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Formation flight can result in large induced drag reductions. Optimum spanloads for a

group of aircraft flying in an arrow formation were found using a discrete vortex

method with a Trefftz plane analysis under constraints in lift, pitching moment and

rolling moment coefficients. It has been shown that large reductions in induced drag

can be obtained when the spanwise and vertical distances between aircraft are small. In

certain cases this results in negative induced drag (thrust) on some airplanes in the

configuration. The optimum load distributions necessary to achieve these benefits may,

however, correspond to a geometry that will produce impractical lift distributions if the

aircraft are flying alone. Optimum separation among airplanes in this type of

formation is determined by such diverse factors as the ability to generate the required

optimum load distributions or the need for collision avoidance.

I. Introduction*†

A group of aircraft flying in formation will

experience induced drag savings due to the

upwash coming from nearby airplanes.

Formation flight benefits can be observed in

nature in the flying disposition of migrating

birds, often adopting V-shaped configurations.

These formations help birds save energy by

decreasing drag so that they can travel longer

distances.

The variability in geometry of bird’s wings,

together with their highly controllable flight,

allows them to change their wing geometry and

fly very close to each other. This allows them to

take full advantage of formation flying. For a

rigid wing aircraft the capability of adapting

wing geometry is very limited. Close flying is

difficult because of collision dangers and, until

recently, precision control problems. In this

paper the advantages of formation flying will be

studied as a function of relative distance between

aircraft, and the adaptability and limitations of

rigid aircraft will impose restrictions on the

benefits that can actually be achieved.
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Formation flight has been studied frequently

in the past. For example, Schollenberger and

Lissaman1 investigated the formation flight of
birds. They realized that the bird flexibility was

an important requirement to obtain maximum

advantage in formation flying. Their analysis

showed that a 40% induced drag reduction could

be achieved for each bird flying in an arrow

formation consisting of just three birds.

According to these authors, when 25 birds were

flying in an arrow formation, induced drag

savings as large as 65% could be achieved for

each bird, and this drag reduction could result in

a range increase of about 71%. Feifel2 used a

vortex lattice method with calculations

performed in the near field to compute the

advantages of formation flying in an array of five

airplanes of specified geometry flying in a V-

formation. Feifel only shows results for one test

case, so that the magnitude of the induced drag

reduction and its variation with spacing between

aircraft was not shown. Maskew3, also using a

vortex lattice method, but with a Trefftz plane

analysis, studied the induced drag variation for

each aircraft and for the whole formation as a

function of the distance (in the three space

coordinates) between airplanes for an arrow

formation consisting of three equal aircraft.

In the last decade formation flying has again

become of interest.4 Beukenberg and Hummel5

studied formation flying, presenting flight test

data for three aircraft flying in an arrow

formation, and comparing the data to theoretical
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aerodynamic results obtained with various vortex

models. Blake and Multhopp6 also examined the

problem recently. This was followed by

experimental investigations performed by

Gingras7 who did wind tunnel experiments to

investigate the aerodynamic effects of a lead

aircraft on a trail aircraft in close formation.

 When dealing with arrow formations, all the

aircraft that are off-center will have an

asymmetrical load distribution due to the upwash

distribution coming from the other airplanes. Of

course the rolling moment coefficient must be

zero for each aircraft in the formation. In their

studies, Feifel2 and Maskew3 used aircraft of

completely known geometry, that is, the twist

distribution was specified for the wings (no twist

for both authors) and aileron deflection was used

to set rolling moment coefficient zero.

A different approach was followed here,

where no twist or camber distribution is known

before-hand, and the loads are calculated to

obtain minimum induced drag for the whole

formation under individual aircraft constraints of

lift coefficient and rolling moment coefficient.

While Feifel and Maskew solved an analysis

problem with known geometry, this paper

addresses a design problem for which the twist

and camber distribution is not known. Instead,

the actual geometry must be found after the

calculations are made to find the required load

distributions. Attacking the problem in a design

mode will give maximum achievable benefits for

the whole formation.

II. General Approach

Airplanes in formation flight can obtain large

advantages in induced drag reductions as a result

of the influence that the upwash from other

aircraft exert on them. A code has been

developed to obtain the optimum spanload

distributions for a group of airplanes flying in a

V-formation. Only aerodynamic considerations

are taken into account, with no structural

constraints.

 The main purpose of the code developed is to

find the optimum spanload that gives minimum

induced drag for the whole system of airplanes.

The induced drag for each aircraft alone will also

be of primary importance to study the effects of

relative position on individual aircraft

performance. Induced drag will be the measure

of effectiveness, both for the formation and for

the single aircraft.

An important aspect of the code developed

and the studies performed must be pointed out.

The flow is being modeled as potential, inviscid

flow. A potential flow vortex model

representation is being used. These models

usually give quite good results for regions that

are not near the vortex cores, which are small,

where viscous effects become important.

A description of the aerodynamics code used

for optimum load distribution design and

induced drag calculations follows.

III. Description of the Aerodynamics Code

A code written by Grasmeyer8 (idrag version

1.1), which applies the theories developed by

Blackwell9, Lamar10, Kuhlman11 and Kroo12 was

modified here. This theory is a discrete vortex

method with a Trefftz plane analysis to calculate

spanloads corresponding to the minimum

induced drag of the configuration.

The code also includes an optional trim

constraint, in which the pitching moment

coefficient can be fixed if several surfaces are

analyzed. Given the geometry for a number of

surfaces, the program finds the spanload that

gives minimum induced drag for a specific value

of lift coefficient and moment coefficient using

the method of Lagrange multipliers8.

Several modifications have been made to this

code to include the capability of analyzing

several aircraft configurations. First, a lift

coefficient constraint is now necessary for each

aircraft. A trim constraint on the rolling moment

and the pitching moment of individual aircraft in

the formation is also required.

The code now assumes that the configuration

is always symmetric, so that the geometry of V-

formations can be specified only with the central

aircraft and one side of the formation. The

central aircraft, due to symmetry, will have an

equal load distribution on both sides. Off-center

airplanes, on the contrary, will have

asymmetrical spanloads because the formation

does not meet the symmetry condition from their

point of view. This asymmetry causes these

airplanes to have non-zero rolling moment

coefficients about their centers of gravity, so that

an extra constraint to maintain rolling moment

coefficient for off-centered aircraft equal to zero

has also been imposed.

Optimum load distributions for a group of

airplanes flying in the V-formation is found

using the method of Lagrange Multipliers under

the constraints of a specified lift coefficient for

each aircraft, a pitch trim constraint for each, and

a rolling moment coefficient constraint for all

except the central one.
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Another major modification has been

introduced in the code to allow the analysis and

induced drag calculations of separate airplanes.

The code used (idrag version 1.1) is merely

an implementation of the equations used by

Blackwell9. This theory makes use of Munk’s

Stagger Theorem13. According to the theorem,

the induced drag of the entire system is

independent of the streamwise location of the

spanloads. Once the optimum load distribution

for the whole configuration has been found, that

will always be the optimum no matter what

changes in the streamwise location of different

aircraft in the formation are made, and the

formation induced drag will always remain the

same. For this reason, Blackwell’s theory makes

the induced drag calculations in the Trefftz

plane. The Trefftz plane is located at an infinite

distance downstream of the lifting surfaces.

Making the calculations in this plane allows

Blackwell to ignore streamwise effects.

 For a formation configuration, where the

interest lies not only in the induced drag as a

whole, but rather on the induced drag of each

airplane, Blackwell’s theory is not completely

applicable. This is because the induced drag of

each lifting surface is dependent on its

streamwise position although the total induced

drag of all the aircraft is not.

The code was modified by assigning a

streamwise coordinate position to each discrete

vortex. The downwash angles are calculated on

the lifting surfaces at the midpoint of each

discrete bound vortex line. Calculations are now

performed in the near field, and not in the Trefftz

plane. The influence of each trailing vortex on

each force point was modified applying Biot-

Savart law in the streamwise direction and the

influences of the bound vortex lines on the force

points were also added. In that way, optimum

spanloads are still independent of streamwise

vortex locations, but individual downwash

angles and induced drags have a strong

dependence on movements along this axis (total

induced drag of the complete system remains

unchanged). To obtain accurate nearfield

induced drag calculations using this approach the

bound vortices must not be swept. This

requirement was proven theoretically by Jan

Tulinius14, and was proven numerically in this

work.

Forces are calculated at the midpoint of the

bound vortex lines to obtain a quick and simple

way for finding minimum drag spanloads, while

performing the calculations in the near field.

Loads at each station are assumed to be applied

at the same location. If the induced angle is

known here, the induced drag at each station is

simply the induced angle times the

corresponding load. However, there is one slight

complication. The relation between the loads at

each station and the wing geometry (twist or

camber) at that station has not been established.

Thus at this point we have not found the twist or

camber distribution required to obtain the

spanload.

With the code modified, results can be

obtained that give total and individual drag

savings as a function of aircraft relative distances

to each other. The optimum load distributions

required to achieve these drag benefits are also

obtained. Complete details, including the

mathematical derivations, are given in the thesis

by Iglesias15, which is available electronically.

IV. Results for equal aircraft

Optimum load distributions for a group of

three equal aircraft flying in an arrow formation

will be found, and their induced drag compared

as a function of relative distance in the three

space directions. Planform geometry and the

relative spacing between aircraft are the same as

in Maskew’s3, with three airplanes, each one of

them consisting only of planar wing panels so

that pitching moment constraints do not need to

be applied. Each planform is trimmed with

respect to rolling moment. The characteristics of

the planform geometry are given in Table 1

(from Maskew3).

Table 1. Basic wing geometry

Span 2.0

Geometric mean chord 0.25

Area 0.5

Aspect ratio 8.0

Taper ratio 0.33

Sweepback (quarter-chord line) 5 deg

Dihedral 0

The aircraft will be moved relative to each

other in the x (streamwise), y (spanwise) and z

(vertical) directions, studying the effects of these

distances on load distributions and drag savings.

Figure 1 shows how the off-center airplane will

be moved relative to the central one. Recall that

it is assumed that the configuration will always

be symmetric.

The off-center aircraft (Aircraft 2) will be

moved along the heavy bold line in Figure 1.

First, from x/b = -3.0 to x/b = +3.0, the variation

in induced drag savings will be studied as a

function of streamwise distance, maintaining



4

y/b=0.89 and z/b=0.01. This small, but still

significant value of vertical offset between

airplanes is used due to numerical problems in

the code when the projections of different lifting

surfaces in the Trefftz plane lay on top of each

other.

Then, with a fixed x/b = 3.0, the spanwise

effect will be considered by letting z/b = 0.01

and changing y/b. Finally, the vertical effect is

obtained by letting z/b vary while setting x/b =

3.0 and y/b = 0.89. This is similar to the

approach used by Maskew3.

Figure 1. Movement of the off-centered

aircraft relative to the central one (from

Maskew3)

Although the planform geometry and

movements of the airplanes are taken from

Maskew’s paper, the main purpose here is not to

compare results. The geometric similarities will

certainly make them resemble his results.

However, Maskew solves an analysis problem in

which the wing twist distribution is specified and

the aileron deflection is found so that rolling

moment equals zero. With the whole wing

geometry fixed, downwash angles completely

determine the loads at each station.

In this paper a design problem is treated, in

which only planform geometry is known and

optimum loads are found. This time the loads are

not determined by the downwash angles

satisfying a surface boundary condition. Instead,

we determine the loads and downwash angles

from the requirement of minimum induced drag

for the formation, together with the imposed

constraints on lift and rolling moment.

To set the rolling moment coefficient to zero

in the design problem, the aileron used by

Maskew will not be useful, because calculations

are not dependent on twist or camber, and

therefore, angle of attack. In a sense, the entire

wing is considered to be a control surface and the

rolling moment constraint is applied to each

wing through a constraint on the spanload.

A. Streamwise Effect

Airplane 2 is moved along the x-axis from

x/b=-3 to x/b=3 as shown in Figure 1. Figure 2

shows the change in induced drag coefficient for

each aircraft and for the formation as the

streamwise relative distance is changed. Results

are shown as the ratio of their induced drag in the

formation to their induced drag when flying alone.

Induced drag for single flight is the minimum

induced drag for an aircraft alone configuration,

corresponding to an elliptic lift distribution and a

span efficiency factor equal to 1.
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Figure 2. Effect of streamwise position,

y/b=0.89, z/b=0.01.

Note that the induced drag for the formation

is independent of the streamwise location of the

airplanes, as stated by Munk’s theorem. That

constant value is the minimum induced drag for

the whole configuration. The optimum spanloads

corresponding to this minimum drag are shown

in Figure 3 (only shown half). The load

y/b=0.89

y/b

x/b=3.0

x/b

Aircraft 1

Aircraft 2

O (0,0)
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distribution is also independent of streamwise

position, so that Figure 3 shows the spanload for

any x/b.
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Figure 3. Optimum load distribution z/b=0.01,

y/b=0.89

The induced drag coefficients of Aircraft 1

and Aircraft 2 are highly dependent on x when

the aircraft are close in this direction. For a

streamwise distance between them greater than

three spans, their induced drag reaches a steady

value and is no longer dependent on x separation.

When x/b is negative, the central aircraft is

behind the two leading ones, so that it receives

the upwash from them. The result is that Aircraft

1 has a negative induced drag (a thrust forward).

The upwash from the leading aircraft is higher

than the downwash caused by the central aircraft

on itself.

For x/b positive, the central aircraft is leading

the formation, and its upwash influences Aircraft

2 reducing its induced drag. This time, since it is

only the central aircraft influencing two trailing

ones, the upwash contribution by Aircraft 1 on

Aircraft 2 is lower than the downwash caused by

Aircraft 2 on itself.

When Aircraft 1 leads the formation with a

high streamwise separation with respect to

Aircraft 2 (see Figure 2 for x/b=3), its induced

drag ratio is greater than one. The induced drag

coefficient when flying alone was established to

be the minimum induced drag, corresponding to

an elliptical load distribution. Then, the leading

aircraft suffers a decrease in performance. This

seems contradictory, since almost no downwash

should be felt on Aircraft 1  due to Aircraft 2  (it

is far aft). However, this increase in induced drag

coefficient enhances the performance of the

trailing airplanes, so that a formation minimum

induced drag is obtained. Figure 3 shows that

the load distribution for the central aircraft is not

elliptic. It has higher loads toward the wing tip

than an elliptically loaded wing would have.

These high loads towards the tip induce greater

upwash angles on the trailing aircraft, reducing

their induced drag coefficients. The result is that

a decrease in performance in the leading aircraft

can help obtaining overall drag reductions for the

formation.

The same thing happens for a high negative

value of x/b. In this case the off-center airplanes

lead the formation and they experience a

reduction in performance due to their non-elliptic

load distributions. Here, however, the two

leading aircraft influence each other so that their

induced drag increase is compensated by the

upwash they exert on each other.

For x/b near zero, the induced drag curves for

Aircraft 1 and Aircraft 2 have a break (see

Figure 2). This is caused by the influence of the

bound vortex lines on the airplanes. If Aircraft 1

leads the formation, it feels an upwash from the

bound vortex lines of the trailing aircraft, and

exerts a downwash on them. When they cross,

the upwash and downwash influences are

inverted and a break in the induced drag curve

appears. The break is a lot smoother if vertical or

spanwise distance is increased (for a y/b = 0.94

the break no longer appears). Note that a

streamwise distance near zero with a vertical

distance as small as 0.01 is not really a

physically achievable situation.

One further consideration must be pointed

out. Figure 3 shows the asymmetry in the load

distribution of Aircraft 2. This asymmetry is a

consequence of a V-formation geometry, in

which only the central aircraft has a symmetric

lift distribution. Despite the asymmetric spanload

on Aircraft 2, its rolling moment coefficient

about its center of gravity is zero (the rolling

moment constraint was active). Achieving the

desired lift distribution will be the greatest

problem, not only because of the asymmetry of

the load distribution, but because the spanloads

will be dependent on vertical and spanwise

distance between airplanes.

B. Spanwise Effect

Aircraft 2 is moved along the y direction

while x/b is fixed at a value of 3.0 and z/b=0.01.

Figure 4 shows the changes in induced drag for

each aircraft and the whole formation as the

spanwise distance is varied.
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The formation induced drag coefficient is

highly dependent on spanwise separation. When

y/b=1 the right tip of Aircraft 1 coincides with

the left tip of Aircraft 2 in y location. The

formation minimum actually occurs for a value

of y/b less than one, where Aircraft 2 is in the

wake of the leading aircraft. For a spanwise

distance of two spans, the drag savings are very

small and formation flying is no longer

beneficial. Thus, it is important to maintain the

airplanes in close spanwise position to obtain

any significant induced drag reduction.
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Figure 4. Effect of spanwise position,

x/b=3.0, z/b=0.01.
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The drag dependence of Aircraft 2 on spanwise

distance is also very strong, with 80% potential

induced drag savings for optimum position.

Aircraft 1, however, has a constant induced drag

coefficient equal to its minimum induced drag

when flying alone as long as the airplane tips do

not get close in the spanwise direction. If the

aircraft tips come close or overlap, Aircraft 1

performance decreases, while the induced drag

for Aircraft 2 and the formation starts decreasing

more rapidly.

The previous section showed how a decrease

in performance in Aircraft 1 could produce an

induced drag decrease for the trailing airplanes,

and in turn for the whole formation. But it is

necessary to see why this effect only takes place

for close spanwise distances. Figure 5 shows the

optimum load distributions for several spanwise

positions.

When the airplane tips start overlapping, their

optimum load distributions are very different

from the elliptical loading, the main difference

being higher loads in the vicinity of the other

aircraft’s tip. These loads increase drag on

Aircraft 1 but induce a greater upwash on

Aircraft 2, improving its performance. That is

why Figure 4 shows a rise in induced drag when

tips overlap.
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Figure 5. Optimum load distribution for different spanwise distances
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For a tip spanwise distance greater than

y/b=1, the overlapping does not occur, and the

optimum load distributions for both airplanes

become nearly elliptic. Their spanloads are now

close to the optimum for single flight. In this

situation, higher loads towards the aircraft tip

will again decrease leading aircraft performance

helping the trailing airplanes. However, the

induced upwash on Aircraft 2 will be much

smaller when the aircraft do not overlap (note

that induced velocities are inversely proportional

to spanwise distance). The result is that the

reduction in the trailing aircraft drag will not

compensate for the drag increase on the leading

aircraft. The formation minimum corresponds to

load distributions close to those for solo flight

when aircraft tips do not overlap.

The fact that a potential flow vortex model is

used in this analysis should be emphasized here.

Overlapping tips means close vortex interactions,

where potential flow can fail and viscous effects

may need to be included.

C. Vertical Effect

Aircraft 2 is moved in the vertical direction

while keeping y/b=0.89 and x/b=3.0. The

induced drag variation is shown in Figure 6.
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Figure 6. Vertical effect, x/b=3.0, y/b=0.89.

The strong dependence on z location is clear

from this figure. Maximum drag reductions for

the formation occur at z=0 (induced drag

variation will be equal for negative values of

vertical position). The actual drag reduction

values at z=0 are not obtained due to numerical

problems at these very close vertical locations.

When the vertical distance between aircraft is

small (less than 0.05), optimum load

distributions start deviating from their elliptical

shapes, having higher loads near the tip. A

decrease in Aircraft 1 performance that helps

formation drag is again observed. The load

distribution change with vertical position is

similar to that obtained with spanwise distance

variation (Figure 5).

V. Results for different aircraft sizes

Recently, interest has been concentrated on

systems of airplanes consisting of a leading,

large size mother aircraft and two smaller aircraft

on its side, trailing the formation. The greater

loads that the mother aircraft experiences in

flight produce large upwash velocities that can

be used by the trailing airplanes. In this way

smaller, less efficient airplanes can get large drag

benefits from big, efficient aircraft with long

ranges.

The configuration studied here is shown in

Figure 7. The planform characteristics of the

mother aircraft are given in Table 2. Aircraft 2

geometry is exactly equal to that of the leading

aircraft, with a scale factor of 0.5. That is,

Aircraft 1  is exactly twice as large as Aircraft 2 .

The lift coefficients of both airplanes are set to a

value of 0.6.

Note that the airplanes now have tail panels,

so that the pitching moment coefficient can be

included in the calculations. Optimum spanloads

for minimum induced drag are found with

constraints in lift, pitching moment and rolling

moment coefficients.

Since the smaller, off-center aircraft are the

ones that must receive drag benefits from the

central one; they are located trailing the

formation. The streamwise distance between

aircraft is set to be large enough so that aircraft

collision can be avoided and induced drag

coefficients are independent of x direction.

Figure 2 showed that Aircraft 2 obtains the

largest benefit at this position. Figure 6 also

shows that vertical spacing between aircraft must

approach zero for maximum drag reductions. So,

in this study x/b will be set to 3.0 and z/b=0.01.

These values are non-dimensionalized by the

span of the mother aircraft (b=1.0). The small

vertical spacing again avoids numerical

problems.

Only the spanwise effect will be studied this

time, since it will give maximum induced drag

reductions for the trailing airplanes. The induced

drag variation for each aircraft and the formation

as a function of relative spanwise distance is

shown in Figure 8. Spanwise position is non-

dimensionalized by the span of Aircraft 1 . As in

the previous case, when y/b=1 the tips of the

different aircraft are in the same y position.
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Figure 7. Geometry and relative

movements between airplanes for different

aircraft size configuration.

Table 2. Basic wing geometry for mother

aircraft

Span 1.0

Geometric mean chord 0.2

Area 0.2

Aspect ratio 5.0

Taper ratio 1.0

Sweepback (quarter-chord line) 0 deg

Dihedral 0

The induced drag for Aircraft 2 and the

formation is again highly dependent of the

relative spanwise distance between airplanes.

Aircraft 1 has a constant induced drag coefficient

when airplane tips are not very close to each

other. When y/b approaches 1, Aircraft 1

experiences a sharp increase in induced drag that

benefits the whole system of airplanes since the

drag of Aircraft 2 is highly decreased. Negative

induced drag values (a thrust) are experienced by

the trailing aircraft for y/b values lower that 1.05.
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Figure 8. Spanwise effect for different

aircraft size configuration, x/b=3.0, z/b=0.01

Elliptic load distributions, close to the

optimum ones, are obtained for values of y/b

greater than 1.05. It is in this region where the

induced drag coefficient of Aircraft 1 remains

constant. When the tips come closer, the load

distributions deviate from the elliptic shape and

higher loads are found near the tips.

For this case, higher loads on the tips of the

mother aircraft are even more beneficial, since

they will cause a high upwash field that can be

used by the smaller airplanes. The result is that

optimum spanloads for close aircraft positions

deviate more from the elliptical loading for this

type of configuration.

Figure 9 shows the optimum load

distributions for two cases. For y/b=1.0 the

spanloads are very different from flying-alone

optimums, resulting in an 80% increase in the

induced drag of the mother aircraft and a

negative induced drag on the smaller ones (see

Figure 8). For y/b=1.05 the optimum spanloads

are now nearly elliptic. Aircraft 1 still has high

loads near the tips because of the relative

proximity between airplanes. Aircraft 1

experiences an increase in induced drag of less

than 10% while the trailing aircraft achieve drag

reductions greater than 80%.

Again, overlapping tips means close vortex

interactions, where the potential-flow vortex

model may not be accurate.
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Figure 9. Optimum load distributions for

different spanwise distances. Different

aircraft size configuration.

VI. Optimum aircraft position

It seems that the ideal V-shape configuration

will be that in which the induced drag of every

airplane will be the same, so that each one of

them obtains equal benefits. Figure 2 shows that

such a configuration requires close spacing

between aircraft (x/b=0.1). A more realistic

configuration will be that in which aircraft

collision can be avoided. When x/b is high both

in the negative and positive directions, the

danger of collision is eliminated.

Besides collision avoidance, desired aircraft

position is also limited by the ability of each

airplane to maintain its position and optimum

load distribution in the configuration.

It was noted above (see Figures 5 and 9) that

the optimum load distribution is highly

dependent on aircraft’s relative position when

airplanes overlap in the spanwise direction and

they have a close vertical spacing. The key

problem here is how to obtain different load

distributions for different aircraft positions.

The approaches of Feifel2 and Maskew3 do

not encounter that problem since their effective

angle of attack at each station is known. Their

only problem is finding the aileron deflection

required to obtain a zero rolling moment about

the center of gravity.

In this paper the entire wing is treated as a

rolling-control surface. Moreover downwash

velocities and optimum spanloads are dependent

on aircraft position. A new twist distribution is

needed (recall that planform geometry is always

constant) for every configuration to achieve

these load distributions.

Another problem exists for formation flying.

For these cases the rapidly changing conditions

when airplane tips are close to each other leads

to highly varying rolling moment coefficients

that require continuous aileron adjustments.

Wolf, Chichka and Speyer16 developed

decentralized controllers and peak-seeking

control methods to make these adjustments and

maintain the aircraft at their optimum positions.

For the peak-seeking control methods, due to the

difficulties of measuring drag (or thrust) during

flight, airplanes are maintained at a position

where the rolling moment coefficient is a

maximum. It is assumed that the maximum

rolling moment coefficient occurs at the

minimum induced drag location. This

assumption may not always be true, so that real

optimum positions are not necessarily obtained.

Beukenberg and Hummel5 showed that with

the application of such a maximum rolling

moment control method in test flights, only half

of the expected benefits could be achieved. Other

control methods designed to maintain aircraft in

formation have been developed,7,18 but these

methods do not include the strong aerodynamic

effects that cause high rolling moments. Further

work is required in this field before conclusions

can be made.

For this case study, the changing spanload

distributions in the overlap region will be

difficult to obtain. However, important drag

reductions can be obtained for a y/b greater than

one (see Figures 4 and 8). In this region, the

optimum load distribution is in fact nearly

elliptic, very close to the solo flying optimum.

If the overlapping region is not a feasible

solution for a formation configuration due to

geometry or control problems, the induced drag

benefits will be decreased. In the spanwise study

for three equal aircraft, for example, induced

drag reductions for Aircraft 2  will go from 80%

to around 40%, and total formation drag savings

will decrease from 50% to about 30% (see

Figure 4).
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VII. Conclusions

A method has been developed to calculate the

optimum load distribution for a group of aircraft

flying in V-formation that gives minimum

induced drag for the whole configuration. The

method allows the study of induced drag

coefficients for separate aircraft and the

formation as a function of relative distance

between airplanes. Only planform geometry is

fixed for each aircraft in the formation, with no

twist or camber distribution specified.

When the distance between airplanes is

changed, the optimum load distribution giving

minimum induced drag also changes. Twist

distribution must then be changed as a function

of aircraft distance if maximum induced drag

savings are expected.

A test case has been studied consisting of

three aircraft flying in an arrow formation. It has

been shown that the optimum load distribution

(and hence the optimum twist distribution) is

highly dependent on spanwise distance when the

aircraft tips are very close to each other or they

overlap in this direction. When aircraft tips do

not overlap in the spanwise direction the load

distribution nearly approaches the optimum

spanload when flying alone.

To avoid collisions between aircraft, they

should be separated in the streamwise direction.

Results show that for a large enough streamwise

distance between aircraft (about three spans),

induced drag coefficients for each airplane are no

longer dependent on this direction. Induced

velocities also become independent of the

streamwise direction for these distances. A given

twist distribution will provide then the desired

optimum lift distribution in this region.

As long as the airplanes are in a not very

sensitive region with respect to required twist

distributions the induced drag reductions can be

certainly obtained. For a configuration of three

equal aircraft, with the central aircraft leading

the formation and the other ones in a non-

sensitive region, induced drag reductions for the

formation of about 30% are achievable.

 A formation with a mother aircraft leading

two smaller airplanes half its size in a non-

sensitive region can give formation drag

reductions of 40%, with induced drag savings in

the trailing aircraft greater than 80%.

Unfortunately, highly sensitive regions to

required twist distribution coincide with regions

of maximum drag savings. If aircraft were

positioned in the aerodynamic optimum, with no

regards to required geometries, induced drag

reductions of 50% are possible for the equal

aircraft formation. For the mother aircraft and its

trailing partners, about 60% savings for the

formation induced drag can be obtained, and the

trailing aircraft would experience a negative

induced drag (a thrust forward).

The results obtained here need to be extended

to include the design wing shape. With the

aircraft position and spanload known, the camber

surface required to achieve the design spanload

must be found.
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