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Optimum Power Allocation for Single-User MIMO
and Multi-User MIMO-MAC with Partial CSI
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Abstract— We consider both the single-user and the multi-
user power allocation problems in MIMO systems, where the
receiver side has the perfect channel state information (CSI),
and the transmitter side has partial CSI, which is in the form of
covariance feedback. In a single-user MIMO system, we consider
an iterative algorithm that solves for the eigenvalues of the
optimum transmit covariance matrix that maximizes the rate.
The algorithm is based on enforcing the Karush-Kuhn-Tucker
(KKT) optimality conditions of the optimization problem at each
iteration. We prove that this algorithm converges to the unique
global optimum power allocation when initiated at an arbitrary
point. We, then, consider the multi-user generalization of the
problem, which is to find the eigenvalues of the optimum transmit
covariance matrices of all users that maximize the sum rate
of the MIMO multiple access channel (MIMO-MAC). For this
problem, we propose an algorithm that finds the unique optimum
power allocation policies of all users. At a given iteration, the
multi-user algorithm updates the power allocation of one user,
given the power allocations of the rest of the users, and iterates
over all users in a round-robin fashion. Finally, we make several
suggestions that significantly improve the convergence rate of the
proposed algorithms.

Index Terms— Multi-user MIMO, MIMO multiple access
channel, partial CSI, covariance feedback, optimum power allo-
cation.

I. INTRODUCTION

IN GAUSSIAN MIMO multiple access systems, when
the receiver side has the perfect CSI, the calculation of

the information theoretic capacity boils down to finding the
transmit covariance matrices of the users. Finding the transmit
covariance matrices, in turn, involves two components: finding
the optimum transmit directions and finding the optimum
power allocation policies. In a single-user MIMO system,
when both the receiver and the transmitter have the perfect CSI
and the channel is fixed, [2] showed that the optimum transmit
directions are the right singular vectors of the deterministic
channel matrix, and the optimum power allocation policy
is to water-fill over the singular values of the deterministic
channel matrix. In a multi-user MIMO system, when both
the receiver and the transmitters have the perfect CSI and
the channel is fixed, [3] showed that the optimum transmit
directions and the power allocation policies can be found
using an iterative algorithm that updates the transmit directions
and the power allocation policy of one user at a time. When
the channel is changing over time due to fading, and perfect
and instantaneous CSI is known both at the receiver and at
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the transmitter side, these solutions extend to water-filling
over both the antennas and the channel states in single-
user [2], and multi-user [4] MIMO systems. However, in
most of the wireless communication scenarios, especially in
wireless MIMO communications, it is unrealistic to assume
that the transmitter side has the perfect knowledge of the
instantaneous CSI. In such scenarios, it might be more realistic
to assume that only the receiver side can perfectly estimate
the instantaneous CSI, while the transmitter side has only a
statistical knowledge of the channel.

When the fading in the channel is assumed to be a Gaussian
process, statistics of the channel reduce to the mean and
covariance information of the channel. The problem in this
setting as well is to find the optimum transmit covariance
matrices, i.e., the optimum transmit directions and the op-
timum power allocation policies. However, in this case the
transmit directions and the power allocations are not functions
of the channel states, but they are functions of the statistics
of the channel states, that are fed by the receiver back to the
transmitters. The optimization criteria that we consider are
the maximum rate in a single-user system, and the maximum
sum rate in a multi-user system. For the covariance feedback
case, it was shown in [5] for a multi-input single-output
(MISO) system, and in [6], [7] for a MIMO system that the
optimal transmit covariance matrix and the channel covariance
matrix have the same eigenvectors, i.e., the optimal transmit
directions are the eigenvectors of the channel covariance
matrix. For the mean feedback case, the eigenvectors of the
optimal transmit covariance matrix were shown to be the same
as the right singular vectors of the channel mean matrix for a
MISO system in [5] and for a MIMO system in [6]. In [8]–
[10], we generalized these results, both in covariance and mean
feedback cases, to MIMO-MAC systems. We showed that in
a MIMO-MAC system with partial CSI at the transmitters,
all users should transmit in the direction of the eigenvectors
of their own channel parameter matrices. Consequently, we
showed that, the transmit directions of the users in a MIMO-
MAC with partial CSI at the transmitters are independent
of the presence of other users, and therefore, that the users
maintain their single-user transmit direction strategies even in
a multi-user scenario.

On the other hand, in this aforementioned literature, the
optimization of the eigenvalues of the transmit covariance ma-
trices, i.e., the power allocation policies, are left as additional
optimization problems. The optimum eigenvalues are known
only for specific conditions, called beamforming optimality
conditions. If the channel statistics satisfy these conditions,
then unit rank transmit covariance matrices are optimum for
all users, i.e., users allocate all of their powers to the direction
of their strongest eigenvectors. References [5], [6], and [9]–
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[10] derived beamforming optimality conditions in single-
user MISO, single-user MIMO, and multi-user MIMO-MAC,
respectively.

Although having beamforming optimality conditions is ex-
tremely helpful, beamforming is unconditionally optimal only
when the number of users grows to infinity in a fading
multi-user MIMO setting when partial CSI is available at the
transmitters [10]. In a single-user MIMO or in a MIMO-MAC
with finite number of users, the channel statistics might be so
that beamforming may never be optimal. For such scenarios,
efficient and globally convergent algorithms are needed in
order to solve for the optimum eigenvalues of the transmit
covariance matrices. References [11] and [12]– [13] proposed
algorithms that solve this problem for a single-user MISO
system, and for a single-user MIMO system, respectively.
However, in both cases, the convergence proofs for these
algorithms were not provided. In a MIMO-MAC scenario
with partial CSI available at the transmitters, although the
eigenvectors of the optimal transmit covariance matrices are
known [8]–[10], no algorithm is available to find the optimum
eigenvalues in a multi-user setting.

In this paper, first, we give an alternative derivation for
the algorithm proposed in [12], [13] for a single-user MIMO
system by enforcing the KKT optimality conditions at each
iteration. We prove that the convergence point of this algorithm
is unique and is equal to the optimum eigenvalue allocation.
The proposed algorithm converges to this unique point starting
from any point on the space of feasible eigenvalues. Next, we
consider the multi-user version of the problem. In this case,
the problem is to find the optimum eigenvalues of the transmit
covariance matrices of all users that maximize the sum rate of
the MIMO-MAC system. We apply the single-user algorithm
iteratively to reach the global optimum point. At any given
iteration, the multi-user algorithm updates the eigenvalues of
one user, using the algorithm proposed for the single-user case,
assuming that the eigenvalues of the remaining users are fixed.
The algorithm iterates over all users in a round-robin fashion.
We prove that, this algorithm converges to the unique global
optimum power allocation for all users.

II. SYSTEM MODEL

We consider a multiple access channel with multiple trans-
mit antennas at every user and multiple receive antennas at
the receiver. The channel between user k and the receiver
is represented by a random matrix Hk with dimensions of
nR×nT , where nR and nT are the number of antennas at the
receiver and at the transmitter, respectively1. The receiver has
the perfect knowledge of the channel, while the transmitters
have only the statistical model of the channel. Each transmitter
sends a vector xk, and the received vector is

r =
K∑

k=1

Hkxk + n (1)

where K is the number of users, n is a zero-mean, identity-
covariance complex Gaussian vector, and the entries of Hk are

1Although we consider the case where all transmitters have the same
number of antennas, our results immediately extend to the cases where the
transmitters have different number of antennas.

complex Gaussian random variables. Let Qk = E[xkx
†
k] be

the transmit covariance matrix of user k, which has an average
power constraint of Pk , tr(Qk) ≤ Pk.

The statistical model that we consider in this paper is the
“partial CSI with covariance feedback” model where each
transmitter knows the channel covariance information of all
transmitters, in addition to the distribution of the channel.
In this model, there exists correlation between the signals
transmitted by or received at different antenna elements. For
each user, the channel is modeled as [14],

Hk = Φ1/2
k ZkΣ

1/2
k (2)

where the receive antenna correlation matrix, Φk, is the corre-
lation between the signals transmitted by user k, and received
at the nR receive antennas of the receiver, and the transmit
antenna correlation matrix, Σk, is the correlation between the
signals transmitted from the nT transmit antennas of user k.
While writing (2), we separately apply the single-user model
in [14] to every single transmitter-receiver link. In this paper,
we will assume that the receiver does not have any physical
restrictions and therefore, there is sufficient spacing between
the antenna elements on the receiver such that the signals
received at different antenna elements are uncorrelated2. As
a result, the receive antenna correlation matrix becomes the
identity matrix, i.e., Φk = I. Now, the channel of user k is
written as

Hk = ZkΣ
1/2
k (3)

where the entries of Zk are i.i.d., zero-mean, unit-variance
complex Gaussian random variables. From this point on, we
will refer to matrix Σk as the channel covariance feedback
matrix of user k. Similar covariance feedback models have
been used in [5], [6], [7], [11].

III. POWER ALLOCATION FOR SINGLE-USER MIMO

In this section, we will assume that K = 1. In a single-user
system with partial CSI in the form of the channel covariance
matrix at the transmitter, the optimization problem is that of
choosing a transmit covariance matrix Q, which is subject
to a trace constraint representing the average transmit power
constraint,

C = max
tr(Q)≤P

E
[
log | InR + HQH†|] (4)

where E[·] is the expectation operator with respect to the
channel matrix H, and | · | is the determinant operator. We
note that the cost function of the optimization problem in (4)
is concave in Q and the constraint set is convex.

The channel covariance matrix Σ, which is known at the
transmitter, has the eigenvalue decomposition Σ = UΣΛΣU†

Σ

with unitary UΣ and diagonal ΛΣ of ordered eigenvalues. The
transmit covariance matrix Q has the eigenvalue decomposi-
tion Q = UQΛQU†

Q with unitary UQ and diagonal ΛQ. It
has been shown that the eigenvectors of the optimum transmit
covariance matrix must be equal to the eigenvectors of the

2We refer the reader to Section VII, for a discussion on extending our
results to the case where the channel has double-sided correlation structure,
i.e., to the case where the signals arriving at the receiver are correlated as
well.
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channel covariance matrix, i.e., UQ = UΣ [6]. By inserting
this into (4), and using the fact that the random matrices ZUΣ

and Z have the same probability distribution for zero-mean
identity-covariance Gaussian Z and unitary UΣ [2], we get

C = max
tr(ΛQ)≤P

E
[
log
∣∣∣InR + ZUΣΛ1/2

Σ U†
ΣUQΛQU†

Q

max
tr(ΛQ)≤P

E log
∣∣InR + ZUΣΛ1/2

Σ UΣΛ1/2
Σ U†

ΣZ†
∣∣∣] (5)

= max
tr(ΛQ)≤P

E
[
log
∣∣∣InR + ZUΣΛQΛΣU†

ΣZ†
∣∣∣] (6)

= max
tr(ΛQ)≤P

E
[
log
∣∣∣InR + ZΛQΛΣZ†

∣∣∣] (7)

= maxPnT
i=1 λQ

i ≤P
E

[
log
∣∣∣InR +

nT∑
i=1

λQ
i λΣ

i ziz
†
i

∣∣∣
]

(8)

where zi is the ith column of Z, i.e., {zi, i = 1, . . . , nT }
is a set of nR × 1 dimensional i.i.d., zero-mean, identity-
covariance Gaussian random vectors. The Lagrangian for the
above optimization problem is,

L = E

[
log
∣∣∣InR +

nT∑
i=1

λQ
i λΣ

i ziz
†
i

∣∣∣
]
− µ

(
nT∑
i=1

λQ
i − P

)
(9)

where µ is the Lagrange multiplier. In order to derive the KKT
conditions, we need the following identity which is proved in
[6],

∂

∂x
log |A + xB| = tr

[
(A + xB)−1B

]
(10)

Using this identity, the KKT conditions can be written for
i = 1, . . . , nT as

λΣ
i E

⎡
⎢⎣z†i

⎛
⎝InR +

nT∑
j=1

λQ
j λΣ

j zjz
†
j

⎞
⎠

−1

zi

⎤
⎥⎦ ≤ µ (11)

Defining A = InR +
∑nT

j=1 λQ
j λΣ

j zjz
†
j , and Ai = A −

λQ
i λΣ

i ziz
†
i , and using the matrix inversion lemma [15, page

19], we get for i = 1, . . . , nT

Ei(λQ) � E

[
λΣ

i z†iA
−1
i zi

1 + λQ
i λΣ

i z†iA
−1
i zi

]
≤ µ, (12)

where we defined the left hand side of (12) as Ei(λQ). The
ith inequality in (12) is satisfied with equality whenever the
optimum λQ

i is non-zero, and with strict inequality whenever
the optimum λQ

i is zero. We note that in classical water-
filling solutions, since the channel is either fixed or known
instantaneously at the transmitter, the corresponding KKT
conditions do not involve an expectation, and therefore, non-
zero λQ

i ’s can be solved for in terms of the Lagrange multiplier
and the eigenvalues of the fixed/instantaneous channel matrix.
However, in our case, we cannot directly solve for λQ

i in (12).
Instead, we multiply both sides of (12) by λQ

i ,

λQ
i Ei(λQ) = µλQ

i , i = 1, . . . , nT (13)

We note that when λQ
i = 0, both sides of (13) are equal

to zero. Therefore, unlike (12), (13) is always satisfied with
equality for optimum eigenvalues. By summing both sides

over all antennas, we find µ, and by substituting this µ into
(13), we find the fixed point equations which have to be
satisfied by the optimum eigenvalues for i = 1, . . . , nT ,

λQ
i =

λQ
i Ei(λQ)∑nT

j=1 λQ
j Ej(λQ)

P =
P∑

j

λQ
j Ej(λQ)

λQ
i Ei(λQ)

� fi(λQ) (14)

where λQ = [λQ
1 , . . . , λQ

nT
], and we defined the right hand

side of (14) which depends on all of the eigenvalues as fi(λQ).
It is important to emphasize that the optimum solution of the
KKT conditions always satisfies the fixed point in (14), even
if the optimum solution has some zero components.

We propose to use the following fixed point algorithm

λQ(n + 1) = f(λQ(n)) (15)

where f = [f1, . . . , fnT ]. In order to solve for the optimum
eigenvalues, (15) updates the eigenvalues at step n + 1 as
a function of the eigenvalues at step n. We claim that this
algorithm converges and that the unique stable fixed point of
the algorithm is equal to the optimum eigenvalues. Although
this algorithm is the same as the one proposed in [12], [13],
here, we also provide a convergence proof.

IV. CONVERGENCE PROOF

As stated in (8), the constraint set of the optimization
problem is

∑n
i=1 λQ

i ≤ P . We know that the optimum value is
obtained when the summation is equal to P . If the summation
was strictly less than P , we could increase the value of the
objective function by increasing any one of the λQ

i ’s, while
keeping the rest fixed. Therefore, the constraint set becomes∑n

i=1 λQ
i = P . This equality defines a simplex in the nT -

dimensional space (see Fig. 1), and all feasible eigenvalue
vectors are located on this simplex. Note that if the algorithm
is initiated at an exact corner point of the simplex, then the
updates stay at the same point indefinitely. The reason for
this is that while we obtain (13) from (12), we create some
artificial fixed points. That is, although some non-optimum
λQ

i = 0 does not satisfy (12) with equality, the same non-
optimum λQ

i = 0 always satisfies (13) with equality.
As a result, in addition to the point that is the solution

of the KKT conditions, the solution set of the fixed point
equation in (14) includes some artificial fixed points. Since
our optimization problem is concave and the constraint set
is convex, the solution of the KKT conditions is the unique
optimum point of the optimization problem. On the other
hand, artificial fixed points are the solutions to some reduced
optimization problems, which are obtained by forcing some
of the components of the power allocation vector to be zero.
When we force a choice of nT −1 components to be zero, we
can find one optimum solution to the corresponding reduced
optimization problem for each choice. Since there are

(
nT

nT −1

)
ways of choosing zero components, this adds nT artificial
fixed points, which are the corner points of the simplex, to
the solution set of the fixed point equation. Similarly, when
we force a choice of nT − 2 components to be zero, we
can find one optimum solution to the corresponding reduced
optimization problem for each choice. This adds

(
nT

nT −2

)
artificial fixed points to the solution set of the fixed point
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equation. By counting all possibilities, we find that there
are a total of 2nT − 2 artificial fixed points. However, it is
important to note that one of these counted points might be
the optimum solution of the KKT conditions, if there are some
zero components in the optimum eigenvalue vector. If the
optimum eigenvalues are all non-zero, then the solution of the
KKT conditions is different than these artificial fixed points.
Therefore, we call a point an artificial fixed point only if it is
not the optimum solution.

In this section, we will first prove that our algorithm con-
verges. Then, we will prove that the algorithm cannot converge
to an artificial fixed point, and therefore, the only point that the
algorithm can converge to is the unique solution of the KKT
conditions. The main ingredient of our convergence proof is
the following lemma.

Lemma 1: Let us have two feasible vectors on the simplex,
λQ and λ̄Q, such that λQ

i > λ̄Q
i , then fi(λQ) > fi(λ̄Q).

Proof: Note that λQ
i > λ̄Q

i implies
∑

j �=i λQ
j <

∑
j �=i λ̄Q

j ,

since all λQ
i sum up to P . Therefore, the lemma can be proved

equivalently by proving that fi(λQ) is increasing in λQ
i when

the rest of the λQ
j , j �= i are fixed, and fi(λQ) is decreasing

in
∑

j �=i λQ
j , when λQ

i is fixed. The first part of the claim is
easy to show. Consider (14), it can be shown that the partial
derivative of λQ

i Ei(λQ) with respect to λQ
i is positive, and the

partial derivatives of λQ
j Ej(λQ), for j �= i, with respect to λQ

i

are all negative. Therefore,
λQ

j Ej(λ
Q)

λQ
i Ei(λQ)

is decreasing (for all j),

and fi(λQ) is increasing, in λQ
i when the rest of the λQ

j , j �= i
are fixed. The second part of the claim is a little bit involved.
In order to show that fi(λQ) is decreasing in

∑
j �=i λQ

j , we

need to show that
∑

j �=i
∂fi(λ

Q)

∂λQ
j

< 0. It is sufficient to show

∂fi(λ
Q)

∂λQ
j

< 0 for all j �= i. In order to show this, consider (14),

it is easy to show that the partial derivative of λQ
i Ei(λQ)

with respect to λj is negative. We, then, need to show that
∂(

PnT
k=1 λQ

k Ek(λQ))

∂λQ
j

> 0. We will give the proof of this in the

Appendix. �

In Lemma 1, we showed the monotonicity property of the
algorithm. By using this property, in the next lemma, we will
show that the algorithm converges.

Lemma 2: The algorithm in (15) converges to one of the
points in the solution set of the fixed point equation in (14)
when it is initiated at any arbitrary feasible point, λQ(0), that
is not on the boundary of the simplex.

Proof: After the first iteration of the algorithm, we have
one of the following three cases for each λQ

i . The first case is
that λQ

i (1) = fi(λQ(0)) = λQ
i (0). This means that we have

started the algorithm at the optimum point that solves the KKT
conditions. Since all of the artificial fixed points are on the
boundary of the simplex, this point cannot be an artificial fixed
point.

The second case is that λQ
i (1) = fi(λQ(0)) > λQ

i (0). In
this case, by applying Lemma 1 repeatedly, we get λQ

i (n) >
λQ

i (n − 1) > · · · > λQ
i (1) > λQ

i (0). Since λQ
i (n) is a

monotonically increasing sequence and it is upper bounded, it
is guaranteed to converge.

The third case is that λQ
i (1) = fi(λQ(0)) < λQ

i (0). In
this case, by applying Lemma 1 repeatedly, we get λQ

i (n) <

λQ
i (n − 1) < · · · < λQ

i (1) < λQ
i (0). Since λQ

i (n) is a
monotonically decreasing sequence and it is lower bounded,
it is guaranteed to converge.

Finally, since each component of λQ converges, the vector
itself also converges to a point inside the solution set of the
fixed point equation. �

Although we proved that the algorithm converges when it
is initiated at any arbitrary feasible point that is not on the
boundary of the simplex, there is a possibility that it converges
to an artificial fixed point instead of the optimum solution of
the KKT conditions. In the following lemma, we will show
that this is never the case.

Lemma 3: The artificial fixed points are unstable. For a
very small and fixed ε, if we are ε away from an artificial
fixed point, with one iteration of the algorithm, we will move
further away from that artificial fixed point.

Proof: The main idea of the proof is the following. We
will start from an artificial fixed point that is not the optimum
solution of the KKT conditions of the original optimization
problem, and show that by perturbing this artificial fixed point
by an ε amount, we move further away from that artificial fixed
point. We give the proof of the most general scenario with
nT antennas and starting from any arbitrary artificial fixed
point in the Appendix. Here, we give the outline and the basic
methodology of the general proof by considering a simple
case where nT = 3. In this case, we have 2nT − 2 = 6
artificial fixed points. Three of them are the corner points of
the 3-dimensional simplex. The other three of them lie on
the boundary of the simplex, each point corresponding to a
solution of the reduced optimization problem where one of
the components is forced to be zero. These points can be seen
in Fig. 1.

Here, in this outline of the general proof, we will also
assume that the artificial fixed point we focus on has only
one zero component. In particular, we assume that we are at
the artificial fixed point p4 = (a, b, 0), see Fig. 1. Since this
is a fixed point, the following equalities hold from (14),

a =
aE1(p4)

aE1(p4) + bE2(p4)
P, b =

bE2(p4)
aE1(p4) + bE2(p4)

P (16)

From above, we find that aE1(p4) + bE2(p4) = PE1(p4) =
PE2(p4). This is equivalent to saying that the KKT conditions
of the reduced optimization problem corresponding to the first
and second components are satisfied with equality, that is,
E1(p4) = E2(p4) = µ′. We call this Lagrange multiplier µ′,
because this is possibly different than the Lagrange multiplier
of the original optimization problem. For E3(p4), we have
three possibilities. E3(p4) = µ′ cannot hold, because that
would mean that the third KKT condition is also satisfied
with equality and this can only happen when optimal λQ

3

is non-zero. E3(p4) < µ′ cannot hold, because that would
mean that we satisfy all three KKT conditions of the original
optimization problem with µ′ = µ, and this fixed point is
optimum. This contradicts with our assumption that we are at
an artificial fixed point that is not the optimum solution of the
original optimization problem. Therefore, the only possibility
at an artificial fixed point is that E3(p4) > µ′.

Now, we will show that by perturbing this artificial fixed
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point by an ε amount, we move further away from this fixed
point. We run the algorithm for p′

4 = (a − ε, b, ε). We first
calculate E1(p′

4),

E1(p′
4) = E

[
h(ε)

1 + (a − ε)h(ε)

]
(17)

where h(ε) is the value of the function h(x) =

λΣ
1 z†1

(
Ap4 − x(λΣ

1 z1z
†
1)
)−1

z1 evaluated at x = ε, where

Ap4 = InR +aλΣ
1 z1z

†
1 +bλΣ

2 z2z
†
2. Using the matrix inversion

lemma [15, page 19], we get h(x) = λΣ
1 z†

1Ap4z1

1−xλΣ
1 z†

1Ap4z1
. Using the

Taylor series expansion formula around x = 0, and denoting
w1 = λΣ

1 z†1A
−1
p4

z1, we obtain

h(ε) = w1 + εw2
1 + ε2w3

1 + . . . (18)

= w1 + O(ε) (19)

where O(ε) is an asymptotic upper bound for the magnitude of
the residual in terms of ε. Mathematically, a function, h̄(ε) is
order O(ε) as ε → 0 if and only if 0 < lim supε→0

h̄(ε)
ε < ∞

[16]. Now, when we insert this into (17), we obtain

E1(p′
4) = E

[
w1 + O(ε)

1 + aw1 + O(ε)

]
(20)

=
1
a

(
1 − E

[
1

1 + aw1 + O(ε)

])
(21)

We again use the Taylor series expansion formula, this time
with h(x) = 1/x, around x = 1 + aw1,

h(1 + aw1 + O(ε)) =
1

1 + aw1 + O(ε)
(22)

=
1

1 + aw1
− O(ε)

(1 + aw1)
2 + . . . (23)

=
1

1 + aw1
+ O(ε) (24)

Finally, (17) becomes

E1(p′
4) = E

[
w1

1 + aw1

]
+ O(ε) (25)

= E1(p4) + O(ε) (26)

By using similar arguments, we can conclude that Ei(p′
4) =

Ei(p4) + O(ε), for i = 1, 2, 3. If we insert these into f3(p′
4),

we obtain

f3(p′
4) =

εE3(p4)
aE1(p4) + bE2(p4) + O(ε)

P + O(ε2), (27)

since the summation of terms that are in the order of O(ε)
and smaller will be in the order of O(ε). Finally, by applying
Taylor series expansion one more time with h(x) = 1/x, we
get

f3(p′
4) =

εE3(p4)
aE1(p4) + bE2(p4)

P + O(ε2) (28)

We know from (16) that aE1(p4) + bE2(p4) = PE1(p4) =
PE2(p4). Inserting this into the above equation, we have

f3(p′
4) = ε

E3(p4)
E1(p4)

+ O(ε2) (29)

> ε (30)

where the last inequality follows from the fact that E3(p4) >
µ′ = E1(p4). This result tells us that starting from ε away
from an artificial fixed point, the third component of the
updated vector, and therefore the updated vector itself moves
further away from that artificial fixed point. Finally, by using
Lemma 1, we note that the algorithm will move away from the
artificial fixed point at each iteration. Therefore, this artificial
fixed point is unstable. �

As a result of Lemma 3, the algorithm never converges to
an artificial fixed point, if it is not initiated at the boundary
of the simplex. Therefore, the point that the algorithm con-
verges to, always satisfies the KKT conditions of the original
optimization problem. Since this point is unique, when the
algorithm converges, it does so to the unique optimum power
allocation policy.

A. Comparison to Water-filling

In this section, we will compare our results to the classical
water-filling solution. We note that in [2], the channel matrix
H is known to both the receiver and the transmitter. The singu-
lar value decomposition of H can be written as H = UDV†,
where nR ×nR dimensional U, and nT ×nT dimensional V
are unitary, and nR × nT dimensional D is non-negative and
diagonal. Let the diagonal elements of D be denoted by di, for
i = 1, . . . , min(nR, nT ). The solution of the KKT conditions
for this case yields,

λQ
i =

(
1
µ
− 1

di

)+

, i = 1, . . . , min(nR, nT ) (31)

where (x)+ = max{0, x}. Although λQ
i is given explicitly,

the Lagrange multiplier µ still has to be solved. On the other
hand, note that the algorithm proposed in this paper calculates
the eigenvalues directly, without the need for calculating the
Lagrange multiplier of the KKT conditions. Considering this
fact, we can propose the following new algorithm for the
water-filling solution in [2], using the idea in this paper. For
i = 1, . . . , min(nR, nT ), we have

λQ
i (n + 1) =

λQ
i (n)di

1+λQ
i (n)di∑

j

λQ
j (n)dj

1+λQ
j (n)dj

P (32)

Note that this algorithm has the same properties as (15), and
finds the optimum eigenvalues without the need for calculating
the Lagrange multiplier µ.

V. POWER ALLOCATION FOR MULTI-USER MIMO

The sum capacity of a MIMO-MAC is given as [17],

Csum = max
tr(Qk)≤Pk
k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

HkQkH
†
k

∣∣∣
]

(33)

Let Σk = UΣk
ΛΣk

U†
Σk

be the spectral decomposition of
the channel covariance matrix of user k. Then, the optimum
transmit covariance matrix Qk of user k has the form Qk =
UΣk

ΛQk
U†

Σk
, for all users [10]. This means that each user

transmits along the directions of its own channel covariance
matrix. While proving this in [10], we used the fact that the
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random matrices {ZkUΣk
}K

k=1 and {Zk}K
k=1 have the same

joint distribution for zero-mean identity-covariance Gaussian
{Zk}K

k=1 and unitary {UΣk
}K

k=1. Since the structure of the
sum capacity expression is similar to the single-user capacity
expression except for the summation inside the determinant,
single-user solution easily generalizes to the multi-user case.
By inserting this into (33), we get

Csum = max
tr(ΛQk)≤Pk

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

ZkΛQk
ΛΣk

Z†
k

∣∣∣
]

(34)

= max
PnT

i=1 λ
Q
ki

≤Pk

k=1,...,K

E

[
log
∣∣∣InR +

K∑
k=1

nT∑
i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣∣∣
]

(35)

where zki is the ith column of Zk , i.e., {zki, k =
1, . . . , K, i = 1, . . . , nT } is a set of nR ×1 dimensional i.i.d.,
zero-mean, identity-covariance Gaussian random vectors.

A result of [10] is that the optimal multi-user transmit
direction strategies are decoupled into a set of single-user
transmit direction strategies. However, in general, this is not
true for the optimal transmit power allocation strategies. The
amount of power each user allocates in each direction depends
on both the transmit directions and the power allocations of
other users. If the eigenvalues of the channel covariance ma-
trices satisfy the conditions given in [10], then beamforming
becomes optimal, and the optimal transmit power allocation
strategy for each user reduces to allocating all of its power to
its strongest eigen-direction, and this strategy does not require
the user to know the channel covariance matrices of the other
users. However, if the eigenvalues of the channel covariance
matrices do not satisfy these conditions, finding the optimum
eigenvalues becomes a harder task. In this section, we will
give an iterative algorithm that finds the optimum eigenvalues
for all users. We will follow a similar direction as in the single-
user case. By writing the Lagrangian for (35) and using the
identity in (10), we obtain the ith KKT condition for user k
as

Eki(λQ) � E

[
λΣ

kiz
†
kiA

−1
ki zki

1 + λQ
kiλ

Σ
kiz

†
kiA

−1
ki zki

]
≤ µk (36)

where λQ = [λQ
1 , . . . , λQ

K ], λQ
k = [λQ

k1, . . . , λ
Q
knT

] is the
eigenvalue vector of user k, and µk is the Lagrange multiplier
corresponding to user k, Aki = A − λQ

kiλ
Σ
kizkiz

†
ki, and

A = InR +
∑K

k=1

∑nT

j=1 λQ
kjλ

Σ
kjzkjz

†
kj . The inequalities in

(36) are satisfied with equality whenever the optimum λQ
ki is

non-zero, and with strict inequality whenever the optimum λQ
ki

is zero. Similar to the single-user case, λQ
ki cannot be solved

directly from (36) because of the expectation operator. Again,
we will multiply both sides of (36) by λQ

ki,

λQ
kiEki(λQ) = λQ

kiµk (37)

Note that, similar to the single-user case, (37) is satisfied with
equality for all λQ

ki, and we have created some artificial fixed
points while obtaining (37) from (36). For any k, we can find
µk by summing over all antennas, and by inserting this µk

into (37), we can find the fixed point equations that have to

be satisfied by the optimum power values of user k,

λQ
ki =

λQ
kiEki(λQ)∑

j λQ
kjEkj(λQ)

Pk � gki(λQ), i = 1, . . . , nT (38)

where we defined the right hand side of (38) which depends
on all of the eigenvalues as gki(λQ).

We propose the following algorithm, that enforces (38),

λQ
k (n + 1)= gk

(
λQ

1 , . . . , λQ
k−1, λ

Q
k (n), λQ

k+1, . . . , λ
Q
K

)
(39)

where gk = [gk1, . . . , gknT ] is the vector valued update func-
tion of user k. This algorithm finds the optimum eigenvalues of
a given user by assuming that the eigenvalues of the rest of the
users are fixed. The algorithm moves to another user, after (39)
converges. A complete update corresponding to user k only,
i.e., running the algorithm in (39) for user k until it converges
while the eigenvalues of the other users are fixed, is equivalent
to the single-user algorithm proposed in (15). Therefore, we
know from the previous section that the algorithm in (39)
converges to the unique optimum point, when the eigenvalues
of the rest of the users are fixed. The optimization problem
that is solved by (39) is,

Ck = maxPnT
i=1 λQ

ki≤Pk

E

[
log
∣∣∣Bk +

nT∑
i=1

λQ
kiλ

Σ
kizkiz

†
ki

∣∣∣
]

(40)

where Bk = InR +
∑K

l �=k

∑nT

i=1 λQ
li λ

Σ
lizliz

†
li depends on the

fixed eigenvalues of all other users. Such an algorithm is
guaranteed to converge to the global optimum [18, page 219],
since Csum is a concave function of λki for all k and i, Ck is
a strictly concave function of λki for all i, and the constraint
set is convex and has a Cartesian product structure among
the users. Note that in [3], this kind of an algorithm is used
in order to find the iterative water-filling solution. However,
in that setting, where both the receiver and the transmitters
know the perfect CSI, an iteration corresponding to user k
does not include another algorithm, but it is just a single-user
water-filling solution.

In order to improve the convergence rate, we also propose
the following multi-user algorithm,

λQ
k′(n + 1) =gk′

(
λQ

1 (n + 1), . . . , λQ
k′−1(n + 1),

λQ
k′(n), λQ

k′+1(n), . . . , λQ
K(n)

)
(41)

where k′ = (n + 1) mod K . At a given time n + 1, this
algorithm updates the eigenvalues of user k′. In the next
iteration, it moves to another user. Since at a given iteration
corresponding to user k, this algorithm does not solve (40)
completely, we cannot conclude its convergence using [18,
page 219]. However, we have observed the convergence of
this algorithm experimentally through many simulations. One
potential method to prove the convergence of this algorithm
could be through proving that each iteration of the single-user
algorithm in (15) increases the objective function of the opti-
mization problem, i.e., the rate. Even though we proved that
each iteration of this algorithm either monotonically increases
or monotonically decreases each eigenvalue, and therefore,
monotonically decreases the distance between the iterated
eigenvalue vector and the optimum eigenvalue vector, we have
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Fig. 1. The trajectories of the single-user algorithm when it is started from
the corner points of the simplex for the case where the optimal eigenvalues
are all non-zero.

not been able to prove mathematically that each iteration
monotonically increases the objective function. Yet, we have
observed this monotonicity through extensive simulations.
Given that the objective function is a strictly concave function
of the eigenvalue vector, we conjecture that the algorithm
in (15) increases the objective function monotonically. On
the other hand, we have observed experimentally that the
algorithm in (41) converges much faster than the algorithm
in (39). This could be due to the fact that, while the algorithm
in (39) runs many iterations of the same user before it moves
to another user, the algorithm in (41) runs only one iteration
for each user before it moves to the next user.

VI. NUMERICAL RESULTS

In this section, we will provide numerical examples for the
performances of the proposed algorithms. In Fig. 1 and Fig. 2,
we plot the trajectories of the iterations of the proposed single-
user algorithm for a MIMO system with nR = nT = P = 3.
We run the algorithm three times for each figure with different
initial points, which are ε away from the three corner points
of the 3-dimensional simplex. In Fig. 1, all of the optimum
eigenvalues are non-zero, and in Fig. 2, one of the optimum
eigenvalues is zero. We observe, from the two figures, that the
algorithm converges to the unique optimum point.

In Fig. 3 and Fig. 4, we plot the eigenvalues as a function of
the iteration index. We observe that the eigenvalues converge
to the same unique convergence point starting from various
initial points. In addition to the points that are ε away from
the corner points, the other initial points are: the all-one
vector, and the point corresponding to the channel covariance
matrix eigenvalues, which is normalized to satisfy the power
constraint. In Fig. 3, all of the optimum eigenvalues are non-
zero, and in Fig. 4, one of the optimum eigenvalues is zero.
As we see from Fig. 3, the algorithm needs much less time
to converge to the optimum point when it is started from
the normalized channel covariance eigenvalue point compared
to the cases when it is started from any other points on the
simplex. This is true mainly because of an argument similar to
the water-filling argument, where we allocate more power to
the strongest channel. As a result, the unique optimum transmit
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Fig. 2. The trajectories of the single-user algorithm when it is started from the
corner points of the simplex for the case where one of the optimal eigenvalues
is zero.

covariance eigenvalue vector is located close to the normalized
channel covariance eigenvalue vector. Since they are located
close by, it takes less time for the algorithm to converge to
the optimum. Therefore, we may prefer to start the algorithm
from the normalized channel covariance matrix eigenvalues,
in order to improve the convergence rate of the algorithm. We
note however that the algorithm converges to the optimum
point from any arbitrary initial point.

We also note that, even when we start the algorithm from the
normalized channel covariance matrix eigenvalues, we observe
from Fig. 4 that it may still take some time for the algorithm
to converge. In this case, this occurs mainly because one of
the optimum eigenvalues is equal to zero. In order to improve
the convergence rate, we can check if any one of the optimum
eigenvalues will be zero, before we start the algorithm. We can
use the beamforming optimality conditions [6], [10] in order
to check if the second component of the eigenvalue vector
is zero. For the rest of the components, similar conditions
can easily be derived by using the ideas in [6], [10]. If there
are any eigenvalues that will be zero at the optimum, we can
drop them from the optimization problem, and solve a reduced
problem with fewer dimensions. In Fig. 5, we have selected
the eigenvalues of the channel covariance matrix so that the
third eigenvalue of the optimum transmit covariance matrix
happens to be zero. We considered two different initial points:
the normalized channel covariance eigenvalue vector, and a
vector obtained by setting the third component of the channel
covariance eigenvalue vector to zero, before the normalization.
We observe that the algorithm converges much faster if we
identify the components that will be zero at the convergence
point and remove them from the iterations.

Finally, we consider a multi-user MIMO-MAC scenario.
Note that, for a given user, the multi-user algorithm given in
(39) demonstrates the same convergence behavior as in Fig. 3
and Fig. 4, when the eigenvalues of the other users are kept
constant. Therefore, we plot Fig. 6 by running the multi-user
algorithm proposed in (41). In this figure, we consider 3 users
with different channel covariance matrices. The algorithm
is started at the normalized channel covariance eigenvalue
vectors of the users. Each iteration in the figure corresponds
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(a) (b)

(c) (d)

Fig. 3. The convergence of the single-user algorithm starting from various points, when all of the optimal eigenvalues are non-zero: (a) convergence
of all three eigenvalues from (P − 2ε, ε, ε); (b) convergence of all three eigenvalues from ( P

nT
, P

nT
, P

nT
); (c) convergence of all three eigenvalues from

(ε, ε, P − 2ε); (d) convergence of all three eigenvalues from the normalized channel eigenvalue vector.

to an update of the eigenvalues of the transmit covariance
matrices of all users. At the end of the first iteration, all users
have run the algorithm in (41) once. We can see in Fig. 6
that the multi-user algorithm converges quite quickly, and at
the end of the fourth iteration, all users are almost at their
optimum eigenvalue points.

VII. CONCLUSIONS AND DISCUSSIONS

We proposed globally convergent algorithms for finding
the optimum power allocation policies for both single-user
MIMO and MIMO-MAC systems. Combining this with our
previous results on the optimum transmit directions and the
asymptotic behavior of MIMO-MAC systems [10], the sum
capacity maximization problem is completely solved for a
finite or infinite sized MIMO-MAC with the full CSI at the
receiver and the partial CSI at the transmitters in the form
of channel covariance information. In this paper, for a single-
user case, we proved the convergence and the uniqueness of
the convergence point of a pre-existing algorithm. This proof
handles the complications arising from the existence of the
artificial fixed points, and it gives some insights to the classical

water-filling solution. For the multi-user case, we derived and
proved the convergence of a multi-user algorithm, which finds
the optimum power allocations of all users.

Due to the nature of our optimization problem, our al-
gorithms include calculation of some expectations at each
iteration. Direct calculation of these expectations is sometimes
difficult. However, by exploiting the ergodicity of the system
and using sample averages, we can get very fast results.
Although the number of expectations that has to be calculated
increases as the number of users increases, fortunately, we
can eliminate most of the components inside the expectations
using the results of [10], which state that beamforming be-
comes optimal as the number of users in the system increases.
As it can be seen in [10], even for a fairly low number of
users, beamforming is almost optimal. Therefore, by com-
bining beamforming optimality conditions with the proposed
algorithms, we can find the optimum power allocations of the
users much faster. Fig. 5 shows that the number of iterations is
significantly less when beamforming optimality conditions are
utilized. Although it cannot be seen in the figure, each iteration
takes less time as well, i.e., the expectations are computed
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Fig. 4. The convergence of the single-user algorithm starting from various points, when one of the optimal eigenvalues is zero: (a) convergence of all three
eigenvalues from (P − 2ε, ε, ε); (b) convergence of all three eigenvalues from ( P

nT
, P

nT
, P

nT
); (c) convergence of all three eigenvalues from (ε, ε, P − 2ε);

(d) convergence of all three eigenvalues from the normalized channel eigenvalue vector.

faster, since there is less randomness in the system as a result
of setting some eigenvalues to zero.

Another issue that we want to discuss here is the possibility
of having a channel with double-sided correlation. In our
model, as a result of the assumption that the receiver (e.g.,
a base station) is not physically limited and one can place
the antenna elements sufficiently away from each other, the
receiver side correlation matrix becomes the identity matrix.
In a different model with receiver side correlation present in
the system, similar results can be found. For the single-user
scenario, it is already known that the transmit directions are
still the eigenvectors of the transmitter side channel correlation
matrix, even when there is receiver side channel correlation
in the system [19]. Beamforming optimality condition for this
case is also found previously [19]. For the power allocation
problem, an approach similar to the one in our paper can be
applied and a similar but more cumbersome algorithm can be
found. This algorithm includes extra terms that are similar to
the terms in beamforming optimality conditions that are given
in [19]. For the multi-user scenario, our approach generalizes
to the case where there is receiver side channel correlation in

the system, when the receiver side channel correlation matrices
of all users are the same. This might be motivated by assuming
that the receiver side channel correlation is only a result of the
physical structure of the receiver and the environment around
the receiver, therefore it is the same for all users. In this
case, it is possible to find similar but again more cumbersome
algorithms in order to solve the optimum power allocation
policies of all users.

VIII. APPENDIX

A. Proof of Lemma 1

Without loss of generality, let us take j = 1. We will show

that
∂(PnT

k=1 λQ
k

Ek(λQ))
∂λQ

1
> 0. It can be shown that

∂λQ
1 E1(λQ)
∂λQ

1

= E

⎡
⎢⎣ λΣ

1 z†1A
−1
1 z1(

1 + λQ
1 λΣ

1 z†1A
−1
1 z1

)2

⎤
⎥⎦ (42)

Now, for k = 2, . . . , nT , let us consider λQ
k Ek(λQ) =

λQ
k λΣ

k E[zkA−1zk]. Applying the matrix inversion lemma [15,
page 19] to A = A1 + λQ

1 λΣ
1 z1z

†
1, we get
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Fig. 5. The convergence of the single-user algorithm when one of the
optimum eigenvalues is zero.

Ek(λQ)=λΣ
k

(
E[zkA−1

1 zk]−E

[
λQ

1 λΣ
1 (zkA−1

1 z1)2

1 + λQ
1 λΣ

1 z†1A
−1
1 z1

])
(43)

By taking the derivative of (43) with respect to λQ
1 , we get

∂Ek(λQ)

∂λQ
1

= −λΣ
k E

[
λΣ

1 (z†kA
−1
1 z1)2

(1 + λQ
1 λΣ

1 z†1A
−1
1 z1)2

]
(44)

Combining (42) and (44) with sk = (λΣ
k λQ

k )1/2zk, we have

∂

(
nT∑
k=1

λQ
k Ek(λQ)

)

∂λQ
1

=E

⎡
⎢⎢⎢⎢⎣

s†1A
−1
1 s1 −

nT∑
k=2

(s†kA
−1
1 s1)2

λQ
1

(
1 + s†1A

−1
1 s1

)2

⎤
⎥⎥⎥⎥⎦ (45)

We note that A1 = I + S1S
†
1, where S1 = [s2, . . . , snT ].

Then, by using the matrix inversion lemma, we have A−1
1 =

I−S1(I+S†
1S1)−1S†

1. Finally, note that
∑nT

k=2(s
†
kA

−1
1 s1)2 =

s†1A
−1
1 S1S

†
1A

−1
1 s1. Now, we will find equivalent expressions

for the numerator of (45). Let us first look at s†1A
−1
1 s1,

s†1A
−1
1 s1 = s†1s1 − s†1S1(I + S†

1S1)−1S†
1s1 (46)

Now, let us look at s†1A
−1
1 S1,

s†1A
−1
1 S1 = s†1S1 − s†1S1(I + S†

1S1)−1S†
1S1 (47)

= s†1S1 − s†1S1(I + S†
1S1)−1(S†

1S1 + I − I) (48)

= s†1S1(I + S†
1S1)−1 (49)

Inserting (46) and (49) into (45), it is sufficient to show that
the expression

s†1s1−s†1S1(I + S†
1S1)−1S†

1s1−s†1S1(I + S†
1S1)−2S†

1s1 (50)

is positive. In order to proceed, we note that s†1s1 ≥
s†1S1(S

†
1S1)−1S†

1s1 holds. This can be seen by noting that
the matrix S1(S

†
1S1)−1S†

1 is idempotent, and therefore its
eigenvalues are either zero or one. Hence, I−S1(S

†
1S1)−1S†

1 is

Fig. 6. The convergence of the multi-user algorithm where each iteration
corresponds to a single update of all users.

positive definite. Using this inequality, the condition becomes,

s†1S1

[
(S†

1S1)−1−(I + S†
1S1)−1−(I + S†

1S1)−2
]
S†

1s1≥0 (51)

Now, let us look at the term between the square brackets,

(S†
1S1)−1−(I + S†

1S1)−1−(I + S†
1S1)−2 = (52)

=
[
(S†

1S1)−1(I+S†
1S1)−I

]
(I+S†

1S1)−1−(I+S†
1S1)−2 (53)

= (S†
1S1)−1(I + S†

1S1)−1 − (I + S†
1S1)−2 (54)

=
(
(S†

1S1)−1 − (I + S†
1S1)−1

)
(I + S†

1S1)−1 (55)

= (S†
1S1)−1(I + S†

1S1)−1(I + S†
1S1)−1 (56)

= (I + S†
1S1)−1(S†

1S1)−1(I + S†
1S1)−1 (57)

Now, let the singular value decomposition of S1 be S1 =
UDV†, then S†

1S1 = VD2V†. Inserting this into (57), and
(57) into (51), we get

s†1UD(I + D2)−1D−2(I + D2)−1DU†s1 ≥ 0 (58)

s†1U(I + D2)−1(I + D2)−1U†s1 ≥ 0 (59)

Finally, since (I + D2)−2 is positive definite, (59) holds and
(45) is greater than zero.

B. Proof of Lemma 3

For arbitrary number of antennas, we will assume that we
are at some artificial fixed point, which is not a solution
of the original optimization problem, with possibly more
than one zero components. Let this artificial fixed point be
p = (a1, a2, . . . , anT ), and let S be the index set of the zero
components so that aj = 0 for all j ∈ S. Since p is a fixed
point, the following equalities hold for i �∈ S

ai =
aiEi(p)∑

j �∈S ajEj(p)
P (60)

From above, we find that
∑

j �∈S ajEj(p) = PEi(p) = Pµ′,
for all i �∈ S. This is equivalent to saying that the KKT
conditions of the reduced optimization problem corresponding
to components, i �∈ S, are satisfied with equality, where µ′ is
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possibly different than µ. We will show that some conditions
on Ej(p), j ∈ S cannot hold. The case where Ej(p) = µ′

for all j ∈ S cannot hold, because this would mean that
the KKT conditions of the original optimization problem are
all satisfied with equality with µ′ = µ, and this can only
happen when optimal λQ

i ’s for all i are non-zero. Now, let k
be the smallest index in S, then because of the ordering of the
eigenvalues of the channel covariance matrix, Ek(p) is greater
than all Ej(p), for all j �= k, and j ∈ S. The case where
Ek(p) = µ′ and Ej(p) ≤ µ′, for all j �= k, and j ∈ S cannot
hold, because that would mean that the KKT conditions of
the reduced optimization problem is violated. The case where
Ek(p) < µ′ and Ej(p) < Ek(p) < µ′, for all j �= k, and
j ∈ S cannot hold, because that would mean that we satisfy
all KKT conditions of the original optimization problem with
µ′ = µ. This contradicts with our assumption that we are at
an artificial fixed point that is not the solution of the original
optimization problem. Therefore, in all other possibilities, we
have at least Ek(p) > µ′, where k is the smallest index in S.
Now, we will show that by perturbing the artificial fixed point
by an ε amount, we move further away from that artificial
fixed point. We run the algorithm for p′ which is different
from p in two components: the kth component is ε, and any
ith component, for i �∈ S, is ai − ε. By using the same Taylor
series arguments, we can say that Ei(p′) = Ei(p)+O(ε), for
i = 1, . . . , nT . If we insert these into fk(p′), we have

fk(p′) =
εEk(p)∑

i�∈S aiEi(p)
P + O(ε2) (61)

We know from (60) that
∑

i�∈S aiEi(p) = Pµ′. Inserting this
into the above equation, we have

fk(p′) = ε
Ek(p)

µ′ + O(ε2) (62)

> ε (63)

where the last inequality follows from the fact that Ek(p) >
µ′. This result tells us that starting from ε away from an artifi-
cial fixed point, the kth component of the updated vector, and
therefore the updated vector itself moves further away from the
artificial fixed point. By using Lemma 1, the algorithm will
move away from the artificial fixed point at each iteration.
Therefore, this artificial fixed point is unstable.
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