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ABSTRACT 

It has been traditional to constrain image processing to linear opera- 

tions upon the image. This is a realistic limitation of analog processing. 

In this paper, the calculus of variations is used to find the optimum, 

generally non - linear, processor of a noisy image. In general, such processing 

requires the use of an electronic computer. The criterion of optimization 

is that expectation (10. - (5j1K) be a minimum. Subscript j denotes the 

spatial frequency w. at which the unknown object spectrum 0 is to be re- 

stored, 0 denotes the optimum restoration by this criterion, and K is an 

even power at the user's discretion. A further generality is to allow the 

image- forming phenomenon to obey an arbitrary law I. = L(T., O., N.). Here, 
J J J 

T. denotes the intrinsic system characteristic (usually the optical transfer 

function), and N. represents a noise function. The optimum Oj is found to 

be the root of a finite polynomial. When the particular value K = 2 is 

used, the root O. is known analytically, along with the expected, mean -square, 

minimal error due to its use. When K = 2, processor O. has the added signif- 

icance of minimizing the total mean -square restoration error over the spatial 

object. This error may be further minimized by choice of an optimal process- 

ing bandwidth. Particular processors O. are found for the "image recognition" 

problem and for the case of a "white" object region. The latter case is 

numerically simulated. 
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BACKGROUND 

The problem of estimating an object scene, given its image, is receiv- 

ing accelerated attention. 
1-10 

A processed image cannot, strictly speaking, 

convey more information about the object than is already contained in the de- 

tected image.11 However, it can be a closer facsimile to the object, both 

in the mean -square sense3 and to the visual sense.4 For these reasons, image 

processing can be a useful tool whenever decisions about an unknown object 

must be based on its experimental image, such as in astronomical and biologi- 

cal research, and the reconnaissance problem. 

It has been shown5 
-9 

that the restoration can be perfect if (1) the im- 

age detection is perfect, i.e. noiseless, and (2) the image is formed by a 

linear process, where (3) the linear process is exactly specified by a known 

transfer function. Of course, none of these assumptions holds true in prac- 

tice, for example if the image is a high- contrast photograph (the usual case 

of interest). 

It is the goal of this paper to optimize the restoration in the general 

absence of assumptions (1) through (3). Hence, we treat the object scene, 

image- forming device(s), and noise as randomly fluctuating parameters. Under 

these conditions, the best that can be hoped for is a statistically optimum, 

albeit imperfect, restoration process. In order to seek this type of solu- 

tion, it must be assumed that the statistics of all the fluctuating parameters 

are known, perhaps due to long -term observation of their behavior. 

This problem is analogous to the "signal processing" problem of electri- 

cal engineering.12 However, past solutions have usually been limited by the 

demands of analog processing, which constrains the processing to physically 

realizable operations: the linear (Weiner) filter,12 the power law filter,13 



or other specialized types. By contrast, the development of electronic com- 

puters with sufficiently large memory banks has lately made possible the 

digital processing of images. The limitation of physical realizability is 

now removed, so that the processing may follow any prescribed law, such as 

the "optimal" laws derived in this paper. 

As noted above, the optimum processor will be constructed, in part, from 

the known distribution function for the object statistics. In the following 

section we discuss the statistical format of optical objects in general, and 

find those object distributions which can be expected to physically occur. 

These distributions are later used to apply the optimal processor to specific 

cases. 
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STATISTICAL PROPERTIES OF OBJECTS 

Definitions 

The problem under consideration is estimation of an optical object 

o(x), which is related to its spectrum 0(w) through 

U(X) =(2r) 1 J J dw 0(w)elwX= F 1{0}; i= (-1) 2 (1) 

As usual, F-1 denotes the inverse Fourier transform. Hence, the problem 

of estimating O(x) is equivalent to estimation of 0(w). 

By the Fourier integral theorem14 

O(w) = (2) 1 I I dxo(x)e-iwx F{o} (2) 

-CO 

We assume 06>i) to be represented with sufficient accuracy by a finite 

array of values 

01, 02,..., O..., OJ 

corresponding to spatial frequencies 

-> 4- -> 
wl, W2,, a,..., wJ 

(3a) 

(3b) 

This subdivision of frequencies is assumed to be so fine that the discrete 

array (3a) causes negligible error when used to find o(i) by Eq. (1). 
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"Foreknowledge" of object statistics 

Definition of foreknowledge --It is reasonable to expect the quality of 

a restoration to vary directly as the experimenter's "foreknowledge" about 

0- information that is at hand in addition to the detected image. As an 

extreme example, if the object is known to be hounded by a given, finite 

area, and if assumptions (1) through (3) above are true, the restoration 

can be made perfect. 
5-9 

A less extreme example is treated later. 

Definition of object "class " --In this study, we assume foreknowledge 

of object statistics. Physically, this means that the unknown object is 

known to belong to a "class" of objects, i.e. a group of objects which 

are characterized by a known statistical behavior. 

As an example, we might consider the class "views of the desert from 

altitude 5,000 ft. at 12m.on sunny days." Such fixed "seeing" conditions 

result in a fixed relation between each brightness fluctuation and its 

frequency of occurrence over all objects in the class. 

Independent statistics at each frequency 

We first consider the simplest case, where fluctuations at one fre- 

quency do not correlate with those at any other frequency. An object class 

is then defined by a fixed probability density15 for object values() at 

each w., denoted as 

p(Oj), j = 1,2,..., J . 

Quantity pa has the usual meaning for a probability density, that 

(4) 



pU (0 ) d0 Te) d0 im) 

represents the probability that 

and 
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o(re) 0t(re) 0(re) 
+ d0(re) 

J J J J 

0 
(im) 

< O. 
t (im) 

< 0 
(im) + d0 

(im) 
J J - J J 

(Sa) 

(Sb) 

(5c) 

Superscripts (re), (im) denote real and imaginary parts. 

We now establish the object statistics for two important limits of ob- 

ject class; those of complete determinacy, i.e. many identical views of the 

same object, and of Gaussian randomness. The latter might result when con- 

sidering a very broad class of objects, such as views from a satellite of all 

portions of the earth. These two object classes are later used to find spe- 

cific forms for the optimum processor. 

Deterministic limit --In the limit of many photos of the same object, 

defining a very narrow class of objects, the probability density becomes 

infinitely sharp about one sequence of object values. Then 

po(0j) = S(0. - 00j), (6a) 

where 6 is the Dirac delta function16 and 0o is the object in question. Eq. 

(6a) states that there is no chance that the jth value of 0 in any one view 

of 00 can be anything but 00.. 

Eq. (6a) can be generalized to the situation where L (finite) known 

objects are repetitively viewed in unknown order. If Pt denotes the proba- 

bility of occurrence of the 9th object, 
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po 
(Oj 

) = P16(0. - 
Oli) 

+ PL6 (0j - 
()Li) 

(6b) 

This type of object statistics occurs in the "image recognition" problem, 

which is considered later on. 

Gaussian statistics - -At the opposite extreme from the preceding, we now 

suppose object o(x) to be chosen with complete randomness at each x. In the 

absence of any information about "class," this would be the necessary assump- 

tion for the experimenter to make. If, in addition, the object is bandwidth- 

limited, it is known that17 po is Gaussian: 

p 0 (0 j 
) = (27ra0j 

2) 
1 e- I Uj - 

(Oj) 
I 2/2aoj 2 

Here, the real and imaginary parts of Oj have the same variance, aoj, 

and (Oj) is the (complex) mean. If aoj is constant with j, the object 

has a "white" power spectrum. 

(7a) 

It is interesting, and useful, to note that Gaussian statistics can ap- 

proach deterministic "statistics." As aoj -+ 0, 

Po (Oj ) 3 6(0. 
3 

- (O.3 )). (7b) 

This may be shown by letting aoj ± 0 in Eq. (7a) and using the defining 

properties16 of the 6- function. Zero variance then represents the "class" 

of one object. 

General, or Markov, object statistics 

In the space domain --By visual inspection of his immediate surroundings, 

the reader may notice a simple, but important, property of everyday objects: 
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They are very redundant. For example, most object scenes contain large 

areas of virtually uniform brightness. In this case, knowledge that the 

} 
brightness at point x. is 01 implies, with high certainty, that the bright- 

ness at nearest -neighbors xj +1 is also 01. Undoubtedly, foreknowledge of 

this type can be used to advantage in restoring the object. 

Because we shall be working in the frequency domain, the situation 

of a generally redundant object spectrum is treated next. 

In the frequency domain --The general case arises when M + 1 parameters 

Oj, Oj(1),..., Oj(M) are statistically dependent, but any other Ok is statis- 

tically independent of these parameters. Subscripts j(1),..., j(M) denote 

frequencies associated with frequency j in this way. They might, for example, 

be nearest neighbors to w.. The object (spectral) scene is then called a 

Markov18 information array of order M. A complete description of the statis- 

tical behavior of U. thereby requires knowledge of the joint probability 

density15 pQ(Oj, Oj(1),... Oj(M)) for Oj and its M dependent neighbors. 

The manner by which parameters Oj(1),..., Oj(M) affect the statistics 

for O. is reflected in the conditional probability law15 p(Oj1Oj(1),..., 

Oj(M)). This is the probability density for Oj if values Oj(1)'...' Oj(M) 

are known. For later use, we note the connection between the joint and 

conditional probabilities to be15 

pa (Oj , O. , . . . , O. 
(M) ) - p (Oj (1) 

. . . O. ) x 

p (Oj 
.10J 

(1) 
. . . , O. ) . (8) 

Use of the Markov description in image processing- -The experimenter is 

assumed to be able to specify a joint probability law 



-8- 

0(O , 

O 
, . . . , Uj (M) ) (9) 

at each j. This probability law defines the object class in its most general 

aspect. 

It is intuitive, from (8), that as M grows, a monotonically increasing 

amount of object foreknowledge is required. This suggests that as M grows 

the quality of the restoration should likewise increase monotonically. This 

suspicion will be borne out by means of a specific example. 

The "disjoint" object --By stating that M = 0 the experimenter admits 

complete ignorance of the dependent object statistics over neighboring fre- 

quencies. In this case the joint probability for any L + 1 neighboring 

parameters Oj, °j(1),..., Uj(L) is strictly disjoint,15 obeying 

pU(Uj, Uj(1),..., Uj(L)) = p(Uj) pU(Uj(1))...pU(Uj(L)) . (10) 

If, in reality, M > 0 the experimenter is now ignoring some object informa- 

tion. However, it will be seen that the processing can still be optimized, 

albeit to a lesser extent than if the actual value of M were used. 

The highly redundant object --If a class of objects is sufficiently 

narrow in scope, the occurrence of any one set of values 0j(1), 

implies one corresponding value for U. The conditional probability for 

Uj then degenerates to the description of a single value, 

pG( 1 1 U. )=d[U -g.(0. 1,...,U. 
)]. (11) 

Uj Uj ( ) 
' 

. . . , 

J () J J j ( ) J (M) 

Function will generally vary with j. 
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An example of (11) is a "white" spectral region of extent M + 1. Here 

defining a 

gj (Oj (1) 
° 

. . . , Oj cm)) 
- Oj (1) 

. 

This important case is used below in a numerical simulation of optimal 

processing. 

When a disjoint object is highly redundant, it obeys Eq. (6a). 
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THE DETECTED IMAGE 

The general law of image formation 

The unknown object value OJ, after relay through an array of lenses 

and /or other relays of information, is detected as a noisy image 

We can specify the noiseless effect of this information relay, which might 

well be non -linear, by a system parameter T(w.), and the noise of detection 

by a function N(wJ). For brevity, we denote these parameters as I., TJ and 

N.. In general, the value of I at one frequency is a function of T, O and 

N at all spatial frequencies: 

I. = I ( T , T 1 , T J , . . . , O , O. 
-I 

OJ+1,..., 

NJ-1' 
Nj+1,...) 

. (13a) 

A less general situation is where 

I. = L (TJ , OJ , NJ ) (13b) 

alone. Operation L represents the physical law of image formation. For 

mathematical convenience, the optimal processor is found below for aZZ cases 

where image formation takes on the somewhat restricted form (13b). 

Important examples of laws L are next considered. 

Linear image formation 

The forms most frequently encountered are 

and 

I = T.O + N 
J J J J 

I = T.O.N . 

J J J 



In these cases, T represents a conventional transfer function, i.e. one 

which multiplies the object spectrum. The noise in (14a) is said to be 

"additive," in (14b) "multiplicative." 

Case (14a) arises, for example, when an aerial image 
19 

is detected by 

a phototube whose noise limitation is predominantly a dark- current.20 Case 

(14b) is the well -known representation of low- contrast, photographic image 

formation.21 Here,I corresponds to photographic density, and N represents 

a transfer function of emulsion granularity. 

Because of its mathematical convenience, law (14a) will be frequently 

assumed, below, in derivation of specific optimal processors. 

Transfer functions are statistical parameters 

Since Tj represents a physical property of a real entity, it cannot 

be determined with arbitrary precision. When speaking of lens systems, 

seems to be determinable to about 3 %.22 Hence, any assumed value of T. 

suffers an unknown, statistical fluctuation from its true value. 

The actual probabilitydensity p(Ti) may be established quite simply, 

when values T. are determined from experimental use of the sampling theorem23 

T. = constant 1 s(1-irrmnwj 
J m,n 

(15) 

Here, s is the measured point spread function and the rmn are sampling points. 

If the detected values s at points rmn suffer from additive, statistically 

independent errors, p(T.) is known to be Gaussian.17 
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CLASSICAL IMAGE PROCESSING 

The simplest method of processing the image is to assume the linear law 

(14a) of image formation, and to define the processed image as 

Si = Ij/Tj . (16) 

This method has been used quite successfully.s'6 However, processor (16) is 

less than optimal since it ignores the possibility of minimizing the effects 

of noise upon the quality of restoration; it assumes the law L of image for- 

mation to be linear, which is often a poor approximation (e.g., in high- 

contrast photographs24); it ignores the possible use of statistical object 

information to aid the restoration process; and it assumes that each Tj is 

precisely known. 

We now derive a method of processing which takes into account all the 

preceding phenomena. 



-13- 

OPTIMAL IMAGE PROCESSING 

Criterion of optimization 

Let the processed image now be denoted as Oj, j = 1,..., J. We seek to 

optimize O. at each such j. Therefore, j should now be regarded as an 

arbitrary but fixed (frequency) value. 

We shall seek the processor which is optimum for a given class of ob- 

jects, the class being specified by known statistics (9). As previously dis- 

cussed, the noise statistics and system parameter statistics are also assumed 

to be known. 

The criterion which shall be used is that the expected mean -power error 

of restoration at the arbitrary point j 

E. K) =< - Oj I K i= a minimum (17) 

The expectation () is to be over many representative restorations of many 

typical members of the object class. 

Possible powers K 

Although the derivation below allows K to remain a general parameter, 

it is important to discuss the effect of particular values of K upon the ex- 

pected error eK). 

For any even K the minimum attained in (17) is zero if and only if 

O. = O. at each restoration. Therefore, a small minimum for E. 
(K even) 

J 

rigorously implies a good restoration (on the average). By contrast, if K 

is odd the minimum can be zero even though O. differs widely from O. for 

every restoration (positive and negative errors cancelling each other). 

Thus, K must be even for criterion (17) to be meaningful. 



-14- 

Among all even powers, the value K = 2 is the traditional choice. This 

is mainly because of mathematical tractability, but also because least -squares 

processing oftentimes results in the need for a linear filter, and linear fil- 

ters are physically realizable. Of course, physical realizability is not of 

overriding importance in this study of optimal digital processing. 

On the other hand, the use of higher K- values might often result in a 

smaller maximum error IO. - Oj1, over trial restorations, than for K = 2. 

Such control over the maximum error has proven to be advantageous in other 

problems.25 

It might also prove useful to process one image with successive values 

of K = 2, 4,.... Each value of_K would result in a different restoration, 

and this might be of use for purposes of object identification. 

For these reasons, and the simple expedient of preserving the most general 

derivation, K is left as an experimental parameter in criterion (17). The 

special case K = 2, corresponding to optimum mean - square (ms) processing, will 

be considered in special cases. 

Derivation of optimal processor 

Image dependence --In seeking to optimize the resemblance between O and 

O at any one point j, we must allow Oj to be a function of all the observables 

which contain any information about Off. According to the Markov property (8), 

the statistics of Oj depend upon the statistics of parameters Ok, k = j(1),..., 

j(M). When this is combined with the general law of image formation (13b), 

we see that all possible observable information about the unknown"j is 

contained in the M + 1 image values Ik, k = j, j(1),..., j(M). Therefore, we 

let Oj be a general function 
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Oj = Oj (Ij, I. Ij (M)) . 

Criterion (17) is now 

E3K) = IOj - Oj(Ij, Ij(1),..., Ij(M))IK)= min. 

(18) 

(19) 

Explicit dependence upon the statistics --In general, quantities Tk, 

k = j, j(1),..., j(M) are statistically independent of the Ok, and both of 

these sets of parameters are statistically independent of the Nk. This 

independence is the result of differing physical laws for the phenomena 

T, O and N. Therefore, Eq. (19) may be cast in terms of independent sta- 

tistics pT, po and pN for system parameter, object, and noise, respectively: 

f...1 dTdOdÑ 10i - Oj (I) 1 KpT (T)pG ()pN (Ñ) = minimum (20a) 

For brevity, we adopt the notation 

÷ -± 

da = dada . . .da 
, a = a., a. . . . , 

j j (1) 
ai 

for a = T , O or N. 
(20b) 

The integration in (20a) is over all possible values of the statistical 

parameters. 

Solution by calculus of variations --The particular function V. 
3 

(T) 

satisfying criterion (20a) is the sought -after optimal processor. Although 

at this point the problem looks hopelessly difficult, a change of variables 

allows all the dT and dO integrations in (20a) to be carried through, greatly 

simplifying the problem. 
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Change of variables -- Because the I in the argument of U. are themselves 

functions of the independent parameters T, O and N (through Eq. 13b), and 

because Uj is an unknown function, as it stands Eq. (20a) cannot be simpli- 

fied by successive quadratures. However, if we let parameters I replace 

the N as statistical coordinates, all terms in the integrand of (20a) may 

be integrated through dTdO. Therefore, let Eq. (13b) be considered as an 

4- 

equation of transformation for defining new statistical coordinates I. In 

addition, let the 

to the primed variables 

Tk = Tk, 

The total Jacobian 

J = det 

remaining 

Uk = 
°k' 

of the 

-4- -> 

I, 0; T' 

variables T and O be identically transformed 

k = j, j-1,..., j-M (21) 

transformation is defined26 as 

(22a) 
-> -4 -> 

N, 0, T 

Since the (implied) matrix in (22a) is upper triangular, the determinant 

may be simply evaluated as the chain product27 

where 

J = fj fj ...f. 
(M) 

aI (re) DI 
(im) 

aI (re) DI 
(im) 

k k _ k k , 

fk _ f(Ik, 
°k' 

Tk) 
3N(re) 

8N(im) m(im) 8N(re) 
k k k k 

(22b) 

k = j, j (1) , 
. . . j (M) . (22c) 
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Examining Eqs. (22b) and (22c), and using identities (21), we see that J is 

a real, known function of the new variables, i.e. 

J = J (T, 0, I) . 

Also, with law L known it is possible to formally solve transformation 

Eq. (13b) for Nk in terms of the new statistical variables: 

(23a) 

Nk = N(Tk, O Ik) , k = j, J(1),..., j(M). (23b) 

Transformations (21) are also used in (23b). 

Transformed equation --By expressing the old differential in terms of 

the new, 

dTdOdN = 1J1-1 dT'd0'dI , (24) 

and with substitution (23b), Eq. (20a) becomes 

J...J 
dT'd0'dÌIJ(T',0', T)1-110 - (T)1K x 

J J 

pT(T)p0(0')pN(T', 0', I) = minimum . (25) 

Reduced equation --Eq. (25) may be integrated dT'd('. After using the 

binomial theorem to expand out 10. - 0.1 K, termwise integration results in 
J J 

the reduced equation 
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f...1 dll (K/i 2 ) (K/2 

i' J 

(-1)1-+1-16 (Ì)iv? (Ìi' J 

, 

x q(l'1I)(I) = minimum. (26a) 

The indicated summation is independently formed over i,i' = 0,1,..., K /2; 

the asterisk denotes complex conjugate; and the first bracketed quantities 

are binomial coefficients. Also, the q(i'i')(I) are functions of the 

known statistics: 

} 
g(l' 

1)( 
I) = . dT' d0' 

I J (T' , 0' , I ) 1 

K/2 -i *K/2 -+ -> 

Oj' pT(T') pa(0') pN(T', U', I). (26b) 

Solution as root of polynomial- -The integrand in Eq. (26a) is noted to 

} 
be a function of variables I alone, there being no derivatives d /dlk. In 

this simple case the calculus of variations28 shows that the integral (26a) 

is a minimum if and only if the integrand is a minimum at each I. Then O. 

may simply be regarded as a variable which is to minimize the integrand, and 

which may be found by the usual method of differential calculus: a /30j 

(integrand) = 0. Since 0. is complex it has two degrees of freedom, so that 
J 

in addition a/a0j* (integrand) = 0. Each of these equalities results in the 

requirement 

i7K12 (-1)i+i'ig(i,i')(I)J(I)i-lU*(I)1 
= 0 (27) 

This is the solution for the optimum processor due to a general law L of 

image formation. 



-19- 

Immediately apparent properties of Oj 

Because Eq. (27) is merely a polynomial of degree K.- i in the real 

and imaginary parts of the unknown Oj, it may be generally solved for O. 

by numerical means. For each sequence I that is actually observed, a solu- 

tion to (27) may be numerically generated by the proper subroutine for 

extracting roots from a polynomial. This procedure can conceivably be 

operated in "real time," by direct linkage between the detector of observ- 

ables I and an electronic computer which extracts the appropriate root 

from Eq. (27) as the I are detected. 

In the special case of K = 2, representing mean -square processing, the 

solution to Eq. (27) and the resulting minimal error E2) are both analyt- 

ically known (as found below). This is of definite advantage for understand- 

ing the effects upon Oj and c2) of varying parameters in the distributions 

pT, po and pN. 

The I- dependence of the optimal O. is through coefficients q 
(1,1') 

(I). 

Noting the dependence (26b) of q(l'l') upon input functions pT, p0, and 

pN, Oj cannot be generally expected to be linear in observables I. Hence, 

linear processing is not generally optimal processing. This subject is fur- 

ther pursued below. 

Because it effects an analytic solution to Eq. (27), the case K = 2 is 

considered from this point on. 

Optimal mean - square processing 

With K = 2, polynomial (27) is linear in Oj* so that the solution is 

immediate: 

Oj (I) = Q(l'o)*(I)/Q(l'1) (I) (28) 



-20- 

The resulting minimum error may also be analytically found. By substitution 

of processor (28) into error experssion (26a), we find 

s2) f...1 dICq(0'0) (I) - la(l'0) (I) 2 / q(1,1) a")] (29) 

In the special case of M = 0, L linear, and T non -statistical, solution (28) 

has been derived before.29 We wish to emphasize, however, that due to the 

general nature of L allowed in. solution (28), it is also applicable to cases 

where the image formation and detection are inherently non -linear. 

We note, from Eqs. (26b) and (28), that optimal processing is not gen- 

erally linear processing even when K = 2. 

Solution (28) is now applied to some important cases. 

Linear image formation with additive noise -- General solution --By substi- 

tution of Eq. (14a) into Eqs. (22), we find that Jacobian 

J = 1 . (30a) 

Further substitution of Eqs. (14a) and (30a) into Eqs. (26b) and (28) yields 

the optimum ms processor for this case: 

1...f 
dT'dO'OpT(T')po((5')pN(Ì - 

J 
...f dT'dO'pT(T')po((5')pN(Ì - T' (5') 

where, for brevity, we adopt notation 

4- 

(I - T'O') E (I - TO,..., I - TJ 
(M)vJ (M)) 

(30b) 

(30c) 
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For well- behaved functions pT, po, and pN, processor 0(I) can be 

numerically or analytically generated from (30b). 

Case of a deterministic transfer function --If the fluctuations in T' 

are so small as to be negligible with respect to those of 0', the indication 

is that each TI has been measured very accurately. The deterministic limit 

[see the discussion of Eq. (6a)] 

-- 

pT (T') = (5(T' - TO) (31a) 

may then be used in Eq. (30b). Each Tk now has a precise value, TOk. The 

result is a processor 

J.. 
.I 

r 

0 d0' pa(0')pN(I - 

6.(I) _ 

J.. 

J(J 

.J d0'pa(6')pN(I - T00) 

The only remaining integrations are the d0'. 

Classical limit --If the noise is known to be zero at i., so that pN 

(31b) 

is separable as 

pN(I - To0') = d(IJ . - To.J OJ )pN(IJ - 

Toj(1)OJ(1) ) 
(32a) 

' ' 

then by substitution of Eq. (32a) into Eq. (31b), 

Oj (I) = Ij/TOj . (32b) 

This is just the classical, linear processing method (16). Classical pro- 

cessing is therefore optimal processing when the image formation is linear, 

with a precisely known transfer function, and when the noise is additive 

and known to be zero. With any departure from these conditions, the use of 

processor (32b) must be less than optimum. 
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OPTIMAL PROCESSING IN SPACE DOMAIN 

A method has been established for minimizing the error of restoration 

in the frequency domain. However, the aim of image processing is to opti- 

mally restore spatial objects, o(x). It is therefore necessary to find 

the effect of optimal processor 0.J' upon the quality of the spatial restora- 

tion. We find it convenient to measure this "quality" by the following 

criterion. 

Mean - square error of spatial restoration 

Let 0(w) represent the restored value of 0(w) by any restoration process. 

For example, 0 may be O. Then, by use of Eq. (1) the corresponding res- 

toration in the space domain is 

o(x) = (27)-1 I dw0(w)elw.x, S2 E (Stl, S22) . 

. 

-S2 

(We now take points w. so close together that they define a continuous 

variable w.) That frequencies 52, 522 are necessarily finite is due to 

(33) 

the well -known limitation of band- limited19 image formation. By use of Eq. 

(1) we can form the error of restoration Ao(x) E o(x) - o(x): 

Q, 

A0(x) =(2r) 1 f dw0(w) - O(w)]eiwx 

-SZ 

-S2 

(27) 
1 C f f 

-W 

JJ)do()ei.+ 

S2 

(34) 

In analogy with criterion (17) for restoration quality in the frequency 

domain, we measure the restoration quality, over the entire spatial object, 

by the single parameter 
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CO 

E(2)E(1 ( dx[ACJ () 12 ) 
-CO 

(35) 

Use of the special power 2 in criterion (35) allows E(2)to be related to 

(2), as is shown below. 

By substitution of Eq. (34) into Eq. (35), we find that 

-} 

E(2) _ f f dc-) ( 

I v 
6) 

- 

(56-)12) 
-, 

-S2 
.} 

ldw ( 1 0() 1 2) 

- S2 

holds true exactly. 

An important correspondence 

Eq. (36) shows that E(2) is minimized by the choice of 0 such that 

(36) 

(IO() - O(0I 2 ) is a minimum at each w. But this is precisely the defi- 

nition (17) of the optimum mean -square processor 0(w). We have therefore 

established the important fact that optimum mean -square processing in the 

frequency domain results in a minimal error of restoration E(2) over the 

entire spatial object. This is a further virtue of using K = 2 in crite- 

rion (17). Mean - square processors (28), (30b), and (31b) now have added 

significance. 

The quantity < O()12) in Eq. (36) is usually called the "power 

spectrum" for the object, and we denote it as (1)a(w). Quantity qa is, 

of course, independent of any processing scheme. By this change of nota- 

tion, and the substitution 0 = 0 in Eq. (36), the minimum value of E(2) 

due to choice of a processor is simply 
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dw40() . (37) 

All quantities on the right -hand side may be assumed as known to the user 

(constituting "foreknowledge," as previously discussed) 

Optimal processing bandwidth 

Derivation --The only free parameters remaining in Eq. (37) are 01 and 

522, which define a "processing bandwidth" S2 by Eq. (33). From the form of 

Eq. (37), an optimum 52 exists such that contributions toward E(2) of e(2)(w) 

are balanced against those from (I) U(w), resulting in a minimum for E(2). 

We now find this optimum 52 in the special, but usual, case where object 

class, noise and system parameter are isotropic in w, i.e. 

e 
(2) (w) 

= s (2) (w) , (1)06t)) = (1)0(w), and S2 = SZ . (38a) 

Under conditions (38a), error (37) becomes 

52 CO 

E(2) = 27 
J 

dw we () (w) + 27r 

J 

dw 40(w) . 

0 S2 

(38b) 

We now use the ordinary rules of calculus to find a minimum in Em2). Set- 

ting d E (2) / dO = 0, we find that 0 must satisfy 

6(2)(Q) 4)U 0) = O. (39) 

Since the functions E(2)(Q) and 40(w) are assumed known [see Eq. (29)1, 

the optimum 0 may be found as a root of Eq. (39). In the special case 

c0(w) = constant = c of a "white" power spectrum, the optimum 0 is simply 

that value for which e(2) (S2) = c. 
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Simple example- -With 0 / O in general, Eq. (39) may be replaced by 

( 1 0 (Q) -O(Q)2) - (1)0(Q) = 0 . (40) 

I.e., Eq. (40) defines the bandwidth Q for minimizing E(2) when any pro- 

cessing law 0 is used. It may be shown that Eq. (40) also holds in the 

case where all parameters are one -dimensional (rather than radial), and 

symmetric in w. 

It is then possible to find the optimum Q for this very simple case: 

linear law (14a) of image formation; non -statistical transfer function19 

T(w) - 

{ 

1 - IwI /Qo for 1(1)1 < 0o 

0 for w S2 

i 

> 
o 

(41) 

due to one -dimensional, diffraction - limited optics; use of the classical 

(rather than optimal) processor (16); and constant power spectra ¢U and ¢N. 

By combining Eqs. (14a), (16), (40), and (41), we find the optimum bandwidth 

for classical processing to be 

SZ = SZo(1 - ¢N/¢a) (42) 

The variation of SZ with signal -to -noise ratio ¢o /¢N in (42) agrees 

with intuition: The allowable Q increases monotonically with ¢a /¢N, ap- 

proaching a maximum value of Qo as ¢G /¢N co (the noiseless case). Because 

any image is bandlimited19 to frequency S2 , Q is indeed the largest possi- 
0 o 

ble processing frequency. 

In the other extreme, as ¢G /¢N 1, Eq. (42) makes 0-; 0. When the 

noise is so great that it equals the signal, processing by classical formula 

(16) is ruled out. 
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APPLICATIONS 

In the two general applications described below, we use optimum ms pro- 

cessing of a linear image (14a), with non -statistical T. Therefore, in each 

case the starting point is processing formula (31b). 

Image recognition problem 

Optimum processor -- Suppose the object class contains a finite number L 

of known members. An example is the "character recognition" problem, where 

L = 26 for English letters. The detected image must then identify with one 

of the L objects. The problem we tackle is to find the optimum processor 

for making the required identification. 

Let the known transfer function be To, the known L objects UQk, k _ 

1, 2,..., L. (As usual, k denotes frequency.) The noiseless image Ilk 

corresponding to Oa is given as19 

IR,k TokOQk 
(43) 

Since all the right -hand quantities are known, the IRk are likewise known. 

Therefore, identification of the detected image with one OQ is equivalent 

to identification with one I. 

Because the objects OQ are a discrete set with a finite number of mem- 

bers, pa is a Dirac "comb function" [see Eq. (6b)] 

- - - 
pa(O') = Plô(O' - Ol) + . 

where 

.. + PLd(-6.? - OL) (44a) 

(44b) 
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Each PQ is the known, finite probability associated with the occurrence of 

its Oz. Thus, Eq. (44b) states that one of the L objects must be present. 

The optimum ms processor may now be found. By substitution of Eq. 

(44a) into processor (31b), we find 

1 

L 

QL1 

PQIQjpN(I - IQ) 

T. 

P 

Q=1 

4- 4- 

- IQ) 

(45) 

Discussion --The behavior of optimum ms processor (45) may be described 

as follows: 

(1) For general pN, O. is generally non - linear in the observables, I. 

(2) O. is essentially the quotient of two weighted series of noise 

distributions. 

(3) As the noise approaches zero (and is known to do so), Oj(I) -- 

) 

OQ,., where Q' is the object that is actually present. This is a self- 

consistency test for the processor. 

(4) As one PQ, -> 1, i.e. the appearance of one object becomes increas- 

ingly probable, Eq. (44b) indicates that the PQ - ô2Q where ó is the 

Kronecker delta -function. Using this limit in Eq. (45) we find that Oj(I) -> 

OQ,j. Hence, the restoration is perfect, and is independent of the observ- 

ables I. In a less extreme case, where (say) PQ, = 0.9, the tendency 

Oj(I) -- OQ,j remains, with near independence of the observables I. 

(5) The most random30 noise case arises when the noise is uniform and 

independent at each w.. This situation is approximated by a noise distri- 

bution 
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ff 

constant bM 
+1 

for III( - 1211 5 (2b) -1 

I2) 

= l 0 for II 
k 

- I 
2k 

I > (2b)-1 

k = j, j(1),..., j(M), b small, 

at each wj. Use of (47a) in (45) results in the degenerate processor 

v. (i) = P202 - v.) 
2=1 j J 

Or, the optimum processor is simply the average value of O. over the L 

(47a) 

(47b) 

objects, independent of observables I. Upon reflection, this is as it should 

be. Since practically every value of noise is now equally likely [including 

very large values, according to Eq. (47a)], observables I actually yield no 

information about O2j. Therefore, the optimum estimate of Ù2j can only be 

based upon the object foreknowledge, and <Oj) in particular. 

Decision theory aspect -- Although processor (45) yields the best estimate 

of the unknown object, it cannot by itself identify this estimate O with one 

of the 02. A "decision- making" function of observables I is needed for making 

this identification. 

Derivation -- Because T' is a non -statistical quantity of the problem, the 

optimum estimate I. of the noiseless image obeys 

I. (I) = TojUj (I) . (48a) 

Let I2, denote the true image under observation. Because of criterion (19) 

and Eq. (48a) 

J - 

( I I2, Ij (I) 1 2) = minimum 

j=1 

(48b) 
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where, from Eqs. (45) and (48a), the optimum image estimate is 

L 
-- } 

Q¿1PQIQjpN(I -I) 
Ij (I) 

PQpN(I -I) 
Z=1 

(48c) 

A decision function may now be formed. According to identity (48b), 

on the average 

J 

X 
I IQ,j - Ij (I) I2 < / 

I Isc,- I (I) I2 . 

j=1 j=1 

(48d) 

Here IQ, is the unknown image and IQ is any of the remaining (L -1) images. 

It is therefore logical to construct a decision function as 

J - 

D(Q) = gCl1j - Ij(I)I21, Q = 1,2,..., L, 

j=1 

(49a) 

where the Q resulting in the smallest D is accepted as identifying the true 

image. Function g [ ] may be imagined to be unity, but for generality it is 

considered as any monotonically increasing function. 

An optimal decision function ? - -Given one set of restored values I.(I), 

j = 1, 2, ..., J, the value of Q that minimizes D must depend upon the 

function g chosen. For example, if g = loge, any D(i) is strongly negative 

if IQ. _ I.(I) at but one value of j. This tendency biases decisions in 

favor of an i for which there are one or two near coincidences Iij _ I.(I), 

almost regardless of the differences I - I.(I) at all other values of j. 
Qj 
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Since the decision depends upon the form of function g, we can con- 

ceive of an optimal function g such that the probability of making a cor- 

rect decision is maximized. To find this function g would constitute a 

major advance in image recognition. 

Comparison with classical decision function --If the noise distribution 

pN is Gaussian, the classical function for making a decision 2, s 
1 

Jcc 

C(i) = G Ilij - IjI?, i= 1,2, . , L (50) 

j=1 

Again, the smallest C is accepted as identifying the true image. 

It can be shown that if pN in Eq. (48c) is Gaussian, with L = 2 (a "bi- 

nary" decision problem), classical function C(i) has the same probability of 

success as our function D(i) with the choice g = loge. 

Comparing Eqs. (49a) and (50), we see that C(i) is formed from noisy 

data I., while D(i) is formed from optimally processed data I.. We may 

therefore suspect that use of D(i) will more usually lead to successful deci- 

sions than will use of C(i). However, the preceding paragraph does not 

support this hypothesis (although neither does it disprove it). Further 

research on this hypothesis is indicated. 

Processing a white object region 

Derivation of optimal processor --It has previously been suggested that 

knowledge of the statistical behavior of 0 over neighboring frequencies w 

can improve the quality of restoration. We now show this to be true in the 

case (12) where 0 is known to be constant (but with unknown value) over 

M + 1 adjacent frequencies 
w34-1(' 

k = 0, ±1, ±2, ..., {M' }; where {M'} = ±M /2 

for M even, or {M'} = ±(M - 1)/2, - (M + 1)/2, for M odd. Thus, O. is 
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4- 

centered in the white region. In addition, the object statistics at wj 

are to be Gaussian, and the additive noise Nj is Gaussian and independent 

over the wj All the Gaussian parameters are assumed known. 

With these conditions substituted into formula (31b), the optimal ms 

processor is found to be 

{M/} 

oN 2 
`O') + o2G L 

C T'* I 31 
k=0 J+k j 

+k 

{MC'} 

0ÑN 

02 
03 G 

1T. 12 

3 

k=0 
3 

(51a) 

The expected error is found by using Eq. (51a) and criterion (19), with 

K= 2, 

202 02. 
N 03 

{M'} 

+ 

02. y T. +k12 
j k=0 j 

(5 lb) 

In the preceding, 
oN 

and 
oUj 

are the variances for noise and object statis- 

tics, respectively,(o.) is the mean value of O., and the mean value of the 

noise is known to be zero. 

Discussion --The most important feature of processor (51a) is that it is 

linear in the observables I. Hence, (51a) is nearly as simple to use as the 

classical processor (16). 

The dependence of Oj upon signal and noise parameters aUj, (0j), (IN is 

appropriate to its "optimal" nature. As either 
oUj 

o [limit of essentially 

one object; see Eq. (7b)], or 
oN 

-> co, Oj(I) <Oj). In the former case, O. 

must uniquely be its mean value, so that (O.) is the proper limit for Oj(I). 

[Note also the consistent behavior, e( 2) 0, of Eq. (52b).] 
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n the latter case, since 
aN 

; , all readings I are submerged in 

noise. Hence readings I contain no information about Uj, and processor 

O. accordingly ignores this data. Since the only remaining knowledge about 

O. which can be of aid is the known mean value, (O.), O. takes on this 

value. Error expression (52b) is consistent with this interpretation, 

yielding e(2) 2a . Hence, the expected error grows with the ability of 

O. to statistically vary from (O.). 

To what extent does object foreknowledge aid the restoration ? --In this 

problem, object parameters (Uj) , 

°Gj 
and M are assumed known to the user. 

The effect of each of these quantities upon the quality of restoration can 

be measured by error expression (51b). 

Since parameter (O.) does not enter into Eq. (51b), the magnitude of 

(O.) does not affect the restoration quality. This agrees with intuition: 

It does not require more knowledge to know that (Uj) is large, than that 

(Oj) is small; hence, variation in the known value (O.) cannot affect the 

quality of restoration. 

The smaller 
aGj 

is, the more specific is the user's knowledge about 

the unknown object [see Eq. (7b)]. Eq. (51b) shows that ej2) monotonically 

decreases as 
a . 

decreases. 
03 

The greater M is, the more information about joint object distribution 

pGj, Uj +M) is required. Since all terms in Eq. (51b) are positive, 

e(2) monotonically decreases as M increases. 

In summary, when optimally processing a white object region, the process- 

ing quality monotonically increases with the user's foreknowledge of the ob- 

ject statistics. 

Weiner filter limit --We examine the particular case M = 0 of a "disjoint" 

object. Eqs. (51) now describe optimal ms processing under conditions of 
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linear image formation, Gaussian object and noise distributions, and a non- 

statistical transfer function. Because M = 0, the object is no longer "white." 

Under these circumstances, and in the particular case of (O.) = 0, the 

optimum, ms, linear filter has been shown 
3 

to resemble the classical Weiner 

filter.12 The identical result follows from Eqs. (51), furnishing a corrobo- 

ration of Eqs. (51). It should be added that if (O.) 0, Eq. (51a) (with 

M = 0) must replace the Weiner formula as the optimal ms processor. 

Numerical simulation 

Because processor (51a) is an analytical function of observables I, it 

is convenient to use in a numerical simulation of optimal processing. Simu- 

lation was effected upon a CDC 6400 electronic computer. 

Image values were generated from law (14a), with parameters N.,0., and 

T. determined in the following way. Values Nj were made to be independently, 

Gaussian random by use of a (uniformly) random number generator and an auxil- 

iary subroutine31 for conversion to Gaussian randomness. For easy interpre- 

tation of the resulting restorations, one unknown object value (of unity) was 

assumed to extend over all frequencies involved. Finally, the known transfer 

function was taken as 

Tr-1 2 [cos-1(w.3 ) - wj (1-wj 2)2], 

T( .) = { 

0 for Iw.l > 1 

J 

which is due to circular, diffraction - limited optics.19 

1 (52) 

Each set of noisy image values was independently processed according to 

classical law (16), and optimal ms law (51a) with successive values M = 0, 

1, 5, 10, and 50. Results are shown in the figure below for one typical set 

of image values. 
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0.24 0.30 0.40 0.50 0.60 0.70 

C.eassica.e vs. optíma2 pnocessing .ín the case ob a comtan,t, on "white," 

object spectrr..um oven M+ 1 adjacent bnequencí,e,s. A no-czy image was genettated 

upon an e.2ectrton.í.c computet accotding to taw (14a) bon .e.í.neatt image botmazí..on 

with additive noize. The Zattet was made to be Gaussian nandom by use ob the 

compwtett's nandom Humbert genettatot and an azsocí.ated subtoutí..ne. The no-cr,y 

image was independevt2y pnocezs ed by ceamsica,2 botmu.2a (16 ) , and by opt.íma2 

bonmu.2a. (51a) w,c.th succe,ssive values M = 0, 1, 5, 10 and 50. The actua2 

tes- f. 

ob- 

ject 0 = 1. 0, u p2oted as a das hed tine bon compatúon with each 
xonazon. Gtaphica.2 indications ate that (a) optima.2 ptocess.íng obberus quan- 

titative .ímptovement ovet c.eass.ícat ptocessing, and (b) optima,2 ptocess-íng 

-ímpnoves az the "object boneFznow2edge" (in th.íz case, M) inctteases. The pto- 

cezsot bon M= o.us a c2os e te.2atí.ve ob the Weinen b í e.tett. 
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All restorations are over the frequency band 0.24 < w. < 0.70 (normal- 

ized relative to the optical cutoff). Numerical values 
óaj 

= 1.0, 0.) = 1.4 

and aN = 0.2 are taken. The actual object, O. = 1.0, is plotted as a dashed 

line for comparison with each restoration. 

The top graph shows the classical restoration resulting from use of 

processor (16) at each w.. The quality of resotration is observed to be quite 

poor, especially at higher frequencies. By combining Eqs. (14a) and (16) we 

can see why: 

O. = O. + Nj/Tj . (53) 

As w. -} 1 (cutoff), Tj -> 0. Hence, the noise contribution to each O. grows 

uncontrollably as w. ' 1. 

The remaining five graphs, identified by values M, show the virtue of 

processing according to the optimal processor (51a), and in particular, the 

effect of increasing foreknowledge M upon the quality of the optimal restora- 

tion. As M increases, these curves gradually flatten and smooth toward the 

actual object O. = 1. This is also the tendency predicted by error formula 

(51b) . 
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SUMMARY 

Digital, as compared to analog, processing allows a noisy image to be 

manipulated in arbitrary fashion. Hence, it is possible to digitally pro- 

cess the the image in the generally non -linear manner required by a criterion 

of optimal processing, for example. 

One such criterion is (19). This criterion demands that, at each spatial 

frequency, the expected mean power error between restoration and original 

object be a minimum. To attain this goal, the optimum processor at any fre- 

quency w. is allowed to be an arbitrary function of aZZ parameters which can 

possibly influence the detected image at w.. These parameters are the object 

0, noise N, and image- forming characteristic T, at each of w. 
3, 

wj(k), k = 1, 

..., M. It is tacitly assumed that the joint probability distributions Pa, 

PN and P over these w are known to the experimenter. It is this "foreknowl- 

edge," i.e. knowledge aside from observation of the image, which allows the 

processing to be optimized. Examples pa are discussed between Eqs. (4) and 

(12). One example of p 
T 

is discussed at Eq. (15). 

In order for criterion (19) to be enforced, it is necessary to make an 

assumption regarding the law of image formation, i.e. the dependence of de- 

tected image I. upon parameters T, 0 and N. It is a fortunate aspect of 
J 

the optimization problem that a nearly general law L(TJ, O., N.) of image 

formation (13b) can be assumed throughout. Particular forms of L need only 

be substituted into the solution for the optimal processor. Hence, the solu- 

tion holds for a wide class of image- forming situations, in particular those 

for which L is as yet unknown. Some simple laws L are discussed at Eqs. (14). 

In Eqs. (20), criterion (19) is cast in terms of the given probability 

distributions. The optimum processor is found by treating its definition, 

Eqs. (20), as an extremum problem. For any sequence of observed I, the optimum 
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processor is found to be a root of polynomial Eq. (27). Since this poly- 

nomial is of finite degree, Eq. (27) is relatively easy to solve by numerical 

methods. 

When the optimum mean square processor is desired, the solution to Eq. 

(27) is known analytically as processor (28). Also, the expected error re- 

sulting from use of processor (28) is known analytically as Eq. (29). 

The effect of processing in the frequency domain upon the restored 

spatial object is studied. A central result is that the mean square error 

of restoration over the spatial object is a minimum E(2)when optimum mean 

square processing O. in the frequency domain is employed. This result jus- 

tifies the use of processors O. in practice. 

It is found that error E(2) may be further minimized through choice 

of the processing bandwidth. Eq. (39) yields the optimum bandwidth 2 for 

this purpose. In the special case of classical image processing (16), one - 

dimensional, diffraction - limited optics, and constant power spectra for noise 

and object, the simple solution (42) results. 

The remainder of the paper is devoted to special uses of the optimum ms 

processor (28). In all cases, a law (14a) of linear image formation is as- 

sumed for mathematical convenience. 

In these cases the most general solution is processor (30b). When, in 

addition, the transfer function is known with sufficient accuracy to be re- 

garded as non -statistical, the solution is processor (31b). 

Solution (31b) is applied to the image recognition problem. Because 

the possible object values are now discrete and finite at each ., the 
J 

solution is processor (45). Some interesting properties of this processor 

are discussed. Processor (45) is used to form a "decision function" (49a) 

for establishing which object (or image) is being detected. An "optimal" 
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decision function is defined, but not explicitly found. Comparison is made 

with a "classical "1 decision function (50), in the case of a "binary" object. 

Finally, solution (31b) is applied to the case where M + 1 neighboring 

frequency points are known to share a common object value, defining the 

"white" object region. The general solution is processor (51a), with ex- 

pected error (51b). The effect of various values of M upon the quality of 

typical restorations (51a) is graphically shown in the figure. (The case M=0 

is essentially that of Weiner filtering.) These restorations are of noisy 

image data generated by use of an electronic computer. The virtue of using 

as many adjacent image values Ij k = 0, ±1,..., {M'} as is possible to 

restore each single object value O. is evident in these plots. 



-39- 

REFERENCES 

1. James L. Harris, "Resolving power and decision theory," J. Opt. Soc. Am 

54(5):606 -611, May 1964. 

2. C. K. Rushforth, "Restoration of optical patterns" (abstr.), J. Opt. SoL 

Am. 55(5):600 -601, WF14, May 1965. 

3. Carl W. Helstrom, "Image restoration by method of least squares," J. Opt. 

Soc. Am. 57(3):297 -303, March 1967. 

4. Robert Nathan, "Digital video -data handling," J. Opt. Soc. Am 57(4):575- 

578, FA2, April 1967. 

5. H. Wolter in Progress in Optics, vol. I. Emil Wolf, Ed. (Amsterdam, 

North -Holland Publ. Co.; New York, Interscience Publishers, 1961). 

6. James L. Harris, "Diffraction and resolving power," J. Opt. Soc. Am. 54(7): 

931 -936, July 1964. 

7. Casper W. Barnes, "Object restoration in a diffraction -limited imaging 

system," J. Opt. Soc. Am. 56(5):575 -578, May 1966. 

8. G. J. Buck, J. J. Gustincic, IEEE Trans. on Antennas and Propagation 

AP- 15:376, 1967. 

9. B. Roy Frieden, "Band- unlimited reconstruction of optical objects and 

spectra," J. Opt. Soc. Am. 57(8):1013 -1019, 1967. 

10. The preceding is a representative, rather than a complete, list of the 

published research on this problem. Also, a great amount of the 

work in this field is either proprietary or classified, and hence 
unpublished. Related work up to 1960 by the electrical engineers 

is referenced by David Middleton, An Introduction to Statistical 

Communication Theory (McGraw -Hill, New York, 1960), pp. 1104 -1109. 

11. The processed image is, essentially, a transformation of statistical 
coordinates. Information remains invariant under such a trans- 

formation. See, e.g., Stanford Goldman, Information Theory (Prentice - 
Hall, Inc., New York, 1955), pp. 152 -153. 

12. Wilbur B. Davenport, Jr.,and William L. Root, Random Signals and Noise 

(McGraw -Hill, New York, 1958). 

13. Ref. 12, pp. 251, 280. 

14. Ronald N. Bracewell, The Fourier Transform and Its Applications (McGraw - 
Hill, New York, 1965), p. 7. 

15. Or, "zero- memory" in electrical engineering parlance. Eq. (10) is 

discussed in, e.g., Emanuel Parzen, Modern Probability Theory and 
Its Applications (John Wiley $ Sons, New York, 1960). 



-40- 

16. Ref. 14, Ch. 5. 

17. Ref. 11, pp. 114 -116. 

18. Ref. 10, p. 45. 

19. Edward L. O'Neill, Introduction to Statistical Optics (Addison -Wesley 

Publ. Co., Reading, Mass., 1963). 

20. This and other examples are discussed by P. B. Felgett and Edward H. 

Linfoot, Proc. Roy. Soc. A., 247:393, 1955. 

21. Edward H. Linfoot, Fourier Methods in Optical Image Evaluation (Focal 

Press, London, 1964), p. 43. 

22. See, e.g., Robert R. Shannon and A. H. Newman, "An instrument for mea- 

surement of the optical transfer function," Appi. Opt. 2(4):365 -369, 

April 1963. 

23. B. Roy Frieden, "Image evaluation by use of the sampling theorem," J. Opt. 

Soc. Am. 56(10):1355 -1362, Oct. 1966. 

24. Ref. 21, p. 45. 

25. The Chebyshev criterion requires that the maximum error be a minimum. 

See, e.g., Richard Barakat, J. Opt. Soc. Am. 52(9):985 -991, Sept. 1962. 

26. Ref. 11, p. 135. 

27. Robert R. Stoll, Linear Algebra and Matrix Theory (McGraw -Hill, New York, 

1952), p. 101. 

28. Eq. (26a) is a Euler- Lagrange problem where the integrand is not a 

function of the derivatives 30j(I) /3Ij_k, a0j *(I) /aIi_k, k = 0, 1, 

..., M. The Euler- Lagrange equation then simplifies to the condition 

that the integrand be a minimum at each I. The general problem is 

treated, e.g., by Harry Lass, Elements of Pure and Applied Mathematics 

(McGraw -Hill, New York, 1957), p. 291. 

29. See, e.g., John M. Wozencraft and Irwin M. Jacobs, Principles of Communica- 

tion Engineering (John Wiley E Sons, Inc., New York, 1965), p. 585. 

30. A measure of randomness is the "entropy." The latter is maximized by a 

constant probability distribution. See C. E. Shannon, Bell Syst. Tech. J. 

27 :629, 1948. 

31. This subroutine is based upon result 10.5 in Ref. 15, p. 334. 

jal 


	azu_QC_351_A7_no23 _pg000a001_m
	azu_QC_351_A7_no23 _pg000a002_m
	azu_QC_351_A7_no23 _pg000a003_m
	azu_QC_351_A7_no23 _pg000a004_m
	azu_QC_351_A7_no23 _pg000a005_m
	azu_QC_351_A7_no23 _pg001_m
	azu_QC_351_A7_no23 _pg002_m
	azu_QC_351_A7_no23 _pg003_m
	azu_QC_351_A7_no23 _pg004_m
	azu_QC_351_A7_no23 _pg005_m
	azu_QC_351_A7_no23 _pg006_m
	azu_QC_351_A7_no23 _pg007_m
	azu_QC_351_A7_no23 _pg008_m
	azu_QC_351_A7_no23 _pg009_m
	azu_QC_351_A7_no23 _pg010_m
	azu_QC_351_A7_no23 _pg011_m
	azu_QC_351_A7_no23 _pg012_m
	azu_QC_351_A7_no23 _pg013_m
	azu_QC_351_A7_no23 _pg014_m
	azu_QC_351_A7_no23 _pg015_m
	azu_QC_351_A7_no23 _pg016_m
	azu_QC_351_A7_no23 _pg017_m
	azu_QC_351_A7_no23 _pg018_m
	azu_QC_351_A7_no23 _pg019_m
	azu_QC_351_A7_no23 _pg020_m
	azu_QC_351_A7_no23 _pg021_m
	azu_QC_351_A7_no23 _pg022_m
	azu_QC_351_A7_no23 _pg023_m
	azu_QC_351_A7_no23 _pg024_m
	azu_QC_351_A7_no23 _pg025_m
	azu_QC_351_A7_no23 _pg026_m
	azu_QC_351_A7_no23 _pg027_m
	azu_QC_351_A7_no23 _pg028_m
	azu_QC_351_A7_no23 _pg029_m
	azu_QC_351_A7_no23 _pg030_m
	azu_QC_351_A7_no23 _pg031_m
	azu_QC_351_A7_no23 _pg032_m
	azu_QC_351_A7_no23 _pg033_m
	azu_QC_351_A7_no23 _pg034_m
	azu_QC_351_A7_no23 _pg035_m
	azu_QC_351_A7_no23 _pg036_m
	azu_QC_351_A7_no23 _pg037_m
	azu_QC_351_A7_no23 _pg038_m
	azu_QC_351_A7_no23 _pg039_m
	azu_QC_351_A7_no23 _pg040_m

