan, “A normal
I/O order radix-2 FFT architecture to process twin data streams for
MIMO,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24,
no. 6, pp. 2402–2406, Jun. 2016.

[12] M. Garrido, J. Grajal, and O. Gustafsson, “Optimum circuits for bit-
dimension permutations,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 5, pp. 1148–1160, May 2019.

