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Abstract. Finding approximate occurrences of a pattern in a text using a full-text index is a central
problem in bioinformatics and has been extensively researched. Bidirectional indices have opened new
possibilities in this regard allowing the search to start from anywhere within the pattern and extend in
both directions. In particular, use of search schemes (partitioning the pattern and searching the pieces
in certain orders with given bounds on errors) can yield significant speed-ups. However, finding optimal

search schemes is a difficult combinatorial optimization problem.
Here for the first time, we propose a mixed integer program (MIP) capable to solve this optimization

problem for Hamming distance with given number of pieces. Our experiments show that the optimal search
schemes found by our MIP significantly improve the performance of search in bidirectional FM-index upon
previous ad-hoc solutions. For example, approximate matching of 101-bp Illumina reads (with two errors)
becomes 35 times faster than standard backtracking. Moreover, despite being performed purely in the index,
the running time of search using our optimal schemes (for up to two errors) is comparable to the best state-
of-the-art aligners, which benefit from combining search in index with in-text verification using dynamic
programming. As a result, we anticipate a full-fledged aligner that employs an intelligent combination
of search in the bidirectional FM-index using our optimal search schemes and in-text verification using
dynamic programming that will outperform today’s best aligners. The development of such an aligner,
called FAMOUS (Fast Approximate string Matching using OptimUm search Schemes), is ongoing as our
future work.

Keywords: FM index, bidirectional, read mapping, approximate matching, mixed integer programming, optimization

1 Introduction

Finding approximate occurrences of a string in a large text is a fundamental problem in computer
science with numerous applications. The approximate string matching (ASM) problem for Hamming
distance considered in this paper is defined as follows: Given a number of mismatches K, a string (here
referred to as a read) of length R, and a text of length T , composed of characters from an alphabet
of size σ, find a substring of the text whose Hamming distance to the read is at most K. A similar
definition can be provided for ASM for edit distance where in addition to mismatches, insertions and
deletions, are also considered.

Solving the ASM problem has become especially important in bioinformatics due to the advances in
sequencing technology during the last years. The mainstream second generation sequencing techniques
like Illumina produce reads of length 150-250 with an error rate of about 1%, mostly substitutions
caused by the sequencing technology. Other sequencing technologies, e.g., Pacific Bioscience or Oxford
Nanopore, produce much longer reads but with a higher error rate (in the range of 15%) containing
both substitutions and insertions/deletions. A standard problem is to map the reads back to a reference
genome while taking into account the errors introduced by the sequencing technology as well as those
caused by biological variation, such as SNPs or small structural variations. Such a problem is almost
always modeled as the ASM problem for Hamming or edit distance.

There are two main algorithmic strategies to address the ASM problem for large input sizes (in
number of reads and size of the text): filtering and indexing. In this work, we focus on the indexing
approach. Here, the main idea is to preprocess the reference sequence, the set of reads, or both, in a
more intricate way. Such preprocessing into full-text string indices has the benefit that we usually do
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not have to scan the whole reference, but can conduct queries much faster at the expense of larger
memory consumption. String indices that are currently used are the suffix array [12] and enhanced
suffix array [1], and affix arrays [11, 18], as well as the FM-index [3], a data structure based on the
Burrows-Wheeler Transform (BWT) [2] and some auxiliary tables. For an in-depth discussion see
[16]. Such indices are used to compute exact matches between a query and a text as a subroutine in
backtracking approaches. For the ASM problem for Hamming or edit distance, the existing algorithms
all have exponential complexity in K (e.g. [5, 19]), and are hence only suited for small K.

Lam et al. [7] introduced bidirectional FM indices to speed up ASM for Hamming distance. For
the cases K = 1 and 2, they partitioned the read into K + 1 equal pieces, and argued that performing
approximate matching on a certain combination of these pieces in a bidirectional index amounts to
faster approximate matching of the whole read. This combination is such that all possible mismatch
patterns, i.e., all possible distributions of K mismatches among the pieces, are covered. The main idea
behind improved speed is that a bidirectional index not only can start the search from the beginning
(or end) of the read, but also from the beginning (or end) of any of the pieces. Therefore, we can start
the search from a middle piece and then expand it to the left or right into adjacent pieces in any order
we like. By choosing multiple appropriate orderings of pieces for this purpose, we can perform a much
faster ASM compared to a unidirectional search because we can enforce exact or near-exact searches
on the first pieces in the partition, significantly reducing the number of backtrackings, while using
different orderings of pieces to ensure all possible mismatch patterns are still covered.

Kucherov et al. [6] formalized and generalized this idea by defining the concept of search schemes.
Assume a read can be partitioned into a given number of pieces, denoted by P (not necessarily equal to
K +1). The pieces are indexed from left to right. A search scheme S = {(πs, Ls, Us), s = 1, . . . , S} is a
collection of S searches, where each search s is designated by a triplet (πs, Ls, Us). πs is a permutation
of 1, . . . , P and denotes the order in which the pieces of the partition are searched in search s. If
πs,i = j, then piece j is searched at position i in the order (shortly referred to as iteration i in this
paper). Due to the way a bidirectional index works, the permutation πs must satisfy the so-called
connectivity condition, i.e, a piece j can appear at iteration i > 1 in the permutation only if at least
one of pieces j − 1 or j + 1 have appeared at an iteration before i. Ls and Us each are strings of P
numbers. Ls,i, is the lower bound on the cumulative number of mismatches allowed at iteration i of
search s, and Us,i is the upper bound on this value.

Having this formal framework, the answer to the Optimal Search Scheme problem, defined as
follows, can potentially have a great impact on improving the running time of ASM using a Bidirectional
index (ASM-B).

Optimal Search Scheme Problem: What is the search scheme that minimizes the number of steps
in ASM-B while ensuring all possible mismatch patterns are covered?

It turns out that this is a very difficult combinatorial optimization problem due to several reasons:
There are a large number of attributes that define a solution (including S, P , size of each piece, and
(πs, Ls, Us) for each search) with a large number of possibilities for each attribute; the solution must
satisfy complex combinatorial constraints; and, calculating the objective function, i.e., number of steps
in the ASM-B algorithm, for a given solution is complicated.

Kucherov et al. [6] presented some interesting results contributing initial insight into this key
problem. More specifically, they assumed the number of steps in the ASM-B algorithm with a given
search scheme, is a constant factor of the (weighted) total number of substrings enumerated by the
algorithm in all searches. Assuming that a randomly generated read is to be matched to a randomly
generated text, they presented a method to calculate this objective function for a given search scheme.
They then showed that unequal pieces in the partition can potentially improve the objective function
compared to equal pieces, and presented a dynamic programming (DP) algorithm that for a single
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prespecified search, with given P and (π, L, U), finds the optimal sizes of pieces assuming that we only
calculate the objective function as the total number of substrings up to a limited length (justified by
total randomness of the read and the text); see [6] for more details. In fact, the superiority of this DP
over explicit enumeration is only due to this assumption. Nevertheless, this DP is very inefficient, and
most importantly, it only finds the optimal piece sizes for a prespecified search. In other words, it does
not address the problem of finding an optimal search scheme which calls for determining S and all
attributes of each search in the search scheme, and ensuring that they cover all mismatch patterns.

Kucherov et al. [6] also presented solutions for another limited problem, i.e., lexicographically
minimizing the lexicographically maximal U string (critical U string) in a search scheme, only for
P = K+1 or K+2 and assuming that the L strings for all searches contain only zeros. The usefulness
of these solutions is justified by the high probability that the search with the critical U string has the
largest share in the objective function; see [6] for details. Again from the perspective of finding an
optimal search scheme, this result has similar limitations. Only one of the attributes (U) of one of the
searches for two specific values of P are optimized by fixing all L strings, which is far from designing
a globally optimal search scheme as defined above. Consequently, in their computational experiments,
Kucherov et al. [6] use a greedy algorithm based on this limited result to construct search schemes
with unknown quality and only optimize the piece sizes for these schemes using their DP.

In this paper, for the first time, we propose a method to solve the optimal search scheme problem
for ASM-B with Hamming distance, for any given P and equal-size pieces. Our method is based on a
novel and powerful mixed integer linear program (MIP) that gets K, R, P , and an upper bound on S,
denoted by S, as input, and provides, as its solution, all the attributes of the exact optimal search
scheme (MIP methodology for optimization has been addressed in many references such as [13, 20]).
We present our MIP and provide the results of our computational study on the characteristics of its
optimal solution and its running time, for different values of its input parameters.

Next we conduct an experiment using a bidirectional search (for Hamming and edit distance)
that performs the search based on the optimal search schemes we have obtained from our MIP. This
bidirectional index search is implemented in SeqAn [15] and uses a recent fast implementation of
bidirectional indices [14] based on EPR dictionaries. We show that, for practical ranges of various input
parameters, the number of substrings for the optimal search schemes found by our MIP can reduce
to as small as half the number of substrings in the unidirectional complete backtracking. In another
experiment, we search for all occurrences of Illumina reads in the human genome completely in the
bidirectional index using our optimal search schemes and show that our time is is up to 3, 14, and 35
times faster than the standard backtracking search in the index for K = 1, 2, and 3 Hamming distance
errors, respectively. Although our MIP finds the optimal search schemes for Hamming distance, when
we used its optimal schemes with the edit distance, we got similar improvements.

The drastic improvement over standard backtracking gained by using our optimal search schemes
for bidirectional search in index suggests that the performance of read mappers that utilize an
index can be significantly improved. To gauge this potential, we even challenged our optimal search
schemes by performing a pure index-based search using them and comparing the performance with
the full-fledged state-of-the-art aligners that benefit from using a combination of search in index and
verification in text using dynamic programming. We noticed that our optimal schemes are so effective
that although they are employed in the pure index-based search, the resulting times for K = 1, 2,
and 3, are competitive with the state-of-the-art aligners which use a combination of index search
and verification in text, in strata mode. In the all-mapping mode, the results are better for K = 1,
and competitive for K = 2. These observations suggest that a full-fledged aligner that employs an
intelligent combination of search in the bidirectional FM-index using our optimal search schemes
and verification in text using dynamic programming can outperform today’s best approximate read
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mappers. The development of such an aligner, called FAMOUS (Fast Approximate string Matching
using OptimUm search Schemes) is ongoing in our group as future work.

We will introduce our MIP for solving the optimal search scheme problem in Section 2 and discuss
our computational studies on solving this MIP. Then in Section 3, we present the computational
impact of using the optimal search schemes obtained from the MIP on solving ASM-B using various
realistic scenarios. In Section 4, we will motivate the potential impact of our optimal search schemes in
developing a full-fledged read mapper and mention FAMOUS as our future work. We will conclude in
Section 5 by summarizing our contributions and raising several open problems and possible extensions.

2 Solving Optimal Search Scheme Problem using MIP

In this section, we provide our MIP-based methodology for finding optimal search schemes after
presenting some preliminaries. We will then follow with a brief computational report on solving our
MIP in order to find the optimal search schemes, including its optimal objective value as a function of
its input parameters, its solution running time, and its convergence rate to optimal solution).

Our MIP is for Hamming distance, but as mentioned before, based on our computational exper-
iments (Section 4), its optimal schemes for Hamming distance are very good (but not necessarily
optimal) search schemes for the edit distance as well.

2.1 Preliminaries

Our MIP presented in Section 2.2 will solve the optimal search scheme problem assuming P is given
as an input (is not a decision variable in optimization) and all P pieces of the partition are equal
in length, i.e., R = mP , where m denotes the length of any piece. Note that these assumptions
pose no practical restrictions. Solving problems which include P as a decision variable and allow
unequal pieces is part of our future research plan. Given the upper bound on Hamming distance K
(maximum number of mismatches) as an input, a mismatch pattern is a particular distribution of h
mismatches among the P pieces, for any h ≤ K. Specifically, the mismatch pattern q is a string of
P integers aq,1 . . . aq,P such that aq,j ∈ {0, . . . ,min{m,K}} for j = 1, . . . , P , and

∑P
j=1

aq,j = h. For
given K and P , we denote the set of all possible mismatch patterns by M. Note that if K ≤ m then
|M| =

∑K
h=0

(

h+P−1

h

)

. Given a search s = (πs, Ls, Us), a mismatch pattern q is said to be covered

by s if at every iteration i = 1, . . . , P of s, Ls,i ≤
∑i

t=1
aq,πs,t ≤ Us,i, i.e., the cumulative number of

mismatches up to iteration i is between the allowed lower and upper bounds of search s. A search
scheme S is feasible if and only if every mismatch pattern in M is covered by at least one search in S.

A search scheme can be visualized by representing each of its searches as a trie that captures all
substrings enumerated by the search. Each edge at a level of the trie corresponds to a character of the
alphabet at that level of search. A vertical edge represents a match, and a diagonal edge represents
a mismatch. Fig. 1(a) shows the tries associated with the search scheme presented by Lam et al.
[7] for K = 2 and P = 3, SLam, applied on the six-character read “abbaaa” from alphabet {a, b}
(note that the tries are slightly different from the ones given in [6], which contained a small error).
Fig. 1(b) shows a search scheme with a single unidirectional search (complete backtracking), SUni,
for the same problem, and Fig. 1(c) shows the optimal search scheme, SOpt, found by our MIP, for
the same problem. Each one of the three schemes in Fig. 1 covers all 10 mismatch patterns, namely
{000, 001, 010, 100, 011, 101, 110, 002, 020, 200}. Interestingly, the three searches sf , sb, sbi in SOpt cover
the mismatch patterns {002, 011}, {000, 010, 100, 110, 020, 200}, and {001, 101}, respectively, which is
indeed a partition of all mismatch patterns (see open problems in Section 5), whereas in SLam, the
searches sf and sb both cover 000 and 010 redundantly.

Following the method of Kucherov et al. [6], we define the performance of a search scheme as the
number of forward and backward steps taken by the ASM-B algorithm, which is equal to the total
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sf=(123,000,022) sb=(321,000,012) sbi=(231,001,012)
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a

a

a
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(a)

sf =(123,000,222)

P2

P3

P1

(b)

sf=(123,002,012) sb=(321,000,022) sbi=(231,011,012)

P1

P3

P2

P2

P2

P1 P1

P3

P3

(c)

Fig. 1. (a) The search of Lam et al. [7] as described by Kucherov [6] for K = 2 and P = 3, i.e., SLam = {sf =
(123, 000, 022), sb = (321, 000, 012), sbi = (231, 001, 012)}, shown for the read “abbaaa” from the alphabet {a,b}, i.e.,
R = 6 and σ = 2. The read is partitioned into P1 =ab, P2 =ba, and P3 =aa. Partition borders are shown by horizontal
lines. A vertical and a diagonal edge represent a match and a mismatch, respectively. Edge labels are only shown
for sf for a cleaner picture. The search corresponding to each trie is designated underneath it by its (π, L, U). The
number of edges in SLam tries is 71. (b) The unidirectional search scheme SUni = {sf = (123, 000, 222)} for the same
problem. The number of edges in SUni is 62, i.e., for this particular problem, in which R is very small, SLam enumerates
even more substrings than SUni (if all possible substrings are present in the text). Of course, if R gets larger, the
situation is reversed, making SLam more efficient than SUni as reported by Lam et al. [7]. (c) The optimal search scheme
SOpt = {sf = (123, 002, 012), sb = (321, 000, 022), sbi = (231, 011, 012)} for the same problem, found by our MIP. The
total number of edges in SOpt (optimal number of edges) is 59, which is less than that of SUni, and significantly less than
that of SLam. As shown in Section 4, for bigger problems, the reduction in the total number of edges of the optimal
search scheme found by our MIP compared to the unidirectional search is much more significant (up to 50%).

number of substrings enumerated by all searches in the scheme. We assume a single step of forward or
backward search in the bidirectional index takes the same amount of time. The tries of any search
scheme in Fig. 1 contain all possible substrings of length R. The number of substrings in each trie is
equal to the number of edges (or total number of non-root nodes). If the text contains all substrings
of length R, the search enumerates all substrings in the tries; hence, the performance of the search
scheme can be measured by the total number of edges in the search scheme. Otherwise, only a subset
of the substrings in the tries will be enumerated depending on whether they occur in the text or not.
To address the performance measure in this latter case, Kucherov et al. [6] assumed the read and the
text are randomly and independently drawn from the alphabet according to a uniform distribution,
and hence, calculated the expected number of substrings enumerated by the scheme as the sum, over
all non-root nodes of the tries, of the probability that the corresponding substring appears in the text.
As a result, they presented a weighted sum of number of edges as the measure of performance. Due to
the assumption of complete randomness and independence of the read and the text, they show that
the weights of the edges at levels lower than ⌈logσT ⌉+ cσ of the tries, where cσ is that ((σ − 1)/σ)cσ

is sufficiently small, are almost zero meaning that they can be dropped from the weighted summation.

For the main application of our interest, i.e. ASM of DNA sequence reads to reference genomes, the
assumption of randomness and independence of the read and the text is far from reality. Calculating the
expected number of substrings enumerated by a scheme calls for significant more study on determining
probabilities that DNA sequence reads of particular length from a sample occur in the reference
genomes. As currently there is no trivial answer to this problem, in this paper, we use the same
performance measure of total number of edges in the tries of the search scheme even for the case
where not all substrings occur in the text. Of course, our MIP can be easily modified to incorporate
any other weighting scenario which might be proposed in the future.

Adapting the method from [6], the total number of edges in the search scheme is calculated by
∑S

s=1

∑R

l=1

∑K

d=0
ns,l,d, (1)

where ns,l,d is defined as the number of edges at level l of the trie of search s that end at nodes
corresponding to substrings with d cumulative mismatches up to that level. The value of ns,l,d can be
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calculated using the following recursive equation, which is an adaptation of the formula in [6]:
ns,l,d = ns,l−1,d + (σ − 1)ns,l−1,d−1 for l ≥ 1 and Ls,l ≤ d ≤ Us,l, (2)

where, by definition, ns,0,0 = 1, ns,0,−1 = 0 and ns,0,d = 0, for d ≥ 1, s = 1, . . . , S, and Ls,l and
Us,l denote the smallest and largest cumulative number of mismatches that can occur at level l of
the trie of search s, respectively, calculated as Ls,l = max{Ls,⌈l/m⌉−1, Ls,⌈l/m⌉ − m⌈l/m⌉ + l} and
Us,l = min{Us,⌈l/m⌉,Us,l−1 + 1}. Here ⌈l/m⌉, the smallest integer greater than or equal to l/m, would
be the index of the iteration in which level l falls, and by definition, Ls,0 = Us,0 = 0, for s = 1, . . . , S.
For example, for search sbi of SOpt, we have Lsbi = (0, 0, 0, 1, 1, 1) and Usbi = (0, 0, 1, 1, 2, 2).

2.2 MIP Formulation of Optimal Search Scheme Problem

Our MIP formulation, presented below, solves the optimal search scheme problem assuming P is given
as an input and pieces are all equal in length. More specifically, for given K, R, P , and S, this MIP
finds the search scheme with minimum total number of edges among all feasible search schemes that
have at most S searches. The optimal solution to the MIP provides the (π, L, U) of all searches in
the optimal search scheme. The objective value of this optimal solution provides the minimum total
number of edges (substrings) achievable among all feasible search schemes.

min
∑S

s=1

∑R

l=1

∑K

d=0
ns,l,d (3)

subject to
∑P

i=1
xs,i,j = 1 for all s and j (4a)

∑P

j=1
xs,i,j = 1 for all s and i (4b)

∑i

h=1
xs,h,j −

∑i

h=1
xs,h,j−1 = t+s,i,j − t−s,i,j for all s, i = 2, . . . , P − 1,

j = 1, . . . , P + 1
(5a)

∑P+1

j=1
(t+s,i,j + t−s,i,j) = 2 for all s, i = 2, . . . , P − 1 (5b)

d− (Ls,⌈l/m⌉ −m⌈l/m⌉+ l) + 1 ≤ (R+ 1)zs,l,d for all s, l, and d (6a)

Us,⌈l/m⌉ + 1− d ≤ (K + 1)zs,l,d for all s, l, and d (6b)
(

l
d

)

(σ − 1)d(zs,l,d + zs,l,d − 2) ≤ ns,l,d − ns,l−1,d − (σ − 1)ns,l−1,d−1 for all s, l, and d (6c)

Ls,i ≤ Ls,i+1 for all s, and i = 1, . . . , P − 1 (7a)

Us,i ≤ Us,i+1 for all s, and i = 1, . . . , P − 1 (7b)

Ls,i +K(λq,s − 1) ≤
∑i

h=1

∑P

j=1
aq,jxs,h,j ≤ Us,i +K(1− λq,s) for all q, s, and i (8a)

∑S

s=1
λq,s ≥ 1 for all q (8b)

ns,l,d ≥ 0 for all q, s, i, j, l, and d (9a)

Ls,i, Us,i ≥ 0 Integer for all s and i (9b)

xs,i,j , λq,s, zs,l,d, zs,l,d, t
+

s,i,j , t
−
s,i,j ∈ {0, 1} for all q, s, i, j, l, and d (9c)

The objective function (3) minimizes the total number of edges as calculated by (1) with ns,l,d as
defined before. The binary variables xs,i,j capture the assignment of pieces to iterations, i.e., xs,i,j = 1
if piece j is searched at iteration i of search s, and xs,i,j = 0 otherwise. We define xs,i,0 = xs,i,P+1 = 0
to simplify presentation of constraints. At optimality, these variables determine the πs values for the
optimal search scheme. Constraints (4a) and (4b) make sure that for any search s, only one piece is
assigned to an iteration and only one iteration is assigned to a piece.
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Constraints (5a)-(5b) ensure the connectivity of the pieces and are in fact linearization of the
following constraint using auxiliary binary variables t+s,i,j and t−s,i,j :

∑P

j=1

∣

∣

∣

∑i

h=1
xs,h,j −

∑i

h=1
xs,h,j−1

∣

∣

∣
= 2 for all s and i = 2, . . . , P − 1, (10)

which is one way to enforce connectivity of pieces. The term
∑i

h=1
xs,h,j will have a binary value which

denotes whether or not piece j has been searched at any of iterations 1 to i of search s. The term
∑i

h=1
xs,h,j−1 captures the same notion for piece j − 1. If at any iteration all searched pieces form a

connected block on the read, the value of
∑i

h=1
xs,h,j −

∑i
h=1

xs,h,j−1 will be equal to 1 only for one
j, −1 for another j, and 0 for all other j’s, which is ensured by (10), and hence its linearization.

Constraints (6a)-(6c) enforce calculation of ns,l,d based on the recursive equation (2) with the
help of binary variables zs,l,d and zs,l,d. Due to (6a), if d ≥ Ls,⌈l/m⌉ − m⌈l/m⌉ + l, then zs,l,d = 1,
and due to (6b), if d ≤ Us,⌈l/m⌉, then zs,l,d = 1. Calculation of equation (2) is then enforced by
(6c). When zs,l,d = zs,l,d = 1, (6c) reduces to nsld − ns,l−1,d − (σ − 1)ns,l−1,d−1 ≥ 0, which implies
nsld − ns,l−1,d − (σ− 1)ns,l−1,d−1 = 0 since the objective function is to be minimized. If any of zs,l,d or

zs,l,d is equal to 0, (6c) does not enforce anything as −
(

l
d

)

(σ − 1)d is a lower bound on the right-hand
side of (6c). Constraints (7a)-(7b) ensure Ls,i and Us,i are non-decreasing as they are cumulative values.
Constraints (8a)-(8b) ensure feasibility of the search scheme. λq,s is a binary variable designating
whether or not mismatch pattern q is covered by search s. Constraint (8a) forces λq,s = 0 if search s
does not cover mismatch pattern q and constraint (8b) ensures every mismatch pattern q is covered
by at least one search, for q = 1, . . . , |M|.

Constraints (4a)-(9c) are enough to formulate the MIP; however, we have noticed that imposing
the additional constraints

x1PP = 1 (11a)

∑S

t=s

∑j−1

k=1
xt,1,k ≤ (S − s+ 1)(1− xs,1,j) for all s and j = 2, . . . , P (11b)

∑P−i+1

j=1
xsij +

∑P

j=i
xsij = 1 for all s and i ≥ ⌈P/2⌉+ 1 (12)

strengthens the formulation while preserving at least one optimal solution, resulting in faster solution
time for the MIP. Constraints (11a) and (11b) eliminate some symmetry in the solution space. For
every search scheme, there is an equivalent search scheme obtained by reversing all πs, s = 1, . . . , S.
Constraint (11a) eliminates one of these two equivalent solutions in each pair by forcing piece P to be
assigned to iteration P in the first search, eliminating the solutions in which piece 1 is assigned to
iteration P . For any search scheme, another equivalent search scheme can be obtained by permuting
the indices of searches within the scheme. Existence of only one of the search schemes obtained by
this index permutation in the feasible solution set is enough. This can be achieved by sorting (in
ascending order) the searches based on the piece assigned to their first iteration. This is done by
constraint (11b), which does not allow pieces 1, . . . , j−1 to be assigned to the first iteration of searches
s, . . . , S if piece j is assigned to the first iteration of search s. In addition to symmetry elimination,
notice that the connectivity condition of pieces implies that the piece assigned to iteration P is either
piece 1 or piece P , and in general, the piece assigned to iteration i ≥ ⌈P/2⌉ + 1 is one of pieces
1, . . . , P − i+ 1, i, . . . , P . Constraint (12) enforces this property, which strengthens the formulation,
and according to our computational tests, reduces the running time of the MIP.

Remark 1. A powerful feature of our MIP is that S is an upper bound on the number of searches, i.e.,
our MIP finds the optimal search scheme among all schemes with at most S searches. In our MIP,
variables are defined for S searches, and if the optimal search scheme has S∗ < S searches, our MIP
generates S − S∗ empty searches, i.e. searches in which Ls,i > Us,i for some i. ⊓⊔
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2.3 Solving MIP

We used CPLEX 12.7.1 solver [4] to solve our MIP by implementing the code in C++ using CPLEX
Callable Library. All instances were run over four 28-core nodes (2.4 GHz Intel Broadwell) with 64GB
of memory per node. We ran our MIP solver for instances generated for a broad range of parameters
K, R, S, and P and gave each instance a 3-hour time limit. Fig. 2(a) in the Appendix is a small
representative of our results. It shows the optimal objective value (total number of edges) for R = 100,
K = 1, . . . , 4, P = 5, 6, and S = 1, . . . , 5. If the problem is not solved to optimality in 3 hours, the
best solution found within this time limit is shown. The optimal objective value does not show a
consistent change pattern in terms of change in P ; however, as expected, it increases as K increases,
as R increases (not shown), and as S decreases. In all instances, the optimal objective value shows a
sharp drop from S = 1 to S = 2, then a modest drop to S = 3, and negligible change beyond S = 3,
generating empty searches in many cases. Therefore, as long as S = 5, it is advisable to use S = 3
instead if we would like to reduce the MIP running time and still find an optimal or near-optimal
solution for S = 5. We also noticed that the optimal search scheme obtained by our MIP is not
sensitive to the value of R (see open problems in Section 5). Therefore, when R is large, it is advisable
to solve the MIP for a much smaller reasonable value of R, e.g., R = KP , in order to get a solution
that is most probably optimal for the large R in a much shorter amount of time.

Using the MIP formulation, we were able to solve considerable size problems to optimality. For
instance, we were able to solve a problem with K = 4, R = 100, P = 3, and S = 3 to optimality in 5802
seconds. However, more complicated cases reached the time limit of 3 hours without proving solution
optimality. Consequently, it is important to investigate the rate of convergence of the solutions found
during execution of MIP to the optimal solution. Fig. 2(b) illustrates the ratio of the best solutions
found by MIP during its execution to the final optimal objective value plotted against running time
for some instances which reached optimality. We observe that in all cases, within 0.1% to 1% of the
total running time, the MIP finds a solution which is finally proved to be optimal or very close to
the optimal after MIP execution is complete. In other words, the MIP solver finds optimal or near
optimal solutions very early on and spends the rest of its time ensuring that no better solution exists.
This can be partly due to the remaining symmetry in the solution space. Nevertheless, from practical
perspective, this is an attractive property because, when the input parameters are much larger, we
can run the MIP for a short time and find solutions which are most probably optimal or near-optimal.

3 Search-in-Index Computational Gains Achieved by Optimum Schemes

In this section, we present the computational advantages achieved by using our optimal search schemes
in ASM-B (ASM performed completely in bidirectional FM-index).

While our optimal search schemes can be found for any alphabet size and read length, we chose to
concentrate on parameter values relevant to standard sequencing reads, e.g., Illumina reads. In Table
1, for a number of relevant parameter values, we have shown how the total number of edges using the
optimal search schemes found by our MIP is reduced compared to the unidirectional backtracking
scheme. It can be seen that the reduction is between 42% and 49%. Also, for K = 2 and K = 3, the
optimal search scheme with P = K + 2 has fewer edges than the one with P = K + 1.

Although the reduction factors in total number of edges obtained by our optimal search schemes
in Table 1 are very significant in themselves, due to the stochastic nature of occurrence of errors
in sequencing reads and occurrence of approximate matches in the reference genome, the real-case
ASM speed-up factors achieved by these optimal search schemes compared to backtracking can be
yet much more significant. To gain insight into this speed-up, we performed an experiment searching
for all approximate matches (for K = 1, 2, and 3) of 100, 000 real Illumina reads of length R = 101
(SRA accession number ERX1959065) in the human genome hg38 and compared the running time of
ASM-B performed with optimal search schemes obtained by our MIP for P = K + 1 and P = K + 2
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Table 1. Total number of edges in the optimal search schemes found by our MIP for K = 1, 2, 3 and P = K + 1,
P = K + 2 and P = K + 3 compared to full backtracking. The factor column shows the ratio of total number of edges in
each scheme to that in backtracking. The optimal search schemes are listed in the Appendix in Table 3.

Distance Search Scheme
K = 1 K = 2 K = 3 K = 4

Edges Factor Edges Factor Edges Factor Edges Factor

Hamming

Backtracking 15,554 1.00 1,560,854 1.00 116,299,379 1.00 6,862,924,649 1.00

Optimal (P = K + 1) 8,004 0.51 892,769 0.57 67,888,328 0.58 4,064,852,156 0.59

Optimal (P = K + 2) 8,922 0.57 854,303 0.55 65,116,676 0.56 3,916,700,994 0.57

Optimal (P = K + 3) 8,004 0.51 835,213 0.54 64,060,718 0.55 3,887,857,820 0.57

Edit

Backtracking 41,208 1.00 11,154,036 1.00 2,264,515,748 1.00 367,846,294,116 1.00

Optimal (P = K + 1) 20,908 0.51 6,315,779 0.57 1,299,709,022 0.57 213,296,122,595 0.58

Optimal (P = K + 2) 23,356 0.57 6,025,907 0.54 1,246,126,103 0.55 205,509,484,572 0.56

Optimal (P = K + 3) 20,908 0.51 5,892,667 0.53 1,226,903,544 0.54 203,270,363,390 0.55

to that of unidirectional backtracking for Hamming and edit distance. All of our tests were conducted
on Debian GNU/Linux 7.1 with Intel Xeon E5-2667V2 CPUs at fixed frequency of 3.3 GHz to prevent
dynamic overclocking effects. All data was stored on tmpfs, a virtual file system in main memory to
prevent loading data just on demand during the search and thus affecting the speed of the search by
I/O operations. All tools were run with a single thread to make the results comparable. The results
are shown in Table 2. We can see that for both Hamming and edit distance, employing our optimal
search schemes, is much faster than backtracking, verifying our expectation. The respective speed-ups
for K = 1, 2, and 3 are 3.1, 14.3, and 35.2 for Hamming distance, and 4.1, 11.1, and 21.3 for edit
distance, much more significant than reduction in the total number of edges reported in Table 1.

Table 2. Running time comparison of searching all approximate matches of 100, 000 Illumina reads (R = 101) using
optimal bidirectional scheme with P = K + 1 and P = K + 2 versus backtracking for Hamming and edit distance. The
factor column is the speed-up ratio versus backtracking in each category.

D
is
t.

Search Tool
K = 1 K = 2 K = 3

Time Factor Time Factor Time Factor

H
a
m
m
. Backtracking 22.80s 1.00 269.24s 1.00 2417.06s 1.00

Optimal-scheme bidirect. (P = K + 1) 7.73s 2.95 19.78s 13.61 74.62s 32.39

Optimal-scheme bidirect. (P = K + 2) 7.39s 3.09 18.81s 14.31 68.69s 35.19

E
d
it

Backtracking 43.59s 1.00 1245.70s 1.00 27889.40s 1.00

Optimal-scheme bidirect. (P = K + 1) 11.21s 3.89 120.70s 10.32 1338.61s 20.83

Optimal-scheme bidirect. (P = K + 2) 10.66s 4.09 112.23s 11.10 1307.23s 21.33

We also compared the optimal search schemes with Hamming distance against Bowtie1 [9] by
searching for all alignments with at most K mismatches (-v <K> -a). It turns out that our search
schemes are significantly faster (Bowtie1 takes 23, 68 and 180 seconds for 1, 2 and 3 errors).

4 Towards a full-fledged aligner

Due to the exponential complexity of ASM using FM-index in terms of K, the state-of-the-art
aligners do not perform ASM completely in index but rather use a combination of search in the index
and verification in text using dynamic programming (DP). Pure index-based search using standard
backtracking is very slow for larger values of K. However, the drastic improvement, over standard
backtracking, gained by using our optimal search schemes for search in an bidirectional index, as
observed in Section 3, suggests a potential for significant improvement in the performance of read
mappers that utilize index-based search. To acquire a sense of this potential, we decided to even
challenge our optimal search schemes by using them in a pure index-based search and compare the
results against the full-fledged state-of-the-art aligners that have the advantage of using a combination
of index-based search and in-text verification using DP.

We performed our first set of comparisons with BWA [10], Yara [17], as well as an available
implementation of the 01∗0-filter scheme combined with dynamic programming (named Bwolo) [19] in
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the all-mapping mode. We did these comparisons for the edit distance only as all these tools work
for edit distance. As before, 100, 000 Illumina reads of length R = 101 were aligned. BWA was run
with the options -N -n <K>, and Yara was run with the options -e <K> -s <K> -y full -t 1.
We note that Bowtie2 [8] is not designed with all-mapping in mind (for our data set, it did not
terminate in 3 hours with default configuration and -a option). Moreover, imposing an all-mapping
with maximum K errors in Bowtie2 in a way that its results are comparable to other tools is difficult.
Bowtie2 settings used in [19] do not enforce this, and nonetheless, led to a very long running time for
our data set (did not terminate in 13 hours). Consequently, we did not use Bowtie2 in this study.

Remark 2. We would like to note that while BWA and Yara are standard read mapping tools for
Illumina reads, Bwolo is interesting in the context of our approach. Vroland et al. [19] presented this
fast method for searching in an index by partitioning the read into K + 2 pieces for K errors and
then exploiting the fact that the K + 2 pieces must contain the mismatch pattern 01∗0. Their method
searches for an occurrence of the 01∗0 mismatch pattern in the read and then verifies the remaining
pieces of the read partially in the index (they use a unidirectional index) and partially in the text via
dynamic programming. Interestingly, their 01∗0 method can be formulated as a search scheme. For
example, for K = 2, and hence P = 4, their method can be expressed as the following search scheme:
S01∗0 = {(4321, 0000, 0122), (3214, 0000, 0122), (2134, 0000, 0022)}. The optimal search scheme found
by our MIP for these parameters is SOpt = {(4321, 0002, 0122), (3214, 0000, 0112), (2134, 0011, 0022)},
which is quite similar, but has yet fewer edges. Indeed, we verified the practical superiority of SOpt to
S01∗0 by searching 100, 000 real Illumina reads in the human genome with K = 2 Hamming and edit
distance and noticed that SOpt took less time than S01∗0 (18.8s vs. 22.0s for Hamming, and 112s vs.
160s for edit distance, respectively). ⊓⊔

Back to our first set of comparisons, for K = 1, BWA, Bwolo, and Yara, took 12.67s, 20.79s, and
11.53s, respectively. This is while, according to Table 2, the pure index-based ASM using our optimal
schemes for P = K +1 = 2 and P = K +2 = 3, took 11.21s, and 10.66s, respectively, i.e., our optimal
schemes are so effective that although the search is performed completely in index, the resulting times
are better than these full-fledged state-of-the-art aligners, which use a combination of index search
and in-text verification. Note that pure index-based search using standard backtracking takes 43.59s
which is much worse than all aforementioned times. For K = 2, BWA, Bwolo, and Yara times took
143.32s, 64.09s, and 70.56s, while pure index-based ASM using our optimal schemes for P = K+1 = 3
and P = K +2 = 4, took 120.70s, and 112.23s, respectively, i.e., they performed better than BWA but
worse than Bwolo and Yara. For K = 3, the benefit of using in-text verification in full-fledged aligners
catches up and all of them work faster than the pure index-based search using our optimal schemes.

We find these results for our optimal search schemes very impressive. To our knowledge, this is
the first time that, for K = 1 and K = 2, ASM of reads of this size (R = 101) performed completely
in index has been reported to compete in running time with the best full-fledged aligners, which
use combination of index search and in-text DP verification. This implies the power of our optimal
search schemes. We note that the results are even better in strata mode. We performed a second set
of comparisons with Yara, this time in strata mode. The 0-strata search means we first search the
reads with 0 errors, then search all the reads with no exact match, with 1 error, and so on, until K is
reached. This strategy can be generalized to s-strata, where s ≤ K. This means that, for b = 0 to
K − s, for all reads with a b-error best match, we compute all occurrences with up to b+ s errors.
We ran Yara in 1-strata mode using -e <K> -s 0 -y full -t 1 and compared the time with the
pure index-based search using our optimal schemes in the same mode. For K = 1, 2, and 3, Yara took
3.57s, 8.00s, and 38.48s, respectively, and the pure index-based search took 4.36s, 8.57s, and 53.74s,
respectively. That is for K = 1, 2, and 3, the pure index-based search using our optimal search scheme
is about as fast as the full-fledged aligner Yara, which uses index search and in-text DP verification.
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Of course, we did not expect to be able to outperform full-fledged aligners for larger values of K,
because for larger K and this read length, verification in index is too costly, especially if the number of
successful verifications is low (in our case almost all reads occur only once in the genome). Although
Vroland et al. [19] raised the option of using a bidirectional index for verification, they only used
in-text DP verification for the last pieces as they had only a unidirectional index at hand. Nevertheless,
interestingly, for their data set (40bp, exactly 3 errors), pure index-based search using our optimal
search schemes outperforms Bwolo by a factor of almost 1.5 (data not shown), so the read length
matters. Although the optimal scheme found by our MIP is superior to the 01∗0 scheme of Vroland et
al. [19] for search in the index, for a larger K, one has to take into account the number of remaining
verifications versus the number of edges in the trie for the remaining pieces. If that ratio is low, it
does not pay off to verify in the index instead of verification in the text as our comparisons showed.

Our observations in this section about the power of our optimal search schemes suggest that a
full-fledged aligner that employs an intelligent combination of search in the bidirectional FM-index
using our optimal search schemes and in-text verification using DP can outperform today’s best
approximate read mappers. The development of such an aligner, called FAMOUS (Fast Approximate
string Matching using OptimUm search Schemes) is ongoing in our group as future work.

5 Conclusions

In this paper, we contributed to the approximate string matching research as follows:

1. We proposed, for the first time, a method to solve the optimal search scheme problem for ASM-B
for Hamming distance (using a MIP formulation).

2. We demonstrated that our MIP approach can solve the optimum search scheme problem to
optimality in a reasonable amount of time for input parameters of considerable size, and enjoys
very quick convergence to optimal or near-optimal solutions for input parameters of larger size.

3. We showed that approximate search in a bidirectional FM-index can be performed significantly
faster if the optimal schemes obtained from our MIP are used. This was demonstrated based
on number of edges in the search tries as well as actual running time of in-index search on real
Illumina reads (up to 35 times faster than standard backtracking for 3 errors). We also showed that
although our MIP solutions are for Hamming distance they perform equally well for edit distance.

4. We showcased the power of our optimal search schemes by demonstrating that for K = 1 and
2 errors, approximate string matching of reads of size R = 101 performed completely in index
compete in running time with the best full-fledged aligners, which benefit from combining search
in index with in-text dynamic programming verification. This suggests that a full-fledged aligner
that intelligently combines search in bidirectional index using our optimal search schemes with
in-text verification using DP can outperform today’s best approximate aligners. The development
of such an aligner, called FAMOUS is ongoing as our future work.

Moreover, our approach in this research has raised some interesting open problems:

1. Our computational experiments in Section 2.3 showed that our current MIP has two attractive
properties: the early solutions it finds are optimal or near-optimal, and its optimal search scheme
is insensitive to the value of R (we ask: “is this insensitivity to R a theoretically provable fact?”).
This makes our current MIP quite powerful in practice because, even if all input parameters K, R,
P , S are quite large, we can run the MIP for a short time with a much smaller R to get a solution
that is most probably optimal or near-optimal for the original problem. Nevertheless, solving the
MIP completely to ascertain optimality is of great interest and currently consumes considerable
computational resources for large instances, especially when S > 5, K > 4, P > 6, R > 100. We
ask “can the solution time be improved by introducing other MIP formulations, or strengthening
the current formulation using strong cutting planes or further elimination of symmetric solutions?”
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2. Our current MIP is restricted to optimizing over equal-size pieces, with P and S given as part
of the input. We ask “are there (MIP) approaches to optimize over the number of pieces in the
partition, and/or unequal piece lengths, and/or with no upper bound on the number of searches?”

3. Our optimal search scheme, SOpt, for the example of Lam et al. [7] covers every possible mismatch
pattern only once, ensuring that no duplicate computational effort is spent on the same mismatch
pattern. We, however, believe that this is not always the case for every optimal search scheme. We
ask “how would enforcing this requirement on the solution of MIP affect its solution time and the
performance of optimal search schemes it obtains?”

4. We demonstrated that solutions found by our MIP, although for Hamming distance, perform very
well for the edit distance as well. We ask “are there (MIP) approaches to find the actual optimal
search scheme for the edit distance?”

5. We demonstrated that the verification of few occurrences with high errors in the index is worse
than in-text DP verification. We ask “what is the best point to stop verification in the index and
start verifying in the text instead?.” This can be individually decided for each pattern. We are
addressing this problem in the ongoing development of our upcoming full-fledged aligner FAMOUS.
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Fig. 2. (a). Sensitivity of optimal objective value to parameters R, K, S, and P . For some cases due to memory overflow,
there is no data point. (b) Rapid convergence of feasible solutions to the optimal solution.

Table 3. Search schemes found by our MIP for K = 1, 2, 3 and P = K + 1, P = K + 2 and P = K + 3 used for
experiments in Tables 1 and 2. The schemes for K = 1 and 2 are optimal schemes with S = 5. To control the running
time of MIP, the schemes for K = 3 and 4 are best solutions found by running the MIP for 2 hours with S = 3. These
schemes are most probably optimal for S = 3.

K = 1 K = 2 K = 3 K = 4

Optimal (P = K + 1)
(12, 00, 01)
(21, 01, 01)

(123, 002, 012)
(321, 000, 022)
(231, 011, 012)

(1234, 0003, 0233)
(2341, 0000, 1223)
(3421, 0022, 0033)

(12345, 00004, 03344)
(23451, 00000, 22334)
(54321, 00033, 00444)

Optimal (P = K + 2)
(123, 001, 001)
(321, 000, 011)

(2134, 0011, 0022)
(3214, 0000, 0112)
(4321, 0002, 0122)

(12345, 00022, 00333)
(43215, 00000, 11223)
(54321, 00003, 02233)

(123456, 000004, 033344)
(234561, 000000, 222334)
(654321, 000033, 004444)

Optimal (P = K + 3)
(1234, 0000, 0011)
(4321, 0001, 0011)

(21345, 00011, 00222)
(43215, 00000, 00112)
(54321, 00002, 01122)

(123456, 000003, 022233)
(234561, 000000, 111223)
(654321, 000022, 003333)

(1234567, 0111111, 3333334)
(1234567, 0000000, 0044444)
(7654321, 0000004, 0333344)
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