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Abstract. Confronted with the high-dimensional tensor-like visual data,
we derive a method for the decomposition of an observed tensor into a
low-dimensional structure plus unbounded but sparse irregular patterns.
The optimal rank-(R1, R2, ...Rn) tensor decomposition model that we
propose in this paper, could automatically explore the low-dimensional
structure of the tensor data, seeking optimal dimension and basis for each
mode and separating the irregular patterns. Consequently, our method
accounts for the implicit multi-factor structure of tensor-like visual data
in an explicit and concise manner. In addition, the optimal tensor de-
composition is formulated as a convex optimization through relaxation
technique. We then develop a block coordinate descent (BCD) based
algorithm to efficiently solve the problem. In experiments, we show sev-
eral applications of our method in computer vision and the results are
promising.

1 Introduction

As the size of data and the amount of redundancy increase fast with dimension-
ality, the recent explosion of massive amounts of high-dimensional visual data
presents a challenge to computer vision. Most of the existing high-dimensional
visual data either has the natural form of tensor (e.g. multi-channel images and
videos) or can be grouped into the form of tensor (e.g. tensor face [1]). On one
side, one may seek a compact and concise low-dimensional representation of the
data, such as dimension reduction [2–4] or image compression [5]. On the other
side, one may seek to detect the irregular patterns of the data, such as saliency
detection [6] or foreground segmentation [7]. As a consequence, it is desirable
to develop tools that can find and exploit the low-dimensional structure in a
high-dimensional tensor-like visual data.

In the two-dimensional case, i.e. the matrix case, the “rank” plays an impor-
tant part in capturing the global information of visual data. One simple and
useful assumption is that the data lie near certain low-dimensional subspace,
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Fig. 1. Result of our method on a color facade (left). The method automatically seek
a low dimensional representation (middle) and separate the sparse irregular patterns
(right). Better viewed in color and zoom in for details.

which is closely related to the notation of rank. Although the “rank” itself is
nonconvex, it can be approximated by its convex envelop, namely the trace
norm. The validation of this approximation is justified in theory [8]. Among all
the trace norm minimization problems, matrix completion may be a well-known
one [8, 9]. Recently, [10] extends the matrix completion problem to the tensor
case and develops an efficient solution.

The “sparsity” is also a useful tool for visual data analysis. One common
observation is that the irregular patterns often occupy a small portion of the
data. This sparse prior has demonstrated a wide range of applications including
image denoising [11], error correction [12] and face recognition [13]. It was not
until very recently that had much attention been focused on the rank-sparsity
problem for matrix [14, 15], namely the Principal Component Pursuit (PCP) or
the Robust Principal Component Analysis (RPCA). These work seek to directly
decompose a matrix into a low-rank part plus a sparse part. Theoretic analy-
sis [15] shows that under rather weak assumptions, the problem can be solved
by the joint minimization of trace norm and l1 norm.

We consider the decomposition of an observed tensor data into a low di-
mensional structure and an additive (sparse) irregular pattern. Analogy to the
PCP problem in the matrix case, the optimal rank-(R1, R2, ...Rn) tensor de-
composition model that we propose in the paper, could automatically explore
the low-dimensional structure of the tensor data, seeking optimal dimension and
basis for each mode and separating the irregular patterns (See Fig.1 for an ex-
ample and the core idea). Our method is an multilinear extension of the PCP
problem and subsumes the matrix PCP problem as a special case. The optimal
tensor decomposition is formulated as a convex optimization through relaxation
technique. In addition, we develop a efficient block coordinate descent (BCD)
based solution. We show several applications of our method in computer vision
and the results are promising.

The rest of the paper is organized as follows: Section 2 briefly reviews related
work. Section 3 provides the foundations of tensor algebra that are relevant to our
approach. Section 4 formulates our proposed optimal rank-(R1, R2, ..., Rn) tensor
decomposition model together with its solution. Section 5 reports experimental
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results of our algorithm for several computer vision tasks. Finally, Section 6
concludes the paper.

2 Related Work

Prior research on subspace analysis is abundant, including Principal Component
Analysis (PCA) [2], Linear Discriminant Analysis (LDA) [3], Locality Preserv-
ing Projection (LPP) [4], etc. These models are widely adopted in computer
vision problems. They usually treat an image as a vector and consider only one
factor of the problem (e.g. only the face identity is considered in face recogni-
tion task). Various researchers have attempted to overcome the shortcomings of
these methods by considering the image as a 2-mode tensor (i.e. matrix), includ-
ing 2DPCA [7], tensor subspace analysis (tensor LPP) [16], tensor LDA [17],
etc.

Much effort has been focused on the tensor representation and analysis of vi-
sual data. Vasilescu and Terzopoulos [1] introduce a multilinear tensor framework
to the analysis of face ensembles that explicitly accounts for each of the multi-
ple factors implicit in image formation. Possible applications of the multilinear
approach cover face recognition [18–20], facial expression decomposition [20, 21]
and face super-resolution [22]. These methods are based on the higher order sin-
gular value decomposition [23], i.e. the Tucker decomposition, leading to best
rank-(R1, R2, ...Rn) approximations of higher-order tensors (See Section 2 for
details).

Shashua and Levin [24] propose 3-way tensor decomposition for the images as
a 3D cube. They develop compression algorithms for images and video, that take
advantage of spatial and temporal redundancies. The method is further extended
to non-negative 3D tensor factorization [22] for the purpose of establishing a local
parts feature decomposition from an object class of images. The non-negative
tensor factorization is also applied to hypergraph clustering [25] to study a series
of vision problems including 3D multi-body segmentation and illumination-based
face clustering. These methods are based on the PARAFAC decomposition [26],
leading to best (non-negative) rank-R approximations of higher-order tensors.

The optimal rank-(R1, R2, ...Rn) tensor decomposition model that we propose
in the paper seeks a best n-rank condition for the tensor data, yielding a rather
different approach from previous work. Our model could simultaneously find the
optimal dimension and basis for each mode and separate the irregular patterns
in an automatic manner. As a result, by rather weak prior, our method can
account for the implicit multi-factor structure of tensor-like visual data in an
explicit and concise manner.

3 Tensor Basics

A tensor, or n-way array, is a higher-order generalization of matrix. We use lower
case letters (a, b,...) for scalars, bold lower case letters (a, b,...) for vectors, upper
case letters (A, B,...) for matrix, and calligraphic upper case letters (A, B,...) for
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higher order tensors. Formally, a n-mode tensor is defined as A ∈ RI1×I2×...×In ,
with its elements ai1 ...aik

...ain ∈ R. Therefore, a vector can be seen as a 1-mode
tensor and a matrix can be seen as a 2-mode tensor.

It is often convenient to flatten a tensor into a matrix, also called matricizing
or unfolding. The “unfold” operation along the kth mode on a tensor A is de-
fined as unfold(A, k) := A(k) ∈ RIk×(I1...Ik−1Ik+1...In). Accordingly, its inverse
operator fold can be defined as fold(A(k), k) := A. Moreover, the k-rank of
tensor A, denoted by rk, is defined as the rank of the matrix A(k):

rk = rankk(A) = rank(A(k)) (1)

The Frobenius norm of a tensor is defined as ‖A‖F :=(
∑

i1,i2,...in
|ai1ai2 ...ain |2) 1

2 .
Besides, denote the l0 norm ‖A‖0 as the number of non-zero entities in A
and the l1 norm ‖A‖1 :=

∑
i1,i2,...in

|ai1ai2 ...ain | respectively. Then, we have
‖A‖F = ‖A(k)‖F , ‖A‖0 = ‖A(k)‖0 and ‖A‖1 = ‖A(k)‖1 for any 1 ≤ k ≤ n.

A generalization of the product of two matrix is the product of a tensor
and a matrix. The mode-k product of a tensor A ∈ RI1×I2×...×In by a matrix
M ∈ RJk×Ik , denoted by A ×k M , is a tensor B ∈ RI1×...Ik−1×Jk×Ik+1×...×In

with its elements given by

bi1×...ik−1×jk×ik+1×...×in =
∑

ik

ai1×...ik−1×ik×ik+1×...×inmjkik
(2)

The mode-k product can be expressed in tensor notation, or in terms of flattened
matrix:

B = A×k M = fold(MA(k), k) (3)

The notion of rank for tensors with order greater than two is subtle. There are
two types of higher-order tensor decompositions, but neither of them has all the
nice properties of the matrix SVD. The PARAFAC decomposition [26] represents
the n-mode tensor A ∈ RI1×I2×...×In as the outer product of vectors uj

k ∈ RIk

(Fig.2).

A =
R∑

j=1

λju
j
1 ◦ uj

2 ◦ ... ◦ uj
n (4)

where uj
k are unit length vectors. Under mild conditions, the rank-R decompo-

sition is essentially unique [26]. The rank of a n-mode tensor A, is the mini-
mal number of R, indicating the optimal rank-R decomposition. It is a natural
extension of the matrix rank-R decomposition, but it does not compute the
orthonormal subspace associated with each mode.

The Tucker decomposition, in the other hand, does not reveal the rank of the
tensor, but it naturally generalizes the orthonormal subspaces corresponding to
the left/right singular matrix computed by the matrix SVD [23]. The n-mode
tensor A ∈ RI1×I2×...×In can be decomposed as

A = Z ×1 U1 ×2 U2, ... ×k Uk... ×n Un (5)
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Fig. 2. Comparison of different decomposition for 3D tensor; Top: Rank-R decompo-
sition. Bottom: Rank-(R1, R2,. . . RN ).

where Ui ∈ RIi×Ri are n orthogonal matrix. Ui spans the Ri dimensional sub-
space of the original RIi space, with its orthonormal columns as the basis. Ui

accounts for the implicit factor of the ith-mode dimension of tensor A. Z is the
(dense) core tensor associating each of the n subspace (Fig.2).

4 Optimum Rank-(R1, R2,. . . RN) Tensor Decomposition

4.1 The Model

To begin with, we give a brief introduction to the best Rank-(R1, R2,. . .RN )
approximation (decomposition) problem in [17, 20, 23]. Consider a real n-mode
tensor A ∈ RI1×I2×...×In , the best rank-(R1, R2,. . . RN ) approximation is to find
a tensor Ã ∈ RI1×I2×...×In with pre-specified rankk(Ã) = Rk, that minimizes
the least-squares cost function:

min
Ã

f(Ã) = ‖A− Ã‖2
F

s.t. ranki(Ã) = Ri ∀i
(6)

The n-rank conditions imply that Ã should have the Tucker decomposition as
(5): Ã = Z×1 U1×2 U2, ...×k Uk...×n Un. The decomposition is discussed in [23]
and Higher Order Orthogonal Iteration (HOOI) has been proposed to solve the
problem.

HOOI requires strong prior knowledge of the tensor A ∈ RI1×I2×...×In , namely
ranki(A) = Ri, to find the (local) minimum solution. However, for visual data
in real applications (e.g. a video clip or CT data), such prior knowledge is hardly
available. Problem arises that if only weak prior knowledge is known (e.g. the
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configuration of the tensor data), can one design a method that could automat-
ically find the optimal n-rank condition of the given tensor A. To simplify the
problem, we consider a ideal model that the corruption is produced by additive
irregular patterns S.

A = L + S (7)

where A, L and S are n-mode tensors with identical size in each mode. A is the
observed data tensor. L and S represent the correspondent structured part and
irregular part, respectively.

The underlining assumption of (7) is that the tensor data A is generated by a
highly structured tensor L, and then corrupted by an additive irregular patterns
S. One straightforward assumption may be that the n-rank of L should be small
and the corruption S is bounded, leading to the formulation:

min
L

∑

i

λi ranki(L)

s.t. ‖L −A‖2
F ≤ ε2

(8)

where Ui ∈ RIi×ranki(L). Intuitively, the weights λi indicates the preference
towards different “unfold” operation, i.e. the configuration of the tensor. For
example, we would prefer to explain the tensor representation of a video as the
collection of frames.

(8) imposes constraints on the least square errors, suggesting that the corrup-
tion of the irregular patterns S is bounded. The constraint could be the case in
certain situations. However, the irregular patterns in real world visual data is
unknown and unbounded in general. A reasonable observation is that the irreg-
ular patterns S usually occupy only a small portion of the data. Therefore, we
could impose l0 norm penalization on S and form the problem as follows:

min
L,S

∑

i

λi ranki(L) + η‖S‖0

s.t. ‖L + S −A‖2
F ≤ ε2

(9)

The constant η balances between the low-dimensional structure and sparse ir-
regularity. In addition, it is easy to check that (7) is a special case of (9) if we
force S = 0. Thus, we will focus on problem (9) in the rest of the paper.

When the optimal L is achieved, similar to the Tucker Decomposition, the
core tensor Z can be computed by [23]

Z = L ×1 UT
1 ×2 UT

2 ... ×n UT
n (10)

where Ui is the left singular matrix of Li. Accordingly, we can get the rank-(R1,
R2,. . . RN ) decomposition of L = Z ×1 U1 ×2 U2, ... ×i Ui... ×n Un. We call the
correspondent decomposition in (11)

A ∼ Z ×1 U1 ×2 U2, ... ×i Ui... ×n Un (11)
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to be the optimal rank-(R1, R2,. . . RN) decomposition of tensor A under
the sense of l1 norm . The term “optimal” means that the model could auto-
matically exploit the low-dimensional structure of the n-mode tensor A, finding
optimal dimension and basis for each mode and separating the sparse irregular
patterns. The unknown support of the errors makes the problem more difficult
than the tensor completion problem that has been recently much studied [10]. In
the next section, we discuss the solution toward the optimization problem and
propose the rank sparsity tensor decomposition (RSTD) algorithm.

4.2 Simplified Formulation

Equation (9) provides a promise for simultaneously exploring the low-dimensional
structure and separating the irregular patterns of given tensor data A ∈
RI1×I2×...×In . However, (9) as the combination of two NP hard problem (matrix
rank and l0 norm), is highly nonconvex optimization. Given the fact that the
trace norm ‖L(i)‖tr and l1 norm ‖S‖1 are the tightest convex approximation of
ranki(L) and ‖S‖0 respectively, one can relax ranki(L) and ‖S‖0 by ‖L(i)‖tr

and ‖S‖1. Therefore, we could obtain a tractable optimization problem:

min
L,S

∑

i

λi‖L(i)‖tr + η‖S‖1

s.t. ‖L + S −A‖2
F ≤ ε2

(12)

where the trace norm, or the nuclear norm of matrix L(i) is defined as the
sum of its singular values σj , i.e. ‖L(i)‖tr =

∑
j σj(L(i)). If rankiL � Ii and

‖S‖0 � Πn
i=1Ii, i.e. tensor L is highly structured and tensor S is sparse enough,

under rather mild conditions, the approximation can be highly accurate [8, 15].
Empirically, for general visual data with high redundancy, the approximation
produces good results.

Problem (12) is still hard to solve due to the interdependent trace norm and
l1 norm constraint. To simplify the problem, we introduce additional auxiliary
matrix Mi = L(i) and Ni = S(i). Thus, we obtain the equivalent formulation:

min
L,S,Mi,Ni

1
n

n∑

i=1

λi‖Mi‖tr +
η

n

n∑

i=1

‖Ni‖1

s.t. Mi = L(i) Ni = S(i) ∀i

‖Mi + Ni −A(i)‖2
F ≤ ε2 ∀i

(13)

In (13), the constrains Mi = L(i) and Ni = S(i) still enforce the consistency of
all Mi and Ni. Thus, we further relax the equality constrains Mi = L(i) and
Ni = S(i) by ‖Mi −L(i)‖F ≤ ε1 and ‖Ni −S(i)‖F ≤ ε2. Then, it is easy to check
that the dense noise term by ‖Mi + Ni −A(i)‖F ≤ ε3 corresponds to the stable
Principle Component Pursuit(sPCP) in the matrix case [27]. Then, we get the
relaxed form:
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min
L,S,Mi,Ni

1
n

n∑

i=1

λi‖Mi‖tr +
η

n

n∑

i=1

‖Ni‖1

s.t. ‖Mi − L(i)‖2
F ≤ ε2

1 ‖Ni − S(i)‖2
F ≤ ε2

2 ∀i

‖Mi + Ni −A(i)‖2
F ≤ ε2

3 ∀i

(14)

For certain αi, βi and γi, (14) can be converted to its equivalent form by Lagrange
multiplier.

min
L,S,Mi,Ni

F (L,S, Mi, Ni) =
1
2n

n∑

i=1

αi‖Mi − L(i)‖2
F +

1
2n

n∑

i=1

βi‖Ni − S(i)‖2
F

+
1
2n

n∑

i=1

γi‖Mi + Ni −A(i)‖2
F +

1
n

n∑

i=1

λi‖Mi‖tr +
η

n

n∑

i=1

‖Ni‖1

(15)

Intuitively, the weights αi, βi and γi indicate the preference towards different
“unfold” operation similar to λi. The optimization problem in (15) is convex but
nondifferentiable. Next, we show how to solve this problem.

4.3 The Proposed Algorithm

We propose to employ the alternating direction method (ADM) for the opti-
mization (15), leading to an block coordinate descent (BCD) algorithm. The
core idea of the BCD is to optimize a group of variables while fixing the other
groups. The variables in the optimization are N1,..., Nn, M1,..., Mn, L, S, which
can be divided into 2n + 2 blocks. To achieve the optimal solution, we estimate
Ni, Mi, L and S sequentially, followed by certain refinement in each iteration.
For clarity, we first define the ”shrinkage” operator Dτ (x) with τ > 0 by

Dτ (x) =

⎧
⎪⎨

⎪⎩

x − τ if x > τ

τ − x if x < −τ

0 otherwise
(16)

The operator can be extended to the matrix or tensor case by performing the
shrinkage operator towards each element. Then, we introduce the solution to-
wards each subproblem.
Computing Ni: The optimal Ni with all other variables fixed is the solution to
the following subproblem

min
Ni

βi

2
‖Ni − S(i)‖2

F +
γi

2
‖Ni + Mi −A(i)‖2

F + η‖Ni‖1 (17)

By the well-known l1 minimization [28], the global minimum of the optimization
problem in (17) is given by

Ni
∗ = D η

βi+γi
(
βiS(i) + γi(A(i) − Mi)

βi + γi
) (18)

where Dτ is the “shrinkage” operation.
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Computing Mi: The optimal Mi with all other variables fixed is the solution
to the following subproblem:

min
Mi

αi

2
‖Mi − L(i)‖2

F +
γi

2
‖Mi + Ni −A(i)‖2

F + λi‖Mi‖tr (19)

As shown in [9], the global minimum of the optimization problem in (19) is given
by

Mi
∗ = UiD λi

αi+γi

(Λ)Vi
T (20)

where UiΛVi
T is the singular value decomposition given by

UiΛVi
T =

αiL(i) + γi(A(i) − Ni)
αi + γi

(21)

Computing Si: The optimal S with all other variables fixed is the solution to
the following subproblem

min
S

1
2

n∑

i=1

βi‖Ni − S(i)‖2
F (22)

It is easy to show that the solution to (22) is given by

Ŝ∗ =
∑n

i=1 βifold(Ni, i)∑n
i=1 βi

(23)

Computing Li: The optimal L with all other variables fixed is the solution to
the following subproblem

min
L

1
2

n∑

i=1

αi‖Mi − L(i)‖2
F (24)

Similar to (22), the solution to (24) is given by

L̂∗ =
∑n

i=1 αifold(Mi, i)∑n
i=1 αi

(25)

We choose the difference of L and S in successive iterations against a certain
tolerance as the stopping criterion. N∗

i , M∗
i , L∗ and S∗ are estimated iteratively

until the convergence. We call the proposed algorithm Rank Sparsity Tensor
Decomposition (RSTD). The pseudo-code of RSTD is summarized in Algorithm
1. We can further show that accelerated BCD for RSTD is guaranteed to reach
the global optimum of (15), since the first three terms in (15) are differentiable
and the last two terms are separable [29].
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Algorithm 1. RSTD for Optimum Rank-(R1...RN ) Tensor Approximation

Input : n-mode tensor A
P arameters : α, β, γ, λ, η
Output : n-mode tensor L, S , Z, matrix Ui from 1 to n

1. Set L(0) = A, S(0) = 0, Mi = L(i), Ni = 0 , k = 1, t(0) = 1
2. while no convergence
3. for i = 1 to n

4. Ni
∗ = D η

βi+γi
(

βiS(i)+γi(A(i)−Mi)

βi+γi
)

5. Mi
∗ = UiD λi

αi+γi

(Λ)Vi
T where UiΛVi

T =
αiL(i)+γi(A(i)−Ni)

αi+γi

6. end for

7. S∗ =
∑n

i=1 βifold(Ni,i)
∑n

i=1 βi

8. L∗ =
∑n

i=1 αifold(Mi,i)
∑n

i=1 αi

9. end while
10. Z = L ×1 UT

1 ×2 UT
2 ... ×n UT

n

5 Experiments

5.1 Implementation Details

In the implementation, we adopt the Lanczos bidiagonalization algorithm with
partial reorthogonalization [30] to obtain a few singular values and vectors during
each iteration. The prediction rule for the dimension of the principal singular
space is the same as [15]. A major challenge of our method is the selection of
parameters. As the redundancy usually grows with the dimension, we simply
set α = β = γ = [I1/Imax, I2/Imax, ..., In/Imax]T for all experiments, where
Imax = max{Ii}. Similarly, we set λ = [sv1/svmax, sv2/svmax, ..., svn/svmax],
where svi is the 95% singular value of A(i) and svmax = max{svi}. Finally, we
choose η = 1/

√
Imax as suggested in [15]. During the experiments, we observe

that for most of the samples our implementation is able to converge in less than
100 iterations with a tolerance equal to 10−6.

5.2 Image Restoration

As shown in Fig.1, our algorithm can be used to separate unbounded sparse
noise in visual data. One straightforward application of our method is the image
restoration. However, we must point out that our algorithm assumes the tensor
be well structured. This assumption would not be reasonable for some natural
images, but it should be applicable for many visual data such as structured
object (e.g. the facade), CT/fMRI data, multi-spectral image, etc. Therefore,
we apply our algorithm on a set of MRI data including 181 brain images, which
is also used in [10]. We add different percent of unbounded random noise to the
image and demonstrate some of the results produced by our method in Fig.3.



800 Y. Li et al.

Fig. 3. Demonstration of the results produced by our algorithm (from left to right):
original image, 5% corrupted image, recovered image from 5% corrupted noise; 10%
corrupted image, recovered image from 10% noise; 30% corrupted image, recovered
image from 30% corrupted noise

Our algorithm is able to find the structured data and separate the noise
without the location of the corruption (about 30 percent of the data). Table.1
further provides quantitative results of our algorithm.

Table 1. Error correction for the brain MRI data

Percentage of Corruption 5% 10% 15% 20% 30%

Average PSNR (dB) 37.41 34.41 30.70 28.95 20.35

5.3 Background Subtraction

Another possible application of our algorithm is the background subtraction
problem. Background substraction establishes a background model (the struc-
tured part) and segments the foreground object (sparse irregular pattern). For
most of the video clip, redundancy is abundant. We conduct experiments on
several video clips. Fig.4 demonstrates some of our results in one of the highly
dynamic scenes. The results are comparable to the-state-of-art background sub-
traction algorithms.
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Fig. 4. Background subtraction by our method (no filter is performed on the results)

5.4 Face Representation and Recognition

By the TensorFace in [1], we test our algorithm on the CMU PIE dataset, which
contains 68 person under various viewpoints, expressions and illuminations. We
use the same data set as [16] with the resolution at 64× 64. For simplicity, only
the five near frontal view under 21 different illuminations (105 images) of one
person are used as training and the rest (65 images including the expressions)
is for testing. Thus, we get a 5 × 21 × 68 × 64 × 64 tensor. Then, the method
learns a 5 × 5 × 68 × 23 × 22 core tensor. Fig.5 compares the reconstructed
faces with the original ones. We can see that the shadows have been removed.
As a consequence, we achieve a competitive 94.3% accuracy by the recognition
method in [19].

Fig. 5. Original Face (left) v.s. Reconstructed Face (right): the shadow caused by
different illumination has been removed

6 Conclusion and Future Work

In this paper, we propose the optimal rank-(R1, R2, ...Rn) tensor decomposition
model. The model could automatically explore the low-dimensional structure of
the tensor data seeking optimal dimension and basis for each mode and sepa-
rating the irregular patterns. We are currently working on parameters and the
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optimization method of our model (e.g the proximal gradient), which may lead
to better efficiency. We would also like to further explore additional applications
and to investigate the theoretic side of our method in the future work.
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