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Abstract. Tompa and Woll considcred a problem of cheaters in (5, n )  
threshold secret sharing schemes. We first derive a tight lower bound on 
the size of shares IV,I for this problem: IV,I 2 (IS1 - l) /6 + 1, where Vt 
denotes the set of shares of participant Pt, S denotes thr set of secrets, 
and 6 denotes the cheatirig probabilily. We riexb present an optirriurri 
scheme which meets the equality of our bound by using “difference sets.” 

1 Introduction 

( k ,  71,) threshold secret sharing schemes [ a ,  31 have been studied extensively so 
far because of their wide applications in fields, like key managcment and secure 
computation. In such a scheme, a dealer D distributes a secret s to n participants 
P I ! .  . . , Pn in such a way tha t  ariy k or more participants can recover the secret 
s but  any k - 1 or fewer participants have no  information on s. A piece of 
information given to  Pi is called a share and is denoted by vi . An important issue 
in sccret sharing schemes is the size of shares IVil, where Vi = { u i  I Pr(vi) > O}, 
because the  security of a system will decrease if lVil increases. Let S = { s  I 
Pr(s) > 0).  Then  it is known tha t  

a 
A 

in any (k, n)  threshold scheme [4]. 
Tompa and Woll [l] considered the following scenario. Suppose that k - 1 

participants PI,.  . . , P k P l  want to cheat a k-th participant P k  by opening forged 
shares ,ui , . . . ,YI;-~.  They succeed if the secret s’ reconstructed from u;, . . . ! 
and 11k is different from the original secret s. Tompa and Wo11 showed tha t  
Shamir’s scheme [2] is insecure against this attack in tha t  even a single partici- 
pant can, with high probability, deceive k - 1 honest participants. They showed 
a scheme secure against this problem, but lVil in their scheme is very large: 

pi1 = ((IS1 - l ) ( k  - l ) / c  + Icy (1) 

where E denotes the cheating probability. Carpentieri, De Santis, and Vaccaro 
[5] recently showed t,he following lower bound on IVi I for this problem: 

IVil 2 ISl/f. (2) 
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Now, we see that there is a big gap bet,ween eq. (1) and (2). Both of them can 
be improved. Furthermore, in the derivation of eq. (2)  it is assumed that Ic - 1 
cheaters P I , .  . . , PkP1 somehow know the secret s before they cheat Pk. (We call 
this the CUV assumption.) 

In this paper we first derive a tight lower bound on lY;( for this problem by 
using a probabilist,ic method. In deriving our bound, we do not use the CDV 
assumption. That  is, it  is assumed that k - 1 cheaters have no information on s 
(according to the definit,ion of (le,n) threshold secret sharing schemes). Let 6 be 
the probability that PI , .  . . , P k - l  can cheat, Pk. Then our bound is 

We then present an optimum scheme which meets the equality of our bound 
by using “difference sets.” A planar difference set modulo N = 1(1 - 1) + 1 is 
a set of 1 niimbers B = {do ,  d l ,  . . . , dl-l} with the property that the 1 ( 1  - 1)  
differences d; - dj (di # d j ) ,  when reduced modulo N ,  are exactly the numbers 
1 , 2 ,  . . . , N - 1 in some order [6]. I t  is known that there exists a planar difference 
set if 1 is a prime power [ 6 ] .  Our optimum scheme is then chamcterized as follows. 
If there exists a planar difference set modulo N = 1 ( 1  - 1) + 1 such that N is 
a prime, then there exists a ( k ,  n )  threshold secret sharing scheme which meets 
the equality of our bound eq. (3) such that IS1 = I ,  6 = 1/1, n < N .  

Furthermore, this result is generalized as follows. Let (T, +) be a group of 
order N and let B = {do ,  d l ,  . . . , &-I} be a subset of r. Then B is called a 
( N ,  I ,  A) difference set [7] if each nonzero element z of r appears X times as a 
difference di - d j  (d i  # d j ) .  Our generalized scheme is then given as follows. 
There exists a ( k ,  n )  threshold secret sharing scheme which meets the equality 
of our bound eq. (3) such that IS1 = 1 , 5  = A / / ,  n < N if there exists a (N, 1 ,  A)  
difference set B in ( G F ( N ) ,  +). It is known that there exists a ( N ,  I ,  A)  difference 
set B in ( G F ( N ) ,  +) such that N = 4t -- 1,1 = 2t -- 1, X = t - 1 [7]. 

Finally, for the model with the CDV assumption, we show a lower bound on 
lVil more tight than eq. (2) by using the same technique we use to derive eq. 
( 3 ) .  Our bound for the model with the CDV assumption is 

A slightly different problem has been studied by other researchers. McElice 
and Sarwate [8] showed that in Shamir’s ( I c ,  n )  threshold scheme, any group of Ic+ 
2e participants which includes at  most e cheaters can always identify cheaters and 
correctly calculate the secret,. (More t,han k participmts a.re required though.) 
The problem of identifying cheaters has also been studied [9, 10, 11, 121. Those 
schemes, however, require lVil much bigger than the bound given in eq. (3) .  On 
the other hand, in this paper, we are interested only in detecting the fact of 
cheating. 
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2 Preliminaries 

2.1 Definition of cheating 

D denotes a probabilistic Turing machine called a dealer, S denotes a random 
variable distributed over a finite set S, and s E S is called a secret. On input 
s E S ,  D outputs ( ~ 1 , .  . . , v,) randomly. For 1 5 i 5 n ,  each participant Pi holds 

vi as his share. denotes the random variable induced by u i .  Let Vi = {v; I 
Pr(K = v i )  > 0). 

Definitionl. We say that, ( D ,  S )  is a ( k ,  n )  threshold secret, sharing scheme 
if the following two requirements hold: For any { i l ,  . . , , ij} C (1, . . . , n }  and 
( v i l , .  . . , v i , )  such that Pr(X1 = t i i ,  > .  . . , Kj = tliJ) > 0,  
( A l )  if j 2 k ,  there exists a unique s E S such that 

n 

P r ( S  = s I XI = v i , ,  . . . , K, = vi,) = 1, 

(A2) if j < k ,  for each s E S, 

Pr(S = s 1 V,, = v i l , . .  . ,Kj = v i , )  = Pr(S = s). 

Definition 2. For w E Vi,  x . . x Vi, ! 

s 
I otherwise. 

if 3s E S such that Pr(S = s I 15, ’ . .  K k  = w) = 1, 

( ( 2 1 ,  . . . , i k )  will be omitted.) 

Definition3. Suppose that k-1 cheat,ers Pi,, . . . , Pik-l have b = ( v i l , .  . . , vik-,) 
as their shares. We say that the cheaters can cheat Pii, by opening b’ = (v:, ! , . . , 
if ,Sec(b’,vi,) # Sec(b,vi ,)  and Sec(b’,vi,) E S, where w i k  denotes the share of 
Pik. 

2.2 

Carpentieri, De Santis, and Vaccaro [5]  showed t.he following lower bound on 
JVi l  by using entropy. In deriving that bound they assumed that k - 1 cheaters 
Pi, 3 . .  . ! ‘ i k - 1  shomchow know the secret s before they cheat Pk, although, in 
the definition of ( k ,  n )  threshold secret sharing schemes, k - 1 cheaters have no 
information on s. (We call this the CDV assumption.) Let b = (wi,, . . . , v i k - l )  

denote the shares of the cheaters, and let b’ = ( u : ~ ,  , , . , vik-,) denote the forged 
shares that the cheaters open to cheat Pik. Carpentieri et al. defined the average 
cheating probability as follows: 

Known bound on lVil under the CDV assumption 

A P’(Chent I V,, , . . . ! K k - l ,  S) = E[maxPr(Pi, is cheated by b’ 
b‘ 

I P. $ 1  . . . Pikwl have 6.  They also know s)], (4) 
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Definition4. [5] A ( k , n )  threshold secret sharing scheme is called a ( k , n , c )  
robust secret sharing scheme if P'(Cheal I V,, , . . . , K k - - l ,  S) 5 E for any 
{il,...,ik-l} (1 ,...,?I}. 

Proposition 5. /7] Iii u ( k ,  n,  F) robust secret sharzng scheme, zf t h e  secret zs 
unzformly chosen, then IV,l 2 ISl/c. 

3 New Lower Bound on IV;l 

3.1 

In this section we derive a tight lower bound on (Vd( by using a probabilistic 
method. In deriving this bound we do  not make the CDV assumption (see suh- 
section 2.2). T h a t  is, i t  is assumed tha t ,  amording to the definition of ( k , n )  
threshold secret sharing schemes, k - 1 cheaters have no information on s. Sup- 
pose tha t  Pi,, . . . , Pik-, are cheaters. Let b = ( , u i l , .  , , , uik- l )  denote the shares 
of the cheaters, arid let b' = (wi, ~. . . , v : , - ~ )  denote the forged shares that the  
cheaters open to  cheat Pi,. Since the cheaters have no information on s ,  we 
define the average cheating probability as follows: 

Definition of secure secret sharing 

P(Chcat I v,, , . . . , vz,-,) 
( 5 )  

A 
= E[max Pr(Pi, is cheated by b' I Pil . . Pik--l have b ) ] ,  

6' 

(S and s in eq. (4) are absent from eq. (5). ) 

Definition6. A (k, n )  threshold secret sharing scheme is called a (k, n ,  6)  secure 
secret sharing scheme if P(Chea t  I K,,. . . , x,-,) 5 6 for any {il, . . . i k - 1 )  C 
{l, . . . , n } .  

3.2 

In the distribution phase, suppose that cheaters fi l  . . . , PiL-l have b = ( v i l , .  . . , vit- ,)  

as their shares of a secret s and Pi, has z as his share. That is, Sec(b, z) = s. In 
the reconstruction phase, if Pi, opens vf, (# vil )  such tha t  Sec(vil, via ,  . . . , vik- 1 ,  2) = 
st and s' # s, then Pi, is cheated. Now, let 

New lower bound on lVil 

n 
Y ( z ,  s) = {u:, E vi, I Scc(w:l ui2, . . . , ui,-,, z) = s' E s, s' # s )  

For fixed z and s, Y ( x ,  s) denotes the set of forged shares of Pi, which can cheat 
Pi,. (However, the cheaters do not know z nor s.) Let 

A W(s) = {z E Vi,  1 Sec(b ,z )  = s}.  

W ( s )  denotes the set, of possible shares of Pi, for a fixed s .  

Lemrna7. For Vs E S,Vz E W ( s ) ,  

IY(z,s)l 2 PI - 1. 
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Proof. Since k participants can recover the secret iiniquely, for Vs‘, s”(s’ # s”), 

{D:, E Vi, I Sec(vkl , vi2,. . . wik-, , z) = d} 
n {vi, E Vi, I Sec(v:l, wa,, . . . , w ~ ~ - ~ ,  z) = s ” }  = 0. 

From (A2) of Def.l,  for any s’ E S, there exists a t  least one vk, such that 

Sec(v i l ,  v;, , . . . , i ~ i , - ~ ,  z) = s’. 

‘lherefore, from the definition of Y ( z ,  s ) ,  

s ’ E S , s ‘ # s  

= IS1 - 1. 

Now our lower bound on lVil is given as follows. The  following bound holds 
for any distribution on S. 

Theorems. In  a ( k ,  n ,  6 )  secure secret sharing scheme, 

Proof. Consider cheaters Pi,, . . . , Pi,-, such tha t  only Pi, opens a forged share 
vl,(# wi,). The  other Pi2,.. . , Pi,.., open their shares honestly. For these specific 
cheaters, 

maxPr(Pi ,  is cheated by b’ I Pi, . . Pik-l have b )  
b’ 

2 m?xPr(Pi, U is cheated by vi, I Pi, . .  . Pik-, have 6) (7) 
‘I 

Now, we randomize D : ~  in order t o  compute the right-hand side. Consider Pi, 
who opcns vl, (f vi,) randomly. More precisely, 

For this probabilistic Pi, , let’s compute 

E[Pr(Pik is cheated by vi, 1 Pi, . . . Pik-, have b ) ] ,  
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where E is taken over w:, and Pr ( )  is taken over s and 2. Then from lemma 7, 

E,! [ Pr  (Pi, is cheated by zll, I Pi, . . Pik-, have b)]  

= E,,,E1v(s)[Pr(Pik is cheated by uil  I 4, . I . Pik-l  have b)]  
'1 s , z E W ( s )  

U 
'1 

= ~ ~ , ~ ~ W ( ~ ) ~ l ~ ~ ~ l ~ ) l / ( I ~ i l  I - 111 
L (IS1 - 1)/(IXl I - 1). 

Therefore 

maxPr(Pi, is cheated by wi, I Pi, . . .Pi,-, have 6 )  

>_ E,! [Pr(Pik is cheated by v:, I Pi, " . P i k - ,  have b ) ]  

Y '  
'1 

'1 

2 (IS1 - 1)/( lk I - 1). 

Hence, from eq. ( 7 ) ,  

maxPr(P;,  is cheated by b' I Pi, ...Pik-, have b )  2 (IS1 - l)/(IVi,l - 1). 

Eb[maXPr(Pi, is cheated by b' I Pi, '..Pi,-, have b ) ]  2 (IS1 - l)/(IVi,l - 1). 

b' 

b' 

Consequently, in a ( k ,  n , 6 )  secure secret sharing scheme, 

2 I ~ 1 > " ' l ~ k - , )  2 ( / s ~ - l ) / ( ~ v % l ~ - l ) ~  

Therefore, /!Iz, I 2 (IS1 - 1)/6 + 1. 0 

4 Optimum ( b ,  n, 6) Secure Scheme 

In this section, we show an optimum scheme which meets the equality of Theorem 
8 by using "difference sets." 

4.1 Difference set 

Definition9. [6] .4 p l a n a r  dz f ference  s e t  modulo N = l(1 - 1) + 1 is a set of 1 
numbers 3 { d o , d l , .  . . , dl-1) with the property tha t  the [ ( I  - 1) differences 
d,-d, (d, # d J ) l  when reduced modulo N ,  are exactly the numbers 1 , 2 , .  . . , N-1 
in some order. 

E x a m p l e  1. [6] {do  = 0,  d l  = 1, dg = 3 )  is a planar difference set modulo 7 with 
1 = 3.  Indeed, the differences modulo 7 are 

1 - 0 = 1 ,  3 - 0 = 3 ,  3 - 1 ~ 2 ,  0 - 1 ~ 6 ,  0 - 3 = 4 ,  1 - 3 = 5 .  

Proposition 10. [6] In a p r o j e c t i v e  p l a n e  PG(2, q ) ,  a lane h a s  1 = q + 1 p o i n t s  
*do > . . . ,  N ~ ~ - ~ ,  where  q i s  a p r i m e  p o w e r .  Then {do ,  . . . , dl-1) is a p l a n a r  d i f f e r -  
e n c e  .set modulo q 2  + q + 1. 



206 

Definition 9 is generalized as follows. 

Definitionll. [7] Let (T,+) be a group of order N .  B is called a ( N , / , A ) -  
difference set if it satisfies 

- B c r and IBI = 1 ,  
- the list of differences d - d’ # 0,  where d,d’ E B ,  contains each nonzero 

element of r precisely X times. 

Proposition12. [7] There exzsts a ( N , l , A )  difference set B zn ( G F ( N ) , + )  
such tha t  N = 41 - 1 , l  = 2t - 1 , A  = 1 - 1, where t as a positzve integer. 

Rxample2 .  [7] B = {1,3 ,4 ,5 ,9}  is a (11,5,2)-difference set in (G‘F(ll),+). 

4.2 

In this subsection we show that if there exists a planar difference set modulo 
N = 1(1  - 1) + 1 such that N is a prime, then there exists a ( k , n , S )  secure 
secret sharing scheme which meets the equality of our bound eq. (6) such that 

Let B = { d o , .  . . ,&I} be a planar difference set modulo N = l(1 - 1 )  + 1 
such that N is a prime. We show a ( k ,  n,  6 )  secure secret sharing scheme such 
that S = B .  Assume that S is uniformly distributed over S. In what follows, all 
operations are done over G F ( N ) .  

Distribution phase. For a secret d, E S ( =  B ) ,  the dealer D chooses a random 
polynomial f (z )  of degree k - 1 over G F ( N )  such that f (0 )  = d,. The sharc of 
Pi is given as ~ l i  = f ( i ) .  Note that 

Optimum scheme based on planar difference set 

IS1 = 1 , 6  = l / l , n  < N .  

V i ]  IV,l = N = 1(1- I) + 1. (8) 

Reconstruction phase. Suppose that Pi, , . . . , Pi, open Gi,  , . . . , 6 i k .  Each par- 
ticipant computes d, = )-‘;=, c j G i j ,  where c j  = JJlgj(--i{)/( i j  --if) for 1 < j < k. 
If d, E B ,  they accept d, as the secret. Otherwise, they output 1. Note that,  
for any k honest) shares w i l  = j ” ( i l ) , .  . . , w;, = f ( i k ) ,  

d s  = g , l c j v i ,  (9) 

from Laglange formula [13] 

Proposition 13 (Lagrange formula). [13] Let h ( s )  be a polynomial overGF(N)  
such that deg h(r )  = k - 1. For an.y distinct ill . . . , i k ,  

k 

h(0)  = c j h ( i j ) ,  where c j  = n(- i r ) / ( i j  - i l )  

j=1  1 #i 

Lemma 14. The proposed scheme is a ( k ,  n )  threshold secret sharing scheme. 
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Proof. (Al)  of Defnition 1 is satisfied from eq. (9). Next, 

Pr(S = d, I V,, = vi,). . . , Kk-, = vik-,) 
- Pr (S  = d,) Pr(V,, = ZI~, , . . . , xk-L = vir-, I S = d,) 
- 

Pr(V;, = vi,, ’ .  . , K k - l  = v i k - - l )  

For each d, E S, I(.) is randomly choscn and degf(z)  = k - 1. Therefore 
!4, ... V,,-, is random for each d, E S. Hence 

Pr(V,, = v i l , .  . . , xk-, = ?)ak-, I S = d,) = €’r(Kl = v i l , .  . . , Ek.-l = vik-,). 

Consequently, 

Pr(S = d, I XI = v i l , .  . . ,V,,-, = w i k - , )  = Pr(S = d,). 

‘Thus (A2) of Defnition 1 is also satisfied. 

Lemma 15. The proposed scheme 2.9 a (k, n,  6 )  secure secret sharzng scheme 
such that IS1 = 1 , s  = 111 and n < N .  Furthermore, the equalzty of eq. (6) zs 
satasfied. 

Proof. Suppose that cheaters Pi,, . . . , Pik-, have b = ( v i , , ,  , . , v i k - , ) .  Let tjhe 
share of Ptk be a: E ( 0 ,  I , .  . . , N - l}. Then, from eq. (9), 

k-1 

S e c ( b ,  x )  = C r j  u i ,  + c k r  = n, E B(= s). (10) 
j=1  

Define 
.,a 1 = {x I ,Scc(b ,x )  E B } .  

For any fixed b, eq. (10) defines a bijection T from 13 l o  T such that 
~ ( d , )  = x E T because ck # 0. Since d, is uniformly distributed over B ,  2 is 
uniformly distributed over T. (Remember that S is uniformly distributed over 
S.) Therefore for any fixed b and b’, 

Pr(P;, is cheated by b‘ 1 Pi, . . .  Pik-, have b)  = Ig;,(b --+ b’)l/\Tl, (11) 

where 

Since T is a biject,ion, 
IT1 = IAl= 1 

Now let’s compiit)e l p i k ( b  + b’)l. Fix b = ( v i l , .  . . , v j k - l )  m d  6’ = ( T ) : , ,  . . . ,v;,-,) 
arbitrarily. Define 

k-1 k-1 
A n 

a = C cjvi,, a’ = C cj7);, . 
j=1  j=1 
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From eq. (10) and since 7 is a bijection, 

Note tha t  a-a’ is a constant for fixed b and 6’. On the other hand, from Definition 
9,  for Ye # 0,  

since d’ 1 d - e .  So we obtain 

for b and b’ such that a - a’ # 0. If a - a’ = 0,  then Ivi ,(b -+ b’)l = 0 because 
no d (or no x) satisfies a - u’ # 0. Therefore, from eq. (11),(12) and (13), 

Consequently, from eq. ( 5 ) ,  

l’hus this scheme is a ( k ,  n ,  6) secure scheme siich tha t  S = l/l .  I t  is clear t ha t  
IS[= IBI=l.E’inally,frorneq. ( 8 ) , V ’ j , I V j I = N = ( I - 1 ) 6 + 1  =(lSl-1)/6i-l. 
Hence, this scheme meets t8he equalitmy of eq. (6). 0 

Now the  following theorem is obtained from lemma 14 and 15. 

Theorem16. If there exists a planar difference set modulo N = l(1 - 1) + 1 
such that N is a prime, then there exists a ( k )  n, 6) secure secret sharing scheme 
which meets the equality of our bound eq. ( 6 )  such that IS/ = 1 ,  S = 1/1, n < N .  

From proposition 10, we obtain the following corollary. 

Corollary 17. Let  q be a przme power such that q’ + q + 1 zs a przme. Then, 
there exists a ( k , n , S )  secure secret sharzng scheme whach meds  the equalaty uf 
eq. (6)  such that IS1 = q + 1,s  = l / ( q  + 1) and n < q2 + (I + 1. 

Remark. Instead of publicizing a planar difference set B itself, it  is enough to  
publicize t,wo points cyo and a1 of PG(2 ,  IS1 - 1).  According to  Proposition 10, 
B can be obtained from ( a o , a l ) .  
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4.3 

Theorem 16 is generalized as follows 

Optimum scheme based on a (N,Z,X) difference set 

Theorem18. If there exzsds a ( N , l , X )  dzflerence set B in ( G F ( N ) , + ) ,  then 
there exists a (k, n, 6) secure secret sharzng scheme which meets the equality of  
our bound eq. ( 6 )  such that IS1 = 1,s = X / l ,  n < N .  

The  following corollary is obtained from proposition 12. 

Corollary 19. For a poszlzue znleger t such lhal 4 t  - 1 2s a przme power, ihere 
exzsts a (k ln ,6)  secure secrei sharzng scheme whzch meets the equality o f  our 
bound eq. (6)  such that IS1 = 2t - 1 , 6  = ( 1  - l ) / ( 2 t  - 1) ,n  < 4t - 1. 

5 Tighter Bound on IV;( under the CDV Assumption 

In this section, we use the same technique used in subsecction 3.2 and, under the 
CDV assumption, show a lower bound on IVil tha t  is more tight than proposition 
5. (The CDV assumption is tha t  k - 1 cheaters PI , .  . . , Pk--l somehow know the  
secret s .) 

In the distribution phase, suppose tha t  cheaters Pil , . . . , Pik-] have b = 
(u i ,  , . .  . , uZk-]) as their shares of a secret s and Pik has z as his share. T h a t  
is, S e c ( b , z )  = s .  Fix s and b .  Let 

A Y‘ ( z )  = { w : ,  E ~ i ,  1 Sec(vkl , o iz  , . . . , vik- l  , x) = s’ E S, s’ # s }  

A W’ = {z  E Vi,  I S e c ( b , z )  = s} 

In the reconstruction phase, if Pi, opens vil  E Y‘(x) ,  then Pi, is cheated. W‘ 
denotes the set of possible shares of Pi,. 

Lemma 20. For fixed s and b such that Pr(K, . . K,-, = 6, S = s )  > 0, 

IW’1 2 l /€.  (14) 

Proof. Consider cheaters 9, , . . . , Pi,-, such tha t  only Pil opens a forged share 
u:,(# q1). The other Pi,,. . . , open their shares honestly. The  way tha t  P, ,  
opens vil is as follows. First, Pi, chooses i E W’ such that 

Pr(Kk = f I Kl  . . .V,,-,  = 6,s = s) = max,Pr(T/,, = 2 1 K1 . . . E k - ,  = b,S = s). 

Then,  Pil opens vi, E Y ‘ ( 2 )  arbitrarily. In this case, Pi, is cheated if his share 
is 2 .  For these specific cheaters, in eq. (4), 

maxPr(Pi,  is cheated by b’ I Pi, . . . 

Z E W  

have b. They also know s)  
b’ 

2 Pr(Pi, is cheated by oil I Pi, . . Pik-l have 6 .  They also know s) 

2 Pr(K, = j: I V;, ...V,,., = 6,s = s )  
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= max Pr(x,  = 2 I V,, . . . V,,-, = b ,  S = s )  

2 IW’I-’ 

X € W ’  

Pr(xk  = 2 1 V 2 1  . - . I / Z k - ,  = b , S =  s) 
X€W‘ 

>_ 1w’l-l. 
Since the  scheme is €-robust, t 2 E[lW’l-’] = lW’/-l 
Therefore, we obtain eq. (14). 

Lemma21. ForVx E W‘, IY‘(z)l 2 (IS1 - l ) / c .  

Proof, From lemma 20, l {y E Vi ,  I Sec(y, 712,. . . , V k - 1 ,  x) = ,?’}I 2 I / c .  
Therefore, 

IY’(z)l = I u {y E v,, I Sec(va’l, V i a , .  . . r U , k - - 1 , 2 )  = s’}I 
d € S , S ’ # S  

- - l{y E Vi ,  I Sec(y , ’02 , .  . . , V k - 1 ~  x) = s’}l 
S ‘ E S , S ’ # S  

0 

S ‘ E S , S ’ # S  

= (14 - 

Now, our lower bound on IVil is as follows. 

Theorem 22. In a ( k ,  71, c)  robust secret sharing scheme, 

Proof. Consider a probabilistic Pi, such as shown in the proof of Theorem 8. 
For such Pi,, let’s compute 

E[Pr(Pi, is cheated by v:, I Pi, ’ ’  .Pi,-, have b and they know s], 

where E is taken over .ull and Y r ( )  is taken over x E W’. Then from lemma 21, 

ED/  [ P r  (Pik is cheated by  it, I Pil I . .  Pik-I  have b and they know s] 

= EXEwl[sr (Pik  is cheated by v:, 1 Pil . ’ ’  Pik-, have h a.nd they know .9] 

‘ 1  X E W ’  

‘ I  

= &C€W”IY’(”)//(IVi,I - 1)1 
2 (IS1 - 1 ) / 4 l V i ,  I - 1) .  

Therefore 

v! 
maxPr(Pi ,  is cheated by vi, 1 Pi, . . . Pik-, have b and h e y  know s )  

2 Ev/ [€+(Pi, is cheated by u;‘, I Pi, . . . Pi,-, have b and they know s )]  
‘1 

‘1 

2 (IS1 - 1)/t(Ivi11 - 1). 
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Hence 

maxPr(Pi, is cheated by b’ I Pil . . . Pik-, have b and they know s) 
b‘ 

Consequently, in a ( k ,  n, E )  robust secret sharing scheme, 

c 2 E[maxPr(P;, is cheated by b’ I Pi, ’ .  . Pik-, have b .  They also know s)] 
b’ 

T h e n ,  eq. (15) is obtained. 0 
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