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OPTIMUM SHAPE DESIGN OF COMPOSITE STRUCTURES USING 

BOUNDARY -ELEMENT METHOD 

 
Azam Tafreshi  School of Mechanical, Aerospace and Civil Engineering (MACE) 

   The University of Manchester , Manchester   

England, M60 1QD, United Kingdom 

   azam.tafreshi@manchester.ac.uk 

ABSTRACT  

The boundary element method, combined with a numerical optimisation algorithm, has 

been employed for the shape optimisation of two-dimensional anisotropic structures.  To 

find the optimum shape of a structure with the highest stiffness, the elastic compliance of 

the structure has been minimized subject to constraints upon stresses, weight and geometry. 

The optimum shapes of a series of anisotropic structures are obtained for maximum 

stiffness and minimum weight and stress, for specified loading conditions.  The results are 

compared with the optimum shapes which were already created by the minimization of the 

structural weight while satisfying certain constraints upon stresses and geometry.  A directly 

differentiated form of boundary integral equation with respect to geometric design variables 

is used to calculate shape design sensitivities of anisotropic materials.  Because of the non-

linear nature of the mean compliance, weight and stresses, the numerical optimisation 

algorithm used is the feasible direction method, together with the golden section method for 

the one-dimensional search.  Hermitian cubic spline functions are used to represent 

boundary shapes which offer considerable advantages in fitting a wide range of curves, and 

in the automatic remeshing process.  Five example problems with anisotropic material 

properties are presented to demonstrate the applications of this general-purpose program. 
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KEY WORDS:  Shape optimisation, boundary element method, composites, design 

sensitivity analysis, anisotropic materials, minimum compliance, 

weight minimization 

NOTATION 

Ajk  complex constants 

amn  elastic compliance matrix  

Cjk(P)  limiting value of the surface integral of Tjk(p,Q)   

Ds(s=1,4) operator 

Ek  Young’s modulus in the xk direction  

Es  elastic compliance 

(Es)0  elastic compliance at initial step 

F  objective function 

F0  objective function at initial step 

G12  shear modulus      

gj(X)  inequality constraints 

J()  Jacobian of transformation from global Cartesian coordinates 

  to intrinsic coordinates of the element   

m1k, m2k unit vectors tangent and normal to the surface     

N
c
() quadratic shape function corresponding to the cth node of the 

 Element 

n1, n2 direction cosines of the unit outward normal vector to the surface of the  

 elastic body    

P load point at the surface of the elastic domain 

Q field point at the surface of the elastic domain  

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html
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q iteration number 

(Ri,i) polar coordinates 

rjk complex constants 

S
q
 search direction at iteration q 

s domain boundary 

Sb bth element of the discretized boundary  

Tjk (P,Q)  jth component of the traction vector at point Q due 

  to a unit point load in the kth direction at P 

tj  traction vector      

Ujk   jth component of the displacement vector at point Q due 

  to a unit point load in the kth direction at P 

uj  displacement vector 

W  weight  

W0  weight at initial step 

X   Tn21i X,....,X,XX  ; design variable vector 

xi  rectangular Cartesian coordinates 

  local coordiantes on an element     

zj  complex coordinates 

  scalar multiplier in steplength procedure 

j, j  real constants 

  scalar quantity that ensures the search direction will point into the feasible 

zone 

jk  Kronecker delta 

21, xx
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jk  Strain tensor        

i  coordinates of load point 

jk,1, 1, jk coefficients of mutual influence of the first and second kind, respectively 

j  push-off scalar factors which push the design away from the active 

constraints  

0  nominal value of j 

   real functions of the Cartesian and intrinsic coordinates at each integration  

  point 

s  roots of the characteristic equation       

jk  Poisson’s ratio    

  Intrinsic coordinates of isoparametric quadratic element 

  area of a component in two dimensions

jk  stress tensor

max  maximum equivalent stress 

  weighting factor determines the relative importance of the objective and 

the constraints 

  Airy stress function 

1,2  real functions of the Cartesian and intrinsic coordinates at each integration  

  point  

1. INTRODUCTION 

Laminated composites are gaining importance in aircraft structural applications due to their 

attractive performance characteristics, for example, high strength-to-weight ratio, high 

stiffness-to-weight ratio, superior fatigue properties, and high corrosion resistance.  The 
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phenomenon of progressive failure in laminated composite structures is yet to be 

understood, and as a result, reliable strategies for designing optimal composite structures for 

desired life and strength are in demand.  Up to now, shape optimization of composites has 

drawn little attention.  However, the analytical formulation of two- and three-dimensional 

anisotropic elasticity, using the finite element method or boundary element method, has 

been well developed in the last three decades. This paper discusses the computational shape 

optimisation of anisotropic structures using the boundary element method, coupled with an 

optimisation algorithm. 

 

Shape optimisation is an important area of current development in mechanical and structural 

design.  Computerized procedures using optimisation algorithms can iteratively determine 

the optimum shape of a component while satisfying some objectives, without at the same 

time violating the design constraints.  

 

There are three distinct classes of shape optimisation problems.  In order of computational 

complexity, these are: size, shape, and topological optimisation.  Size optimisation refers to 

the determination of specific geometric dimensions for a pre-selected design, such as the 

thickness of a shell, the size of a truss member, etc. This class of problems has been under 

investigation for decades.  Shape optimisation introduces additional design variables, which 

allow for boundary movement.  Due to its increased difficulty relative to size optimisation, 

the geometrical changes have been limited.  However, it has gained importance in the 

aircraft and automotive industries, as well as others, providing improvements to turbines, 

airfoil shapes and connecting arms.  Topological optimisation involves topological as well 

as shape and size modifications.  In the case of discrete structures such as trusses or frames, 
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topology is described by the number of bars and joints and the order in which the bars are 

connected to one another.  For two- or three-dimensional continuum structures, the 

topological design variables may be the number of holes/cavities or may describe the 

connectivity of the domain such that the structure is simply or multiply-connected.  In its 

simplest form, the topology optimization method solves the problem of distributing a given 

amount of material in a design domain subject to load and support conditions, such that the 

stiffness of the structure is maximized. Therefore, topology optimisation is essentially the 

optimum distribution of the material within the structure.  

 

Although interest in and investigation of shape optimisation research has been intensifying 

during the past few decades, there is much work to be done before this class of optimisation 

can become an integral part of the design process.  Design sensitivity analysis, that is the 

calculation of quantitative information on how the response of a structure is affected by 

changes in the design variables that define its shape, is a fundamental requirement for shape 

optimisation. 

 

In a project sponsored by the UKAEA two general purpose computer programs using the 

BEM [1-4] for shape optimisation of isotropic structures; weight minimization and 

maximum stress minimization, respectively, were developed.  In 1990 [1] it represented a 

novel application of the boundary element method to practical design optimisation problems 

and showed great potential for further development in the field of design optimisation.  

 

The BEM  being a boundary oriented technique can overcome a number of the difficulties 

associated with its main rival, the FEM.  In respect of the continuously changing geometry, 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html
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the accuracy of the FE analysis using an initial mesh of elements may become inadequate 

during the optimisation process.  If during the optimisation process, the finite element mesh 

has to be re-generated, the cost is relatively high.  The sensitivity analysis in the calculation 

of the derivatives with respect to the design variables may be obtained directly [1] in the 

boundary element approach rather than by approximate methods such as finite difference 

schemes. 

 

In a recent study by the author [5], a directly differentiated form of the boundary integral 

equation with respect to geometric design variables was used to calculate stress and 

displacement derivatives for 2D anisotropic structures.  The accuracy was compared against 

the results of the finite difference applied to the boundary element analysis.  Not 

surprisingly, results obtained by analytical differentiation are much more accurate.  In 

another study by the author [6], the weight minimization of anisotropic structures with 

stress constraints using the BEM is presented.  The design sensitivity analysis using the 

BEM was combined with an optimisation algorithm to form an optimum shape design 

program for anisotropic structures.  Different materials were analysed to investigate the 

effect of engineering constants on the optimum shape design of the components. It should 

be noted that to the author’s knowledge, no other publications are available on the shape 

optimisation of composite materials using the boundary element method. 

 

The objective of this work is directed towards the optimal shape design of an anisotropic 

elastic body which is of maximum stiffness and minimum weight under specified 

loadings, using the boundary element method.  The elastic compliance of the structure 

will be minimized while there are constraints on the maximum stress and weight of the 
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structure.  To demonstrate the effectiveness of the procedure, a series of design problems 

will be analysed and discussed in detail.  The results will be compared with those which 

were obtained with just the minimization of weight subject to stress and geometrical 

constraints [6]. 

 

2. CONSTITUTIVE EQUATIONS FOR PLANE ANISOTROPIC 

  ELASTICITY 

The stress-strain relations for a two-dimensional homogeneous, anisotropic elastic body in 

plane stress is [7] 
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where jk and jk (j,k=1,2), are the stresses and strains, respectively, and the coefficients amn 

are  the elastic compliances of the material. These compliances can be written in terms of 

engineering constants as 
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where G12 is the shear modulus in the x1-x2 plane.  The quantities jk,1, 1, jk are referred to 

by Lekhnitskii [8] as the coefficients of mutual influence of the first and second kind, 

respectively.   For specially orthotropic materials,  a16=a26=0. [8]. 

The compatibility equation of strains is  
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and equilibrium is satisfied by taking stresses in terms of derivatives of the Airy stress 

function (x1,x2) as 


 



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


 

 
11
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2

2 22
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2
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   
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      (4) 

 

Combining equations 1,3 and 4, the governing equation for the two dimensional problem of 

anisotropic elasticity can be obtained 
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By introducing the operator Ds(s=1,4) as 

D
x x

s s 







2 1

         (6) 

Equation (5) becomes 

 D D D D1 2 3 4 0           (7) 

and s are the four roots of the characteristic equation 

   .0222
4

4
4
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3
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2

66122622 
dz

d
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
     (8) 

To have a solution for the stress function, the term in square brackets must be zero.  

Leknitskii [8] has shown that, for an anisotropic material, these roots are distinct and must 

be either purely imaginary or complex and they may be denoted by 

         1 1 1 2 2 2 3 1 4 2     i i, , ,    (9) 

where j and j, (j=1,2), are real constants, i  1  and the overbar represents the complex 

conjugate. The characteristic directions may thus be denoted by 

z x x jj j  1 2 1 2 ,         (10) 
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and their complex conjugates. 

 

3. BOUNDARY ELEMENT METHOD FOR ANISOTROPIC MATERIALS 

The boundary element method is based on the unit load solutions in an infinite body, known 

as the fundamental solutions, used with the reciprocal work theorem and appropriate limit 

operations.  The boundary integral equation in the direct formulation of the BEM for 

anisotropic materials is an integral constraint equation relating the tractions (tj) and the 

displacements (uj) at the boundary s of the homogeneous elastic domain, and it can be 

written as 

   C u P T P Q u Q ds Q U P Q t Q ds Q j kjk j jk j
s

jk j
s

( ) ( , ) ( ) ( , ) ( ) , ,   1 2    (11) 

where P(1,2) and Q(x1,x2) are the load and field points, respectively. Ujk (P,Q) and Tjk 

(P,Q) are the fundamental solutions that represent the displacements and tractions, 

respectively, in the xk direction at Q because of a unit load in the xj direction at P in an 

infinite anisotropic body.  The constant Cjk depends on the local geometry of the boundary 

at P, whether it lies on a smooth surface or a sharp corner.  In terms of generalised complex 

variables 
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the fundamental solution for displacements and tractions, respectively,  are as follows: 
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where nj are the unit outward normal components at Q with respect to the x1-x2 coordinate 

system.  The constants rkj are 
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For the details of these, the reader is referred to references [9-12]. 

 

The boundary element implementation of equation 11 entails boundary discretization.  

Quadratic isoparametric elements are chosen for the analyses.  Substitution of these 

isoparametric representations into equation 11 will result in a set of linear algebraic 

equations for the unknown displacements and tractions at the nodes on the boundary of the 

solution domain as follows 

 AU=B          (16)  

where A is the final coefficient matrix, U is the vector containing the unknown variables 

(displacements or tractions), and the second member B is a vector.  A and B result after the 

rearrangement of the system of equations obtained from the substitution of the boundary 

conditions in the discretized version of equation 11.  These linear algebraic equations can 

then be solved by standard matrix solution techniques.   

 

To calculate surface stresses from the already calculated surface tractions and 

displacements, it is necessary to consider a local system of coordinates ( x1,x2 ).  Let m1k be 

the unit vector in direction tangential to the surface and m2k the one in the direction normal 
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to the surface.  Let uj, tj, jk, and jk be the displacements, tractions, strains, and stresses, 

respectively, in the local coordinates.  The displacement in the tangential direction is 

   u N u mj

c

j

c

k  1          (17) 

Where N
c
() (c=1,2,3) are the quadratic shape functions of intrinsic coordinates.  The strain 

in the tangential direction is obtained by this expression to give 
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Then, using the constitutive equation (Eq. 1), the components of the stress tensor in the 

local coordinate system can be calculated, and by a simple transformation the stress 

components in the global system can be obtained. 

 

4. SHAPE DESIGN SENSITIVITY ANALYSIS OF 2D ANISOTROPIC 

 MATERIALS 

Implicit differentiation of the BIE equation with respect to a design variable, xh (h=1,2) 

(which is most likely to be the coordinate of a node on the movable part of the boundary) 

results in the following equation 
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The derivatives of the terms which only depend on the geometry will be carried out 

similar to the isotropic materials [1-4].  The derivatives of the remaining terms such as 

Ujk and Tjk for anisotropic materials will be as follows: 
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(20) 

where the coefficients j and Ajk depend on the material properties and are independent of 

the design variables.  To calculate the above derivatives, the complex values,  ln z j and 

1

z j

, can be written as 

   
2

1
,arglnln

j

j

j

jjj

z

z

z
zizz        (21) 

Defining the real functions j and j  as 

   
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        (22)
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the complex coordinates and their conjugates can be written as 

z ij j j    , z ij j j          (23) 

By substituting equations 21-23 into equations 20 , the derivatives of the kernel products 

with respect to the design variable xl can be obtained. 
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           (26) 

Therefore, the design sensitivity analysis is carried out by implicit differentiation of the 

structural response (equation 16) with respect to design variables xl, which are the 

coordinates of some nodes of the movable part of the boundary, 


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    (27) 

This is a set of linear algebraic equations for the unknown gradients, 
hx

U




, and equivalent 

to solving the same equation as 16.  Thus, if the quantity in brackets in equation 27 is 

separately assembled, then the displacement derivative vector   
hx

U




 can be computed in 

one pass by re-entering the equation solver. 

 

The gradients of stresses usually require the intermediate calculation of the gradients of 

displacements with respect to the design variables. For the derivatives of the stresses, 

both sides of equation (18) are differentiated and the gradients of strain in the tangential 

direction is obtained from 
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              (28) 

which is a function of gradients of displacements previously calculated.  The gradients of 

the stresses can then be determined by differentiating the constitutive equations for the 

anisotropic materials. 

 

In reference [5], the derivatives of displacements and stresses with respect to design 

variables for anisotropic materials are calculated both by this direct analytical 

differentiation method and also by the finite difference method.  The former is shown to 

be both more accurate and less time consuming. 

 

5. ANALYTIC CALCULATION OF WEIGHT AND ITS DERIVATIVES  

For a 2D elastic component with a uniform mass density and thickness, minimizing the 

area is equivalent to minimizing the structural weight. Here, uniform mass density for 

anisotropic materials has been assumed.  As shown in references [1,6] the area of the 

structure and its derivatives with respect to the design variables can also be determined 

using the BEM.  Based on the Green’s theorem, the area of the domain can be written as 

line integral over the boundary.  Then by discretization of the domain to M quadratic 

isoparametric elements, the area of the domain can be obtained. 
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1
     (29) 

By differentiating the above equation with respect to the geometric design variable xh, the 

weight derivatives can be obtained.  
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If xh is the x1 coordinate of movable node then 
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If xh is the x2 coordinate of movable node therefore, 
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6. ANALYTIC CALCULATION OF ELASTIC COMPLIANCE AND ITS 

DERIVATIVES 

The elastic compliance is evaluated as the strain energy of the structure 


s

jjs dsut
2

1
E          (32) 

If the boundary of the structure is discretized to M quadaratic boundary elements, 

therefore, the elastic compliance can be evaluated as 
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The derivatives of the elastic compliance with respect to the design variable xh can also be 

calculated analytically as shown below 

 
   

 
    

      
   

 
           











































M

b hs

dd

j

cc

j

M

b h

d
d

j

d

h

d

j

s

cc

j

dd

j

M

b s h

c
c

j

c

h

c

j

h

s

d
dx

J
NuNtdJ

dx

dN
uN

dx

u
Nt

dJNu
dx

dN
tN

dx

t

x

E

bb

b

11

1

2

1
)(

2

1

)(
2

1


















 

           (34) 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

18 

Equation (34) shows that in order to obtain the compliance derivatives, the derivatives of 

tractions and displacements must be already calculated.  Therefore, during the analysis the 

compliance derivatives will be evaluated after the stresses, displacements and their 

derivatives are obtained. 

 

A simple plate under tension is studied to demonstrate the validity of the approach.  The 

dimensions and loading are shown in Fig.1. Due to the symmetry, only the right half of 

the plate is considered.  The model contains 40 quadratic elements, four elements on each 

side AC and ED and 16 elements on each side CD and AE.  Five different anisotropic 

materials from Table 1 are selected, materials 1 to 5.  Material 1 is isotropic but in the 

current analysis it is assumed as if it is anisotropic [ )1(2EG,EE 1211221  ].  The 

design variable, the x coordinate of point M, is selected to represent a change in the shape 

of the edge BC.  Table 2 shows the derivatives of compliance of the plate with respect to 

the x coordinate of point M calculated by the boundary element method described above. 

 These are compared with the results of the finite difference approach used with the 

boundary element analysis.  For the finite difference results, different movements of the 

design variable, from d=10
-2

 to d=10
-6

 have been considered and the analysis was carried 

out with double precision. For the direct differentiation analysis single precision was 

applied. For the finite difference approach the step size d=10
-7

 gives the best results, but 

the agreement with the analytical results is still only moderately good. 
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Table 1 Elastic properties of the selected materials 

Material 

No. 

E11(GPa) E22(GPa) 12 G12(GPa) Complex parameters 

1                                         2 

1 210.9 210.9 0.29 81.8 i i 

2 18.9 18.9 0.845 55.6 -0.915+0.403i 0.915+0.403i 

3 276.0 6.9 0.25 3.4 8.948i 0.706i 

4 148.07 11.08 0.295 6.40 4.683i 0.780i 

5 34.2 14.1 0.22 3.4 3.059i 0.509i 

 

Table 2  Derivatives of the compliance 

Material 

No. 

Direct 

differentiation 

of the BIE 

Finite difference method using the BEM analysis with 

different step sizes(d) 

d=10
-7

          d=10
-6

         d=10
-5

        d=10
-4

         d=10
-3

 

1 0.2133 0.21141 0.23256 0.23466 0.23483 0.23438 

2 0.0153 0.01861 0.020478 0.02066 0.02069 0.02074 

3 0.0070 0.00695 0.00765 0.00772 0.00773 0.00772 

4 0.0112 0.01118 0.01230 0.01241 0.01242 0.01241 

5 0.0143 0.01412 0.015538 0.01567 0.01569 0.01566 
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7. PROBLEM STATEMENT AND METHOD OF OPTIMIZATION 

The shape optimisation problem can be stated mathematically as 

 

U

ll

L

l

li

l

XXX

m......,3,2,1i.0)(Xg Subject to

n,...,3,2,1lX(FMin







     (35) 

in which gi is the constraint function describing the ith structural response, X is a vector 

of design variables that defines the shape of the variable part of the structure, and  L

lX  

and U

lX  are the lower and the upper limits of the shape variables [13]. 

 

In a recent study by the author, an optimum shape design algorithm was developed by the 

coupling of an optimising technique with a boundary element stress analyser for stress 

minimization of 2D anisotropic structures [5].  Applications of this general purpose 

computer program to the optimum shape design of bars and holes in plates with 

anisotropic materials were presented.  In this case the objective function is highly non-

linear, while the constraints are linear. The optimisation method used was the extended 

interior penalty function approach, and for unconstrained minimization, the Broydon-

Fletcher-Goldfarb-Shanno variable metric method was employed.  Hermitian cubic spline 

functions, which are combinations of piecewise cubic curves with continuous first and 

second derivatives at the ends of each curve, were used to represent the boundary shape.  

This provides a flexible and compact method for defining boundary geometry using a 

small number of design variables.  They also reduce the need for optimisation constraints 

to avoid impractical design during the optimisation procedure [1-6]. 
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In another study by the author [6] , an optimisation algorithm was developed to minimize 

the structural weight of a 2D anisotropic structure while satisfying certain constraints 

upon stresses and geometry.  The boundary element method was used for the stress 

analysis and  also for the shape sensitivity analysis.  Since both the objective function and 

constraints are non-linear, the feasible direction method (FDM) was employed [1-4].   

 

In the present study, to find the optimal shape of a structure for the highest stiffness and 

minimum weight, the elastic compliance has been minimized.  The constraints are 

imposed on the maximum allowable stress and maximum weight.  Therefore, the elastic 

compliance is treated as the objective function whereas stresses and weight are treated as 

the inequality constraints. The feasible direction method is employed as the optimisation 

algorithm. 

 

8.  FEASIBLE DIRECTION METHOD 

The FDM was first proposed by Zoutendijk [14] and later Vanderplaats et al [15] applied 

the algorithm on design optimisation of space truss structures.  Since then the FDM has 

been one of the most popular methods for finite element analysis based structural 

optimisation [13].  It is also shown that FDM can be successfully used for boundary 

element analysis based structural optimisation [1-6]. 

 

FDM deals directly with the nonlinearity of the problem.  FDM is constructed to deal 

with inequality constraints, and for use in the case of equality constrained problems, those 

equality constraints can be easily converted to inequality constraints. 
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FDM determines a usable-feasible direction in which the design point may be moved in 

the design space . This direction is ‘feasible’ because it does not violate, at least over an 

infinitely small step, any of the constraints; and ‘usable’ because it results in a reduction 

of the objective function.  The basic idea is to choose a starting point satisfying all the 

constraints and to move to a better point according to the iterative scheme 

q

q

1qq SXX            (36) 

where S
q
 is the vector of search direction and q is a scalar multiplier determining the 

amount of change in X for this iteration and is called the steplength.  The step-length 

procedure is the minimization of a function with one variable. The golden section method 

[13] is an efficient method for the one-dimensional search.  The rate of convergence is 

known and is very reliable for poorly conditioned problems. 

 

Using FDM, for S (vector of search direction) to be usable,    q1q XFXF   and clearly, 

such a search direction makes an angle greater than 90 with the gradient vector of the 

objective function.  Mathematically, the usability requirement becomes 

  .0S.XF            (37) 

and S is feasible if, for some move in that direction, the active constraints will not be 

violated.  It means that the vector S must make an obtuse angle with all the constraints 

normal, so that 

  .0S.Xg j            (38) 

The greatest reduction in F(X) can be achieved by finding S which minimizes the 

quantity in equation (37) while equation (38) meets with precise equality.  By assuming 

the constraint is nonlinear and convex, a small move in this direction would violate the 
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constraint.  With these objectives, the following direction-finding problem is posed 

[14,15]. 

1S1

.0FS

Jj.0)X(gStoSubject

Maximize

T

jj

T









     (39) 

The scalars, j, are referred to as ‘push-off’ factors which effectively push the design 

away from the active constraints and are defined as 

 
0

2

j

j

Xg
1 










          (40) 

where  is a small number. Usually 0=1 is adequate for the nominal value of j. 

The preceding formulation is suitable for the case that the design is inside the feasible 

domain.  For the case that the point is infeasible, it needs a simple modification.  It means 

the search direction will simultaneously minimize the objective function while 

overcoming the constraint violations.  These considerations lead to the following 

statement of the direction-finding problem 

1S.S

Jj.0S).X(gSubject to

S).X(FMaximize

T

jj





 

      (41) 

Now the set J contains all violated constraints.  The scalar is weighting factor, 

determining the relative importance of the objective and the constraints.  The choice of 

convergence criterion depends on the nature of the design problem and the required 

precision.  For more details on FDM refer to Ref.[13]. 
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Scaling and normalization also have significant influence on the performance of the 

optimisation method.  To normalize constraints so that the order of each of them is unity 

improves the conditioning of the optimisation, as does scaling each constraint so that the 

gradient of the constraint is of the same order of magnitude as the gradient of the 

objective function.  Scaling the design variables causes each variable to be of similar 

weight during optimisation.  Normalization of the search direction provides a simple 

means of identifying the important parameters in the design.  Therefore, scaling makes 

the optimisation more reliable. 

 

9. NUMERICAL RESULTS 

To apply the boundary element method for the minimization of elastic compliance of two-

dimensional anisotropic structures while satisfying some constraints upon weight, stresses 

and geometry, a general-purpose computer program has been developed.  This is an 

advanced version of a shape optimisation program which was already produced by the 

author [6] for the weight minimization of anisotropic structures subject to stresses and 

geometrical constraints.  This program uses an iterative technique and involves three 

major steps within each iteration: 1) an analysis of the stresses, displacements and elastic 

compliance of the structure for a given design  2) sensitivity analysis of the elastic 

compliance, stresses and weight, corresponding to possible changes in design 3) 

improvements to the design and regeneration of the boundary element mesh with 

isoparametric quadratic boundary elements. 
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Five examples are selected to illustrate the use of the program. Four different materials 

[16,17] are used to investigate the effect of engineering constants on the optimum shape 

design of the components.  Every component is being treated as a lamina that has four 

engineering constants E1, E2, G12 and 12 with a lamina orientation angle of zero. See 

Table 2.  Material 1 is isotropic but it is assumed as if it is anisotropic, E1=E2, 

G12=E1/2(1+12).  The properties of materials 2 , 3 and 4 are as follows: for material 2, 

E1/E2=1.0, G12/E2=2.94 and 12=0.845; for material 3, E1/E2=40, G12/E2=0.492 and 

12=0.25, for material 4 E1/E2=13.36, G12/E2=0.58 and 12=0.295.  For some of the 

selected components, the optimum shape for the minimum compliance subject to weight 

and maximum stress constraint is compared to the optimum shape for the minimum 

weight subject to maximum stress constraint. 

 

9.1 Cantilever beam under distributed lateral load 

Fig. 2 shows a cantilever beam subject to a distributed lateral load.  The objective is to 

find the optimum shape of edge AB, with CD unchanged.  The coordinates of points P1 to 

P7 which are equally spaced along AB, are selected as the design variables.  In reference 

[6], the weight of this beam was minimized subject to stress constraints.  For verification 

purposes, this example was used to solve isotropic behaviour as a special case of 

anisotropy. The optimum shape produced from that study is presented in Fig. 3. The 

analysis was completed in ten iterations with a total weight reduction of 44%.  The 

maximum stress of the optimum shape was almost the same as the maximum stress of the 

initial design. 
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In the present study, the elastic compliance of the cantilever beam is minimized, while the 

weight and maximum stress should not exceed more than 1.1 times the corresponding 

values of the initial design. Fig. 3 also shows the optimum shape of the beam when the 

elastic compliance is minimized.  The analysis was carried out in 6 iterations with 50% 

reduction of the elastic compliance.  The weight of the optimized shape nearly remained 

the same and its maximum stress was about 46% of the maximum stress of the initial 

design.  

 

The preceding analysis was also performed for materials 2 and 3.  Fig. 4 shows the 

optimum shape of the beam for each selected material. The optimum shape of the beam 

for material 1 is also presented in Fig. 4.  For material 2, the elastic compliance has 

decreased by 51%, the weight has increased by 13% and the maximum stress of the 

optimised shape is about 55% of the maximum stress of the initial design.  For material 3, 

the elastic compliance has decreased by 34%, the weight has roughly remained the same 

and the maximum stress is 69% of the maximum stress of the initial design.  It can be 

seen that material 3, with the highest value of E1/E2, has the smallest reduction of elastic 

compliance during the optimisation process.  The variation in compliance, as a proportion 

of the initial compliance during convergence to the optimum for each selected material, is 

shown in Fig. 5. 

 

9.2 Cantilever beam under load near free end 

Fig. 6a shows a cantilever beam with a uniformly distributed load at a small portion of its 

upper side near the free end.  The objective is to minimize the elastic compliance of the 

beam while the maximum stress and the weight of the beam are not to exceed 1.3 times 
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the corresponding values of the original design.  Edge AB is to altered.  Materials 1 to 3 

are selected for this analysis. Figs. 7 and 8 show the optimised shapes of the beam and 

compliance iteration history, respectively.  The analysis was carried out in 9, 13 and 10 

iterations with 61, 76 and 40% reduction of elastic compliance for materials 1, 2 and 3, 

respectively. The weight of the beam is increased by 25, 34 and 30% for materials 1, 2 

and 3, respectively.  However, the maximum stress has decreased by 59% for material 1, 

69% for material 2, and 40% for material 3.  It can be observed that in this case the 

minimization of the elastic compliance has been at the expense of the weight increase, 

whereas the maximum stress in each case has greatly reduced. 

 

9.3    Circular plate with a cavity subject to internal pressure 

Fig. 9 shows a circular plate with a central cavity subject to internal pressure.  The 

objective is to minimize the elastic compliance of the plate with constraints upon stresses 

and weight.  Materials 2 and 3 from Table 2 are chosen for the analysis.  In each case the 

optimization procedure is carried out with the maximum allowable limit on each 

constraint remaining below 1.2 times the corresponding values of the original design.  

The geometry is symmetric about both coordinate axes, so only a quarter of the plate 

needs to be modelled. See Fig. 9b. The radii of points P1 to P5 located on the inner 

boundary at the fixed angles, as shown in Fig. 9c, are selected as the design variables.  

Fig. 10 shows the initial geometry and optimum shapes of the cavity in the plate for the 

selected materials.   Fig. 11 shows the elastic compliance (ES/Es0) iteration history for the 

plate.  For material 2, the analysis was carried out in 11 iterations with 19% reduction of 

the elastic compliance and for material 3, the optimum shape was obtained in 14 

iterations with 23% reduction of the elastic compliance.  For each material the maximum 
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stress of the optimized geometry nearly remained unaffected, whereas there was about 1% 

increase in the weight of the plate after optimization. 

 

In Ref. [6], the minimum weight of the plate subject to maximum stress constraint was 

obtained. Material 2 was selected for the analysis. Here, the minimum weight of the plate 

for material 3 is also obtained.  These results are also presented in Fig. 10.  The reduction 

in the weights, for materials 2 and 3,  were 16% and 18%, respectively, while the 

maximum stresses almost remained unaffected. 

 

Although the geometry and boundary conditions of the circular plate with a cavity are 

symmetric, the results for the optimum shape design are not symmetric (see Fig. 10).  

This is the consequence of the anisotropic behaviour of the material. 

 

9.4 Connecting rod 

Fig. 12a shows a connecting rod subject to a uniform internal pressure of 1 unit, over the 

semi-circular region, assumed to be in contact with the pin, and a uniform tension at the 

remote end of the rod.  The objective is to design a connecting rod profile in the transition 

region between the pin hole and the loaded end of the rod.  Due to the symmetry, only the 

upper half of the model is considered.  The design variables are the coordinates of points 

P1 to P6 in Fig. 12b.  Materials 1 to 3 were selected for the analysis.  

 

First, the weight of the rod was minimized with the maximum stress not to exceed 1.1 

times the maximum stress of the original geometry.  Fig. 13a shows the optimum shape of 

the rod for each selected material, when the weight has been minimized.  The weight 
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reduction, for materials 1 to 3, were 44, 53 and 26%, respectively.  Fig. 14 shows the 

weight (W/W0) iteration history of the plate for the selected materials.  For all three cases 

the optimization procedure ended in 9 iterations..  The maximum stress for the final 

design was reduced by 70% and 67% for materials 1 and 2, respectively, and by 48% for 

material 3.  The highest weight reduction was for material 2. 

 

Second, the elastic compliance of the rod was minimized, while the weight and maximum 

stress of the plate were limited not to exceed 1.1 times the corresponding values of the 

original design.  Fig. 13b shows the optimum shapes of the connecting rod for the 

selected materials, when the elastic compliance has been minimized. Fig. 15 shows the 

elastic compliance iteration history of the plate for the selected materials.  It can be seen 

that the elastic compliance has been reduced by 92-93%, regardless of the material 

properties.  However, not only has the elastic compliance of the optimized shape reduced 

but also the weight and the maximum stress of the rod have been decreased. For materials 

1 and 2, the weight of the final design is about 66% of its original value while for material 

3 is 74% of the weight of the original design.  It can also be observed that the maximum 

stress has decreased by 48, 60 and 67% for materials 1 to 3, respectively. For all three 

cases the optimization procedure ended in 14 iterations.  From this case study, it can be 

concluded that the minimization of the elastic compliance is not always at the expense of 

the weight increase.  However, the loaded edge of the connecting rod, which is subject to a 

distributed load, is decreased during the optimization procedure. 
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9.5 Link plate 

This example involves a link plate loaded through pin joints at its two ends.  The plate 

experiences both direct tensile and bending moment loads.  See Fig 16.  Taking advantage 

of the symmetry, only the right half of the plate is analysed.  The loading applied is a 

uniform internal pressure of one unit, over the semicircular region of each hole, assumed 

to be in contact with the pin.  The coordinates of 13 points, P1 to P13, are selected as 

design variables.   

In reference [6], the optimum shape of the outer boundary of the link plate was obtained 

to minimize its weight subject to stress constraints.  Materials 2 and 4 from Table 1 were 

selected for the analysis.  For each selected material, the optimization procedure was 

carried out with the maximum allowable limit on the maximum stress not to exceed 1.3 

times the maximum stress of the original geometry. The analysis of the material 2 was 

completed in ten iterations, with 47% reduction in the weight.  For material 4, the analysis 

was completed in seven iterations with 24% weight reduction.  For both cases, the 

maximum stresses of the optimised shapes were about 25-28% higher than the maximum 

stresses of the original geometries.  The optimum shapes produced from that study are 

shown in Fig. 17. 

Here, the compliance of the link plate is minimized while the maximum allowable limits 

on stress and weight are not to exceed 1.1 times the corresponding values of the original 

design.  Fig. 18 shows the variation in compliance, as a proportion of the initial 

compliance during the optimisation procedure, which shows almost the same trend for the 

selected materials (2 and 4).  The analysis of material 2 is completed in 9 iterations with 

35% reduction of the elastic compliance, having 10 and 8% increase in the weight and 

stress, respectively.  The analysis of material 4 is completed in 9 iterations with 40% 
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reduction of the elastic compliance, having 2 and 10% increase in the weight and stress, 

respectively.  It can be observed that during the minimization of the elastic compliance, 

regardless of the material properties, the weight and stress of the link plate have 

increased. Fig. 17 shows that the optimum shapes for materials 2 and 4 are almost 

identical.  Therefore, for the link plate, the minimization of the compliance has been at 

the expense of increase in the weight and the maximum stress. 

 

SUMMARY AND CONCLUSION 

Following a brief review of the mathematical basis of the boundary integral equation 

method for two-dimensional elastic anisotropic materials, analytical differentiation of the 

boundary integral equation was carried out.  Shape design sensitivity analysis was 

performed to compute the derivatives of displacements, stresses, weight and elastic 

compliance with respect to changes of design variables, which were the positions of some 

of the boundary nodes.  To maximize the stiffness, the elastic compliance was minimized 

while satisfying some constraints upon weight, stresses and geometry.  The results were 

compared with the results produced based on the weight minimization subject to stresses 

and geometrical constraints.  Five examples have been analysed and the results are 

presented.  Four different anisotropic materials were employed for the analysis.  It is 

shown that the optimum shape of a composite structure, for maximum stiffness and 

minimum weight, not only depends on the loading conditions but also on the material 

properties. 
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https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

9 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

10 

 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

11 

xP=1

=1.34

11.65
R=3.625

20.4

R=5.825

y

P1 P2 P3 P4
P5 P6

A B

CD

E F

y

Fig. 12 Connecting rod
a)

b)

 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

12 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

56 quadratic boundary elements 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

13 

 

 

56 quadratic boundary elements 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

15 

 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

16 

P8

F=3.0

F=3.0

y

R30

R1845o

R1.5

=1.0
=1.0

x

a)

40

P13

P11

P9

x

y

P1 P2
P3

P4

P5

P6
P7

P10

P12

b)
45o

Fig. 16  Link plate

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

17 

 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html


Tafreshi, A. June 2005 In : AIAA Journal, 43, 6, p. 1349-1359 11 p. 
 

 

18 

 

https://www.research.manchester.ac.uk/portal/Azam.Tafreshi.html

