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ABSTRACT

The filtering problem is studied for a system compo~
sed of an Iinertial navigation system giving continuous in-
dication of position and velocity, and a radar or some
other external deviece giving contimuous or discrete posi-
tional information. After a brief review of the results of
the filtering theory using the state variables representa-
tion, an error analysis yields three different mathematical
models for the I.N.S., represented by a set of linear diffe~
rential equations that can te written with the state wvari-
ables method. From there, the equations for both the conti-
nuous and the discrete filtering gschemes are derived, assu-
ming the only error sources are a white noise at the acce-
leration level in the I1.N.S5. and a white or Gaussian (in
the discrete measurement mode) noise in the radar. Functio-—
nal relations are obtained between the position and veloci-
ty root mean square errors and the following characteristic
guantities: noises in both fthe I.N.S. and the radar and o-
perating time (time between the measurements) for the dis-
drete filter scheme.
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Title: Professor of Aerongutics and
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NOTATIONS

Underlined lower or upper case letters are column
vectors. For instance X denotes a vector with components:
iy Xps evveesXpj x' is the transpose of X and is a row
vector. Capital letters denote matrices, except for the
noises W and R which can be either scalar or matrices. The
transpose of the matrix M is denoted M'.

Scalars

t time

t; time just before the measurement at tm
tF time just after the measurement at tm
o .

Re

earth radius
earth rate

x? Cy,CZ misalignment angles of the platform with
respect to the navigation frame
L latitude

1 longitude

Pij elements of the matrix Px H ithrow, jth column
mij continuous filtering compensation terms

kij elements of the galn matrix Ki 188 column, jthrow
a, b, ¢ parameters for models 1 and 2

RMX - RMY r.m.s. north and east position errors
RVX - RVY r.m.s. north and east veloeity errors

OPT or At operating time

Vectors

gstate. vector
I.N.S. noise wvector
radar noise vector

1< Is 1M
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¥ output of the linear system
m measurement vector
X optimum estimate of x
T specific force
g gravity vector
c misalignment angles vector
ﬂgb angular rate of frame b with respect to frame a
coordinatized in frame ¢
Matrices
F system parameters matrix
G input distribution matrix
H output distribuition matrix
4)(t,s) state transition matrix from -time s to time +
I unit matrix
Q or N I.N.S. noise power spectral densities matrix
R radar noise power spectral densities matrix or co-
variance matrix
[PF] performance fumction
{P] wvelocity computation matrix (page 23)
X gain matrix
Others
P Laplace operator
i time derivative of the quantity x
c subscript denoting & variable computed by the system
n subseript or superscript denoting navigation frame
Ccm " " " platform frame
i " H " inertial frame
" " " earth frame
sk superscript denoting a skew-symmetric matrix



CHAPTER I

INTRODUCTION

The design of an optimal filter to yield actuzl posi-
tion and velocity, when given data from an Inertial Naviga-
tion System and radar, depends upon the model chosen to re-
present the I.N.S.

The degree of sophistication of the filter must be
matched with the accuracy of the available instruments and
measurements, and since a short operating time for the reset
of the I.N.S. lowers the accuracy requirements, this fact
must also be considered in designing the filter.

We can consider 3 models for the I.N.S.:
model I : platform misalignment and cross-coupling between
the axes are neglected; so, it is possible to study the two
channels separately.
model 2 : platform misalignment angles are introduced but
the cross—coupling is still neglected.
model 3 : finally, both misaligmment angles and cross cou-
pling are taken into account; this is theoretically the most
accurate filter, but also the most complex one.

It will be shown later that the steady state r.m.s.
errors do not depend on the model chosen t60 represent the

I.N.S.



Although the filter cannot work in a continuous way
because of the time required for the computations of the
varying gaing, it may appear useful to study this continuous
filtering which is the optimum and may be used as a refe-
rence for choosihg the parameters of the discrete filter.

As a first approach t0 this prohlem, only two error

sources will be considered: I.N.S. noise which appears as

a white noise at the acceleration level and measurement noi-

se (radar noise) which is also considered as a white noise.
These two noises are to be characterized in the following
way: the I.N.S.noise by 1its power spectral density W or Q
in all the cases; the measurement noise by R, which is a
power spectral density in the continuous process and a co-
variance matrix in the discrete one. This difference will
be necegsary in part 5-3, in order to relate any discrete
process t0 one particular continuous one.

From both the theory and the results of the computa-
tion, functional relations are derived between the noises,
the operating time and the 'steady state' r.m.s. position
and velocity errors. The final charts I7 through I9 enable
one to choose the instruments in order to match the accura-
cy requirements for a given mission.

It is to be understood that,whenever the pogition ra-
dar appears in the text, any other external position infor-
mation can be used instead, including radio-navigation and
observafion, provided that the noise in this information

is a Gaussgian white noise.



Furthermore, only the errors in th§ optimum estimate
are to be studied. This means that ﬁe shall not study the
way this estimate must be generated from both informations.
Although some equations as well as some signal flow dia-
grams for this estimator are given in this paper, only the
variance equation, yilelding the covariance matrix and the

errors, is solved.



CHAPTER 2

FITTERING THEORY ; PRINCIPAL RESULTS

None of the equations 'of the filtering theory are de-
rived. Only the principal results that will be used throug-
hout this paper are summarized. Further information about
these equations and their derivation can be found in refe-

rences 1 and 2 .

2.1 State transition method

Any linear dynamical system described by a set of or-
dinary differential equations can always be represented by

the single equation:
x(t) = F(%) (%) + G() u(t) (2-1)

x(t) is the state vector of dimension n , its coordi-

nates x; are the state wvariables.

F(+%) is the system parameters matrix.

G(+) is the (n.1) input distribution matrix.

u(t) is a vector of dimension 1 called control vector.

It is assumed thaet both matrices F(t) and G(t) are continu-

oug functions of time.



The system is completely described. when the vector
output z(t), which can be of any dimension m less than n,

is written as a linear combination of the state wvariables:

(%) = H($) x(%) (2-2)

i

where H(t) is the (m.n) output distribution matrix.

The block diagram of this system is given on figure 1.

F(+) represents the dynamies of the system.
G(%) n the constraints due to inputs.

H(t) " the constraints on observing the system

from outputs.

The general solution of this system (see 3 and 4) is:

+
x(t) = P(t,t,) x(t,) +/ P(t,8) G(s) u(s) ds  (2-3)
4
o

where'qp(t,s) is the state transition matrix, which is al-

ways nonsingular and obeys the differential equation:

 P(s,s)

T = F(%) CP(JG;S) (2-4)

with the "initial condition" <t)(t,t) =1 (unit matrix).

2.2 Stochagtic linear differential equation

When a linear dynamical system is driven by some vec-

tor noise v(t), its state obeys the equation (2-1), namely:



x(t) = F(t) x(3) + (%) ult) (2-5)

If u(t) is a white noise - i.e. a noise the power

spectral density of which is a constant over sgsome bandwidth-

this equation becomes a stochastic linear differentisl e-—

guation and its solution is again

t
x(t) = P (%,t,) x(t,) +/<13(t,s.) G(s) u(s) ds
t,

In order to study the statistics of x(t), we define
mean of x(t) = m (%) = E[E(t)]
covariance matrix of x(t) = PX('I:) = EI;:_c_(t).E'('b)]

Then, it can be easily found that:

1 (5) = P (%,0) B (%)

) PX(t) = @(t’td) Px(to) @'(t’to)
f@(t,s) G(s) Q(s) G'(s) ' (t,s) ds
t,

(2-6)

where Q(s) will be called the strength of the white noise

and is defined by the relation
E[:a(t)-g'(ms)] = Q(%) § (s) (2~7)

$ (s) is a l-dimension vector delta function such that

§ (s) =0 if s is not O

00 +00 + Qo
/dsl/dSQ....../dsL §(s) =1
Ey. - - G0

-0



2.3 The general filtering theory

The message is a random process x(t) generated by a

model obeying a stochastic linear differential equation:

z(t) = F(3) z(%) + G(t) u(t) (2-8)

The obgerved signal, or measgsurement is

m(t) = H(t) x(t) + v(t) (2-9)

where u(t) and v(t) are white noises with zero means and co-

variance matrices

Q%) § (4-s)
R($) § (t-s)

I
1]

P,(t) = E[u(t) u'(s)]
Py(t) = E[v(%) ¥'(s)]
— and E[g(t}.x_r(t)'] =0

n
I

We assume the matrices Q(t) and R(t) are non-negative defi-
nite matrices continuously differentiable.
Figure 2 represents the block diagram of this systen.
The filtering problem is then to determine from the

measurement m(t) the best estimate g(t), best in the sen-

se that it maximizes the conditional probability density
function fX/M(a/b) of the state vector x conditioned on
the values (a priori past values as well as actual ones)
of the measurements.

We only give the results of this theory: see * for



free system and continuocus filtering, and 2 for discrete

filtering.

2.3.,1 Free system

The system simply obeys the equation (2-8). No mea-
surement is taken so that the best estimate g(t) is Ex(t)
with variance Px(t) given by equation (2-6).

It is eagier to write these equations as differential
equations instead of integral ones. Differentiating (2-6)

1

and using (2-4) yield:
2(t) = P(t) Z(%)
P (1) = P(t) Pp(t) + B(6) P (%) + G(t) Q) &' (%)
(2-10)

2.3.2 Continuous filtering

Measurement m(t) is now taken in a continuous way.
—It can be shown that, in this case, the above equations
become

E(8) = F(OE() + By(o)E (5)R7(6) [m(+)-B(£)E(+)]

P, = TP + PP' + GQG' - PH'R™IHP (2-11)

In the last equation the variable t has been dropped and
this will stand throughout this paper whenever there is no

ambiguity.

2.3.3 Discrete filtering

The measurement can only be itaken at discrete times.
The time between two measurements is assumed constant and

cglled the operating time. The scheme is the following oner
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Between the measurements, the system is free and obeys (2-10)

At each measurement, we compute
= -1
K(t,) = P (b, E! (5,) [H(,) P (6 )EY (5,)4R (%))
Then the best estimate is given by

”~ . . .
g(tm) = K(tm)g(tm) with covariance matrix:

P_(t7) = [I-—K(tm)H(’cm)] P, (47) (2-12)

In this last equation,'-' means Jjust before the measurement
and '+' just after the measurement.

The diagram of thé continuous filter is giwven in

figure 3.

2.4 The filtering problem in this paper

The general filtering theory assumes that one can ta-
ke measurements of some coordinates of the state vector x
which is itself generated by the system.

The problem is not quite the same here and is to be
understood in a different way:
1. the state vector x(t), which can include position and

velocity informations obeys the homogeneous equation:

x(t) = P(+) x(%)
where F(t) depends primarily upon the trajectory.

2. some indications about position, velocity and other co-
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ordinates of the state vector are available as outputs of
an inertial navigation syzstem. But due t0 measurements and
instruments inaccuracies, some noise is added so that the
output obeys equation (2-8); we limit ourselves in this pa-—
per to the case where the only noise source is the gyro
drift. Furthermore, following 6and7 y we assume that this

drift can be well enough approximated hy a white noise gt

the acceleration level.

3. on another hand, some components of the state vector are
available as outputs to an external device - external to
the inertial system - This includes altimeter, Doppler and
position radar, eto... Here aéain, the inaccuracy yields

a noise term in equation (2-9) which represents the exter-
nal information.

Thus, we have here two different measurements of the
same vector and we want to get from them the best estimate
of this wvector.

From now on, the external device will be a position
radar. The measurement will be the difference between the
position given by the inertial navigator and the position
given by the radar. This megsurement is considered as the
error in the indication of the position. Filtering this po-
gition error yields the best estimate of the error on the
state vector. The best estimate of the state vector itself
is then obtained by substraeting the estiﬁated error from
the output of the insrtial system.
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The general block diagram of these operations is gi-

ven in figure 4.

This approach allows us 10 use an error anglysis for

the inertial navigator. .
The following chapter investigates the different pos-

sible models for this navigator,
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CHAPTER 3

THE THREE POSSIBLE MODELS

3.1 Introduction

The complexity of the filter increases with the com-
plexity of the model representing the inertial navigator.
Indeed the filter gain K(t) depends on F(t) and the dimen—
sions of the matrix F increase with the number of variables
in the system.

On another hand, the accuracy obtained after filtering
depends both on the complexity of the model and on the "po-
wer" of the noise. Thus it could be useless to filter with
a complex model if the noise is important.

In this paper, 3 models are analysed:

1. the first one neglects both platform misalignment and
cross-coupling between the axes.

2. the second one takes into account the platform misalign-
ment angles..

3. the last one is a complete 3-axes model- but assumes a
steady state - i.e. "en route" conditions-.

In this chapter, we determine for all of these models
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the various matrices involved in the filtering theory: F,

G" H, Q, Ro

3.2 Model 1 : no cross-coupling; no misalignment

It is simply considered that the velocity vector 1is
the time derivative of the position vector. 4 simple dia-
gram of this I.N.5. is given in figure 5.

Consider the state vector X composed of the position

and velocity errors as: ) dr
dr
: ¥y
X =
= dvx
av
A
Then the equation (2-~8) can be written as:
d?x O 0 1 0 drx o 0
ar 0 0 0 1 ar 0 O Yx
I = Il o+ (3~1~1)
dvx 0 0 0 O dvk 1 0 @
av 0 0 0 O dv 0o 1 J
¥ Y ~ .
L . L. - b .
x- = F x + G u

In this equation . and uy are the two white noises on both
the x and the y channels.

The measurement egquation (2-9) is:

dr., [l O] dr_ v&}
+ (3-1=2)
dry 0 1 dry vy

or m = H X + ¥
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Finally, the matrices Q and R are here:

N O R 0
Q= {o N] R = [0 R] (3-1-3)

where N is the power spectral density of the I.WN.S. noise

and R n n " radar noise.

3.3 Model 2 : no crosg-coupling

The functional block disgram of a single axis iner-
tial navigator instrumenting the navigation frame is given
in figure 8. The platform misalignment is now accounted
for: this means that a component of the gravity vector is
falsely sensed by at least one of the accelerometers.

A misalignment angle about the z-axis (down) does
not introduce g large error because the acceleration of the
vehicle is usually small in comparison to g. On the contra-
ry, a misalignment angle C (Cy) about the x-axis (y-axis)
causes the accelerometer along the y-axis (x-axis) to sen-—
se a component of gravity % g C. G Gy) in the small

angleg approximation.

Thus we neglect the angle C, about the down-axis;

then there is no coupling between the x(north)-axis and

the y(east)-axis. The z(vertical) channel follows exactly
the equations of model 1 and the other two chammels can be
studied. separately.

Ag shown in figure 9, the misalignment angles CX and
Oy are defined as correction angles -i.e. they are the an-

gles the navigation frame should rotate about its X and Y
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axes to align itself with the platform axes -.
Throughout this paper the accelerometer outputs are

supposed to be the components of the specific force f along

the sensitive axes of any of these accelerometers. The spe-

cific force here is gravity minus acceleration ; so:
2
£=g-7P; By

The effects of Cx and Cy are the following: when CX
is positive, the instrumented east axis is below the hori-
zon; therefore the y-accelerometer senses + g CX . When
Cy is positive, the instrumenfed north axis is gbove the

horizon; therefore the x-accelerometer senses - g Cy.
Then, when the vehicle 1g moving, the accelerometers senmse

{-Re L -z Cy along the x-axis

-Re cosL pzl + Z CX along the y-axis

Re is the earth radius; L the latitude and 1 the longitude.

- 24
Therefore, the errors are + — Gy on sz

e
1.8 :
- — CX on cosL p 1

L R
e

The error model is given in figure 10.

We can write:

p (dry) = dv, P (dry) = dv,
p(civx)=+lgcy p(dv,) = = g C,
P (Cy) = - Rédvk p (C) = % dvy
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Defining the state vector as ar
dr
dwv
dv
c

Mo M

T

X
i
the equations (2-8) and (2-9) can be written:

p— — plt —

00 1 O 0 0 0 0
o0 0 1 0 0 0 0
. 0 0 O 0 0 g 1 0|[uw,
X = X 4+
X 0 0 0 0 -g o % 0 1
0o 0 0 +1/R, 0 0 o oll|Y%
| 6 0-1/R, O 0 0] | 0 0] (3-2-1)

and for the measurement:

ar., 100 0 0 0 v,
ar |= o100 0 o] E* v, (3-2-2)

Pinally the matrices Q and R are :

N O R O .

Let us remark that here the first four rows and colum-
ns of the maitrix I are exactly the same as in model 1. This
means that model 1 can be studied as a special case of mo-~

del 2. This will be useful later on.

3.4 Model 3

The functional block diagram of the navigator is al-

mosgt the same as in the previous model, but the misalign-
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ment about the z-axis is‘no longer neglected. Furthermore
there is now an earth rate compénsation which will intro-
duce some other errors due to computed latitude feedback.
See 8 and 9.

Let us call "n" the navigation frame and "cn" the con-
trolled member frame - this is the platform axes -. With
the same sigﬁ convention for the misalignment angles as be-

fore (the angles are positive when the n-frame rotates about

its positive axes to0 get aligned with the cm~frame) the di=

cm

n can be written:

rection cosines matrix C

1 - 1 -
on CZ Cy O. 0 0 CZ C
Cn = ~C 1 CX = {0 1 O - CZ O =C
Cy —Cx 1 0 1 - CX 0
or C;m = I - ¢ (3-3)

where C is the skew-symmetric matrix associated with the

rotation vector C (components-cx, C_, Cz)‘ This matrix is

y
defined for any vector V by the relation :

Vx¥ = [V] ¥

Let us assume for the moment that position and wvelo-~
city are given in terms of latitude and longitude (angles

instead of distances); thus:

av, = p(I-L) ({drx L,-L = (av,)/p
avy = p(1,-1) ar, = 1,-1 = (av,)/p

¥
In these relations, the subscript "¢" stands for "computead®
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because Lc is one of the outputs of the I.N.S. and may dif-

fer from the true latitude L.

A=1l: the first agsumption is to neglect Coriolis erXfects
and vertical acceleration.

Then the specific force in the n-frame is:

2
—Re p L
2 = -R, cosL Pl (3-4)

23

and the accelerometers output is the specific force coor-

dinatized in the cm-frame which can be written

From £%, ﬂgn (angular velocity of the n~frame with res-
pect to the earth frame, coordinatized in the nav.-frame)
is given by the relation:

[ cosL pl] o -1/Rp O] |-R, 7L
(Wgn)c= -pL = l/Rep 0 0 -R, cosL p*1
—sinh pl 0 tanL /R_p O
or | (Wo ), = [BF], £° (3-5)

In the expression of tine performance function [PF]C, the com-

puted latitude comes only into tanLc.

But
tan L, = tan(L+dL) = tan I + dL/cos® T +high order terms

We can, without introducing a -great error, assume
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tan LC = tan L under the following assumption:
A-2: the gystem is working far from the pole.

At a latitude of 45 degrees, the resulting error is only
2 dL (with 4L in radians) and the approximation is quite
good.

From ﬂgn , the velocity indication (in terms of lon—

gitude and latitude rates) is given by:

Vo pl: 0 -1 0
- = w2
vy pl 1/cos L, 0 O —en
or (¥, = [?] ¥, (3-6)

The command angular velocity the space integrator

mast recelive in order to operate properly- -is:

Egﬁd = (), + (E?e)c (3-7)
Wi ¢os Lc
4l —
Thus (ﬂie)c = o] mist be added to Eﬁh

-wie sin I‘c

The equation for the angular motion of the control-

led member is now:

cm _  gom cm _
¥iem= ¥in * ¥pen (3-8)

where Eﬁfﬁ is the commanded angular velocity given by
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equation (3-7) and WS , which is the rate at which the

controlled member goes away from the n-frame, is related

to the correction angles by:

PCy

cm _ |pC. _

W= {P¥ = pC (3-9)
pC,

. em _ ~CI . :
Noting that Wi, =Cp E_I;_ln and using equations (3-5),

(3~7) and (3-9), (3=7) ecan be written in the form:

cm N0 - cm n n
cof (Wi, + o) +p 0= [PF]CpTEN 4 (W), (3-10)

Expanding sin L, and cos L, in terms of dL =L, - T up

to the first order, we get:

w4 8in L
n _ U ;|
(W 0o = ﬂ_f{e - 0 dL = _vfj'_‘e + aW;
Wie cos .L

Using (3-6), (3-10) becomes:

n _ n n

[T - c] (Wi, *+ ¥opn) +p C = [PF] [I - C|£% + Wy, + aw
(3-11)

Some simplifications are possible. Indeed, from the prin-

ciple of operation of the I.N.S.
[F] £* = ¥

—en

Further use of the relation [A] V= AxY = -
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yields finally:

= —le

p C=am, + [PF] [in]Sk ¢ - [wl.l :lSk c (3-12)

To be able to get a relation of the form (2-8), we
need a first order differential equation between the seve-
ral errors. Therefore we need to relate the terms

FTﬂ[i?]Sk C to some other error terms. It turns out to

be easily relatable to dv. Indeed, from (3-5) and (3-6)

v+dv = [F [PF] [1 -¢] £

Hence av = - [P][PF] ¢ £"

or ay = [2][eF][£%]°* ¢

H]

[t

fie can develop this matrix product. Assumption A-2 allows

us to write -1/cos Lc = =1/cos L (the error in-

volved 1is of the same order as - the one involved when wri-
ting tan L, = tan L).

Purthermore, with the last assumpiion :
A-3: the wvehicle 1s slowly moving on the surface of the
earth

the terms in pL and pl in the product [PF] [;n] 8K han be

neglected. Thus

.cx-
av 0 g/Rp O
x e o
av. |~ |- gRecosLp O 0 y (3-14)
¥ = c
2
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Now we wish to relate [PF] [fﬂ Sk ¢ to av. It is easy

to see that
0 cos L
dv
[PF] [fl] sk o= [ 0 * (3-14)
dv.
0 -sin I ¥

Ssubstituting (3-14) into (3-12) yields finally:

»C, w, sin L 0 ‘ cosl 3v
pCf==| © aL + | -1 0 oL,
y - ] dvy
-pCZ- f"iecos I’_ i 0 -sin Ij
0 caiesin L 0 C.
I O W, Co8 L 0 | _Cz_
(3-15)
The last equation of this error analysis is
P (drx) 1 0 dv, ( :
= 31
1 d
D (dr_y) 0 vy

From equations (3-13), (3-~15) and (3-16), defining

where all the quantities involved
y are angles and angular rates
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we can. write x=FXx+Gu with:
[ 0 01 0 0 0 0
0 00 1 0 0 0
0 00 0 0 +§— 0
e
- - 8
F 0 00 0 R 008 L 0 0
-u&esin L 00 cos 1L 0 —QﬂeSin L 0
0 0~1 0 +agesin L 0 +aﬁecos L
ugecos I 00 =sin L 0O —a&ecos L 0 ]
(3-17)
and:
[0 0]
0 0
1 QO ux
G = o 1 u =
0 0 Yy
0 0
0 0

To get an equation of the same form as in the Previous mo-
dels, dr and dv must be expressed as functions of distance.

nemarking that-

r, R, 0 0 8 .
T
¥ _ 0 Recos L © ry
v, 0 0 R, 0 Ve
v 0 0 0 R_cos Li|+
| Y dn.miles L © JL Y minutes

1t follows that we can write :

é =FXx+Gu with now
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0 0 1 0 0 ¢} 0
0 0 0 1 0 0 0
0 0 0 0 0 g 0
F = 0 0 0 0 - g 0 0
Wy sin L 1
- =& 0 0O + — 0 -W sin I 0
- ) R ie
e 1 €,
0 O_— E— 0 wiesin L 0 uiecos o
miecos L e tan L :
- ] 0 - o] -~W. ¢cos L 0
R R 1€
e e
(3-18~1)

Then position is in nautical miles and velocity in nauti-

cal miles per unit time.

The measurement is m=Hx + v  with

o o

0 0

100 00 0 O 1 0

H=16 10 0 0 0 © ¢ ={0 1] (3-18-2)

o 0.

o 0

0 0

FPinally, the matrices Q and R are the same as before:

Q= 1o W B="1o = (3-18-3)
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N and R are power spectral densities of white noises and
thus are to be constant over some fregquency interval. The-

refore, the units must be:

(n. miles)z.sec for R

(n. miles)a/ (sec)3 for N

Let us recall the 3 assumptions made to derive this
equation:
A-1l: neglect Coriolis effects and vertical acceleration
A-2: cperation far from the pole

A-3: vehicle slowly moving.
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CHAPTER 4

FILTER EQUATIONS

4,1 Introduction

As it was pointed out in chapter 1, we are not inte-
rested in finding the output of the filter for given I.N.S.
and radar outputs, but rather in measuring how accurate
this indication is. Therefore, in this chapter, only the
variance equation (the differential equation for Px(t))
will be studied and solved.

It folléws from equations'(3nl), (3=2) and (3-18)
that the F matrices are very similar in all the cases. The
12 equations governing the P (%) matrix in model 2 are a
particular case of the 28 eguations of model 3; in the sa-
me maznner, the 6 equations of model 1 are a particular case
of the 12 equations of model 2. -

Therefore, after an analytic solution for model 1,
the only model that can be handled in a simple way, the
equations for model 3 will be derived using 2 parameters

tat gnd "b" to allow a single study of the 3 cases.
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4,2 Analytic solution of model 1

The equations of this model are simple enough to be
analyticully solved. This allows us 1o find a closed form
answer to the continuous fi;tering problem.

Let us go back to equation (3-1-1). Since one of the
main gssumptions of this model is that there be no cross-—
coupling between the channels, the rank of all the matri-

ces can be reduced by writing

drx 0 1 arx 0 (
’ = + u 4-1-1)
dvk 0 -O dvx 1 x
é = F X + G u
and drx
dr_ = [1 0] + v (4~1-2)
X X
dr
y
m =  H x o+ X

Thus the matrices Q and R become scalars N zand R .

If we let
P11(t)  py3(%)

P13(t) 933(t) the variance equa-

tion can be written (dropping the variable t):

P11 P13 O  1ilp; Pyy P17 P30 O
. . = ) + .
P13 P33 0 0]|P3 P33 P13 P33f Lt O

0 P17 Py 1l X jo] P
+ ) wo 1] - 37— [z 9| ™ ™ G-
Pl3 P33 0 R ‘ P13 P33
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4~-2-1 Steady state

The steady state solution is the solution of the
right hand side of this equation when the left hand side
is 0.

The answer is straightiorward

vz Rs/"' n’%

(Pll)s.s. =
(Pl3)s.s. = N NR
(P33)g.s. = \‘/2 A I\Ta/‘s».‘

Thus, the steady state r.m.s. errors are:
v 3
in position RMX = 2/‘* RfsN'/‘s

in velocity RVK = 2% peyp¥e (4=3)

Now the optimum estimate is given by equation (2-11)

with  g(4) = p(t) H'(t) R~
N %L Vﬁ?(g
Let us call (., = [~—— ; then K = n
n S. -
R 2
Wn
And: *
af_ o 1|la® V2o &
] = Al F (m - [1 O] A1) (4-4)
a?, 0 Olja¥ W dv

The optimum filter block diagram is given in figure 6.

4.2~2 Response t0 I.N.3. and radar noise

From the diagraﬁ, it is easy to get the response of

the filter to:
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SEN

~
-
-

Y
o
<>

/ dt »T P

.lji_jur-e. 6 : model 1‘;_opi'imum ‘Fi“'er block d{quam

€(¢J A e_(s_)h
v v
1 T T T ! 4
i 4
N P : P
: |
. |
L e wh el 7% ]
(%} €(v)
/.. dk o dE
1 — - ' 1= - =
va e
P | }
! ]
| - | .
wn o tad bt

{i_sure 7 : model 1 respo

/

hses h. I.N.S and radar noises




34

#1 radar noise :

e(2) 2w, P+ W

on position = -7 S
R P+ 2&5 P +Wwy
e(%) w? b

on velocity =

#2 I.N.S.lnoise

A z
e(T) B
on position = =3 1
u/p P+y2w, prw,
. e(¥) p? +J5€0n p
on velocity =
. u/p p*+V2 0, p +wd

These response functions are plotted on figure 7.

4-2-3 Closed form solution for the free system

The initial conditions can be taken as

(t=0) 0
P._(t=0) =
x 0 o0

The variance equation for the free system is:

P11 Pl} 0 i Py7 P13 Pyq Pl3 0 0 0 0
- . = + - +
P13 P33| |0 O||P13 P33 |Pa3 Pa3fjl ©] " |0 W
or: ?ll =2 P13
1%13 = P33
Py3 = N

With the initial condition 0, the solution to this egquation
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is: t3/3 t /2

P(t) = N
x 2 /2 t

Then, the r.m.s. errors are:

(w/3)%2 %
on velocity RVX = n2 %

on position RIX

il

These results are plotted on graphs 1 and 3 (upper curves)

The steady state covariance matrix in continuous fil-
tering and the free system r.m.s. errors are about the on-
ly things we can analytically study even in this simple
model. As soon as we g0 intc the transient solution for
the contiﬁuous case, we get the fdilowing set of non-linear

differential equations:

-»

P13 = 2 Py - PR

P13 = P33 = Byy P13/R

§33 =N - pi3/R
These equations are not easy to solve (see 10) aﬁd it is
better to solve them on a computer as a particular case of

+the most complicated model, as shown below.

4,3 The variance egquations

From now on, the covariance matrix will be taken in

the form:

P11 P12 Py3yecres Py
Pl7 ® & » 9 BB S S d p77
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Since  P_(t) = B [z(t) 5'(t)] with the usual definition

for the state vector x(t) (chapter 3), the off diagonal

terms are the correlations between the different state va-

riables.

For instance P3g = E [dvx Oy] because all the sta-~

te variables are zZero-meaned quatities (error terms). The

diagonal terms are the variances (squares of the corres-

ponding r.m.s. errors) for the same reason.

For instance Pay = E'[dv2

y

]E=(y—velocity rms error)

Let us come back to the system parameters matrix

F of the 3 models, as they appear in equations (3-1-1),

(3-2-1) and (3-18-1), and define three additional parame-

ters

&, b and

a
b

c

C

—

such that:

0 for model 1 and 1 otherwise

O for model 2 and 1 otherwise

ab

Then it is possible to represent the 3 models by the follo-

wing matrix F:

0
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The differential equations for the covariance matrix will
be derived with "this expression for F. As for the number of
equations necessary to study each of the cases, it appears
to be :

in model 1~ 6 equations corresponding to the 6 non gzero

quatities ISR pl3, p33, Poos p24, p44 for both ‘the x- and

y-channels.

in model 2~ 6 more non zZero terms: P15 P3g0 Pgg for

the x-channel and Poss p45, P5s for the y-channel. There-

fore, 12 equations are necessary.

in model 3- 28 egquations because no gquantity is a-priori

Zero,

4.3.1 Free system egquations

Equation (2-10) is:

-

P= PP +P F' +GQGT
A1l the guantities have been defined and the result is the

following set of 28 equations:

Py = 2 Py

2) 1.333 = 2ag Pyg * N
3) 513 = P33 + 28 Pyg
4) Pos = 2P24

5) Py = =228 Py + N

. o: . Sin § a

— D + — - bw;, _sin L p
Re 12 R, ie 26
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. miesin L 1 .

8) Py = =8 = b —Te‘—'—"' Pio ¥ ﬁ; Poy - bwiesnl L Pog
. wiesin L 2 ‘

9) Psg = 2D~/ P15 * [ Py5 ~ 20 @380l g
. 1

10) 15 = P3g ~ F_ P13 * P Wye?inl Pyg + PW;008h g
. 1 ‘

11) Pyg = *& Pgg -R-e- P33+ bw; sink P35+ bw, coskL P37
R 2

12) Pgg = ~ Eep36+ 2bui831n1. P56+ 2b uiecosI. Pgy

— S e o S e wew e ek el MR s s mm Mmm Mme S GEP  SEr Gt s e G e e RSe e e

13) P1o = Po3 + P1g

14) P23 = P34 + g Psg
15) P14_ = P34 - 8 P15
16) P34 = & Pyg = & P35

. W _sink 1
17) P15 = P35~ _'J;f?:—Pll"' Eeplfl-- Uiesil’lL P1g
. wiesinL 1 .
18) P35 = gP56"' —ﬁe———Pl3+‘§ep34_—- QieSan;l P36
. 1 , ’
19) Pog = +P46- §8P23+CuieSinL p25+-aﬁecosL p27
. . 1
20) Pyg = =8P~ §3P34+ W;8inl pyg+ @ cosL p, o
. | w, sin 1 1
21) Pgg = - _%%;_'916*' R P46~ ©Cie®nL Pegm | P35t YiSinl Pyg
+ miecosL P57
. uiecosL tanh
22) P17 = Py37m TR;P11” TR Pu4” “1e°05T Pig
. ‘ wiecosL tank
23) Pp7.= Pgqm TR, P12” TR P2q” “ie®08T Pog
. wiecosL tanl
24} P37 = 8Pg7™ Tpl3- —R_:a—p34- W, o080 P3g
. uiecosL tanL

25) P47 = -gp57"' -—Re__—P]A-— ‘_“R"‘:P44- (-'-fieCOSL P46
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. miesinL 1 cuiecosL
26) Py = - R, el Eep47”‘”ieSlnL Pg7~ “'ﬁ;‘“‘Pls
tanl
- Re p45—cuiecosL P56
. 1 . wieCOSL
27) p67 = - g p37+<91651nL p57+cuiecosL p71--ﬂf§;-—~pl6
e -
tanl,
- R P46 “1°05T 265"
; . u&ecosL tanh
28) P77 = -2 ——E;———@l7— 2 R Py~ 2, cosh Pg7

(4~6)
In thé second part of these equations (#7 throusgh #12) the
coefficient a has been dropped; in the last part (#13 through
#28) both coefficient a and b have been dropped.
This system of linear Ffirsi order differential squa-
tions may be solved given some initial conditions and yields

the r.m.s. errors in the state variable estimators.

4.3.2 Continuous filtering compensation terms

To get the equation (2-11) the quatity
M($) = P.(%) H' R~ H P_(%)
x x

mist be substracted from the foregoing equations.
Of course U'(%) = M(t) so that only 28 terms must
be computed as functions of the Py 5 Assuming that M(t)

is written as
M(t) = [mij:] the following set of equa-

tions is obtained:

1) mll = (Pfl"' P§2)/B , 2.) m33 = (P:[2_3+ P;3)/R
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2 2
3) m13 = (P11P13+ P12P23)/R 4) Moo= (P12+ P22)/R
5) my, = (pi,+ 05,)/R 6) my,= (DypPys+ PopPpy )/R

7) myg = (P1pPyg+ PppPos)/R | 8) myg= (P,Pyg+ PyyPo5)/R
9) mgs = (P15+ Po5)/R 10) myg= (P11P1g+ P1oPog)/R
11) myg = (py3Pyg+ PoyPpg)/R | 12) mge= (pig+ Pp)/R

e wem mme AR ek dmm MR AWE gy S aar  emm  mm e e e e evm  mm e e o e e e mm e e e

13) Mys = (pllp12+ P12P22)/R 14) m23= (P12Pl3+ P22P93)/R
15) Doy = (P11P14+ p12P24)/B 16) Mas= (P13P14+ P23P24)/R
17) myg = (PryPyg* P1oPps)/R | 18) mys= (py3P15+ Po3Pa5)/R
19) Myp = (P12P16+ P22P26)/R 20) m46= (P14P16+ 1324_:926)/R
21) m56 = (P15P16+ P‘25P26)/R 22) m17= (P11P17+ P12P27)/R
23) m27 = (P12Pl7+ P22P27)/P 24) m37= (P13P17+ P23P27)/R
25) my7 = (PryPygt DPpuPpg)/R | 26) mss= (Dy5Pyq+ PpsPaq)/R

27) mgy = (P1gPyq+ PogPaq)/R | 28) myg= (pi + 23,)/R
(4-T)

These are the continuous filtering compensation terms writ-
ten as functions of the Pij’ some among them can be O, de-
pending on the model (the different modelsare delimi%ed by
the two dotted lines). '

To get the continuous filter variance equation, o 5
is to be substracted from the right hand side of equation

(4-6) :

Py: = (4=8)

ij (pij)free system ~ ij

When the equation (4-8) are solved, the r.m.s. errors

are given by:



41

" 3]
— i n

y—-position

x=veloclty =

‘/Pll = Ir'.m.s. error in x-position =

y=velocity =

RMX
RMY

RVX
RVY

P551 Pgg and P79 are the r.m.s. misalignment angles.

Let us find, in this case of continuous filtering,

the form of the optimal filter. The optimum gains matrix

ig: ) ) -1
K(t) = P(+) H' R

(7 Ppp

P12 Pop

;| P13 Pas

K(t) = — 1 Pyy Py
P15 Pos

P16 Pog

| Pi7 Py

and is equal to:

11
12

oW O K K O’ OR

17

Kyo
K

k23

ko4

Ks5

Ko

k27

The optimum estimate obeys eguation (2-11):

Jde
1
g

1)

iy m. is the measurement along the x-axis
my n 1 1]
and if o= m
o
= m
Ty y

equation (2-11) can be written:

+ K(m-HX)

y-axis

22

(4-9)



’Etb-lgo_lp Molj' ,buc,f'_—dqrrj_md:?—.’g Jopow ¢ "E-L ;.mb‘TJ

com PU Ter

K

"LNS




43

”~ s (A"
p(drx) dv, + kym  + Kk
s
d
p( ry)

A
p(de) = agC + k13m + k

o
127y
AT + k..o + k.oW

vy 120 02 y

23 y
p(dvy) = —-ag CX l4m + k24 y

w, sinl av
A _ ..._..:.L...._e_........._ ~ _ _1 _ . - ~ ~
p(CX) = -C R, dr_-a. R ¢ w, sink Cy+k15mx+k25my
p(cy) = —a R +¢ w; sink C, +¢ w, cosL C_ +ky +k26my
(C) = 1008 4T —c tant av, —e w. L O 4k +k, T
p(C,) = —¢ R, r. R v, o w; 008l O + 17111X 278

The signal flow diagram of the coptimum filter for model 3
is given in figure 12. For purpose of simplicity any quan-—
£ity ~ o _
klJ L+ k2jmy (with koy = k12) has been replaced
by the number "j".
These quantities are computed from the 14 gains of

equations (4-9) and the measured guantities 5; and ﬁ% .

These computations are not shown on this figure.

4.3.3 Discrete filtering

Between the measuremenis, during the operating time
OPT, the covariance matrix obeys equations (4-6). At each
measurement 1t is updated using equation (2-12); for this’

it is necessary to compute

K =P H' (HP'H' +R )™+

It is easy to see that

Pat R Py

P10 Poot R

HPH'" +R =
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Since the general filtering theory assumes that R
is a positive definite matrix and since the covariance ma-
trix is non-negative definite, it is always possible to
invert the matrix H P H' + R, even when the initial con-
dition is P(t=0) = 0 , provided that we do not update P
at the initial time. This is straightforward and can easi-
ly be shown using the Schwartz inequality and the fact
that P Tbecomes more and more positive during the opera-—
ting time (from equation (2+10)).

Denoting

2 2
D = det( HP H' # R) = pyPpp= Pyp +R(P7+P5s) + R

we can get :

— 2 -
Py3(Popt R) = Ppp P12{Py3*+ R) = p11Ppp

P1o(Poot R) = PyoPps  Pop(Pyg+ R) - P
P13{Pop* R) = P1oPo3 Po3(Py+ R) = PyoPy3
K(4) =

gl

P14 (Ppo+ R) = PyoPyy Po, (Pyq+ P1oP1y
plS(P22+ R) - P12P25 P25(Pll+ R) - P12P15

P1g(Poo+ R) = PyoPog PoglPy+ B) = DioPpg

P17(Pog* B) = P1oPp7  Pp7(P1p* B) - mppPig

b

(4-10)

Once this is computed, the opiimum estimate of x is:
£=K§§

The covariance matrix is updated by (I - K H) P ;

in other words, Pij is to be changed into :
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Py ~ KiqPr5 — KioPoy (4-11)

The new covariance matrix P(tg) becomes the new initial
condition for the equations (4-6), until the next measure-

ment is taken, when o new P(t;) becomes available.

4,4 Computer program

As it was already pointed out in part 4.2.3, the ana-
lytic solution of these equations is not easy to obtain,
even in the simplest model. Therefore, this work must be
done on a computer.

The computer program used for this paper is presented

in Appendix B.

The first program-(pages B-1 through B-10) solves for
the covariance matrix in the 3 modes : free system, conti-
nuous, and discrete filtering; writesthe r.m.s. errors,
and punches some of these results for later use on a ploi-
ter. The main inputs are : ALAT1 (latitude in degrees);

PF (final +time); AQ (inertial navigator noise in f3% /sec )
AR (radar noise in ft .sec), and three different operating

times 0PT1l, OPT2, OPT3 in sec.
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CHAPTER 5

RESULTS

The computer program used to get the results of this

chapter is given in Appendix B, It was worked out on an

I.B.M.- 360 in the M.I.T. Computation Center.

For the discrete filtering, 3 operating times were
studied: 30 seconds, 3 minutes and 18 minutes.

For any of the 3 modes, several cases for both the
I.¥.S. and the radar noise have been worked out; N, the I.
N.S. noise, ranging from 107> to 10* (feet)2 /(sec)a(po—
wer spectral density of white noise over some frequency
range) and R, the radar noise, ranging from 10  to ld+6
(feet)z.sec. These values seem to cover all the practical
cases.,

Before exposing the results, it is better to give

some explanations about the curves of Appendix A, -

The first 10 graphs are actual outputs from the com-
puter and represent the variation of RMX (r.m.s. error in
x-position indication) and RVX (r.m.s. error in x-velocity

indication) as functions of time in minutes. The units are
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navtical miles for RMX and feet/sec for RVX.

Graphs 1 and 2 (3 and 4) are RMX (R?X) for the free
system and for the 3 models.

Graphs 5 through 12 give RMX and RVX for models 1
and 2 only. There are 4 curves on each graph: 1 for the
continuous filtering and 3 for each opersting, time in the

discrete filtering.

Graphs 13 through 19 have been established from the
printed outputs 'and the units are : feet for RMX and ft/sec
for RVX. Graphs 13 through 17 are concerned with continuous
filtering only and chart 17 yields the expected RMX and
RVX for given I.N.S. noise N and radar noise R, both in u-
sual units.

The last 2 graphs are concerned with discrete filte-
ring. From them we can find the influence of the operating
time on both BMX and RVX given gome values for the r.m.s.

errors in the continuous filter (see below),

5.1 Free system ( graphs 1, 2, 3 and 4)

According to the results of part 4.2.3, RMK and RVK
increase as t¢& for RMX and tﬂé'for RVX for a given
inertial noise in model 1. This is observable on graphs 1
and 2 -for RMX, 3 and 4 for RVX, where the upper curve re-
presents model 1,

The 2 other curves on these graphs represent the free

system r.m.s. errors and are almost the same. The improve-
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ment in the error by comparison with the model 1 is due to

the Sculer oscillgtion (indeed the time between 2 consecu-
tive points of both curves where the slope is miﬂimuﬁqap—
pears 10 be 42 minutes, half of the Sculer period). This
improvement with respect to model 1 reaches 80 percent for
RMX and 30 percent for RVX after 84 minutes.

The +tiny difference between the curves representing

models 2 and 3 was also oObserved for other values of N and

clearly shows that model 3 is not better than model 2 when
there is no filtering.

'Furthgrmore, up to 14 minutes for RMX and 8 minutes
for EVX, the 3 curves are almost coincident. This means

that the 3 models yield the same r.m.s. errors in free mode

up t0 14 minutes for position error and 8 minutes for ve-

loecity error,

Of course, gince no radar is used here, the graﬁhs
do not depend on R. Furthermore, looking at the upper cur-
ve on graphs 1 and 2 as wéll as 3 and 4, the influence of
N can be found to match equation of part 4.2.3. In graphs
1 and 2 for instance, the scale of the RMX~axis is multi-
plied by 10 while the noise is multiplied by 100. The same

thing stands for RVX. And since the curves have exacitly the

same shape in both cases, the r.m.s. position and velocity

errors are proportional to VN at a given time.

The general result for the free system can be stated

in the following wey:
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for model 1, the r.m.s. errors are given by

3/ :

il

4
/nNE s
N 2

RMX
(5-1)
RVX

n

At any time, there is no difference between model 2 and 3.

The 3 models are eguivalent up to 14 minutes for position

error and 8 minutes for velocity error,

5.2 Continuous filtering

The curve representing this mode is the lowest one
on graphs 5 through 12. It is the only straight line. on
all these figures. Because the steady statg error in conti-
nuous mode is very small and not easily readable on: the
plots, the results are given on page A-4, with the preci-
sion obtained on the éomputer. For a1l the cases that have
been studied, the 3 wvalues of RMX (in nautical mile) cor-
responding to the 3 models and the 3 values of RVX (in
feet/sec) corresponding to the 3 models are shown.

The largest difference between the 3 models appears
o be .04 percent and is indistinguishable from the trun-
cation errors in the results. '

Therefore, and this conclusion is an important one,

the steady state position and velocity r.m.s. errors do not

depend on the model chosen to represent the I.N.S. in the

case of continuous filtering.
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It could be expected from part 5.1 (free systenm) ,
where models 2 and 3 appeared to yield the same error, that
there were no difference between the 2 models. The important
fact is now that model 1 yields also the same result.

The steady state errors for model 1 were shown in
part 4.2.1 to obey equations (4-3). To argue the model inde-
pendence, the same formule can be found from graphs 13 - 16
where the results for model 2 are plotted.

Graphs 13 and 14 showrthe-variation of RMX with R for
different values of N and with N for different values of R.
On loéarithmic paper, fhe curves appear to be straight pa-
rallel 1iﬁes. Measuring the slopes yilelds the following

dependence formula:

1 3 :
log RMX = ~ log N + — 1log R + d
8 8
1
and the constant d turns out to be — log 2
4
Thus: 1 3
RME = 2%y PR’s (5-2)
A similar analysis for RVX yields:
4 3 4
RVK = o% nBr¥s (5-3)

In these equations the units are:
RMX in feet ; RVX in feet/sec

2 2
N in feet /sed® ; R in feet .sec

These results could also have been found by a dimensional

analysig, N and R beeing the only parameters that can in-~
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fluence the errors.

The last thing to be said about this continuous fil-
tering is that, as 1t was expected from figu;e & in model
1, the time necegsary 1t0 reach the steady state is small
and does not exceed 5 minutes in the worst case presented
on graph 3. )

Graph 15 gives the position and veloeity r.m.s. er-

rors in. feet and feet/sec for given values of N (I.W.S.

noise) and R (radar noise).

5.3 Discrete filtering

Let us recall that this case was studlied with 3 dif-
fefeﬁt operating times: OPT = 30 seconds, 3 minutes and 18
minmites, which seem t0 cover & good part of the permissible
range.

The corresponding curves are the 3 upper curves on
graphs 5 through 12, and it is obvious that the larger the
operating time is, the higher the corresponding curve goes.

Let us note that, especially for the lower two OPT,
the curves are not quite representative of what happens.
Indeed we have assumed that updating after each measurement
was an instantaneous operation, s¢o that the curve should .
drop with an infinite slope at each measurement time.

This is not the case because, in order to save some com-
puter time, we limited ourselves to 3 output values per
operating time, énd the 3 values could not be chosen to be

just prior to and just after the measurement.
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Furthermore, it is very difficult to analyse these
results because the "mean value" for each case is uneasy
to obtain, either from the graphs or from the printed out-
puts.

Therefore, let us see if it is possible to relate
any discrete filtering problem to what will be called its.

"eontinuous approximation'.

Let us start with a discrete measurement process

obeying the usual egquations:
x(t) = F(3) x(t) + G(%) u(s)
m(t)) = H(t,) x(t,) + v(%))

where u(t) is a white noise and X(tn) an independent Gaus-

sian process such that:

Efu(t) ' (t+s)] = () § (s)
E[Z(tn)«z'(?nﬂ = V = constant
E[z(tn)'z'(tn+sﬂ = 0 if s is not O.

Since the noises are zero-meaned, V is. the variance of the
radar nolise.
This discrebte measurement process can be approxima-

ted with an equivalent continuous one defined by
n(t) = H(t) x(t) + v(+t)

where now v(t) is a white noise obeying:

ZEEg(t) E'(t+sﬂ =R $(s) ‘with R constant.
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Furthermore let us assume

R = V . OPT (5-4)

The units are right since V is a variance and R & power sgpec-—
tral density for z white noise. This really means that if

the measurements are taken twice faster, the measurement
error covariance must be twice larger to be approximated

by the same continuous process.

Then it can be shown that, provided that the operating

time is not too large, any discrete measurement process

can be approached by a continuous one which appears as the
mean of the previous one. This can be understood by deri-
ving the c¢ontinuous case variance equation from the discre~
te case scheme,

Between two measurements times tn—l and tn, equation

(2-10) can be written with the state transition matrix

C}:D(tl-,'tg) as:

P(tr-l) = cb(tn’tn—l) P(tn—l) ¢‘(t.n"tn—l)
; }

n
+ | Ply,8) 6(s) als) 6'(s) Pily,s) as
th-a (5-5)
Ir and F are continuous, Taylor expansion yields: .

Pt .t 1) = I + F(t, ) At + higher order terms in At

At ig here the operating time tn"tn-l'

Then, using the mean value theorem with tn—1< 2 \(\ T
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(5-5) becomes:
P(t)) = P(t,_1) + F(t, 1) P(t, ;) Ot + P(tnﬂl) Frt, ;) Ot

+ G(z) Q(z) G'(z) At + higher order terms
(5-6)

At measurenment time we update P(tn) through

.\ _ _ _ R | -1
P(t7) = P(t;) - P(t7) H' |H P(t}) H' £ | E R

This yields finhally the equation:
P(tn) = P(tnnl) +[F(tn_1) P(tn_l) + P(tn_l) F'(tn_l)

. : -]
+ G(z) Q(z) G'(z) - P(t,) H'[H P(E )H'Ab + v] H P.(’c;jAt
(5-7)

And in the limit when At approaches 0, we get

-1

P(4) =FP+PF' +GQG' -PH'R "HP

which is the continuous filtering variance equation.
‘ Thus, under assumption (5-4), any discrete problem

can be approximated by a continuous one since j%t has the

same effect as V. It happens that, for not too large an

OPT, this continuous approximation looks as the mean of

the discrete process and is therefore the best measure of

its accuracy.

Ffom our point of view, the accuracy of the discrete
filtering system with operating time OPT and error variance
V is the same a&s the accuracy of a continuous filtering

system with noise power spectral density R =V . OPT
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Let us see now the significance of the limitation

on the time between the measurements. Two reasons can be

thought of: |

1) if the discrete process yields the same results as the
continuous one, this means that the r.m.s. errors do not
depend on the model in the discrete process (since this
was shown in the continuous case). But it was pointed out
in part 5.1 that the 3 models are completely equivalent

in free mode only during a time lower than 14 minutes for
position error and 8 minutes for velocity error. Since this
free mode is precisely used between the regets, it secemsg
consistent to take as time liwits for this continuous app-
roximation of the discrete process the 2 numbers: 14 minu-

tes for position and 8 minutes for velocity.

2) ﬁhat is really implied by the relation (5-4) is o re-—
place, on a plot of the autocorrelation function of the
radar noise as a function of time, an impulse (rectangular
shape) of area R by a triangular curve of hight V and area
V.OPE=R. Althouéh these two curves are not the same,
they can yield the same final result if the sysiem is una-
" ble to distinguish between both shapes. And this happens .
if the spread of the autocorrelation function is small

by comparisor with the time constant of the system. The
practical limitations appear to be the same as before: 14
- minutes for position and 8 minutes for velocity, as long

as the Sculer oscillations do not change the response oo
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much.
Under these limits, from (5-2), the steady state er-
ror of the continuous process does not depend on the model.

Thus the accuracy of a discrete process does not depend on

the model. This, of course, stands as long as we con speak
of a mean for this process; that is to say that the opera-
ting time must be small by comparison with the mission ti-
me. '

Graphs 18 and 19 give'the r.m,s. errors in position
and velocity for discrete processes of given operating ti-
me and steady state errors of the corresponding (not equi-
valent) continuous process. They are to be used in con-
junction with graph 17 in the following way:

for any I.N.S. and radar noise powers N and R, graph
17 gives the resulting position and veloeity r.m.s. errors
in the steady state. With these values of RMX and RVX,
graphs 18 and 19 give the corresponding T':.S. errors of

a discrete filter of given operating time OPT (in seconds)

using the same I.N.S. and radar.

The accuracy of the continuous approximation can be
checked on graphs 6 and 11 where the mean values of the 30
seconds, 3 minutes and 18 minutes discrete processes have
been plotted.'lt is to be remembered that the shapes of the
curves are not exact and the error increases with the ope-
rating time.

Anyway, it appears that the approkimations are gquite

good for the 30 seconds and 3 minutes cases. As for the 18



57

minutes process, while the position error curve is still
acceptable, this is no longer true for the wvelocity error
curve. This fact is in accordance with the operating time
limitations previously introduced. It can be found conve-
nient to consider 10 minutes as the limit on the opera-~

ting time for both position and velocity informations.

5.4 Summary of the results ; Conclusion

1. For a use of the inertial navigator alone, without ex-
ternal position information, the 3 models are equivalent
during a time not exceeding 10 minutes when they start
from the same perfect initial state. After 10 minutes, the
Sculer oscillations attenuate the errors in models 2 and 3
which are always equivalent. The errors in modei 1 are gi~

ven by equations (5-1).

2, When use of a posifion information is possible in a
continuous way, the model chosen in the Kalman filter to
represent the I.N.S. is of no importance. This means that
a2 simple model consisting of 2 accelerometers kept rough-
ly aligned with the north and east axes jields the séme
accuracy as a more sophisticated one{but becomes very ba&
if the external information happens to be lost).

FPor any model, the steady state r.m.s. errors are

given by eguations (5-2) and (5-3).
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3. As long as the correlation time of the external device
(radar) is small by comparison with the time constant of
the system, any discrete measurement process can he appro-
ximated by a continuous one in the sense that the continuous
process appears as the mean of the discrete one.

As long as the operating time is smaller than the
time necesgsary for the Sculer oscillations to attemuate
the errors, the 3 models yield the same final error.

Since this last constraint is less drastic than the
first one, the result can be stated in the following way:
as long as the operating time does not exceed 10 minutes,
1the position and velocity r.m.s. errorsg in a discrete
measurement procegs do not depend on the model and can he

approximated by the errors in a continuous scheme related

to. the discrete one by the equation (5-4).
. . . . 2 3
The final equations are, with N in feet /sec , R
in feet® , OPT in seconds , RMX in feet and RVX in

feet/sec
t ! 3 3
px = o2lyBgopr’e

3/ ! '
avx = 2% y¥8g"eopp e
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APPENDIX A

GRAPHS

The units in the following graphs are the following:

(feet)/sec. for wvelocity error RVX

nautical miles in graphs 1 through 12 as well as on

page A-3 and feet otherwise for position error RMX.

On graphs 1 through 12 which are output from the com-~
puter, some indications appear inside the box in upper left
corner: the mode (1 for free system and 3 for discrete fil-
tering); whenever the model does not appear, 3 curves cor-
responding to the 3 models are plotted. The other values
are N in (feet)z/ (sec)3 , R in (feet)*.sec and

the 3 operating times in minutes.

A-1
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Influence of discrete mode on RVX
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APPENDIX B : COMPUTER PROGRAM

B-1

PRNGRAM FCR CCOMPUTING POSITION AND VELOCITY R.M,S,
ACDITIONAL OUTPUT : MISALIGNMENT ANGLES R.M.S.

1001

1
1002

1003

DIMENSINN TI(SO) X11(5C) 4 X21(50)4X31({50),X12(50)¢4X22(5C),X32(57),V

111(50),V21(50),V31{50)4V12(50),V22(50),V32(50),X131(50),X132(501),X
2133(50)X231(5C),X232(50),X%233(50),V131(50),V132(50),V133(57),V231
3(50),V232(50),V233(50)

COMMNN A,B.YI(28),YP(28B)yRyNyJsNS
COMMON G osRE ¢OXe N7 yORX4NRZ TR, Qe MODFE,PAS,EPSI,SEUIL(28),T

COMMNON CK(14)

o ok e 3 ool o o ok o ol ol o o ol o e o ok ok e e ok o e o o e ok e ok

READ AND WRITE DATA

READ (5,1001) ALAT] ,EPSI yPALl,TF,DTW,SE,NPU,TPUL1,K,MODEMI,10NEMA
FnRMAT(FS.1,EB.1.F8.3.E8.3-F8.?-ER.1'12,E8.3'l%vl?-l2)
RE=6366000. ‘

G=9.8067

NIE=3,1416K/43200,

FC1=3.28084%

FC2=1852.

ALAT={3.1416/180,) *=ALAT1

READ (5,170?) AQ,AR,0PT1,0PT2,NPT3

FORMAT (5E8.3)

K=K+1

WRITE (6,1003) ALATL.EPSTIPAL,TF,DTHW

FORMAT(1HL 12X, 14HOPT IMUM MIXING///12X411HLATITUDE = F5,1,12X,THEP
1ST = E11.4412X,6HPAS = E11.4,412X,SHTF = F11.4//20X,6HDTH = El1l.4)
1F (ALAT.EQ.90.) G0 TN 22

ale e o e ok 3 ok o o e ofe o ol o e ool o o ol o ode e o ol ol e e

CCMPUTE USEFUL TERMS

ALAT=(3.1416/180,) *ALAT
OX=0IE*COS(ALAT)
NZ=-NIE*SIN(ALAT)

ORX=0X/RE

ORZ=11Z/RE
TR=SIN{ALAT)/(RE*COS(ALAT))
Q=AQ/ (FC1*FC1)

R=AR/(FC1*FC1)

s 2k e o o e e o ok o o e ofe o e e e afe o e ol ol ol ke o ol o e vk e

REGIN EACH CASF ;5 WRITE INITIAL CONDITIONS

DN 35 MODEL=1,3

DN 21 MODE=MODEMI,MODEMA
nPT=0PT1

PAS=PA]

A=1.

R=l.

TW=DTHW

T™M=0PT

TPU=TPUl

T=o.

WRITE (6,1004) AQ,AR,0PT,MODEL,MODE

1004 FARMAT(1H1//12X,4HN = E11.4,14H(FEET)2/({SEC)3,12X,4HR = Ell.4,11H{

IFEET) 2%*SEC, 12X, 6HOPT = E1l.444H SEC//20X4s8HMODEL = 12,20X,7HMODE =
2 12}


http:ALAT.EO.90
http:FORMAT(FS.I,E8.%,F8.3E

5

GO TN {344,5),MODEL
N=6

A=Q,

GO TO 6

N=28
D0 7 I=1,28
Y{[)=0.

7 SEUIL{I)=SE

10
LD9%6

11
LaCT

12

13

G0 TO (9,10,11},MODEL

WRITE (6,1005)

FORMAT( /20X 4HT = ,20X,6HRMX =
WRITE (6,1009) T,Y(1),Y(2}

GO T2 12 '

WRITE (6,1006)

FORMAT{10X,4HT = ,20X,6HRMX =

GO 79 12
WRITE {6,100T7)

FORMAT{6X,4HT = ,10X46HRMX = ,8X,6HRMY =
18X, 6HRCX = $BX+6HRCY = ,B8X,6HRCZ
WRITE (6,1008) THY{L),Y{4) ,Y(2),Y{(5),Y{9),YL12},Y{28)

esie e e e e e ok ek S e e oo ot e kool e s e e ol e fe e sieofe

/1

1 2NX L 6HRVX = [/ /)

220X 6HRYX = 420X ,6HRCY =
WRITE (64+1010) T,Y{1),Y(5},¥Y{12)

CALL DIFF. EQUA. FOR INITTAL DERIV.

M=0
CALL pAUX
e 2% e e e Sk e e e e dfeoie sk sl o e e e ofe e sfe e sfe e oo

CALL SURBRDUTINE OF INTEGRATION

CALL KUTAM.
IF {M.GE.50) GO TQ 210
¢ e ok e 3k ok ik e et ek oo s ke o o e ok ookt o e ek

IF TEST S1 CALLED TOO MANY TIMES

IF {(NS.GE.50) GO TO 1
e o e e e et s ool ok ke ek e ok ko ek

IF INTEGRATION STEP SIZE TOO LARGE, INITIAL VALUE

IF {PAS.GT.PALl) PAS=PA]
e ol e ot o ok el e e ot e e o oo o e ok e e e ok e ook

TEST ON FINAL TIME

IF (T-TF) 14,210,210
e e ek e Sl e e ool ook e oo ek ook o ok ok ek ok

TEST ON TIME AND MODE TO CALL DISCRETE CASE COMPENSATION

14 IF(T-TM.GE.O0..AND.MODELEQ.3)} GO TO 36

36

GO TO 16
CALL UPDAT
IF (J.GE.5) GO TO 23
TM=TM+0PT
ook e e o e e 7 ok e o sk Sl ook ok sk el e sl Ao ok o o e ek ok

AUX., CALCULUS ;MRITE RESULTS

+NEXT CASE

+8X4s6HRVX = ,8X,6HRVY

i

B~2
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16

40
41

. 42

43
431

432

53
531
532

533

60
61

62

76

RMX=SQRT(Y{1))/FC2
RVX=SQRT(Y (2))*FC1
RMY=SQRTIY{4))/FC2
RVY=SQRT(Y{5})*FC1
RCX=SQRT(Y{91)*1000.
RCY=SQRT(Y{12)) %1000,
RCZ=SQRT(ABS{Y(28)))%1000.
e 3 vl ek sle e ofe e e ode sl e e e ol ok ol ol e e ol e Aol ek e
IF NPU=1 AND T.GE.TPU , PREPARE PUNCH

IF (NPUJNE.1l) GO TO 33
IF {T.LT.TPU) GO TO 33
M=M+1

TPU=TPU+TPUL

TI(M)=T

GO T (40450,60) ¢MODEL
GO TO (41442,43),M0ODE
X11(M)=RMX

V11{M)=RVX

G TO 33

X12{M)=RMX .
V1Z{M)=RVX

GO T 33

IF (NPT-0OPT2) 431,432,433
X131{M)=RMX
VI31{MI=RVX

GO TO 33

X132({ M)=RMX
Vi32(M)=RVX

GN TN 33

X133( M)=RMX
V133{M)=RVX

Gn TN 33

GD TD (51,452,531 ,M0DE
X21{M)=RMX

V21{M}=RVX

GO TO 33

X22({M)=RMX

V22{M)}=RVX

GO TO 33

IF {OPT-}PT?2) 531,532,533
X?231{M)=RMX

V231{ M)=RVX

GO 10 33

X?32{ M)=RMX
M232{M)=RVX

GN TN 33

X233(M)=RMX *
VZ233{M)=RVX

G0 TN 33

GO TO (61,62,433),MODE
X31{M)I=RMX

V31 (M}=RVX

GO TN 33

X32{M)=RMX

V32 [4)Y=RVYX
e e e ik deofe A o e e s de ek ol v s e e 0 ek ok e ok ol ok e v ke ok

IF T.GE.THW o PRINT RESULTS

B-3
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13 TF{T.LT.TW) GO 1O 13
GO TO (18419,34) (MODEL
34 WRITE (641008) T,8MXsRMY, ,RVX,RVY,RCX,RCY,RCZ
1008 FORMAT{A4XsELLle4 93X 3sE1l104¢3%X 9B L e493%sE11.0493XeEBL1.4,3XsF110443X,
1E11.4,3X,E11.4)
TH=TH+DTHW
GO TO 13 . )
v 1B IF [RMX NELRMY R.RVX.NELRVY)Y GOO TO 20
. WRITE (6,1009) T,RMX,RVX
1009 FORMAT(18X,4FE11,4,13Xy4E11.4¢15X,E11.5%)
TW=TW+DTW
GO TO 13
19 IF {RMX.NE.RMY,OR.RVXNELRVY)Y GO TO 20
WRITE {56,1010) T,RMX,RVX,RCY
1010 FORMATISXyELle4+13X4E11.4415X4+E11,.4415%X4E11.4})
TUH=TW+DTHW
GO TO 13
20 WRITE (6,1011)
1011 FORMAT (50X 24HCHANNELS NOT INDEPENDENT)
210 WRITE (6,210C) M
2100 FORMAT{2X,4HM = I3)
Ir {MODE-2) 214,211,214
214 IF (DPT-0OPT2) 21142124213
211 OPT=0PT2
GO T 2
212 OPT=0PT3
GQ 70D 2
213 GO 1O 35
21 CONTINUE
35 CONTINUE
e s e s e o ok o s ok ool skl o s el ot ok ol o e e ool

IF NPU = 1 , NORMALTIZE RESULTS OF EACH STEP

IF {NPU.NE.1} GO TO 71

XM1=0.

XM2=0,

VM1=0.

VM2=0,

)(ﬁ!13=0.

XM23=0,

VM13=0C,

VM23=0.

D0 100 M=1,5C
EX1=AMAXI{X11{M),X21({M},X31(M))
EX2=AMAXI{X1Z2(M) X22{ M),X32(M)})
EVI=AMAX1{V1II{M),Vv21{M),V31{M}))
EVZ2=AMAX1(V12{M},V22(M),V32{(M))
EX13=AMAX1{X131{M),X132{(M},X133(M))
EX23=AMAX1{X231(M},X232(M},X233(M}}
EVI3=AMAXTI(VI31{M),V132{M),V133(M)})
EV23=AMAX1{V231({M]},V232{M),V233(M})
IF {EX1.GT.XML1} XMl=EX1

IF (EX2.6GT.XM2} XM2=EX2

IF {EV1.GT.VM1) VMI=EV1

IF (EV2.GT.VM2) YM2=EV2

IF {(EX13.6T.XM13) XM13=£X13

IF {EX23.6T,.XM23) XM23=EX23
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TIF {EV13.GT.VM13)Y VMI3=EV13
IF {(eEv22,6T.YM23) yM2=Ey?23
100 CONTINUE
nm 101 M=1,50
X11(M)=X11{M}/XM]
X21L{M)=X21{M)/XM]
X31(MY=X31 {M}) /xM]
X12{M)=X12(M)/XM2
X22{M)=X22 {M) /XM2
X32{M)=X32{M)/XM2
V11 {My=Vv11{M)/VM1
V21 {M)=v21{M}/VyM]
V3liM)=v31 (M) /VM1
V12{M)=V12 (M} VM2
V22 M) =V22{M) /UMD
VI3I2{MI=V32{ MY /yM2
X131 {M)=X131{M)/XM13
¥132{M)=X132{M) /XM13
X133{M)I=X133(M)/XM13
X231 (MI=X231{M) /XM?23
X232{M)=X232{M}) /XM23
X233{M)=X233{M)/XM23
VIIT{M)=VIITI{M}/UMI3
V132{M¥=V132{M}/VYM]3
VI33{MI=V133{M) /VM13
V231IMY=v231{M})/VM23
V232IM)=v232{ M) /yM23
V233I{MI=V233{ MY /VM23
101 CONTINUE
s ot 8¢ 3 s e st s st ok ofe i s ok ofe ot ot S sk s ok oK e e e o ek o
IF NP} = 1 4, PUNCH RESULYS (QF EACH STEP AND NORMALIZATICON CONSTANTS

PUNCH 1020,K+AQ,AR
1020 FORMATISHCASE I12,2X34HN = E11.443X,4HR = El1l.4)
PUNCH 1021,0PT1,0PT2,0PT3
1021 FORMAT{THOPTE = Ell1.4+3XyTHOPT2 = E11.4,3X,7HOPT3 = E11,.4)
PUNCH 1022 4XM1,XM2,VML, VM2
1022 FORMAT(6HXML = Ell,4+6HXM2 = Eli1.4,6HVM] = E11,4,6HVM2 = £11.4])
PIINCH 1023 ,XM13,XM23, VM13,VM23
1023 FGRMAT(THXW13 = E1lle4sTHXM23 = E11.4,7THVM1I3 = E11.4,THVM23 = El1.4
1}
NN 102 M=1,5¢
PUNCH 1024, TI{M} 4 X11{M}aX21{M}, X3L{M)X12{M)} X222 {M)4X32(M]),V11{M),
IV21{M) 4VIT{ M), VIZIMI, V22 M}, V32{ M) K,¥M
PUNCH 1024,T7TI{M), X131{M‘1X132(M31X133(M’yX231{M)yX232(M}yX233{M}yV
1133{M1,V132{M)4VIIZI{M)4V23LIMIV232{M)4V2233(M),KsM
1074 FORMATIF6.C,12F5.3,6X31242X%X,13)
1072 CONTINUE
71 601T2 1
22 WRITE {6,1012)
1012 FORMAT{Z25X,208LATITUDE NOT ALLOWED)
23 WRITE (65,1013} MODEL.MODE
1013 FORMAT(10X,7HMODEL 4172, 7H MODE LI12,10HIMPNSSIBLE)
STOP
END



SUBRCUTINE [AUX

DIMENSICN C¥{28}
COMNCN A By Y(Z28)4YP(Z2E)sRyNyJyNS
CONNCN G RESCX 4 CZ 4 GRYX yCRZ+TRy L+ MECESPASHEPSTHSEUIL{ZR )T
COMNMCN CK {14}
C=A*E
e 2 dok o ot o o o o o ok o e o e ok o ok o 3 ook b ok ok
FREE SYSTEM EQUA.

YP{l)=2.%Y{3)

YP(2)=2.%A%CAY(11}+0

YF{3)}=Y(2)+84C*Y {10}

YP(4)=2.%Y{€&)

YP{S)==2,3A%C*Y{ B )+Q

YP{6)=Y{S)-22G*Y (T}

IF (A.EQ.C.} GC TC 1C1
YP{T)=YI(RB}+P*0ORZ*Y(12)+Y{&)/RE4+B*CGZ*Y(1S)
YP{EY==G*XY(G)+B*CRZ*Y (15 )14Y(S5)/RE+B%CZ*Y {20}
YP{9)=2.%B40RZ*Y(17)+2.%Y{ 8} /RE+2.%B*LZ%Y{21)
YP(10)=Y{11)-Y(3)/RE-B*0OZAY {17 }+B#0OX%Y(22)
YP{11)=G*Y{12)-Y{2)/RE-BXL 7Y (18)F+B*xCXkY {24}
YP(12)=—2.#Y{11V/RE—2.%B*0Z2%Y(21)+2.%B*0OX*Y(27)

I {P.EC.0.) GC TC 101

YP{12)=Y{14)+Y(15)

YP(14)=Y{1e13C*Y(1S)

YP{15)=Y{16)-GxY(17)

YP(1€¥=CG%Y{2C)-G*Y(L18&)
YP{17)}=Y{18)+0RZAY{1)4Y{15)}/RE+0Z%Y(10)
YPULEY=GH*Y{21)+CRZ*XY(3}+Y{16)/RE+LZ*Y (11}
YP{19}=Y{Z0)-Y{14)/RE-DZ*Y( 7 +0X%Y{23)

YP{2C =-G*Y(21)~-Y {16 ) /RE~-CZA*Y {8 )+0OX*Y{25)
YP{21)1=0RZ¥Y{1C)+Y{2C) /RE+DZ*Y{12}~Y{18) /RE-CZ*Y(Q)+(X*Y {26}
YE(22)=Y{24)~0RX*Y (1 )~TR*Y{15)-0X*Y{1C)
YP(22)=Y(25)-CRX%=Y {13 )-TR*Y{6}-0X*Y{19)}
YP{24)=C*Y{27)-0ORX*Y{3)-TR*Y{16)-CX%xY{11)
YP{25)=—CAY{26)1-0RX*Y (15)1-TRY{5}-CX*¥{z() )
YP{286)=0RZ#Y(22)+Y{25) /RE+CZ*Y{2T}—CRXAXY (17 )-TR3Y{8)}-CX*Y{21)
YP{27)=-Y{24)/RE-QZ%Y{2€}+0XEY{28)-0ORX*Y(1CI-TREY(ZC)-CX*Y (12}
YP{28)=—2 ,%CRX%Y{22) =2 . %TRXY (25)-2 . #0X*Y {27) .

101 IF (MCDE-Z) 1C5,1CZ2,1CS
Y R R EE R R RS E R E IR Y
CCNTINLCGLS FILTER GAINS

102 Cx{1l)=Y{1)}/R
CKE2)=Y{4}) /R
CK{2)=Y{3)/R
CK{4)=Y(6)/R
IF {A.EG.C.) GG TC 1CE¢
CK{SY=Y{T7)}/R
CK{6)=Y(10)/R
IF{B.EG.C.) GO TD 106
CK{TI=Y(13}/R
CKE{8Y=CK(T)
CKISI=Y(14)/R
CK{10)=Y(15}/R
CK{11)=Y{17)/R
CK{12)=Y{(19}/R
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103
104
105

80

TK{13)=Y{2?2) /"
CK{la)=Y(231/R

et ot st oo o o st sk skt ol it sk s e e e ok ok ook e ol s e

CONTENUDUS FILTER CCMPENSATIAN TERMS

CTIL)={Y{L)=Y{1 I +CHY{13)%Y (13)) /R
CTIDI=(Y(3)*2Y{3 ) +CEY{14)*Y{14) } /R
CTO3Y=AY{LI=Y{3I+CxY(13}&Y{14) ) /R
CTa)=(CxY[12¥XY (13}eY(4I%Y (4)) /R
CTUSY={CAY{15)*V{15)+Y{H)I2Y(5H) /R
CT{SY={CRY(131xY{1B)+Y{4I%Y(6))} /R
IF (A,EQ.C.) GO TO 103

CTUT) =82V {13¥XY(LIT)I+Y{4)*Y[T)}/R
CTIBI=(BRY {1S¥=Y{1TI+Y(EI*Y(TII/R
CT(9Y=(REYL1TIXRY{1ITI+Y(TI*Y(T)I/R

CTOIO)=(Y{ L) *Y{10) +BXY(13}%Y{19)})/R
CTOVIY=TUY(3YEY(1O)+REY[14) =Y (19))/R
CTI12)=AY[10)=*=Y 10V +B2Y{19}%Y{19)) /R

I {8.,EQ.0.} GO TO 103
CTLIRI=(Y(L¥*Y{13)+Y(13}%Y(4)) /R
CTL14)={Y{13¥xY{3)+Y (41%Y{14) ) /R
CTOLIS)={YLLIRYLLIS5Y4Y {13 )%Y{6)) /R
CTEI6)={Y (3} %Y {15)+Y({14¥%Y{6)) /R
CTLITI={YLLIXY{ITI+Y {13 RY{T)) /R
CTOI8Y=(Y{3 XY (LTI+Y (14 )%Y(T)) /R
CTO19)=1Y(13¥%Y (10} +Y(4)=Y{19)) /R
CT{20)=(Y{(15)xY{10)+Y{(6}%Y(19))/R
CTE2L={Y(17)*Y{10)+Y{TI®Y {19} /R
CTL22=(YL 1y 2Y{ 22)+Y (13} %Y {23} } /R
CT{23)=(Y (13 )%Y{22)+Y {4)%Y(23)}/R
CT{24)={Y{3¥XY{22)+Y{14)*Y (23} ) /R
CTL25)=(Y 115 %Y{22)+Y (6)}%Y{23)}/R
CTU26)={Y{1T)*Y{22}+Y(T)I*Y(23)}/R
CTL27)=(Y {10} ¥Y{22)+Y{19}%Y(23)]} /R
CT{28)=(Y(22)%Y{22)1+Y{23)¥%Y[23)}/R
DO 104 I=1,N

YPLIy=YP{I)-CT(I)}

RETURN

END

SUBRNUTINE KUTAM

e ¥ Fe ¥ ok e e 3 Fe g ofe e ool vl ok sl she Aol deofe e e e ke e e

INTEGRATION SUBRDUTINE; R.KUTTA 4 METHOD,CONTROLLED PRECISIDN

DYMENSION Y0{28), YL(28), YP2{28},

18}

COMMON A,R,¥{28),YP{28)4R,NyJ,NS

YP3(28),

Y4(28),Y5{28),

COMMON G4RE,0XsCZ,0RX, DR?vTRerMGDE:PAS EPST, SEUIL(28),T

LOGICAL S2
LNGICAL S1
N5=0
NIT=1

DERIVIZ



25

81

ne 25 I=1,N
YCL1)y=Y{I)
DERIV{T}=YPI{ I}
S2=.FALSF,
TO0=T7
HB=DAS/8,
H3R8=PAS*®3, /B,
H15=PAS*1.5
H?3=DAS%2,/3,
HD=PAS*2,
H2=PAS/3,
H6=PAS/6.

3 o e 2 e ok o o vdode o e ole ool ok e e lone dedle sk sk v e ool s

15

23
24

22

9

INTEGRATION STEPS 3 TEST ON PNSITIVITY OF MEAN-SOUARED VALUES

DO 15 I=1,N

YI{I)=YQUI)Y+DERIV{I)*PAS/3,

Y{I)=y1l{1}

CONTINUE

IF(STIY{ LY el YI{2Y o Y{5) oY (D), Y (12},Y(28)})
T=TD+H3

CALL DAYX

20 2 T=1.N

Y{Ii=YO{ I }+HO6X{DERIVITI4YP{T})

TELSTUYLIY oY 14 e Y{2)4Y15),Y{3),¥{12),Y[28}))
CALL DAUX

DO 4 I=1,N

Y{I)=YO(I}+HB*DERIV{I ) +H3B*YP{]I)

N0 6 I=1,N

YP2{1)=YP(1)

TF{S1IYI1) Y (44 Y(2),¥Y({5),Y{9),Y{12),¥Y{28)})
T=T0+H2

CALL DAUX

DO T I=1,N

YP3(I)I=YPI{I)

Y1 =YO{ I)+H2%DERIV(I1-H1I5xYRP2{ 1) +YP3I(1)*HD
Y{Il=Y4( T}

TFISTIYI L) s Y {4) s Y (2 YIB)aY{D)a¥Y{12),Y(28)})
T=T0+PAS

CALL DAUX

DO 8 I=14N
YS{IY=YOUT)Y+H6%DERTIVI{IV+YPALIIXHZ2I+HOHYP{])

IF{S1(YS5(1),Y5(4),¥5(2),Y5{5),Y5(9),Y5{12),Y5(28))Y GO 70 27

NIT=NIT+1

IF (NIT-6) 22,23,23

WRITE (6424) ER.Y5({1),Y4{1)
FORMATI15X,6HP N R 32Xe¢3E11.4)
GO T 19
e ke e o s o e e e o ool o e o o st e sl oo oo el e

TEST ON PRECISION

E=0.
DD 9 I=1¢N

60 10O 27

0 1O 27

GO TO 27

GN TN 27

ER=ABS(0.2%(Y5{I)~-Y¥&4{1}) /AMAXLUABS{YS{I}},SEUILLI)})

IF (ER.GT.E) E=ER
CONTINUE

B-8
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IF {(E-EPSI) 13,13,16
st s o e e o e o ok ool s e ok e o e o o sl e ke ool ko

If PRECISION NOT REACHED,STEP SIZE HALVED

16 PAS=HZ

G TN 5
13 IF (A4,.,%xF—=FEPSTY) 18,19,19
19 $2=,TRUE.
18 DN 29 I=1,N
29 Y{(I)=Y5{1I)

CALL DAUX

GN TO 26
2T NS=NS+1

WRITE (6430) NSyToY{11,¥{2)Y{4),YI[5},Y(9),Y{12},Y(28)
A0 FORMAT{1442X48E11.4)

s ol ot ok e ek ek e e et kg ok ek ol Mot ek ok

IF POSITIVITY TEST CALLED TOO MANY TIMES,STOP

If (NS.GE.50) GO TO 21
PAS=PAS/2.
T=10
60 TO 5 :
o e st ofe ok e o e e oo ofe e ol e ool e e e e o e e e ke e e
IF PRECISION EXCESSIVE,STEP SIZE DOUBLED

26 TF(S2}) GO TO 21
PAS=HD

21 RETURN
END

SUBROUTINE UPDAT . .
s e e 9 e o o e s e e ok s ok ot s sk e sk o e ok e eslesk

TO COMPUTE DISCRETE FILTER GAINS AND UPDATE COVARTANCE MATRIX

DIMENSION HK{14)}
COMMON A,ByY{28),YP(28) 3R 4Ny J,NS
DO 200 I=1,14

200 HK{I)=0,
J=1
C=A%B
AK1I=Y {1} #+R
AKZ2=Y{4)+R
D=AK1*AKZ2=CxY(13)%Y{13)
IF (D} 201,201,202

201 PRINT 120t

1201 FORMAT (2SX, 1SHINFINITE GAINS)
J=Jj+1
GO 10 204
s st o o e 34 o okt ke o she ke e e o ot ot eafe etk e o ok e o

DISCRETE FILTER GAINS

202 HRK{1Y=(Y {1 )%AK2-CxY{13)%xY{13)})/D
HKI2)=(-CxY(13)*Y( 13} +Y{4)%AK1}/D
HKA3)=(Y (3) 2AK2-C*Y(13)*Y(14)} /D
HK{4)={-CxY{13)*Y(15) +Y{6)*AK1)/D
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203

83

IF (A.EQ.0.) GO TO 203
HK{5) = (~B¥Y (13) %Y { 1 T) +Y( TI%AK1} /D
HKE6)=(Y{10)%AK2 —-R*Y{13)*Y(19))/D
IF (3.£Q.0.,) GO TO 203
HKLT7)= (=Y {1} %Y (13)+¥Y(13)*AK1}/D
HY {8)={Y{13)#AK?=-Y(13) %Y (4} ) /D
HK(9)=A=Y{13)%Y{3)+Y{ 14} *AK1}/D
HK (10} ={Y(15)%AK2-Y(13)*Y{6))/D
HKL11)={Y{17)%AK2-Y{13}%Y{T)}/D -
HK{12)={~Y{13)%Y(10)+Y(19)*AK1}/D
HK{13)=(Y(221%AK2=Y{13)%Y{23}) /D
HKE14)=(=Y{13)%Y{22)+Y (23)1%AK1) /D
st e o s e oo 2 e e s e deolende ok e e sheale s o oo ok e e ek e
UPDATE COVARIANCE MATRIX

Y{1)=Y{1)-HK{1})%Y{1)-CxHK{T7)%Y(13)
Y{2)=Y{2)-HK(3)=Y{3}-C*HK{9)*Y(14)
Y{3)=Y{3)-HK{1)xY (3)-CHHK{TI*Y{14)
Y{4)=Y{4)-HKI2} XY (4)-CRHK{8 ) *Y {13}
Y{S)=Y(5)-HKI4)*Y{6}-C*¥HK{ 10} *¥{15)
YI6)=Y(6)-HK{2) *Y{6)~CHHK(8)%Y¥{15)

IF (A.EQ.0.) GO TO 204
Y{T)=Y{T)-HK{2)=Y{T)-BEHK{B) %Y {17}
Y{R)I=Y(8)-HK(4)XY{T)-BxHK{10)%¥ {17}
Y{9)=Y{9)-HK{5)*Y(T7)-BxHK{11}*Y{17)
Y{10)=Y{10)-HK{1 ) *Y{10)-BXHK(T)*Y{19)
YOIUI=Y{11}-HK{3}%Y(10)-B=HK(9)*Y{19*
YU12)=Y{12)-HK{8)%=Y{10)-B*HK{12)*Y(19)
IF (B.EQ.0.) GO TO 204
YI13)=Y{13)-HK{1)*Y {13} -HK{TI*Y{(4)
Y{14)=Y{(14)-HK{2}*Y{14)-HK{8)*Y{3)
Y{15)=Y{15)-HK{(1}:Y{15)-HK{T}*Y(6])
Y16} =Y{16)-HK{I IV (15)-HK{9)*Y{6)
Y{17)=Y[17)=HK (L)Y (1 T}=-HKL 7} *¥Y(7)
YOI8)=Y(18)-HK(3 V%Y {1T7)-HK{9}=Y{T)
Y{19) =Y {19)-HK(2)*Y{19)-HK{8)}xY (10}
Y{20)=Y{20)-HK{4) %Y {19 )-HK{101*Y {10}
YI21)=Y{21)-HK{5)*Y(19)-HK{11)%Y{10)
Y{22)=Y{22)-HK{1)*Y{22)-HK{T)*Y{23)
Y23 =Y{23)-HKI{2)*Y (23 )-HK(8)*Y{?72)
Y{24Y=Y{24)-HK{3)*¥ {22 )-HK(9)*Y{23)
Y{25)=Y{25)-HK{4)*Y[23)-HK{10}*Y{22)
Y{261=Y{26)-HKISI1®*Y{231-BK{11)*Y {22}
Y{271=Y{27)-HK{6)*Y{22)-HK{12) %Y (23)
Y{28)=Y{(28)}-HK(13)%Y(22)-HK(14}%Y{23)
CALL DAUX

RETURN

END

B-10

LOGICAL FUNCTION S1{A,B4CeDsEyF46G)
e e e sk o 3 e ok o o ol e ok e ok o oo ol ok ofe i sl o e ok o

TO CHECK IF THE DIAGONAL TERMS OF COvV,

IF (G.LT.O..AND.G.GT._1.E_18, G=+0.0
Sl"-".FALSE.

TF{ALT a0 eORB LT 04s0R4CalTo0ueOReDeLT a0 eNMRIELLT0..0RFLTeD,s

10R.G.1.Ta0.) S1=,.TRUE.
RETURN
END

MATRIX ARE POSITIVE
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TO PLOT RMX AND RVX IN MCDES 1,2 AND 3 WITH MODELS 1 .2
AND 3 DIFFERENT OPT

DIMENSION TI(50),X11{50}),X21(50)4X31{50),X12(50)+X?2{50),X32({50},V
1114590 ,v?1{50),V31{50),VI2(50) ,V22{50),V32(50},X131(50),X132(50),X
2133(50),X231(5C),X232(70),4X233{50),V131(50),V132(50),V133{50),V231
3(501,V232(50},Vv233{50)

COMMON AQ, AR ,NPT1,0PT2,0PT3

CALL NEWPLT('M6175%,97312%,"WHITE *,%RLACK")

0 2 e v e e e e e e ok ae e e e ade e afe deafe e e o e e ook ke Sk
READ THE MAX. NUMBER OF CASES TO BE PLOTTED

1010 FORMAT(I3)
READ (5,1010) K2
ok oo ok skl 2 ok el e ook e e e ok ook e R kK ok
READ RESULTS NF THE PREVIOUS PROGRAM ON CARDS
CHECK THE ORDER OF THE CARDS

1 READ (5,1020) KsAQyAR :
1020 FORMAT(SHCASE 12,2X+4HN = Ell.4, 3X 4HR = Ell.4)
Ki=K
READ {5,1021) OPTL,0PY2,CPT3
1021 FORMAT{THOPTL = Ell.493XyTHOPTZ = El1l.493X,7THOPT3 = Ell.4)
OPT1=0PT1/60. ’
nPT2=0PT2/60.
OPT3=0PT3/ 480,
READ {5,1022} XM1,XM2,VM1,¥YM2 -
1022 FORMATI{G6HXML = E11.446HXMZ2 = F11l.4,6HVML = Ell.446HVM2 = E11l.4)
READ {5,1023) XM13,XM23,VM13,VM23 .
1023 FORMATITHXM13 = E11.4,THXM23 = E11.4,THVMI3 = £11.4,7THVM23 = Ell.4
1} : )
DO 100 M=1,50
READ (5,1024) TI(M),XlI(Mng21(H)oX31(M,gXIZ(M)yXZZ(M)sX32(M¥,VII{
IM), V21 {M),V3IL1{M) NI2{M),V22{(M),VI2(M},K,M1
IF {K.NE.K1.0R.ML.NE.M} GO TO 1}
READ {5,1024) TTI{M},X131(M},X132(M),X133{M},X231( M}, X232{4),X233(M
1);V131(M)'V132(Ml’V133(Ml1V231{MlgVZBZ(H}yV233(M!,K M1
IF (K NEKL.OR.ML.NEJM)} GO TO 1
1024 FORMATIF6.0+412F5.346X41242X413)

100 CNANTINUE
o e o e o o e o ke e v o sl ot o e e sl S kol sk el e e

COMPUTE REAL VALUES WITH THE NORMALIZATION CONSTANTS

DO 101 M=1,5C
IF(X21{M) . LT.XM23) NP1=Ms+5
IF(V21{M}.LT.VM23) NP2=M+5
TI(M}=TI{M)/60. -
X11(M)=X11(M)*XM]
X21{M)=X21 (M) *XM1
X3L{MI=X31(M)*XM1
X12{M)=X12{M)*XM2 -

X22 {M)=X22{ M )X M2
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X32(M)=X32 (M) ®RXM2
VI1(M)=VI1{MIEVM]
V21{M)=V21(M)xyM]
V3IL{M)=VIL{ M) 2y M]
V12 (M)I=VI2(M)%YM2
V22{M)=V22 (M) *yM2

o V3I2{MI=VY32(M)RVYM2
X131{M)I=X131{M)%XM13

X 132(M)=X132(M) XXM
X133{ M)=X133{M)*XML3
X231 (M)=X231{M)*XM23

4 X232{MY=X232(M) RXM23
X233(M)=X233(M)%XM23
VI3L{M)=V131{M)2VYM]13
V132(M)=V132(M)xyM13
VI33{MI=VI33I{M)RyM13
V231{MI=V231{ M) *YN23
V232 (M}=V232{ M) %xyM23

101 V233{M)=V233{M)%VyM23
e v s o ksl e o ok o e e ot v e ok oo e el ke s ok ook ok kak

PLOT ALL THESE RESULTS

CALL IDENPLI1,0) ]

CALL PICTUR(Oa9bae?T MINY oS, "RMX P33, TY X113 5y50+0.9KSsTT4X21450+04,+K
15,71, X31,50+0.5KS) i

CALL IDENPL(1,0}

CALL PICTUR{ G4 3% e o' T MIN' S, "RVYX?,3,TI V11450404 KS5¢TI4V21,450+0.4K
15,TI+V31,50,40,4KS)

CALL IDENPLI3,1)

CALL PICTUR(Gayées? T MIN" S5y RMX? 33, TI ¢X12,50,40.9KSyTIsX1319504047
IKSyTT 4 X132,:5043049KSyTT14X133,50,0.,KS5)

CALL IDENPL{3,Ll}

CALL PICTURIG.yGes’T MIN' S, 1BV 434 TT 4V12,:5040,9KSsTL, V13145040,
IKSyTTIgV13245040.9KSyTIV133,50,0.,+KS)

CALL IDENPL{3,2)

CALL PICTUR{H.94 44T MINT S5, "RMXY 33, T X22,50,40,¢KSyTIy4X231,5040.¢
1KSsTI o X232,5040, +KSsTT14X233,50,04+KS)

CALL IDENPL{3,2}

CALL PICTUR(O,. 244 9"'T MINY 5, "RVXY 33, Tl 4V22+50¢0.4KSeTIyV23145040.9
1KS s TI 4V2324509Ca e KSeTIoV233,50,0.,KS) .
PO 102 M=NP1,50

102 X21({M1=0.
D0 103 M=NP2,50
103 v21{M)=0,

CALL IDENPL(O,2)

CALL PICTUR(G.3449%T MIN' 35, 'RMX 43, TT,X2145040,4KS»TI¢X2245040.,4K
15:TI4X233,5040.9KSeT14X231,50,0,,KS)

CALL IDENPL{0,2)

CALL PICTUR(OGepGey®T MENT9ySe'RVX" 433 TI,¥2195090.9KS»yTIsV2255040.4K
1SsTI4V233,5050.9KSeTI4V231;50,0.,KS)

e i i e ofr X o s o e e of sl ol e o ok e ok e ke o el e Ak ok o ok ok ok

1F NUMB,., OF CASES PLOTTED = NUMB., DESIRED ., STOP

IF {(K1.EQ.K2) GO TO 2

GoO T 1
2 CALL ENDPLTY
- sTOP

END

B-12
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SURROUT INE TDENPLEJ,L)}
R e s ok o ok ke ok e et e ok ok ol S ok SR el

TO DRAW SOME IDENTIFICATION ON TOP OF EACH PLOT

COMMNIN AQLAR,L,OPTLI,,0PT2,0PT3

CALL PLOTI{.5,3,25,-3)

CALL PLOTYI(0440.754-2)

CALL PLOTI{1.5,0.,=2)

CALL PLOT1{04y—0.75,-2)

CALL PLOT1(-1.540.,-2)

IFtJ.NE.OY GO TOQ 2

CALL SYMBLS(G.I,O.S,.2,'"005'.* L yDuy+T)
CALL NUMBR1{1.3+0.5¢442¢L¢049—1)

GO TO 3

CALL SYMBLS(OQI’O.S’OZ"”GDE = "40e9et7)
CALL NUMBR1(1.3,0,59424J90c9~1)

CALL SYMBL5{0.05+0.2+.05¢'N = ?,0.,+4)
CALL NUMBR1{0.2+40.24.103A040..%2)

CALL SYMBLS5(0.059.054.059'R = 7,0,,+%)
CALL NUMBR1(0.25.054¢104AR, 04y 4D}
IF(J.EQ.0Y GC TN 4

CALL SYMBL5{0.940.354.,05,%0PTY = V,0,,+7)
CALL NUMBR1{1:270,354.10:0PT1;0.4¢1}

CALL SYMBLS(0.9,0.294055%0PT2 = $,0,4+7)
CALL NUMBRI(1.2+0.,24¢10,0PT2,0.,+1)

CALL SYMBL51{0.940.05,4.054%0PT3 = Y o0ae+T)
CALL NUMBRI(14240.054.1040PT3,0.,4+1)

I (L.EQ.O) GD 70O 1

IF{J4.EQ.C) GO T0 5

CALL SYMBES5{.054.35,.05,"MODEL = ?,0.,+8)
CALL NUMQRI(O.SD'.?J'-IU!L;G.v-].'

GO 10 1

CALL SVMBLS(Q.OS'.3S'.10,'”00& 1 2 3.'0.,‘!'10’ .
CALL PLOTYI(~0,5,-3,25,-3)

RETURN

END

B=13


http:NUMqR1(O.50.35,.IO
http:NUMAR1(1.2,O.05
http:NUMBRI(I.2,0.2,.1O

1.

D
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