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Abstract

Evolutionary algorithms are frequently applied to dynamic optimization problems in
which the objective varies with time. It is desirable to gain an improved understanding
of the influence of different genetic operators and of the parameters of a strategy on its
tracking performance. An approach that has proven useful in the past is to mathemat-
ically analyze the strategy’s behavior in simple, idealized environments. The present
paper investigates the performance of a multiparent evolution strategy that employs
cumulative step length adaptation for an optimization task in which the target moves
linearly with uniform speed. Scaling laws that quite accurately describe the behavior
of the strategy and that greatly contribute to its understanding are derived. It is shown
that in contrast to previously obtained results for a randomly moving target, cumula-
tive step length adaptation fails to achieve optimal step lengths if the target moves in a
linear fashion. Implications for the choice of population size parameters are discussed.
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1 Introduction

Evolutionary algorithms are nature inspired heuristics for search and optimization that
model the iterated interplay of variation and selection in a population of candidate
solutions. Comprehensive treatments of the subject area can be found in (Bäck, 1996;
Goldberg, 1989; Mitchell, 1996; Rechenberg, 1994). Reasons for the widespread use of
evolutionary algorithms include their often observed robustness, the ease with which
the underlying paradigm is understood and implemented, and their wide applicability.
Areas of application today include management, control, design, scheduling, pattern
recognition, and decision making.

In recent years, a fair amount of theoretical investigation has contributed substan-
tially to our understanding of the dynamics of evolutionary search strategies on a va-
riety of problem classes. For an overview, see (Beyer et al., 2002). However, most of
the problem classes that have been considered are of a static nature. In contrast, many
problems encountered in the computational, engineering, and biological sciences are
dynamic in that the objective is not constant but varies with time. Instances of dynamic
optimization problems arise for example in the context of online job scheduling, where
new jobs arrive in the course of the optimization. In the engineering sciences, many
control problems are of an inherently dynamic nature. An extensive list of references
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concerned with dynamic optimization problems in the biological sciences has been re-
viewed by (Bürger, 2000).

In contrast to static optimization where the goal is to rapidly and accurately lo-
cate a (near) optimal solution, the task in dynamic optimization frequently amounts
to tracking a moving target as closely as possible. Strategies for dynamic optimization
need to continually adapt to changes in the environment. Evolutionary algorithms are
population-based strategies that often place great emphasis on adaptability, and that
are believed to be good at handling time-varying objectives. In fact, dynamic optimiza-
tion is frequently cited as a prime application area for evolutionary algorithms.

The knowledge available with respect to the capabilities of evolutionary algo-
rithms for dynamic problems is mostly of an empirical nature. An extensive survey
of work concerned with evolutionary optimization in dynamic environments along
with a collection of benchmark functions and a discussion of methods that have been
proposed to improve the performance of evolutionary algorithms when the objective
varies with time has been compiled by (Branke, 2001). More recent treatises of the area
include a book by (Morrison, 2004) and a survey article concerned with evolutionary
optimization in uncertain environments by (Jin and Branke, 2005). A first rigorous anal-
ysis of the performance of a (1 + 1)-strategy on a discrete, dynamic objective function
has been presented by (Droste, 2002). However, focus in that paper is not on the track-
ing behavior of the strategy but rather on the expected time required to first reach the
optimum. The tracking behavior of a (1 + λ)-strategy is subject of a recent paper by
(Jansen and Schellbach, 2005) in which a one-max like dynamic problem is considered
on a two-dimensional lattice. As in Droste’s paper, the search space is of a discrete
nature and the strategy is not adaptive.

Focus in the present paper is on the tracking behavior of adaptive evolution strate-
gies in continuous search spaces. Among the most closely related work is a paper by
(Angeline, 1997) that compares empirically the tracking performance of an evolution-
ary algorithm employing a form of mutative self-adaptation with that of a strategy
using a simple heuristic for step length adaptation. The fitness environment consid-
ered is a three-dimensional, spherically symmetric objective function that is shifted
periodically either in a random fashion or on a linear or a spherical path. Angeline
observes that the self-adaptation mechanism is not without problems in the dynamic
case. In that same fitness environment, (Bäck, 1998) compares different variants of
mutative self-adaptation and presents evidence that seems to indicate that the lognor-
mal self-adaptation used in evolution strategies performs better than the variant of
self-adaptation commonly used in evolutionary programming. (Salomon and Eggen-
berger, 1997) compare empirically the performance of evolution strategies with that of
a breeder genetic algorithm on the sphere, an ellipsoid, and Rastrigin’s function, where
the coordinates are shifted by a constant increment in every time step. The search space
dimensionalities they consider for the sphere are N = 10 and N = 30. While they do
not quantify the term, they find that the sensitivity to the particular implementation of
the strategy and to its parameter values is much lower for the tracking task than it is in
a static environment. Without providing details, they also report to have observed that
recombination is not beneficial for tracking a moving target. (Weicker and Weicker,
1999) contrast self-adaptation of a single mutation strength with that of N mutation
strengths and adaptation of the full mutation covariance matrix and find that in more
rapidly changing environments, the adaptation of more than a single mutation strength
becomes unreliable. Finally, (Weicker, 2006) has also empirically investigated the op-
timum tracking behavior of evolution strategies in an environment very similar to the
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one considered here. The strategies under consideration employ mutative self adapta-
tion and different selection mechanisms, but they do not make use of recombination.
Based on computational experiments conducted for a large number of parameter set-
tings, recommendations with regard to the number of offspring generated per time step
and the type of selection are made.

Altogether, the above references provide a host of empirical knowledge with re-
spect to evolutionary optimization in continuous, dynamic environments. In an at-
tempt to establish some theoretical results to complement and explain that empirical
knowledge, in (Arnold and Beyer, 2002) the performance of a multiparent evolution
strategy with cumulative step length adaptation has been analyzed for a dynamic opti-
mization problem in which the target moves in a random fashion. The tools employed
in that work have also been used in an analysis of the behavior of the strategy on a
static optimization problem disturbed by noise (Arnold, 2002; Arnold and Beyer, 2004).
It was found that for the case of a randomly moving target, cumulative step length
adaptation is able to achieve asymptotically optimal step lengths. It was noted that the
case of a target that moves linearly rather than randomly is an interesting one to con-
sider as the linear motion introduces positive correlations in the sequence of steps to be
taken. As cumulative step length adaptation relies on the conjecture that consecutive
steps should be uncorrelated, it appears reasonable to expect suboptimal performance
of cumulative step length adaptation for the case of the linearly moving target.

The present article presents an analysis of the tracking performance of the (µ/µ, λ)-
ES with cumulative step length adaptation for the case of a linearly moving target. The
analysis is more difficult than that of the tracking problem with random motion of the
target as the linear motion of the target introduces an additional variable in the calcu-
lations. The fitness environment closely resembles that considered in (Angeline, 1997;
Bäck, 1998; Salomon and Eggenberger, 1997; Weicker, 2006). However, in contrast to
those references, no particular values need to be assumed for the size of the popula-
tion, the speed of the target, or the search space dimensionality. Instead, scaling laws
that describe the dependence of the performance of the strategy on those parameters
are obtained. Such scaling laws provide a quantitative understanding of the dynam-
ics of the evolutionary processes that makes it possible to predict optimal parameter
settings for the problem class considered. We share the belief of (van Nimwegen and
Crutchfield, 2001) that a general, predictive theory of the dynamics of evolutionary
search can be built incrementally, starting with a quantitative analytical understanding
of specific problems and then generalizing to more complex situations. The present
article can be considered as a small step toward such a theory.

The remainder of this article is organized as follows. In Section 2, the (µ/µ, λ)-ES
with isotropic mutations and cumulative step length adaptation is briefly described. In
Section 3, the tracking problem is defined and previously obtained knowledge useful
for the analyses that follow is summarized. In Section 4, the behavior of the strategy
is analyzed for fixed step length. The optimal step length is determined as a function
of the speed of the target, the dimensionality of the search space, and the size of the
population. In Section 5, the performance of the step length adaptation scheme is in-
vestigated. The step length realized by the evolution strategy is compared with the
optimal step length derived in Section 4. Finally, Section 6 concludes with a brief sum-
mary, a discussion of the findings and the insights gained, and suggestions for future
work.
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2 The (µ/µ, λ)-ES

The (µ/µ, λ)-ES is a strategy for the optimization of real-valued functions f : IRN → IR
that is popular both due to its proven good performance (in static settings) and its
relative mathematical tractability. For a thorough introduction to evolution strategies,
see (Bäck, 1996; Rechenberg, 1994; Schwefel, 1995). An explanation of the (µ/ρ +, λ)-
symbolism (of which (µ/µ, λ) is an instantiation) can be found in (Beyer, 2001). The
double appearance of the parameter µ indicates that recombination is global, i.e. that
all parents participate in the creation of every single offspring candidate solution.

The (µ/µ, λ)-ES can be considered as repeatedly updating a search point x ∈ IRN

(that is the centroid of the population of candidate solutions that survived the most
recent round of selection) using the following four steps:

1. Generate λ offspring candidate solutions yi = x + σzi, i = 1, . . . , λ. The zi are
vectors consisting of N independent, standard normally distributed components
and are referred to as mutation vectors. The nonnegative quantity σ is referred to
as the mutation strength and determines the step length of the strategy.

2. Determine the objective function values f(yi) of the offspring candidate solutions
and order the yi according to those values. After ordering, index k; λ refers to the
kth best of the λ offspring (the kth smallest for minimization; the kth largest for
maximization).

3. Compute the arithmetic mean

〈z〉 =
1

µ

µ
∑

k=1

zk;λ (1)

of those mutation vectors that correspond to the µ best of the offspring. Vector 〈z〉
is referred to as the progress vector.

4. Replace the search point by letting

x(t+1) = x(t) + σ〈z〉(t), (2)

where superscripts indicate time.

Note that while generally, initialization schemes and termination criteria are important
components of the algorithm, they are frequently application dependent and are irrele-
vant in the present context. Rather than considering them here, we refer to (Bäck, 1996)
for a discussion. Also note that the distribution of mutation vectors as described above
is isotropic. The restriction to isotropic mutations has been made in order to keep the
analysis of the strategy’s behavior tractable. Practical implementations often rely on
mutation vectors that are drawn from a normal distribution with general covariance
matrix C rather than the unity matrix. A mechanism for the adaptation of C has been
proposed by (Hansen, 1998; Hansen and Ostermeier, 2001).

In real-valued search spaces, it is often necessary for the mutation strength to be
adapted continuously to the local characteristics of the objective function. Information
from the present and possibly from past time steps needs to be used in order to learn
appropriate step sizes. A mechanism that is commonly employed for the adaptation
of the mutation strength is the cumulative step length adaptation algorithm of (Oster-
meier et al., 1994). It relies on the conjecture that if the mutation strength is below its
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optimal value, then consecutive steps of the strategy tend to be parallel. Conversely,
if the mutation strength is too high, then consecutive steps tend to be antiparallel. For
optimally adapted mutation strength, the steps taken by the evolution strategy are un-
correlated. This is plausible intuitively as several steps in the same direction in search
space are ideally replaced by a single longer step in that direction. Conversely, consec-
utive steps that nullify each other are a sign that the step length is too high. So as to
be able to reliably detect parallel or antiparallel correlations between successive steps,
information from a number of time steps needs to be accumulated. For the (µ/µ, λ)-ES,
the accumulated progress vector s is defined by s(0) = 0 and the recursive relationship

s(t+1) = (1 − c)s(t) +
√

µc(2 − c)〈z〉(t), (3)

where c is a constant determining how far back the “memory” of the accumulation
process reaches. The mutation strength is updated according to

σ(t+1) = σ(t) exp

(‖s(t+1)‖2 − N

2DN

)

, (4)

where D denotes a damping constant. The constants c and D are set to 1/
√

N and
√

N ,
respectively, according to recommendations made by (Hansen, 1998). From the way
that mutation vectors are generated along with the choice of coefficients in Eq. (3) it
can be inferred that the expected squared length of the accumulated progress vector
equals the search space dimensionality N if selection is random (i.e., if the mean in
Eq. (1) is computed over µ randomly chosen mutation vectors). Positive correlations
in the sequence of steps lead to the squared length of the accumulated progress vector
exceeding N ; negative correlations result in shorter accumulated progress vectors. The
term N in the numerator of the argument to the exponential function in Eq. (4) thus
ensures that step length adaptation functions as conjectured above. In case of positive
correlations in the sequence of steps taken by the strategy the mutation strength is
increased. The mutation strength is decreased in response to negative correlations.
Note that the prescription Eq. (4) for adapting the mutation strength has been changed
slightly from the prescription in the original algorithm given by (Hansen, 1998) in that
here, adaptation is performed on the basis of the squared length of the accumulated
progress vector rather than on its length. The difference in performance appears to
be insignificant except for very small values of N while elegance in the formulation is
gained by the change.

It should be mentioned that cumulative step length adaptation is not the only
mechanism conceivable for the adaptation of mutation strengths. Possible alternatives
include:

Nested evolution strategies (Herdy, 1992; Rechenberg, 1994). Nested evolution strate-
gies adjust strategy parameters such as mutation strengths by means of evolution-
ary optimization on a meta level. Several populations, each one with their own
parameter settings, compete with each other for survival. After a number of time
steps, the respective progress of the different strategies is examined. The mutation
strengths of those populations that have achieved the largest progress are used
as a basis for generating mutation strengths for the next round of competition by
means of recombination and mutation.

Mutative self adaptation (Rechenberg, 1994; Schwefel, 1995). Mutative self-adapta-
tion includes the mutation strengths into the optimization process at the same
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hierarchical level as the object parameters of the problem. Different candidate
solutions have differing mutation strengths. Assuming that favorable mutation
strengths are more likely to generate successful offspring than unfavorable ones,
selection of favorable mutation strengths is then a by-product of evolution.

Machine learning approaches (Ravisé and Sebag, 1996; Sebag et al., 1997). The prob-
lem of mutation strength adaptation can be understood as a learning task. An
explicit memory of the evolutionary process can be created in the form of a set
of rules by discriminating between successful trials and unsuccessful ones. Mu-
tation strengths can then be adapted by means of inductive learning. (Michalski,
2000) suggests a different approach in which a machine learning system seeks rea-
sons why certain individuals in a population are superior to others. These reasons,
formulated as inductive hypotheses, are then used to generate new populations
directly rather than by recombination and mutation.

In the present article, we choose to consider cumulative step length adaptation due
to its relative mathematical tractability and as it is known to generate asymptotically
optimal step lengths for the random tracking problem studied in (Arnold and Beyer,
2002).

3 The Tracking Problem

The purpose of this section is to introduce the tracking problem studied in the remain-
der of this article. In order to investigate the tracking behavior of the (µ/µ, λ)-ES, we
consider a dynamic version of the sphere model. The sphere model is the set of all
functions f : IRN → IR with

f(x) = g(‖x̂− x‖),

where g : IR → IR is a strictly monotonic function of the Euclidean distance R = ‖x̂−x‖
of a candidate solution x from the target x̂. The sphere model has frequently served as
a model for fitness landscapes at a stage where the population of candidate solutions is
in relatively close proximity to the target and is most often studied in the limit of very
high search space dimensionality. So as to study the tracking behavior of evolution-
ary algorithms, several authors (Angeline, 1997; Arnold and Beyer, 2002; Bäck, 1998;
Salomon and Eggenberger, 1997; Weicker, 2006) have added a dynamic component to
the sphere model by stipulating that the target x̂ vary with time. Several modes of mo-
tion of the target are conceivable and have been explored. Examples include random
motion, linear motion, and circular motion in search space.

The case of random motion has been studied from a theoretical perspective
in (Arnold and Beyer, 2002). If the target shifts such that

x̂(t+1) = x̂(t) + δẑ(t),

where vector ẑ(t) consists of N independent, standard normally distributed compo-
nents that are drawn anew in every time step, then the following conclusions have
been arrived at in the limit N → ∞:

• The mutation strength that minimizes the distance at which the target is tracked
is σ =

√
µδ. As the goal is to track the target as closely as possible, this mutation

strength is considered optimal. With optimal mutation strength, for the average
distance from the target it follows R/N = δ/

√
µcµ/µ,λ, where cµ/µ,λ denotes the
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Figure 1: Mutation strength σ/δ and stationary distance from the target R/(Nδ) as
functions of the time t. The strategy is a (3/3, 10)-ES with cumulative step length adap-
tation. The population is initialized to be centered at the location of the target at time
step 0. The initial mutation strength is σ = δ. The curves depict typical runs of the
strategy with search space dimensionalities N = 40 (dashed lines) and N = 400 (solid
lines).

(µ/µ, λ)-progress coefficient defined in (Beyer, 2001). That distance is thus pro-
portional to the speed of the target. Due to the properties of the (µ/µ, λ)-progress
coefficient1, it can be decreased by increasing the population size parameters µ and
λ in equal proportions.

• For optimally adapted σ, the normalized mutation strength σ∗ = σN/R equals
µcµ/µ,λ and therefore agrees with the optimal normalized mutation strength on
the static sphere derived in (Beyer, 2001).2

• Cumulative step length adaptation successfully adapts the mutation strength and
achieves the optimal setting on average.

Numerical experiments have been used to show that these predictions are reasonably
accurate provided that the search space dimensionality is not too small.

In the present paper, we consider linear motion and assume that the target at time
step t + 1 is

x̂(t+1) = x̂(t) + δv, (5)

where vector v is independent of time and has unit length. As in the case of random
motion, the factor δ is a measure for the speed of change of the objective. Figure 1
illustrates the time behavior of a (µ/µ, λ)-ES with µ = 3 and λ = 10 that uses cumula-
tive step length adaptation for the tracking problem with linear dynamics of the target.
Shown are measurements of typical runs of the strategy for search space dimensional-
ities N = 40 and N = 400. The results that are obtained for other values of µ and λ

1The (µ/µ, λ)-progress coefficient is the expectation of the µ last order statistics of a sample of λ inde-
pendent, standard normally distributed random variables. It has been seen in (Beyer, 2001) that it tends to a
constant limit value as µ and λ increase provided that the ratio µ/λ is kept constant.

2In contrast to the mutation strength that needs to be adapted as the distance from the target changes, the
normalized mutation strength is independent of the location in search space. The factor N in the normaliza-
tion is required in order to ensure that normalized mutation strengths are finite as N → ∞.
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Figure 2: Decomposition of a vector z into central component zA and lateral compo-
nent zB . Vector zA is parallel to R = x̂−x, vector zB is in the hyperplane perpendicular
to that. The trailing angle α is the angle formed by vector R and the direction v of the
motion of the target.

qualitatively agree. It can be seen that after a transient period, a state in which the
mutation strength and the distance from the target fluctuate around stationary mean
values is reached. Additional measurements not included here seem to indicate that
the length of the transient period is of order N . The stationary state that is reached is
independent of the initialization of the strategy, justifying our decision not to discuss
initialization issues. Furthermore, it can be seen that the magnitude of the fluctuations
decreases with increasing search space dimensionality. It is the goal in the remainder of
this paper to characterize the dependence of the stationary state on the population size
parameters µ and λ, the speed δ of the target, and the search space dimensionality N .

Analyses of the behavior of evolution strategies on the sphere model rely on a
decomposition of vectors that is illustrated in Figure 2. A (mutation or progress) vec-
tor z originating at search space location x can be written as the sum of two vectors zA

and zB , where zA is parallel to R = x̂ − x and zB is in the hyperplane perpendicular
to that. The vectors zA and zB are referred to as the central and lateral components
of vector z, respectively. Formally, the signed length zA of the central component of
vector z can be computed as

zA =
R · z
R

. (6)

The central component of vector z is zA = zAR/R, the lateral component is zB = z−zA.
Due to the stochastic nature of the search process and in particular to the presence of
the lateral component of mutation vectors, the population follows the target not on
the straight line defined by vector v but at an angle that is nonzero on average. As
illustrated in Figure 2, the trailing angle α is defined as the angle formed by vector R

and the direction v of the motion of the target in that

cosα =
R · v

R
. (7)

The analyses in Sections 4 and 5 will reveal that the average magnitude of that angle
can be substantial.

Clearly, from Eqs. (2) and (5),

R(t+1) = R(t) + δv − σ〈z〉(t) (8)
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holds as a result of the motion of the target and the step that the strategy takes. More-
over, it is well known from (Beyer, 2001; Rechenberg, 1994) that in the limit N → ∞,
the expectation of the signed length of the central component of the progress vector is

E [〈zA〉] = cµ/µ,λ. (9)

The lateral component of the progress vector is of random direction in the hyperplane
defined by normal vector R = x̂ − x. Moreover, in the limit of infinite search space
dimensionality, for its expected overall squared length

E
[
‖〈z〉‖2

]

N
=

1

µ
. (10)

holds. The variance of ‖〈z〉‖2/N is of order 1/N , diminishing the relative influence of
fluctuations as N tends to infinity. Notice that this effect is largely responsible for the
decrease in fluctuations as N increases that had been observed in Figure 1. From Eq. (6)
with Eq. (9) it follows that

E[R · 〈z〉] = Rcµ/µ,λ (11)

holds. Moreover, due to the randomness of the direction of the lateral component of
the progress vector,

E[〈z〉 · v] = E[〈zA〉 · v] + E[〈zB〉 · v]
︸ ︷︷ ︸

=0

= cµ/µ,λ cosα (12)

holds as a consequence of Eqs. (6), (7), and (9).

4 Analysis for Constant Mutation Strength

Before proceeding to the analysis of the behavior of the (µ/µ, λ)-ES with cumulative
step length adaptation, in this section we first consider the case that the mutation
strength is fixed. The strategy in combination with the dynamic objective function out-
lined in Section 3 forms a stochastic dynamic system. Due to the symmetries inherent
in both the environment and the strategy, for fixed mutation strength, the state of that
system can described by just two variables. A possible choice for those variables are
the distance R of the population centroid from the target and the cosine of the trailing
angle α. Provided that the mutation strength is large enough for the strategy to be able
to keep pace with the target, the system tends toward a limit state in which the state
variables have time-invariant distributions.

The approach to determining the scaling behavior of the (µ/µ, λ)-ES on the track-
ing problem with linear dynamics of the target is the same as that employed in (Arnold
and Beyer, 2002) for the tracking problem with random dynamics of the target. It con-
sists in using stationarity conditions while neglecting all fluctuations. In particular, it
is assumed that the progress vector has a central component of length cµ/µ,λ, that its
lateral component is of random direction, and that its overall squared length is N/µ.
As a consequence, quantities involving the progress vector can be replaced by their ex-
pectations given in Eqs. (9), (10), (11), and (12). The state variables tend to stationary
limit values that can be obtained by relatively simple considerations. As fluctuations of
the progress vector decrease with increasing search space dimensionality, the approach
that neglects them becomes increasingly accurate with increasing N . It will be seen
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that good agreement between predictions and measurements is obtained already for
relatively moderate values of N .

Using Eqs. (7), (8), and (12) it follows that at time step t + 1

R(t+1) cosα(t+1) = R(t+1) · v

=
(

R(t) + δv − σ〈z〉(t)
)

· v

≃ R(t) cosα(t) + δ − σcµ/µ,λ cosα(t).

As stationarity of the state variables implies the stationarity of their product, it follows

cosα ≃ δ

σcµ/µ,λ
(13)

for the stationary cosine of the trailing angle.
Similarly, the square of the distance from the population centroid to the target at

time step t + 1 is

R(t+1)2 = R(t+1) ·R(t+1)

=
(

R(t) + δv − σ〈z〉(t)
)

·
(

R(t) + δv − σ〈z〉(t)
)

≃ R(t)2 + δ2 +
Nσ2

µ
+ 2δR(t) cosα(t) − 2σR(t)cµ/µ,λ − 2δσcµ/µ,λ cosα(t),

where Eqs. (7), (8), (10), (11), and (12), have been used. Stationarity of the distance
from the target means that R(t+1) = R(t) = R. Rearranging terms and using Eq. (13) to
replace cosα yields

2R

(

σcµ/µ,λ − δ2

σcµ/µ,λ

)

≃ Nσ2

µ

(

1 − µδ2

Nσ2

)

.

In order for the strategy to be able to track the target, the mutation strength must be
large enough to satisfy δ/σ = O(1). Therefore, the second term in the parentheses on
the right hand side vanishes compared to the first as N → ∞ and it follows

R ≃ Nσ3cµ/µ,λ

2µ(σ2c2
µ/µ,λ − δ2)

(14)

for the stationary distance from the population centroid to the target.
The quality of the approximation to the stationary state thus derived is illustrated

in Figure 3. Predictions from Eqs. (13) and (14) are compared with empirical measure-
ments of runs of evolution strategies. For those measurements, it is irrelevant whether
results from one run are used or several runs are averaged, provided that the length of
the runs is sufficient. For the experiments reported here, the length of the runs was cho-
sen to ensure that the standard deviation of the measurements is below the size of the
crosses in Figure 3. It can be seen from the figure that for search space dimensionality
N = 40, the qualitative dependence of the performance of the strategy on the mutation
strength and the target speed is reflected properly. The deviations that can be observed
are attributable to the fluctuations inherent in the runs that have been neglected in the
calculations. For search space dimensionality N = 400, very good quantitative agree-
ment of the predictions with the empirical measurements can be observed.
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Figure 3: Cosine of the trailing angle and distance from the target as functions of muta-
tion strength σ. The target moves linearly with, from bottom to top, speeds δ = 0.5, 1.0,
2.0, and 4.0. The strategy is a (3/3, 10)-ES. The solid lines are predictions from Eqs. (13)
and (14), the points mark empirical measurements for search space dimensionalities
N = 40 (+) and N = 400 (×).
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Some important conclusions with regard to the scaling behavior of the strategy can
be drawn from Eqs. (13) and (14). First, from Eq. (14) it can be seen that a stationary
state is reached only if σ > δ/cµ/µ,λ. For smaller mutation strengths, the strategy is
not able to keep pace with the target and the distance from the population centroid
to the target increases indefinitely. Second, Eq. (14) can be used to obtain the optimal
mutation strength, i.e. the mutation strength that minimizes the distance to the target.
Computing the derivative with respect to σ and determining the root yields optimal
mutation strength

σ ≃
√

3δ

cµ/µ,λ
. (15)

Reinserting this result in Eq. (14), the resulting distance from the target is

R ≃ 3
√

3Nδ

4µc2
µ/µ,λ

. (16)

Therefore, combining Eqs. (15) and (16), we have

σ∗ = σ
N

R
≃ 4

3
µcµ/µ,λ (17)

for the optimal normalized mutation strength. Comparison with the corresponding re-
sult from (Arnold and Beyer, 2002) reveals that this differs by a factor of 4/3 from the
optimal mutation strength for both the static case and the case of a randomly moving
target. As in the case of a linearly moving target the cosine of the trailing angle is con-
sistently greater than zero, the strategy should ideally operate with a larger mutation
strength.

5 Analysis for Adaptive Mutation Strength

For a randomly moving target, cumulative step length adaptation has in (Arnold
and Beyer, 2002) been seen to be able to generate asymptotically optimal mutation
strengths. On the static sphere model considered in (Arnold, 2002; Arnold and Beyer,
2004), mutation strengths generated using cumulative step length adaptation are by a
factor of

√
2 larger than optimal due to the fact that the distance to the target varies and

the adaptation mechanism lags behind. In the present section, we study the perfor-
mance of cumulative step length adaptation for the case of the linearly moving target.

For fixed mutation strength, we have seen in the previous section that a system
state is fully characterized by two state variables. The distance from the target and the
cosine of the trailing angle were identified as a possible choice for the state variables.
When using cumulative step length adaptation, a total of three variables beyond those
used in Section 4 are required to describe the state of the system. While again several
choices are conceivable, one possibility is to consider the mutation strength σ along
with the signed length

sA =
R · s
R

(18)

of the central component of the accumulated progress vector and that vector’s overall
squared length ‖s‖2. In analogy to Eq. (12),

E[s · 〈z〉] = E[sA〈zA〉] + E[sB · 〈zB〉]
︸ ︷︷ ︸

=0

= sAcµ/µ,λ (19)
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holds due to Eq. (9) and the randomness of the direction of the lateral component of
progress vectors. Note that the same choice of variables has been made in (Arnold,
2002; Arnold and Beyer, 2002; Arnold and Beyer, 2004) for the case of the static sphere
model and the sphere model with random dynamics of the target.

As in Section 4, we neglect fluctuations of the progress vector by replacing random
variables with their expected values and make use of the stationarity of the limit values
of the state variables. The inner product s · v at time step t + 1 is

s(t+1) · v =
(

(1 − c)s(t) +
√

µc(2 − c)〈z〉(t)
)

· v

≃ (1 − c)s(t) · v +
√

µc(2 − c)cµ/µ,λ cosα(t),

where Eqs. (3) and (12) have been used. From the stationarity of the state variables
follows the stationarity of the product s · v and therefore with Eq. (13) to replace cosα

s · v ≃
√

µ(2 − c)

c

δ

σ
(20)

for the stationary value of the inner product of vectors s and v.
Similarly, using Eq. (18), at time step t + 1,

R(t+1)s
(t+1)
A = R(t+1) · s(t+1)

=
(

R(t) + δv − σ(t)〈z〉(t)
)

·
(

(1 − c)s(t) +
√

µc(2 − c)〈z〉(t)
)

≃ (1 − c)R(t)s
(t)
A + (1 − c)

√

µ(2 − c)

c

δ2

σ(t)
− (1 − c)σ(t)cµ/µ,λs

(t)
A

+
√

µc(2 − c)R(t)cµ/µ,λ +
√

µc(2 − c)
δ2

σ(t)
−

√

µc(2 − c)
Nσ(t)

µ
,

where Eqs. (3), (8), (10), (11), (12), (13), (19), and (20) have been used. Assuming sta-

tionarity, i.e. R(t+1)s
(t+1)
A = R(t)s

(t)
A = RsA, and rearranging terms yields

sA

(

c + (1 − c)
σcµ/µ,λ

R

)

≃
√

µc(2 − c)

(
δ2

cRσ
+ cµ/µ,λ − Nσ

Rµ

)

.

As seen in Section 4, σ/R = O(1/N) holds. Therefore, the second term in the paren-
theses on the left hand side vanishes compared to the first as N → ∞. Moreover, as in
order for the strategy to be able to track the target δ/σ = O(1) must hold, the first term
in the parentheses on the right hand side vanishes compared to the third. Rearranging
the remaining terms and using Eq. (14) yields

sA ≃
√

µ(2 − c)

c

(

cµ/µ,λ − Nσ

Rµ

)

≃
√

µ(2 − c)

c

(
2δ2

cµ/µ,λσ2
− cµ/µ,λ

)

(21)

for the stationary value of the signed length of the central component of the accumu-
lated progress vector.
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Likewise, the squared length of the accumulated progress vector at time step t + 1
is

‖s(t+1)‖2 =
(

(1 − c)s(t) +
√

µc(2 − c)〈z〉(t)
)

·
(

(1 − c)s(t) +
√

µc(2 − c)〈z〉(t)
)

= (1 − c)2‖s(t)‖2 + 2(1 − c)
√

µc(2 − c)s(t) · 〈z〉(t) + µc(2 − c)‖〈z〉(t)‖2

≃ (1 − c)2‖s(t)‖2 + 2(1 − c)
√

µc(2 − c)cµ/µ,λs
(t)
A + c(2 − c)N,

where Eqs. (3), (10), and (19) have been used. Demanding stationarity and using
Eq. (21) yields

‖s‖2 ≃ 2
1 − c

c
cµ/µ,λ

(

µcµ/µ,λ − σN

R

)

+ N (22)

for the stationary squared length of the accumulated progress vector.
Finally, according to Eq. (4), the stationary mutation strength, i.e. the mutation

strength for which cumulative step length adaptation does not affect a change, is that
for which ‖s‖2 = N holds. From Eq. (22) it thus follows

σ∗ = σ
N

R
≃ µcµ/µ,λ (23)

for the normalized mutation strength that cumulative mutation strength adaptation re-
alizes for the tracking problem with linear dynamics of the target. Using Eq. (14) to
eliminate the distance from the target shows that the corresponding stationary muta-
tion strength is

σ ≃
√

2δ

cµ/µ,λ
, (24)

and that the resulting distance between the population centroid and the target is

R ≃
√

2Nδ

µc2
µ/µ,λ

. (25)

Figure 4 illustrates the quality of the approximation. While again for N = 40 some
deviations can be observed, the agreement is very good for N = 400. Comparison of
Eqs. (24) and (25) with the results Eqs. (15) and (16) for the optimal mutation strength
derived in Section 4 shows that the mutation strength that cumulative step length adap-

tation realizes is by a factor of
√

2/3 ≈ 0.82 smaller than what it would ideally be,
and that the distance between the population centroid and the target is by a factor
of 4

√
2/(3

√
3) ≈ 1.09 larger than it would be if the optimal mutation strength were

achieved. Table 1 summarizes the findings and compares them with the corresponding
results for the random dynamics case.

6 Discussion and Conclusions

In this paper, the performance of the (µ/µ, λ)-ES with cumulative step length adapta-
tion has been analyzed for a tracking problem with linear dynamics of the target. It
has been seen that the adaptation of the step length works in the sense that a mutation
strength that ensures that the target can be tracked is realized. The mutation strength
in Eq. (24) exceeds the minimum mutation strength σ = δ/cµ/µ,λ required to keep pace
with the target that was obtained in Section 4. However, it has also been seen that the
mutation strength that is realized is below the mutation strength given in Eq. (15) that
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Figure 4: Mutation strength σ/δ and stationary distance from the target R/(Nδ) as
functions of the population size µ. The strategy is a (µ/µ, 10)-ES. The solid lines are
obtained from Eqs. (24) and (25). The points mark empirical measurements for search
space dimensionalities N = 40 (+) and N = 400 (×).

was found to be optimal. An explanation for that behavior can be found from Eq. (24).
The mutation strength that cumulative step length adaptation realizes on the tracking
problem is the same as the target mutation strength (i.e., the mutation strength that the
strategy seeks to attain) on the static sphere. While for the tracking problem with ran-
dom dynamics of the target that mutation strength is optimal, linear dynamics of the
target ideally call for somewhat larger mutation strengths. The strategy does not antic-
ipate changes of the objective and thus realizes the mutation strength that is statically
optimal. However, it has been seen that the increase in distance at which the target is
tracked that results from the use of a suboptimal mutation strength is below 10% and
thus relatively minor. Our concern voiced in (Arnold and Beyer, 2002) that the corre-
lations in the sequence of steps taken that result from the linear motion of the target
could lead to a degradation of the performance of cumulative step length adaptation
has proven largely groundless at least in the limit of infinite search space dimensional-
ity.

It has furthermore been seen that for the problem considered, the distance at which
the target is tracked depends on the search space dimensionality, the speed of the target,
and the population size parameters that the strategy employs. In order to minimize that
distance, the population size parameters must be chosen such that the denominator
of the fraction in Eq. (25) is maximized. Interestingly, that denominator equals the
progress rate of the (µ/µ, λ)-ES on the static sphere derived in (Beyer, 2001; Rechenberg,
1994). Recommendations with respect to the choice of population size parameters that
have been made for the static sphere thus also hold for the dynamic tracking problem.

The results derived is this paper apply to the (1, λ)-ES (that operates with a popu-
lation of size one and therefore without recombination) by virtue of the specialization
µ = 1. It can be seen from Eq. (25) that using a population size of µ > 1 has the effect
of reducing the distance at which the target is tracked by a factor of c2

1,λ/(µc2
µ/µ,λ). For

example, for λ = 10 and µ = 3, that factor is roughly 0.7. For λ = 100 and µ = 30
the factor is approximately 0.16. Interestingly, and in contrast to the random dynam-
ics case, the closer proximity to the target is not achieved by means of a substantially
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random dynamics linear dynamics

optimal

σ =
√

µδ

R =
Nδ√

µcµ/µ,λ

σ =

√
3δ

cµ/µ,λ

R =
3
√

3Nδ

4µc2
µ/µ,λ

realized same as above

σ =

√
2δ

cµ/µ,λ

R =

√
2Nδ

µc2
µ/µ,λ

Table 1: Comparison of the performances of the (µ/µ, λ)-ES with cumulative step
length adaptation for the random dynamics and the linear dynamic tracking problems.

larger mutation strength. Notice however that the reduction in distance from the target
results in a larger normalized mutation strength.

Finally, it is important to reemphasize that all findings reported in this paper have
been derived under relatively specific conditions, and that they represent but a small
step on the way to a predictive theory of the dynamics of evolutionary search. The
range of problems considered here is broad in that both linear and random modes of
motion are now understood, and that it only needs to be assumed that objective func-
tion values increase with increasing distance from the target. It is limited in that the
analysis is not applicable to environments that are not spherically symmetric, and to
dynamic optimization problems other than tracking problems. Similarly, in a sense,
the range of strategies considered here is larger than what can be considered in exper-
imental studies as no specific assumptions with regard to the setting of the population
size or other parameters of the algorithms need to be made. It is limited mostly by the
restriction to isotropic mutation distributions, and more work is required in order to
understand the behavior of covariance matrix adaptation algorithms such as that by
(Hansen and Ostermeier, 2001) in dynamic environments. A further avenue for future
research is to consider forms of recombination other than the global intermediate vari-
ant. It is conceivable that dynamic optimization may benefit from populations that are
spread out in search space rather than being contracted to a point in every time step,
and it remains to be seen whether the gain in diversity can compensate for the loss of
information from all parents when doing recombination.
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