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Abstract

The mutual information of independent parallel Gaussian-noise channels is maximized,
under an average power constraint, by independent Gaussian inputs whose power is allo-
cated according to the waterfilling policy. In practice, discrete signalling constellations with
limited peak-to-average ratios (m-PSK, m-QAM, etc) are used in lieu of the ideal Gaussian
signals. This paper gives the power allocation policy that maximizes the mutual information
over parallel channels with arbitrary input distributions. Such policy admits a graphical in-
terpretation, referred to as mercury/waterfilling, which generalizes the waterfilling solution
and allows retaining some of its intuition. The relationship between mutual information
of Gaussian channels and nonlinear minimum mean-square error proves key to solving the
power allocation problem.
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I Introduction

A problem often encountered in transmitter design is that of allocating a certain amount
of power among a bank of independent parallel channels. Examples abound, both in the
wireline and the wireless domains:

• Multitone transmission. Signalling takes place over a number of distinct frequency
bands, each of which constitutes a parallel channel [1]. These bands may be nonover-
lapping or, as in OFDM (orthogonal frequency division multiplexing) and DMT (dis-
crete multitone), overlapping but with spectral shapes designed to ensure orthogo-
nality. Multitone techniques, whose origins can be traced back to early multichannel
modulation schemes developed in the 1950s, have matured over several decades and
are nowadays thriving with a host of commercial applications. In the wireline world,
a prime application is in DSL (digital subscriber lines).

• Multiantenna communication. If multiple transmit and receive antennas are employed
and the transmitter knows the transfer coefficients between the antennas, the left and
right singular vectors (corresponding to nonzero singular values) of the resulting ma-
trix can be used for signaling and reception, respectively. The outcome is a set of inde-
pendent parallel channels [2]–[4].

• Power control for fading channels. When the gain of an individual frequency-flat channel
varies over time, it can be seen as a collection of parallel channels where each such
channel encompasses a group of symbols over which the fading coefficients are iden-
tical [5].

• Dispersive channels. For linear dispersive channels or parallel channels with correlated
noises, a power-preserving orthonormal linear transformation at transmitter and re-
ceiver turns the channel into one with parallel branches having uncorrelated noises
and possibly different signal-to-noise ratios.

Diverse criteria can be invoked in order to decide which portion of the available power
is allocated to each of the channels. A particularly enticing criterion, on which we shall
focus henceforth, is the maximization of the input-output mutual information. In the all-
important case that the noises impairing each of the parallel branches are Gaussian and
independent, the mutual information under an average power constraint is maximized if
the inputs to the channels are mutually independent and also Gaussian, with their power
allocated according to the waterfilling policy [6, Sec. 10.4]. First devised by Shannon in
1949 [7] and rigorously formalized in the context of dispersive channels in [8]–[11], the

2



waterfilling1 policy is a central result in information theory.2

Although Gaussian inputs are optimum from a mutual information standpoint, they can
never be realized in practice. Rather, the inputs must usually be drawn from discrete
constellations (often with very limited peak-to-average ratios), which may significantly
depart from the Gaussian idealization. Yet, no solution has been found to date for the
power allocation that maximizes the mutual information over parallel channels with non-
Gaussian inputs. A direct obstacle in the way of this optimization is the lack of explicit
expressions for the corresponding mutual informations.

Also for specific coding schemes, or even in the absence of coding, the allocation of power
(and bits) in order to maximize the throughput with discrete constellations at some tar-
get error probability is hampered by the lack of explicit expressions, in this case for the
throughput functions [21]. In the absence of a precise solution, a heuristic strategy often
adopted to approximate such throughput-maximizing power allocation consists of ap-
plying the waterfilling policy, except with the gain of each channel reduced by a gap that
quantifies the deficit of the corresponding class of constellations with respect to a Gaus-
sian signal operating at the same rate [22]–[31] (cf. Appendix H). This strategy hinges
on the assumption that the gap deficit is roughly constant for all the rates of interest, an
assumption that is only valid if the cardinality of the available constellations (within the
class for which the gap is defined) grows with the interval of signal-to-noise ratios of
interest.

In this paper, we obtain the power allocation policy that maximizes the mutual infor-
mation achieved over independent parallel Gaussian channels with arbitrary (and not
necessarily identical for each channel) input distributions. Capitalizing on the recently
unveiled fundamental relationship between mutual information and MMSE (minimum
mean-square error) [32], we formulate our power allocation policy using the readily com-
putable nonlinear MMSE of the inputs given their noisy outputs. Thus, the need for
explicit mutual information expressions is conveniently circumvented and the solution is
instilled with immediate operational significance.

In certain channels subject to intersymbol interference (e.g., magnetic recording), where
each input to the channel must belong to a given constellation, the joint distribution on the
set of transmitted sequences that maximizes mutual information must be found without
the benefit of an orthonormal transformation, which would distort the constellations seen
by the channel. While this problem remains open,3 our solution does apply to any other

1The term waterfilling (or, equivalently, waterpouring) appears to have been coined by Fano [12].
2The waterfilling interpretation has also permeated the signal processing literature over the years. Power

allocations that can be viewed as multidimensional waterfillings have been derived as solutions to a num-
ber of constrained optimization problems involving various uncoded performance criteria [13]–[20].

3See [33] for a review of the state-of-the-art on Monte Carlo methods to approximate the maximum
mutual information of antipodal-input linear dispersive channels.
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scenario where an orthonormal transformation can indeed be used to create parallel non-
interacting branches. For example, our solution gives the optimum power allocation in
multiantenna communication with channel coefficients known at the transmitter, where
a pragmatic power-preserving linear transformation coupling the antenna feeds to the
input constellations is the orthonormal transformation.

The organization of the paper is as follows. In Section II, the quantities to be used
throughout are introduced and the power allocation problem is formulated. The solution
is given in Section III in the form of an optimum power allocation policy. A key ingre-
dient of this policy is the nonlinear minimum mean-square error, to which Section IV is
devoted entirely. Section V presents graphical interpretations of the optimum policy lead-
ing to the notion of mercury/waterfilling. To gain insight, Sections VI and VII specialize the
optimum policy to the low- and high-power regimes, respectively. In turn, Section VIII
exemplifies the application of mercury/waterfilling to the problem of multitone commu-
nication using a canonical DSL test channel. Another specific application, power control
for fading channels, is explored in Section IX. Finally, the paper concludes in Section X
with the proofs of several results relegated to the appendices.

II Problem Formulation

Consider n parallel channels as depicted in Fig. 1. On the ith such channel, the input-
output relationship is

Yi = hiXi + Wi (1)

where the noise Wi is a zero-mean unit-variance complex Gaussian random variable in-
dependent of the noise on the other channels while the complex scalar hi is a deter-
ministic nonzero gain.4 Regardless of their marginal distributions, the complex inputs
{Xi}n

i=1 should be independent for the mutual information to be maximized [6]. Since
any nonzero mean contributes to the power but not to the mutual information, we only
consider zero-mean inputs. The power constraint is

1

n

n∑
i=1

E
[|Xi|2

] ≤ P. (2)

It is convenient to introduce normalized unit-power inputs {Si}n
i=1, whose distribution is

dictated by the modulation scheme, such that

Xi =
√

piP Si (3)
4Since the power allocated to any channel with zero gain would be strictly zero, such channels can be

removed from the problem.
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with the power allocation {pi}n
i=1 constrained by

1

n

n∑
i=1

pi ≤ 1. (4)

We can define, for each parallel channel,

γi = P |hi|2 (5)

which is a measure of the strength of that channel. Specifically, piγi is the signal-to-noise
ratio on the ith channel and thus {γi}n

i=1 represent the signal-to-noise ratios when the
power allocation is uniform (pi = 1 for i = 1, . . . , n).

Define the input-output mutual information on the ith channel as5

Ii(ρ) = I(Si;
√

ρSi + Wi). (6)

The problem that we pose is the determination of the power allocation {p?
i }n

i=1 that maxi-
mizes the mutual information with given input distributions while satisfying (4), i.e.,

[p?
1, . . . , p

?
n] = arg max

p1,...,pn
1
n

∑
i pi=1

1

n

n∑
i=1

Ii(piγi). (7)

In addition to the power allocation, the receiver is presumed cognizant of the magnitude
and phase of the channel gains, {hi}n

i=1. The transmitter, on the other hand, need only
know the magnitudes {|hi|}n

i=1.

III Optimum Power Allocation Policy

A key ingredient in our power allocation policy is the MMSE incurred in the estimation
of the inputs {Si}n

i=1. The MMSE estimate of Si is the conditional mean

Ŝi(yi, ρ) = E [Si|√ρSi + Wi = yi] (8)

which is, in general, a nonlinear function of the observation yi. (It becomes linear if Si is
Gaussian.) The corresponding mean-square error is then

MMSEi(ρ) = E

[∣∣∣Si − Ŝi(
√

ρSi + Wi, ρ)
∣∣∣
2
]

(9)

5Unless otherwise stated, throughout the paper the mutual information is expressed in nats/s/Hz and
the logarithms are in natural base.
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with expectation over both Si and Wi. Since Si has unit power, MMSEi(·) ∈ [0, 1].

Note that Ii(·) and MMSEi(·) depend on the index i only through the distribution of Si.
Such dependence can be dropped in the case that all the channels are fed with identical
distributions.

Regardless of the distribution of Si, the functions in (6) and (9) are related through the
following key formula (couched in our notation).

Theorem 1 [32] For any distribution of Si (not dependent on ρ),

d

dρ
Ii(ρ) = MMSEi(ρ). (10)

This relationship is the seed for the following optimum power allocation policy.

Theorem 2 The power allocation {p?
i }n

i=1 that solves (7) satisfies

p?
i = 0 γi ≤ η (11)

γi MMSEi(p
?
i γi) = η γi > η (12)

with η such that
1

n

n∑
i=1

p?
i = 1. (13)

Proof: See Appendix A.

Denoting the inverse of MMSEi(·) with respect to composition of functions by MMSE
−1
i (·),

with domain equal to [0, 1] and MMSE
−1
i (1) = 0, the power allocation {p?

i }n
i=1 can be recast

more explicitly as

p?
i =

1

γi

MMSE
−1
i

(
min

{
1,

η

γi

})
i = 1, . . . , n (14)

with η the unique solution to the nonlinear equation

n∑
i=1

γi>η

1

nγi

MMSE
−1
i

(
η

γi

)
= 1. (15)

In light of (14) and (15), the allocation of power can be viewed as a two-step process:

i) Solve for η in (15).
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ii) Use η to identify {p?
i }n

i=1 via (14).

In the special case that the inputs are Gaussian,

MMSEi(ρ) =
1

1 + ρ
(16)

and, correspondingly,

MMSE
−1
i (ζ) =

1

ζ
− 1 (17)

which reduce Theorem 2 to the waterfilling policy

pWF

i = 0 γi ≤ η (18)

pWF

i =
1

η
− 1

γi

γi > η (19)

with 1/η playing the role of the water level. Furthermore, in the Gaussian-input case, The-
orem 2 provides an alternative fixed-point form for the waterfilling policy that is worth
noting.

Corollary 1 With Gaussian inputs,

pWF

i = 0 γi ≤ η (20)

pWF

i =
1− MMSEi(p

WF
i γi)

1
n

∑n
`=1(1− MMSE`(pWF

` γ`))
γi > η (21)

Since the numerator in (21) indicates the signal power at the output of a (linear) MMSE
estimator of Si, the interpretation of Corollary 1 is straightforward: when the inputs are
Gaussian, the fraction pWF

i /n of transmit power allocated to each channel should equal
the fraction of total received signal power recovered from that channel. Corollary 1 has
the additional advantage of generalizing, unlike waterfilling in its traditional form, to the
case of parallel interacting channels, i.e., to nondiagonal multiple-input multiple-output
channels [34].

A basic attribute of waterfilling is that the larger the gain of a channel, the higher its
allocated power. As we shall see once we elaborate on the optimum power allocation
policy described by Theorem 2, this property is not upheld in general.

IV Interlude: Nonlinear MMSE Estimation

Given the chief role played by MMSE estimation in the formulation of the power alloca-
tion policy, a brief overview of nonlinear estimation for commonly used input distribu-
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tions is in order. In addition to a review, this section also presents some new results (The-
orems 3–4) which, although derived as stepping stones towards information-theoretic
derivations given later in the paper, may be of interest on their own in nonlinear estima-
tion theory. Since this section deals with a generic channel, the index i is dropped.

A Discrete Constellations

Consider an m-ary modulation defined by m discrete points, denoted by {s`}m
`=1, taken

with probabilities {q`}m
`=1 such that

∑m
`=1 q` = 1. This includes:

• m-PAM (pulse amplitude modulation), where s` ∈
{

(2`− 1−m)
√

3
m2−1

}
.

• m-PSK (phase shift keying), where s` ∈
{

ej 2π
m

`+φ
}

with φ an arbitrary phase.

• m-QAM (quadrature amplitude modulation), which for even m consists of two m/2-
PAM constellations in quadrature, each with half the power. (Nonsquare m-QAM con-
stellations not admitting such decomposition also exist, but they are less frequently
used.)

Each of these classes of constellations is exemplified in Fig. 2, which depicts 4-PAM, 8-PSK
and 16-QAM. Although in most practical implementations the signalling is equiprobable,
i.e., q` = 1/m for every `, this is (with the obvious exception of m-PSK) in general sub-
optimal in terms of mutual information [35, 36, 37]. The optimum mass probabilities
are usually a function of the input power. In the remainder, the formulation considers
arbitrary—but fixed—mass probabilities, {q`}m

`=1. Unless otherwise stated, the examples
and plots throughout the paper correspond to equiprobable distributions.

In the presence of Gaussian noise, (8) leads to

Ŝ(y, ρ) =

∑m
`=1 q` s` e−|y−

√
ρ s`|2

∑m
`=1 q` e−|y−

√
ρ s`|2 (22)

while

MMSE(ρ) =

∫ m∑

`=1

q`

∣∣∣s` − Ŝ(y, ρ)
∣∣∣
2 e−|y−

√
ρ s`|2

π
dy (23)

= 1− 1

π

∫ |∑m
`=1 q` s` e−|y−

√
ρ s`|2|2∑m

`=1 q` e−|y−
√

ρ s`|2 dy (24)

where the integrals are over the complex field. The expression for MMSE(·) in (24) can be
further elaborated for specific constellations:
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• BPSK (or equivalently 2-PAM), for which

MMSE
BPSK(ρ) = 1−

∫ ∞

−∞
tanh (2

√
ρ ξ)

e−(ξ−√ρ)2

√
π

dξ. (25)

• QPSK (or equivalently 4-QAM), which amounts to two BPSK constellations in quadra-
ture, each with half the QPSK power, resulting in

MMSE
QPSK(ρ) = MMSE

BPSK

(ρ

2

)
. (26)

• 4-PAM, for which

MMSE
4−PAM(ρ) = 1−

∫ ∞

−∞

(
e−8ρ/5 sinh(6

√
ρ
5
ξ) + sinh(2

√
ρ
5
ξ)

)2

e−8ρ/5 cosh(6
√

ρ
5
ξ) + cosh(2

√
ρ
5
ξ)

e−ξ2−ρ/5

10
√

π
dξ. (27)

• 16-QAM, for which decomposition in two 4-PAM constellations in quadrature yields

MMSE
16−QAM(ρ) = MMSE

4−PAM

(ρ

2

)
. (28)

With a modicum of algebra, integrals for other constellations can be similarly obtained
from (24).

Fig. 3 displays MMSE(·) for BPSK, QPSK, 8-PSK, 4-PAM and 16-QAM constellations along-
side the corresponding MMSE(·) for a Gaussian input. Note the evident classification that
occurs for small arguments: all those constellations that are proper complex, i.e., quadra-
ture symmetric (which can be composed as a mixture of rotated and/or scaled QPSK
distributions) behave as

MMSE(ρ) = 1− ρ +O(ρ2) (29)

which is the same behavior exhibited by a Gaussian input. This reflects the second-order
optimality of proper complex constellations in terms of low-power mutual information
[38], which by means of Theorem 1 maps onto first-order optimality in terms of minimum
mean-square error. More generally,

MMSE(ρ) = 1 + Ï(0) ρ +O(ρ2) (30)

where, for constellations that are not proper complex, Ï(0) < −1. (For BPSK and m-
PAM, specifically, Ï(0) = −2.) The quantity Ï(0) is thus the key low-power performance
measure of any constellation as already evidenced in [38], where it was shown that the
bandwidth required to sustain a given rate with a given (low) power is proportional to
−Ï(0).
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For large ρ, in turn, MMSEi(ρ) with a Gaussian input expands as

MMSE(ρ) =
1

ρ
+O(1/ρ2) (31)

which determines the corresponding high-power behavior. For discrete constellations,
the key feature in such regime is the minimum distance between any two of its points,
i.e.,

d = min
k,`
k 6=`

|sk − s`| (32)

which is listed in Table 1 for m-PAM, m-PSK and m-QAM.

Theorem 3 For BPSK and QPSK, MMSE(ρ) admits the series expansion

MMSE(ρ) =
e−

d2

4
ρ

d
√

ρ

(
√

π +
∞∑

`=1

b`

(d2ρ)`

)
(33)

with d = 2 for BPSK and d =
√

2 for QPSK, and with

b` = (−1)` Z(2` + 1, 1/4)−Z(2` + 1, 3/4)√
π 23`

∏̀
q=1

(2q − 1) (34)

where Z(·, ·) is the generalized Riemann Zeta function

Z(q, ξ) =
∞∑

k=0

(k + ξ)−q. (35)

Proof: See Appendix B.

Theorem 3 is illustrated in Fig. 4, which matches the high-power expansion in (33), trun-
cated at ` = 1, against the exact MMSE(·) for QPSK. Also shown is the corresponding low-
power expansion in (29).

From Theorem 3, expansions for the high-power mutual information with BPSK and
QPSK constellations can be derived through the fundamental relationship in Theorem
1. For instance, if (33) is truncated as

MMSE(ρ) ≈ e−
d2

4
ρ

d
√

ρ/π
(36)
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Table 1: Minimum distance for unit-variance constellations.

Constellation d

m-PAM 2
√

3
m2−1

m-PSK 2 sin
(

π
m

)

m-QAM
√

6
m−1

it follows via integration and application of (81) in Appendix B that, for BPSK and QPSK
in the high-power regime,

I(ρ) ≈ log m− e−
d2

4
ρ

d
2

√
ρ/π

. (37)

Beyond BPSK and QPSK, the exponential decay of MMSE(·) in Theorem 3 can be seen to
extend to any m-ary constellation.

Theorem 4 For large ρ, the function MMSE(ρ) corresponding to an m-ary constellation with min-
imum distance d behaves as

MMSE(ρ) = K(ρ) e−
d2

4
ρ (38)

with
K1(ρ) < K(ρ) < K2 (39)

where K1(ρ) = O(1/
√

ρ) and K2 is a constant.

Proof: See Appendix C.

B Continuous Distributions

It is sometimes analytically convenient to approximate discrete constellations using con-
tinuous distributions over a suitable region on the complex plane (see, e.g., [39, 40, 41]).
For such continuous distributions, asymptotic notions such as the shaping gain [39] can
then be meaningfully defined. Furthermore, a continuous distribution can be interpreted
as the limit of a dense m-ary constellation as m →∞ (and, correspondingly, d → 0).

For equiprobable m-PSK, m-PAM and square m-QAM, the appropriate unit-variance con-
tinuous approximations are:

• ∞-PSK: S = ejφ with φ uniform on [0, 2π].

• ∞-PAM: Uniform distribution over the segment [−√3,
√

3] on the real axis.
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• ∞-QAM: Uniform distribution over the square [−
√

3/2,
√

3/2]×[−
√

3/2,
√

3/2] on the
complex plane.

Note that, for∞-PAM and∞-QAM, uniform distributions are not optimal for the respec-
tive supports.

For small ρ, MMSE(ρ) corresponding to ∞-PSK and ∞-QAM distributions behaves as (29).
In the case of ∞-PAM, it behaves as in BPSK.

For large ρ, in turn, the behavior of MMSE(ρ) is characterized by the following results.

Theorem 5 For large ρ, the function MMSE(ρ) corresponding to a ∞-PSK distribution behaves as

MMSE(ρ) =
1

2ρ
+O(1/ρ2) (40)

Proof: See Appendix D.

Theorem 6 For large ρ, the function MMSE(ρ) corresponding to a uniform ∞-PAM distribution
behaves as

MMSE(ρ) =
1

2ρ
+O(1/ρ3/2) (41)

Proof: See Appendix E.

Since a uniform ∞-QAM can be expressed as the cartesian product of two uniform ∞-
PAM distributions in quadrature, each with half the power, the function MMSE(·) of the
former follows trivially from that of the latter.

Corollary 2 For large ρ, the function MMSE(ρ) corresponding to a uniform ∞-QAM distribution
behaves as

MMSE(ρ) =
1

ρ
+O(1/ρ3/2) (42)

Note that, for all the above continuous distributions, the high-power MMSE(ρ) decays re-
ciprocally in ρ (like in the Gaussian case) rather than exponentially on ρ as in the discrete
m-ary case. As will be shown in Section VII, this has direct implications in terms of the
optimum power allocation.
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V Graphical Interpretations

The waterfilling policy owes much of its popularity to its very intuitive graphical in-
terpretation. In the same spirit, this section provides graphical interpretations that cast
valuable insight on the more general policy spelled out by Theorem 2.

A MMSE-Power Charts

A direct depiction of Theorem 2 can be obtained by charting the functions γi MMSEi(piγi),
for i = 1, . . . , n, as function of pi on the interval [0, n] (cf. Figs. 5–7). Every power alloca-
tion that satisfies (11) and (12) corresponds to drawing a horizontal line whose intercep-
tion with each of the functions directly gives the power allocated to the corresponding
channel. For the allocation to be optimal, this line must be at an ordinate η such that
the average of the allocated powers equals 1 as required by (13). If the intercepting line
were higher, some power would be left unused; if lower, the power constraint would be
exceeded.

Example 1 Let n = 2 with γ1 = 6.3 and γ2 = 2 (respectively 8 dB and 3 dB) and with QPSK
inputs on both channels.As shown in Fig. 5, η = 0.32 yields p?

1 = 0.7 and p?
2 = 1.3.

Example 2 Let n = 2 with γ1 = 1 and γ2 = 0.1 (respectively 0 dB and −10 dB) and with QPSK
inputs on both channels. As shown in Fig. 6, η = 0.23 yields p?

1 = 2 and p?
2 = 0.

Example 3 Let n = 3 with γ1 = γ2 = γ3 = 2 (i.e., 3 dB on each channel) but with distinct
inputs, respectively BPSK, QPSK and Gaussian. As shown in the main chart of Fig. 7, η = 0.23
yields p?

1 = 0.47, p?
2 = 0.96 and p?

3 = 1.57. Despite their equal strengths, channels with richer
input distributions seize a larger fraction of the power.

Note that, as long as the input distributions remain unchanged, the charts simply scale
if the average input power varies. Specifically, if the set {γi}n

i=1 is multiplied by a factor
greater than one, the new chart is essentially found by zooming in on the original one
with a rescaled horizontal axis that continues to span [0, n]. (The scaling of the vertical
axis affects the value of η but is inconsequential in terms of {p?

i }n
i=1). If each γi is varied

by a distinct factor, then constructing the new chart requires scaling the various curves
differently.

Example 4 Consider the same scenario of Example 3 except with γ1 = γ2 = γ3 = 1/3, a sixth-
fold decrease in average power. As shown in the inset of Fig. 7, the chart coincides (except for a
vertical scaling) with the leftmost sixth of the chart for Example 3.
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B Mercury/waterfilling

While the charts used in the foregoing examples are quite useful, in this subsection we
put forth an alternative interpretation that more directly generalizes the waterfilling pro-
cess and allows retaining some of its intuition. To that end, it is convenient to relate the
functions MMSE

−1
i (·) to their special case, given in (17), for a Gaussian input distribution.

Let us define, for any arbitrary input distribution,

Gi(ζ) =

{
1/ζ − MMSE

−1
i (ζ) ζ ∈ [0, 1]

1 ζ > 1
(43)

such that, for a Gaussian input, Gi(ζ) = 1 for all ζ . It can be verified that Gi(·) is a
monotonically decreasing function.

The function Gi(·) enables the following interpretation of our power allocation policy,
which we refer to as mercury/waterfilling (cf. Fig. 8).

(a) For each of the n channels, set up a unit-base vessel solid up to a height 1/γi.

(b) Choose η. Pour mercury onto each of the vessels until its height (including the solid)
reaches Gi(η/γi)/γi.

(c) Waterfill, keeping identical upper level of water in all vessels,6 with a volume of water
equal to n (or, equivalently, until the water level reaches 1/η).

(d) The water height over the mercury on the ith vessel gives p?
i .

The mercury/waterfilling is a parametric procedure, leading to optimal mutual informa-
tion and average power that are continuous monotonically decreasing functions of η. For
a given value of η, the mutual information is maximized using exactly all of the available
power P for which (15) is satisfied and thus the water heights give the corresponding
{p?

i }n
i=1.

The mercury pouring stage regulates the water admitted by each vessel thus tailoring the
process to arbitrary input distributions. Pouring mercury onto a vessel amounts to raising
the noise level in that channel by an amount that depends on the input distribution. No
mercury is poured onto vessels whose input is Gaussian or for which γi < η. On the ith
channel, the increase in noise level due to the mercury equals Gi(η/γi)|dB. Note that this
increase depends—in general—not only on the strength and input distribution on that
channel but, through η, on the strengths and input distributions of the other channels as
well.

6Note that the outlined mercury/waterfilling procedure requires that the vessels be non-porous with
respect to mercury and porous with respect to water. Fine glass grit is one such material.
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In comparison to the existing heuristic methods mentioned in Section I, the mercury can
be seen as playing the role of the gap with respect to an ideal Gaussian signal, but with
the advantage that it is exact for any input power and constellations (as opposed to only
approximate for a class of constellations).

In a real-time implementation, MMSE
−1
i (·) can be simply tabulated for every constellation

of interest and hence the problem essentially boils down to solving (15). This can be
accomplished through established iterative methods (see Appendix F for details).

VI Low-Power Regime

The behavior of the waterfilling policy in the region of low power is easily inferred from
(29). If the largest and second-largest entries in the set {γi}n

i=1 are dissimilar, it is asymp-
totically optimal (as P → 0) to allocate power only to the strongest channel. If max{γi}
is plural, then the power should be equally divided among the corresponding channels
[38].

It is known from [38, Thm 14] that the first two derivatives of the mutual information
at zero power achieved by any proper complex distribution equal those achieved by a
Gaussian input with the same power. Thus, the first two derivatives of the mutual infor-
mation (and, consequently, the minimum energy per bit and the wideband slope) with
waterfilling are identical to those with the optimum mercury/waterfilling policy as long
as all of the inputs conform to proper complex distributions. This holds for both discrete
and continuous input distributions.

For inputs that are not proper complex, mercury/waterfilling and waterfilling are no
longer equivalent for P → 0. Specializing G(·) via (30), mercury/waterfilling behaves
as follows in the low-power regime:

• Allocating power only to the strongest channel continues to be asymptotically optimal.

• If max{γi} is plural, then the power should be divided among the corresponding chan-
nels in inverse proportion to the second derivative at zero of the mutual information
for the respective input distributions, i.e.,

p?
i =

α

Ïi(0)
(44)

with the proportionality constant

α =
1

1
n

∑n
`=1 1/Ï`(0)

(45)
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Gross missallocations of power may result if waterfilling is used, without pouring mer-
cury, with inputs that are not proper complex.

Example 5 Consider n = 2 channels with |h1|2 = |h2|2 = |h|2, fed respectively with BPSK and
QPSK inputs. From (44), p?

1 = 2/3 and p?
2 = 4/3 resulting in

I∗1 + I∗2
2

= |h|2P − 10

9
|h|4P 2 +O(P 3). (46)

In contrast, waterfilling yields pWF
1 = pWF

2 = 1 and

IWF
1 + IWF

2

2
= |h|2P − 3

4
|h|4P 2 +O(P 3). (47)

The bandwidth BWF required to achieve a certain rate (in bits/s) with a certain average power
using waterfilling, relative to the bandwidth B∗ required with mercury/waterfilling, approaches
(as P → 0)

BWF

B∗ =
Ï∗(0)

ÏWF(0)
= 1 +

13

27
(48)

indicating that, in this example, waterfilling requires about 48% excess bandwidth.

VII High-Power Regime

From (31), the optimum power allocation with Gaussian inputs for P →∞ behaves as

pWF

i = 1 +O(1/P ). (49)

Hence the well-known feature that, to zero-order, waterfilling is tantamount to a uniform
allocation in the high-power regime. From Theorems 5–6 and Corollary 2, the same be-
havior can be seen to extend to continuous ∞-PSK, ∞-PAM and ∞-QAM distributions.
For discrete m-ary constellations, however, the limiting allocation at high power is dras-
tically different.

Theorem 7 If the inputs conform to discrete constellations with minimum distances {di}n
i=1, the

power allocation behaves (for P →∞) as

p?
i =

α

|hi|2d2
i

+O(
log P

P
) (50)

with
1

α
=

1

n

n∑

`=1

1

|h`|2d2
`

. (51)

Proof: See Appendix G.
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Theorem 7 prompts two immediate observations concerning discrete constellations in the
high-power regime:

• Given equal constellations: the stronger a channel, the less power it is allocated. This
is in stark contrast with waterfilling.

• Given equal channel strengths: the richer the constellation, the more the allocated
power.

Corollary 3 If all the inputs conform to the same discrete constellation, power equalization is
asymptotically optimal in the high-power regime, i.e.,

p?
i =

α

|hi|2 +O( log P
P

) (52)

with
1

α
=

1

n

n∑

`=1

1

|h`|2 . (53)

In addition to the limiting power allocation given by Theorem 7, for BPSK and/or QPSK
inputs we can also use the high-power expansions of MMSE(·) in Theorem 3 in order to
approximate the mercury/waterfilling power allocation to any chosen order.

Example 6 Let n = 2 with |h2|2 = 2|h1|2 and with QPSK inputs on both channels. Plugging
(36) into Theorem 2, we can approximate p?

1 and p?
2 within the high-power regime by solving

|hi|e
−p?

i |hi|2P

√
p?

i

= η i = 1, 2 (54)

subject to p?
1 + p?

2 = 2. Shown in Fig. 9 are the exact p?
1 and p?

2 obtained from mercury/waterfilling
as well as the solutions to (54). For P → ∞, the power allocation converges to the power-
equalizing solution p?

1 = 4/3 and p?
2 = 2/3.

Although, because of the flatness of the mutual information function for any m-ary con-
stellation in the high-power regime, the loss in mutual information with suboptimum
power allocations is small, the increase in power required for a certain mutual informa-
tion can be sizeable.

Example 7 Consider n channels fed by BPSK and/or QPSK inputs and denote by P eq and P unif

the powers required to sustain a mutual information I with the power allocation in (50) and with
a uniform power allocation, respectively. The ratio P eq/P unif converges (as P → ∞ and thus
I → 1

n

∑n
i=1 log mi) to

P eq

P unif
=

min{|hi|2d2
i }

n

n∑

`=1

1

|h`|2d2
`

(55)
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which can represent as much as an n-fold power penalty.

Clearly, the cardinality of the constellation critically determines the point where the high-
power behavior comes into play. The smaller the constellation, the less power required to
bring it about.

VIII Application: Multitone for DSL

The qualitative importance of the mercury/waterfilling policy rests on its optimality when
the mutual information is the driving performance measure. In order to calibrate its quan-
titative relevance, it is interesting to assess the shortfall in mutual information when con-
ventional waterfilling is applied in conjunction with constellations of common usage.

The simplest of comparisons, with n = 2 channels fed with parallel BPSK and parallel
QPSK inputs, are presented in Figs. 10 and 11, respectively. Specifically, the figures de-
pict the excess power required by waterfilling to achieve the same mutual information as
mercury/waterfilling as a function of the channel strengths {γ1, γ2}. For strengths rang-
ing from −4 dB to 8 dB, the excess power is over 5 dB with BPSK inputs and over 3 dB
with QPSK inputs. The excess power required by waterfilling grows without bound as
the channel strengths become more imbalanced.

More elaborate assessments require postulating specific channel profiles. To that end, in
the remainder of this section we shall use a typical wireline channel that complies with
one of the canonical loops employed for DSL testing [42]. Its frequency response, sam-
pled into n = 256 orthogonal tones and scaled by their respective noise variances to give
{|hi|2}n

i=1, is depicted in Fig. 12. The total bandwidth spanned is slight over 1 MHz. The
channel response accounts for the presence of far-end crosstalkers, modelled as additional
Gaussian noise. We let the input signals conform to square m-QAM constellations, possi-
bly distinct on each tone. The results are parameterized by some maximum constellation
cardinality that does not exceed 256-QAM. This limit will help illustrate the role of the
maximum constellation cardinality on the suboptimality of conventional waterfilling.

A Uniform Loading

For maximum mutual information, the richest available constellation should be loaded
on each of the tones. With such uniform loading, a first evaluation of the relative perfor-
mances of mercury/waterfilling and waterfilling can be conducted.

For a wide range of power constraints P |dB, the excess power required for waterfilling
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Table 2: With m-QAM uniform loading, excess power required by waterfilling (respec-
tively on/off) at the mutual informations 1

2
log m, 3

4
log m and 9

10
log m.

m 1
n

∑
i Ii = 1

2
log m 1

n

∑
i Ii = 3

4
log m 1

n

∑
i Ii = 9

10
log m

16 2.6 dB (resp. 2 dB) 4.4 dB (resp. 3.7 dB) 5 dB (resp. 4.1 dB)
64 1.5 dB (resp. 1.3 dB) 2.8 dB (resp. 2.1 dB) 3.6 dB (resp. 3.5 dB)
256 0.8 dB (resp. 0.6 dB) 1.8 dB (resp. 1.6 dB) 3.2 dB (resp. 3.2 dB)

to meet the mutual information achieved by mercury/waterfilling is depicted in Fig. 13,
parameterized by the constellation. We note that:

• The smaller the constellation, the higher the excess power at all values of P . This
reflects the fact that smaller m-QAM constellations are a further departure from the
Gaussian signal idealization to which conventional waterfilling is tailored.

• Regardless of the constellation, the excess power vanishes for P → 0.

• For large P , as 1
n

∑
i Ii → log m, excess powers of several dB are observed. The excess

powers at the representative operating points where the mutual information equals
1/2, 3/4 and 9/10 its maximum value are summarized in Table 2.

For the range of P |dB where the power offsets are substantial, the mutual informations
achieved by both mercury/waterfilling and waterfilling are displayed in Fig. 14. The
horizontal displacement between the curves corresponding to each constellation equals
the respective excess power.

In a similar fashion, we can gauge the excess power incurred over mercury/waterfilling
by a common variant of waterfilling: an on/off policy activating the same subset of tones
but with a uniform power allocation thereon, i.e. [25, 43, 44]

pOn/Off

i = 0 γi < η (56)
pOn/Off

i = p̄ γi ≥ η (57)

where η is as in the waterfilling case and p̄ is a suitable constant. The excess powers
incurred by the on/off allocation, also summarized for a uniform constellation loading in
Table 2, equal their waterfilling counterparts for P → 0 and P → ∞ but are somewhat
reduced at intermediate points.

B Levin-Campello Loading

Although the mutual information is strictly maximized by loading the richest available
constellation onto every tone, there is little loss in using constellations of smaller cardi-
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Table 3: With Levin-Campello loading, excess power required by waterfilling (respec-
tively on/off) at the mutual informations 1

2
log m, 3

4
log m and 9

10
log m where m is the

cardinality of the richest available constellation.
m 1

n

∑
i Ii = 1

2
log m 1

n

∑
i Ii = 3

4
log m 1

n

∑
i Ii = 9

10
log m

16 2.9 dB (resp. 2.6 dB) 4.5 dB (resp. 4 dB) 4.8 dB (resp. 4.6 dB)
64 1.5 dB (resp. 1.3 dB) 3 dB (resp. 2.7 dB) 4 dB (resp. 4 dB)
256 1 dB (resp. 0.9 dB) 2.1 dB (resp. 2.1 dB) 3.5 dB (resp. 3.5 dB)

nality on those tones with reduced γi. Thus, by sensibly loading the tones, the complexity
(in the sense of the constellation cardinalities being used) can be eased considerably in ex-
change for only a slight penalty in mutual information. For this purpose, we invoke the
Levin-Campello algorithm (cf. Appendix H) that is known to optimally solve the problem
of bit loading with discrete constellations at a target error probability. The comparisons
with waterfilling and with on/off conducted in the previous section are herein repeated
but with the constellations being loaded via Levin-Campello. An example of this load-
ing, for P |dB = −15 dB (corresponding to a mutual information of 4.1 bits/s/Hz when
mercury/waterfilling is used), can be found in Fig. 15. Also shown in the same figure are
the corresponding mercury/waterfilling and waterfilling power allocations, from which
we remark the following:

• In the segment of tones exhibiting high signal-to-noise ratios (i.e, those with low in-
dices), the power allocations evidence their markedly different behaviors. Mercury/waterfilling
essentially inverts the channel response in Fig. 12 while waterfilling is close to being
uniform.

• Mercury/waterfilling recognizes the specificity of each constellation, as evidenced by
the sharp disparities in the powers assigned to tones with similar γi but different con-
stellations. In contrast, waterfilling responds solely to γi.

For a wide range of power constraints, each loaded via Levin-Campello, the excess power
required by waterfilling is depicted in Fig. 16, parameterized by the set of constellations
available for loading. By and large, the excess powers are analogous to those encountered
with a uniform loading.7 The excess powers are summed up in Table 3, again for the
representative operating points where the mutual information equals 1/2, 3/4 and 9/10
its maximum value. Also listed in Table 3 are the excess powers with on/off, which are
slightly reduced.

7The nonmonotonicities in Fig. 16, as well as in Fig. 13, are illustrative of the behavior with large dynamic
range variations in the channel frequency response. They are due to the different power constraints that
trigger the use of low-power channels in waterfilling and mercury/waterfilling.
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Notice that, although the loading obtained via Levin-Campello is optimum given a spe-
cific coding scheme and a target error probability, it does not in general maximize the
mutual information when the cardinalities of the constellations are somehow constrained.
One could envision, for instance, constraining the sum of the cardinalities on the n tones
or the fraction of tones on which a certain constellation is used. Mercury/waterfilling
would be a building block in solving the optimum loading under any such constraint.

IX Application: Power Control for Fading Channels

Another application of the mercury/waterfilling optimization is that of power control for
a fading channel known by the transmitter, which can be viewed as an infinite sequence of
parallel channels each encompassing either a symbol or a block of symbols whose fading
coefficients are (approximately) equal.

A Ergodic Channel with Flat Fading

Let us first consider an ergodic channel, where the average power constraint applies over
a time interval long enough for the fading distribution to be revealed. For a Gaussian
input, the corresponding mutual information is maximized by a temporal waterfilling
with a water level that depends only on the average power and the fading distribution
[5]. For uncoded transmission with m-ary constellations, waterfilling can be used in com-
bination with power gaps to approximate the power control policy that maximizes the
throughput at some target error probability [45]. We next formalize the application of
mercury/waterfilling to obtain a power control policy that maximizes the mutual infor-
mation with any arbitrary input distribution.

Corollary 4 Consider the fading channel

Yi =
√

γi p(γi) Si + Wi (58)

where {γi} is a stationary and ergodic random process, the input has an arbitrary (but fixed) unit-
variance distribution, and the dependence of p(γ) on γ emphasizes the ability of the transmitter
to control the power based on the fading state with the constraint that E[p(γ)] = 1. The ergodic
mutual information is maximized by the mercury/waterfilling power control policy

p?(γ) =
1

γ
MMSE

−1

(
min

{
1,

η

γ

})
(59)

with η satisfying ∫ ∞

η

MMSE−1 (η/ξ)

ξ
fγ(ξ) dξ = 1 (60)
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where fγ(·) denotes the probability density function of the fading.

For any fading distribution of interest, the value of η that satisfies (60) can be precomputed
and tabulated for different power constraints, after which the actual power control would
simply entail the mapping in (59) via the function MMSE−1(·) for the constellation in use.

In the case that the input is Gaussian, not only does Corollary 4 default to a temporal
waterfilling, but under some fading laws it is further possible to obtain a more explicit
fixed-point equation for η. Specifically, if the fading is Rayleigh-distributed with E[γ] =
P , then

fγ(ξ) =
e−γ/P

P
(61)

and

pWF(γ) = 0 γ ≤ η (62)

pWF(γ) =
1

η
− 1

γ
γ > η (63)

with η solution to [46]
e−η/P

η
− E1(η/P )

P
= 1 (64)

where E1(ζ) =
∫∞
1

t−1e−ζtdt is an exponential integral.

Example 8 Let the channel be Rayleigh-faded. The excess power required, without power control,
to achieve the same mutual information attained with temporal mercury/waterfilling is depicted in
Fig. 17 for several input distributions (QPSK, 16-QAM and Gaussian).

For P → 0, the excess power grows without bound for all of the distributions. This is a
direct consequence of the well-known fact that the minimum energy per bit, which with-
out power control is −1.59 dB over the noise floor at the receiver, vanishes with temporal
waterfilling [47]. Also well understood is that, for P →∞, the excess power offset wanes
when the input is Gaussian. With discrete constellations, in contrast, the excess power
rises rapidly and without bound once the mutual information nears its maximum value.
For QPSK and 16-QAM specifically, the absence of power control is least suboptimal at
P |dB ≈ 4 and P |dB ≈ 10, respectively.

Example 9 Let the fading law be log-normal with a standard deviation σ|dB = 10, for which

fγ(ξ) =
e|dB√

2π σ|dB ξ
e
− (ξ|dB−P |dB)2

2 σ|2
dB . (65)

The excess power required, without power control, to meet the same mutual information achieved
with temporal mercury/waterfilling is depicted in Fig. 17 for several input distributions (QPSK,
16-QAM and Gaussian).

22



Although the limiting behaviors are similar, the excess powers are magnified by the heavy
tail of the log-normal fading law. Also, the operating points where not controlling the
power is least suboptimal increase significantly.

B Non-Ergodic Block-Fading Channel with Flat Fading

If the time interval over which the power can be averaged is limited, such that the channel
variations thereon do not fully reveal the fading distribution, the ergodic framework is
no longer valid. A useful set-up in this case is that of a block-fading channel, where the
power can be averaged over n blocks each having a fading coefficient that holds constant
for the duration of the block and changes independently between blocks [48, 49]. In the
limit of a large number of symbols per block, which renders the mutual information of
each block operationally significant, the problem of allocating power across the n blocks
to minimize the outage probability can be stated as

[p?
1, . . . , p

?
n] = arg min

p1,...,pn
1
n

∑
i pi≤1

Pr

{
1

n

n∑
i=1

Ii(piγi) ≤ R

}
(66)

where R is a target spectral efficiency and {γi}n
i=1 are known to the transmitter. Note that,

in this formulation, not only are the input distributions allowed to be arbitrary but also
possibly different on each of the n blocks.

It can be shown that the solution to (66) has the form of separate mercury/waterfilling
procedures on each of the n blocks. When the input is Gaussian on each of the blocks, the
solution naturally reverts to individual waterfillings on each of the n blocks [49].

X Conclusions

The derivation and formulation of the maximal mutual information power allocation pol-
icy for independent Gaussian-noise channels driven by arbitrary (not necessarily identi-
cal) input constellations hinge on the nonlinear minimum mean-square error of estimat-
ing the point in the constellation given a noisy version. Thus, the solution in this paper
provides another application for the nexus between mutual information and MMSE of
Gaussian channels found in [32].

We have seen that mercury/waterfilling, a geometric representation of the optimum pol-
icy that generalizes the classical solution for ideal Gaussian inputs, leads to valuable in-
sights.
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As long as the input constellations are proper complex (i.e., quadrature symmetric), they
are almost as good as Gaussian inputs in the low-power region and thus waterfilling is
almost optimum for proper complex inputs in that region.

In contrast, in the moderate-to-high power regions, waterfilling and mercury/waterfilling
can lead to markedly different policies. The principle that stronger channels should be al-
located more power, an ingrained belief stemming from the waterfilling policy, may not
hold with constellations of practical interest. In fact, in some circumstances the mer-
cury/waterfilling policy mandates exactly the opposite. Since the mutual information
of an m-ary constellation cannot exceed log m, there is little incentive to allocate further
power to a channel once it nears such point. Rather, the additional power is better al-
located to a weaker channel still far from saturation. For identical constellations in the
high-power regime, we have found that stronger channels are always allocated strictly
less transmit power so as to ensure that the received powers on the various channels are
equalized.

In order to quantify the significance of using mercury/waterfilling rather than suboptimal
policies (such as conventional waterfilling or an on/off variant thereof), we have analyzed
the setting of multitone communication over a canonical DSL channel. The suboptimality
of those power allocation policies when applied with m-QAM constellations was seen to
depend critically on the interplay of:

• The dynamic range spanned by {γi}n
i=1. For given constellations and operating point,

a larger dynamic range is likely to heighten the deficit.

• The cardinality of the constellations. On a given channel, richer constellations stretch
the range of operating points on which the suboptimal policies are effective. Interest-
ingly, the exact loading appears to have minimal impact as long as it is sensible, i.e., as
long as the richest available constellation is loaded onto all those tones that are strong.

• The power constraint. Suboptimal policies are very effective if the power constraint is
sufficiently low. Conversely, they tend to incur substantial excess powers at operating
points that are sufficiently close to the maximum achievable mutual information. Note
that, while DSL systems are designed for a wide range of power levels, the maximum
cardinality of the constellations is limited by implementation considerations. Thus,
high-power channels (corresponding to subscribers near the central office) may benefit
from the mercury/waterfilling power allocation by maintaining the same rates with
lower power expenditure (and thus, crosstalk) than that required by the conventional
waterfilling.

A similar quantitative evaluation for multitone communication on a frequency-selective
wireless channel can be found in [50].
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Yet another distinct application, power control for fading channels, has also been treated
in detail. The advantage of using mercury/waterfilling is found to depend on the inter-
play between the fading distribution, the choice of constellation and the power constraint.

Appendices

A Proof of Theorem 2

Define

s = [S1 . . . Sn]T

y = [Y1 . . . Yn]T

G = diag{√γ1, . . . ,
√

γn}
P = diag{√p1, . . . ,

√
pn}

such that (1) can be written in the equivalent vector form

y = GPs + w (67)

with Tr{P}/n ≤ 1 and E[ss†] = I. The vector w has complex Gaussian entries and covari-
ance E

[
ww†] = I. The input-output mutual information of the vector channel in (67) is

1
n
I(P) with

I(P) =
n∑

i=1

Ii(piγi) (68)

Because of its monotonicity with Tr{P}/n, the mutual information is maximized when
the power constraint is met with strict equality. In addition, the function 1

n
I(·) is strictly

concave over the set of feasible power allocations since it represents the average of the
mutual information functions on the n scalar parallel channels, each of which is strictly8

concave. The strict concavity of the mutual information of a scalar channel with respect
to its input power follows from the strict monotonicity of the corresponding MMSE(·) in
combination with Theorem 1. Consequently, there is a unique P? = diag{p?

1, . . . , p
?
n} such

that I(P?) > I(P) for every P 6= P?. At P?, the derivative of I(·) in the direction from P?

to any other power allocation P must be negative, i.e.,

d

dµ
I (µP + (1− µ)P?)|µ=0 < 0 (69)

8Recall that |hi| > 0 for every i and, therefore, γi > 0 strictly.
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which can be rewritten as [51, p. 213]

d

dµ
I (P? + µ(P−P?))|µ=0 =

n∑

`=1

(p` − p?
`)

∂I(P)

∂p`

|p`=p?
`

(70)

≤ 0 (71)

Since the right-hand side of (70) is affine on P, it suffices to impose (71) on the n extreme
points of the set. The ith such point is defined by pi = n and p` = 0, ` 6= i. The line
connecting that point with P? can be extended beyond P? if and only if p?

i > 0, in which
case the corresponding directional derivative at P? vanishes and (71) becomes a strict
equality. Conversely, if p?

i = 0 then (71) remains an inequality. Altogether,

∂I(P)

∂pi

|pi=p?
i
≤ 1

n

n∑

`=1

p?
`

∂I(P)

∂p`

|p`=p?
`

(72)

with strict equality if p?
i > 0. Note that, in Theorem 1, identity (10) holds even if the roles

of pi and γi are interchanged. Thus,

∂I(P)

∂pi

= γi MMSEi(piγi) (73)

where, in (73), we have used (3). Plugging (73) into (72),

γi ≤ η p?
i = 0 (74)

γi MMSEi(p
?
i γi) = η p?

i > 0 (75)

where we have used MMSEi(0) = 1 and introduced

η =
1

n

n∑

`=1

p?
` γ` MMSE`(p

?
`γ`). (76)

The optimum power allocation is now uniquely identified through (74)–(76), which are
equivalent to (11)–(13) or, alternatively, to (14) and (15).

B Proof of Theorem 3

From (25) and (26) we find that, for both BPSK and QPSK,

MMSE(ρ) = 1−
∫ ∞

−∞
tanh (d

√
ρ ξ)

e−(ξ− d
2

√
ρ)2

√
π

dξ (77)
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with d equal to the corresponding minimum distance, i.e., 2 and
√

2 respectively.

Using the asymptotic (ξ →∞) expansion

tanh(ξ) = sgn(ξ)

(
1 + 2

∞∑

`=1

(−1)`e−2`|ξ|
)

(78)

we obtain, for large ρ,

MMSE(ρ) = 2 Q
(
d
√

ρ/2
)
− 2

∞∑

`=1

(−1)` e−`d2ρ Q
(
(2`−1)d

√
ρ/2

)
−e`d2ρ Q

(
(2`+1)d

√
ρ/2

)

e−`2d2ρ
(79)

where
Q(ξ) =

1√
2π

∫ ∞

ξ

e−t2/2dt (80)

which admits the expansion [52, p. 100]

Q(ξ) =
e−ξ2/2

√
2π ξ

(
1 +

∞∑

`=1

(−1)`

∏`
q=1(2q − 1)

ξ2`

)
. (81)

Combining (79) and (81) with some algebra, the claimed expression is found.

C Proof of Theorem 4

Applying the law of total probability to (9),

MMSE(ρ) =
m∑

`=1

q` E

[∣∣∣s` − Ŝ(Y, ρ)
∣∣∣
2

|S = s`

]
. (82)

The first step in the proof is the derivation of a lower bound for MMSE(ρ) in the large-ρ
regime. To that end, we can postulate the existence of a genie that informs the estimator
that it should only consider the points s` and su equiprobably, where the former is the
actual transmitted point and the latter is its closest neighbor situated at a distance d`.
(If there is a multiplicity of closest neighbors, the genie selects any of them as su.) The
genie-aided estimate is thus

Ŝg(y, ρ) =
s` e−|y−

√
ρs`|2 + su e−|y−

√
ρsu|2

e−|y−
√

ρs`|2 + e−|y−
√

ρsu|2 (83)
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whose mean-square error is lower than that of the actual estimator and hence

MMSE(ρ) ≥
m∑

`=1

q` E

[∣∣∣s` − Ŝg(Y, ρ)
∣∣∣
2

|Y =
√

ρs` + W

]
(84)

=
m∑

`=1

q`
d2

`

4
MMSE

BPSK

(
d2

`

4
ρ

)
(85)

where, by introducing MMSEBPSK(·) as defined in (25), we identify the `th term in the sum-
mation in (84) as the MMSE for a scaled BPSK constellation between two points separated
by a distance d`. Using d = min{d`} and applying Theorem 3 to MMSEBPSK(·), we obtain for
large ρ the lower bound

MMSE(ρ) ≥ K1(ρ) e−
d2

4
ρ (86)

with
K1(ρ) = O(1/

√
ρ). (87)

Next, we derive an upper bound, to which end we postulate a suboptimum estimator
that outputs the constellation point closest in Euclidean distance to the noisy observation
at the receiver, i.e.,

Ŝsub(y, ρ) = arg min
sk

|y −√ρ sk|. (88)

We can expand (82) into

MMSE(ρ) =
m∑

`=1

q`

(
E

[∣∣∣s` − Ŝ(Y, ρ)
∣∣∣
2

|S = s` , Y ∈ V`

]
Pr {Y ∈ V` |S = s`}

+ E

[∣∣∣s` − Ŝ(Y, ρ)
∣∣∣
2

|S = s` , Y /∈ V`

]
Pr {Y /∈ V` |S = s`}

)
(89)

where V` denotes the Voronoi region of the `th constellation point. Applying the subopti-
mum estimator in (88),

MMSE(ρ) ≤
m∑

`=1

q` E

[∣∣∣s` − Ŝsub(Y, ρ)
∣∣∣
2

|S = s` , Y /∈ V`

]
Pr {Y /∈ V` |S = s`} (90)

where Ŝsub(Y, ρ) 6= s` since Y lies outside V`. Furthermore, the probability that Y lies
outside V` when s` was transmitted can be bounded by the probability that Y lies outside
a circle centered on s` and completely contained within V`. This circle has a radius that
cannot exceed (d`/2)

√
ρ where d` is the distance from s` to its closest neighbor(s) in the

constellation. Thus,

Pr {Y /∈ V` |S = s`} ≤ 1

π

∫

|ξ|> d`
2

√
ρ

e−|ξ|
2

dξ (91)

= e−
d2
`
4

ρ. (92)
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In turn,

E

[∣∣∣∣s` − arg min
sk

|Y −√ρ sk|
∣∣∣∣
2

|S = s` , Y /∈ V`

]
≤ K2 (93)

with K2 = max{d`}. Combining (90), (92) and (93),

MMSE(ρ) ≤ K2

m∑

`=1

q` e−
d2
`
4

ρ (94)

≤ K2 e−
d2

4
ρ

m∑

`=1

q` (95)

= K2 e−
d2

4
ρ (96)

where d = min{d`}.

Relating the lower and upper bounds in (86) and (96), the claim is proved.

D Proof of Theorem 5

From (8), the MMSE estimate of an∞-PSK input S given its noisy output observation y is

Ŝ(y, ρ) = ejarg(y) I1(2
√

ρ|y|)
I0(2

√
ρ|y|) (97)

where I0(·) and I1(·) are modified Bessel functions of the first kind [53]. These functions
are related by

I1(ξ) =
d

dξ
I0(ξ). (98)

From (97) and (9),

MMSE(ρ) = 1− 2 e−ρ

∫ ∞

0

r e−r2 I2
1 (2
√

ρ r)

|I0(2
√

ρ r)|dr. (99)

Using the asymptotic (ξ →∞) expansion

I0(ξ) =
eξ

√
2πξ

(
1 +

1

8ξ
+O(1/ξ2)

)
(100)

as well as the relationship in (98), we can expand (99) into

MMSE(ρ) =
1

2ρ
+O(1/ρ2) (101)
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as claimed. This expression is consistent, via the relationship in Theorem 1, with the high-
power expansion of the mutual information for a continuous PSK distribution reported
in [54]:

I(ρ) =
1

2
log

(
4π

e
ρ

)
+O(1/ρ). (102)

E Proof of Theorem 6

From (8), the MMSE estimate of an ∞-PAM input S given its noisy output observation y
is

Ŝ(y, ρ) =
y√
ρ
− 1

2
√

πρ

e−(y−√3ρ)2 − e−(y+
√

3ρ)2

Q
(√

2 y −√6ρ
)−Q

(√
2 y +

√
6ρ

) (103)

from which

MMSE(ρ) =
1

2
√

3π

∫ ∞

−∞

∫ √
3

−√3

(
s− Ŝ(y, ρ)

)2

e−(y−√ρ s)2dy ds. (104)

For large ρ, the estimate in (103) can be expanded as

Ŝ(y, ρ) =
y√
ρ
− e−(y−√3ρ)2

2
√

πρ
+ ε(ρ) (105)

where ε(ρ) decays with ρ exponentially faster than the other terms in (105), i.e.,

lim
ρ→∞

log ε(ρ)

ρ
< −3. (106)

Plugging (105) into (104),

MMSE(ρ) =
1

2ρ
+O(1/ρ3/2) (107)

as claimed.

F Iterative Solution of (15)

The level η for the power constraint in place is obtained by solving (15). This invites the
application of iterative methods such as bisection, secant or Newton, all of which have
good convergence rates [55]. Remarkably, the number of iterations does not depend on
the number of channels but only on the desired tolerance. Furthermore, some of these
iterative methods (bisection, secant) do not require derivatives of the function MMSE

−1
i (·).

The secant method, in particular, has superlinear convergence, i.e., denoting by η(k) the
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Table 4: Iterative solution of (15) via the secant method for Examples 1 and 3. The target
values are η = 0.32 and η = 0.48, respectively.

Example 1 Example 3
ηmin 0.11 0.14
ηmax 0.46 0.67
η(1) 0.37 0.62
η(2) 0.32 0.44
η(3) 0.32 0.49
η(4) 0.32 0.48

succession of values taken towards the target η, there exists a sequence bk > 0 with bk → 0
such that

|η(k+1) − η| ≤ bk|η(k) − η|. (108)

In general, it suffices to search for η within an interval bounded by

ηmin = min{γi MMSEi(γi)} (109)
ηmax = max{γi MMSEi(γi)} (110)

Graphically, these are the top and bottom intersections of the functions γi MMSEi(piγi) with
a vertical line at pi = 1. (Smaller search intervals can be foreseen in some cases.)

In order to illustrate the superlinear convergence of the secant method, we next apply it
to the examples in Section V. The upper and lower bounds in (109) and (110) are used
as starting points. These starting points, and a few of the values obtained thereafter,
are listed in Table 4 for Examples 1 and 3. (In Example 2, η is graphically evident by
inspection.)

In Example 1, only 2 iterations are required to find η with 2-digit precision. In Example 3,
4 iterations are required for that same precision.

G Proof of Theorem 7

From Theorem 4, MMSE(ρ) decays exponentially to zero as ρ →∞ and thus, in Theorem 2,
η → 0. More precisely,

log MMSE(ρ)

ρ
= O(1) (111)

and it follows that, for sufficiently large input power P , on every channel p?
i > 0 strictly.

From (12) and the strict monotonicity of log(·),
log |hi|2 + log P + log MMSEi(p

?
i |hi|2P ) = log η i = 1, . . . , n (112)
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with η such that the power constraint in (13) is satisfied. Dividing both sides of (112) by
P and applying Theorem 4 we find, for large P ,

d2
i

4
p?

i |hi|2 log(e) =
log 1/η

P
+O

(
log P

P

)
i = 1, . . . , n (113)

where, we note,
log 1/η

P
= O(1). (114)

For P →∞, therefore, the power allocation {p?
i }n

i=1 converges to the solution of

d2
i p

?
i |hi|2 = α i = 1, . . . , n (115)

where the constant α is determined by the power constraint in (13). This set of equations
leads to the claimed limiting power allocation.

H Levin-Campello Algorithm

The core idea in this algorithm is that a greedy sequential approach can lead to a globally
optimum discrete loading [27, 28, 29, 56]. Accordingly, it suffices to sequentially load bits,
always assigning them to the tone that requires the least incremental amount of power
for their transport, up until the desired number of bits has been loaded or the power
constraint has been reached. (In our implementation, the constraint is on the average
power.)

Denote by ri(·) the number of bits/s/Hz that can be transported by tone i at a given
error probability as function of the power allocated to such tone. This function must be
monotonic and concave for a greedy sequential approach to be globally optimum. Often,
ri(·) is approximated by

ri(pi) = log2

(
1 +

piγi

Γ

)
(116)

where Γ is the power gap between ri and the mutual information achieved by an ideal
Gaussian signal. This gap depends on the constellation, coding format and error proba-
bility. (Since our ultimate performance measure is the mutual information itself, in our
implementation Γ = 1.) The class of constellations being used determines the set of dis-
crete values that can be taken by ri. Typically, ri = 0, β, 2β, . . . , rmax, where β is the gran-
ularity in bits and rmax is the number of bits in the richest available constellation. (In our
case, with square QAM constellations, β = 2 while rmax is a parameter.)

From (116), the power required to transport ri bits/s/Hz is

pi(ri) =
2ri − 1

γi/Γ
(117)
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which allows us to express the incremental power required by tone i to transport β more
bits, i.e., to promote to the next-cardinality constellation, as

∆pi(ri) = pi(ri + β)− pi(ri) (118)

= (2β − 1)
2ri

γiΓ
. (119)

The Levin-Campello algorithm boils down to sequentially loading groups of β bits, with
each group being assigned to the tone that has the smallest ∆pi(ri) among those satisfy-
ing ri < rmax, up until the point where assigning another group of bits would bring the
average power above its constraint. Reduced-complexity approaches to this procedure
can be found, e.g., in [28].
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[52] S. Verdú, Multiuser Detection, Cambridge University Press, 1998.

[53] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover
Publications, 1972.

[54] J. M. Geist, “Capacity and cutoff rate for dense M-ary constellation,” Proc. of IEEE Military
Comm. Conf. (MILCOM’90), pp. 768–770, Sept. 1990.

[55] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlin-
ear Equations, SIAM (Classics in Applied Mathematics Series, 16), 1996.

[56] B. Fox, “Discrete optimization via marginal analysis,” Management Science, vol. 13, pp. 210–
216, Nov. 1966.

36



h

1


.

.

.



S

1


S

2


S

n


h

2


h

n


W

1


W

2


W

n


Y

1


Y

2


Y

n


X

1


X

2


X

n


p

1


p

2


p

3


P


P


P


Figure 1: Bank of n independent parallel channels.
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Figure 2: Examples of m-ary constellations: (a) 4-PAM, (b) 8-PSK, and (c) 16-QAM.
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until its height reaches Gi(η/γi)/γi on each vessel. (b) Waterfill with a volume of water
equal to n, after which the water level reaches 1/η. (c) The water height over the mercury
on the ith vessel gives p?

i .
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Figure 10: Excess power (dB) required for waterfilling to achieve the same mutual infor-
mation as the optimum policy, for n = 2 channels with BPSK inputs, as function of the
pair {γ1, γ2} (dB).
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Figure 11: Excess power (dB) required for waterfilling to achieve the same mutual infor-
mation as the optimum policy, for n = 2 channels with QPSK inputs, as function of the
pair {γ1, γ2} (dB).
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Figure 12: DSL frequency response, sampled into n = 256 orthogonal tones and scaled by
the respective noise variances.
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Figure 13: For the channel in Fig. 12 with uniform constellation loading, additional power
(in dB) required by waterfilling to achieve the same mutual information achieved by mer-
cury/waterfilling. Results parameterized by the input distribution (16-QAM, 64-QAM
and 256-QAM).
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Figure 14: For the channel in Fig. 12 with uniform constellation loading, mutual informa-
tions (in bits/s/Hz) achieved with mercury/waterfilling and with waterfilling. Results
parameterized by the input distribution (16-QAM, 64-QAM and 256-QAM).
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Figure 15: Levin-Campello loading, from the set {QPSK,16-QAM,64-QAM,256-QAM}, at
the operating point P = −15 dB. Also shown are the mercury/waterfilling and waterfill-
ing power allocations with such loading.
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Figure 16: For the channel in Fig. 12 with Levin-Campello loading, additional power (in
dB) required by waterfilling to achieve the same mutual information achieved by mer-
cury/waterfilling. Results parameterized by the set of available constellations. High-
lighted is the power constraint that corresponds with Fig. 15.
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Figure 17: For a Rayleigh-faded channel, additional power (in dB) required to achieve,
without power control, the same mutual information achieved with temporal mer-
cury/waterfilling power control at each average power P (in dB). Results parameterized
by the input distribution (QPSK, 16-QAM and Gaussian).
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Figure 18: For a log-normal-faded channel with 10-dB standard deviation, additional
power (in dB) required to achieve, without power control, the same mutual information
achieved with temporal mercury/waterfilling power control at each average power P (in
dB). Results parameterized by the input distribution (QPSK, 16-QAM and Gaussian).
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