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A b s t r a c t .  A traceability scheme is a broadcast encryption scheme such 
that a data supplier T can trace malicious authorized users (traitors) who 
gave a decryption key to an unauthorized user (pirate). This paper first 
derives lower bounds on the sizes of keys and ciphertexts. These bounds 
are all tight because an optimum one-time use scheme is also presented. 
We then propose a multiple-use scheme which approximately meets our 
bounds. This scheme is proven to be secure as well as much more efficient 
than the schemes by Chor, Fiat and Naor. Finally, practical types of 
asymmetric schemes with arbiter are discussed in which T cannot frame 
any authorized user as a traitor. 

1 I n t r o d u c t i o n  

In such applications, as pay TV, CD ROM distribution and online databases, 
data should only be available to authorized users. To prevent unauthorized users 
from accessing data, the data supplier will encrypt data and provide only the 
authorized users with personal keys to decrypt it. However, some unauthorized 
users (pirates) may obtain some decryption keys from a group of one or more 
authorized users (traitors). Then the pirate users can decrypt data  that  they 
are not entitled to. To prevent this, Chor, Fiat and Naor [2] proposed k-resilient 
traceability schemes which reveal at least one traitor when a pirate decoder is 
confiscated if there are at most k traitors. Their schemes are, however, very 
inefficient and non constructive. In "open one level scheme", each user has to 
keep O(k 2 logn) personal decryption keys and the data supplier has to broad- 
cast O(k 4 log n) ciphertexts, where n denotes the number of authorized users. 
Their other two schemes have very large keys and very long ciphertexts, sim- 
ilarly. Recently, Stinson and Wei showed some explicit constructions by using 
combinatorial designs [11]. Although their constructions may not be as good 
asymptotically as those in [2], they are often better for small values of k and n. 
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On the other hand, this kind of traceability schemes are symmetric in the 
sense that  the data  supplier T is assumed to be honest. If T is dishonest, he can 
easily frame any authorized user as a traitor because T generates each user's 
key. Pfitzmann pointed out this problem and introduced asymmetric traceability 
schemes in which T cannot frame any user as a traitor [9]. She and Waidner [9, 10] 
showed an asymmetric scheme by combining the symmetric scheme of [2] with 
a two party protocol [1, 7]. This scheme is, however, not efficient because the 
symmetric scheme of [2], on which it is based, is very inefficient. 

This paper first derives lower bounds on the sizes of keys and ciphertexts for 
symmetric traceability schemes. These bounds are all tight because an optimum 
one-time use scheme is also presented. Further, we show that  optimum (k, n)- 
traceability schemes have a strong connection with orthogonal arrays. An upper 
bound on the number of authorized users is obtained as a corollary. 

We then propose a multiple-use traceability scheme. It has much smaller keys 
and much shorter ciphertexts than the schemes by Chor, Fiat and Naor [2]. Our 
scheme requires one personal decryption key, O(k) many encryption keys and 
O(k) many ciphertexts. Further, our scheme is proven to be secure in the sense 
that  (1) it satisfies secrecy requirement against outside enemies if and only if 
E1Gamal cryptosystem is secure and (2) it can trace traitors if and only if the 
discrete log problem is hard. Further, the encryption key eT of a data  supplier 
can be made public. This means that  everybody can work as a data  supplier by 
using this public key eT. The scheme of [2] does not have this property. 

Our multiple-use scheme uses similar mathematics to threshold cryptosys- 
terns such as [4, 8]. A major difference is that  a single user decrypts in our 
scheme while k users have to cooperate to decrypt in [4, 8]. These two concepts 
do not seem to be equivalent because while there exists an RSA type thresh- 
old cryptosystem [5, 3], we do not know how to make an RSA type traceability 
scheme with the public key property mentioned above. (We constructed an RSA 
type non-public key version, though. The details will be given in the final paper.) 

Finally, we show two practical asymmetric trai tor  tracing schemes with agents 
or with an arbiter. The first is a multiple-use asymmetric scheme which contains 
c agents who only generate keys cooperatively. In this scheme, (1) no authorized 
user can be framed as a traitor even if T and c - 1 agents collude and (2) T can 
detect a traitor and convince a judge without the help of agents. This scheme is 
computationally secure. The second is a one-time use asymmetric scheme with 
an arbiter which is unconditionally secure. 

2 P r e l i m i n a r i e s  

2.1 M o d e l  a n d  n o t a t i o n  

In the model of symmetric traceability schemes, there are n + 2 participants, 
a data  supplier T, a set of n authorized users and a pirate user. T generates 
his encryption key eT and a personal decryption key e~ for each authorized user 
i. To send actual plaintext data  m only to authorized users, T first chooses a 



147 

session key s. Then T broadcasts (eT(8), E N C s ( m ) ) ,  where h ~ eT(s) is called 
a header and E N C  is a symmetric key encryption function. 

Every authorized user i can recover s from eT(S) by using his personal key 
ei and then decrypt E N C s  (m) to obtain plaintext data  m. 

2.2 P r e v i o u s  t r a c e a b i l i t y  scheme 

This subsection describes the basic k-resilient traceability schemes of Chor, Fiat 
and Naor [2]. All e~ are somehow constructed together with eT as follows. Let 

A~ ~ {a~, l , . . . ,  a~,.} for i = 1, 2 , . . . ,  l, where a w is a random number. They are 
called base keys. Then T's  encryption key is eT ---- A1UA2 U.- 'UAI.  The personal 
decryption key of authorized user i is e~ = {b l , . . . , b l} ,  where b 3 is randomly 
selected from Aj for j = 1, 2 , . . . ,  I. To encrypt a session key s, T first chooses 
random numbers s l , . . . ,  st such that  s -- sl +.  �9 .+sz. T then computes the header 

h = eT(s) as h = B1 U B2 U . . .  U Bl, where B~ ~ {Ka,, ,(s~), . . .  ,Ka,,o(s~)} and 
K is a symmetric key encryption function. It can be seen that  authorized users 
can decrypt each s~ and then obtain s. Now some malicious users (traitors) may 
conspire and give an unauthorized user a pirate decoder %. The pirate decoder 
ep will consist of 1 base keys such that  

ep ~--- { b l , . . . ,  i~,} C U e,, (1) 
~EC 

where g is the coalition of traitors such that  [g[ _< k. The goal is to find at 
least one traitor of g. From eq.(1), we see that  there exists at least one u E g 
such that  lep N e~ I >_ 1/k. Therefore, T finds an authorized user u such that  
[ep A e~[ _> [ev M e~[ for any i ~ u. This user u is defined as an exposed user. 

As can be seen from the above, the sizes of keys and headers are very large. 
Their schemes are not constructive, either. More details will be surveyed in 
Sec.3.5. 

3 L o w e r  b o u n d s  

3.1 Def in i t ion  

For a traceability scheme, let $T, $~(i = 1, 2 , . . . ,  n), 8 and 7-ls denote the 
random variables induced by eT, e,, s and h, respectively, where eT is the data  
supplier's encryption key, e~ is the personal decryption key of user i, s is the 
session key, h is the header and n denotes the number of authorized users. For 
simplicity, we t reat  the key eT as an encryption function as well, so h = eT(s). 
Similarly we view the personal keys e~ as decryption functions, so s = e~(h). 

For a random variable X, H ( X )  denotes the entropy of X. For X, let X 
{x ] P r (X = x) > 0}. I X] denotes the cardinality of X.  For simplicity, we assume 
that  IEI[ = [E2[ . . . . .  lEvi. 

We assume tha t  at most k authorized users are malicious. 



148 

D e f i n i t i o n  1. We say that  (ET,  E l ,  . . . , En ,  S ,  "~E,A~ )) is a (k, n)-one-time trace- 
ability scheme if 
(1) any outside enemy has no information on s from h. That  is, 

H(S I nCAV) = H(S). 

(2) Each authorized user i can uniquely decrypt s from h. That  is, 

H ( S  [ 7/s s = 0 for 1 _< Vi < n. 

(3) For every coalition of at most k authorized users (traitors), the following 
holds: Suppose that  they (the traitors) use their personal decryption keys to 
construct a pirate decoder. If this decoder is capable of applying the decryption 
scheme, then one of the coalition members is identified with probability more 
than 1/[E~[. 
(4) S and (E l , . . . ,  s are independent. 

3.2 L o w e r  b o u n d  o n  [Ei[ 

T h e o r e m  2. In a (k, n)-one-time traceability scheme, 

IE, I >_ ISI for any i. (2) 

Further, for any h 6 H,  define a mapping Vh : E, -+ S U { l }  as 

/ s  ife (h) = s Vh(ei) = L otherwise. (3) 

Then Vh is a bijection from E, to S if [E~I -- IS[. 

Proof. Fix a header h E g arbitrarily. Let vh(Ei) ~= {vh(e,) [ ei E E,}. Suppose 
that  So r vh(Ei) for some So e S. Then an outside enemy knows that  so g vh(Ei) 
from h. This is against Definition 1(1). Therefore, vh(E~) D_ S. This means that  
[Ei[> [Vh(E,)[ > IS[. It is clear that  Vh is a bijection if [Ei[ = IS[. [] 

The first part of Theorem 2 is originally due to Shannon. We presented a 
different proof in order to prove the second part which will be used in the proof 
of Theorem 5 and Theorem 11. 

3 . 3  L o w e r  b o u n d  o n  [HEAD I 

L e m m a  3. In a (k, n)-one-time traceability scheme, no coalition C of at most k 
authorized users has any information on any other authorized user's key. 

Proof. Suppose that  some coalition C of at most k users can guess the key e~ 
of some user u !~ C with probability p > 1/IE~ I. Assume that  C gives this e~ to 
a pirate as a pirate decoder. Then the data  supplier will decide that  user u is a 
traitor if he finds pirate decoder e~. This happens with probability p > 1/IE~ I. 
This disagrees with Definition 1(3). [] 
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Next,  define E(~I ..... ~+1) C_ E,I x . . -  x E~+  1 as follows. 

E(~I . . . . .  ~k+ l )  ~ { ( b l , . . . ,  bk+m) [ Pr(C~I = b l , . . .  ,Sik+, = bk+l) > 0}. 

L e m m a 4 .  I f  the equality of eq.(2) is satisfied for any i, then 

I/~(i~ ..... i~+1)1 = ]SI k+l for any i l , . . . , i k + l .  

Proof. If k = 0, then  this l emma is tr ivial ly true.  For k > 0, choose i l , . . .  , ik+l  
arbitrari ly.  From L e m m a  3, user il  has no informat ion on E~:. Therefore ,  for 
any bl E E i  1 and any b2 E E~ 2, 

Pr(s = b2 [ Cil = bl) = Pr(E,2 = b2) > 0. 

Hence, Pr(Ci 2 = b2,s = bl) > 0. Similarly, we have Pr(s  1 = bl , . . . ,Ci~+~ = 
bk+l) > 0 for any ( b l , . . .  ,bk+l) �9 E~I x - . .  x Eik+ ~. Therefore ,  

IE(~, ..... ~ + 1 ) I  = IE , , I  x . . .  x I E , , + , I  = ISl k+ l  

since Vi:  lEd  = ]SI. [] 

T h e o r e m  5. In a (k, n)-one-time traceability scheme, 

log [HEAD[ >_ (k + 1) log IS[ (4) 

if the equality of eq. (2) is satisfied for any i. 

Proof. From Definition 1(4), any ( b l , . . .  ,bk+l) �9 /~(i~ ..... i~+1) can happen  to- 
gether  with any s �9 S, where i l , . . . ,  ik+l are arbi t rary.  This  means  t ha t  for any 
fixed s and for any ( b l , . . . , b k + l )  �9 /~(il ..... ik+~), there  exists some h �9 H E A D  
such t ha t  bl (h) . . . . .  bk+l(h) = s. Now fix So �9 S arbitrari ly.  F rom the  above 
observat ion,  we can define a mapping  %o : /~(~ ...... k+~) --+ H E A D  as follows. 

For ( b l , . . . , b k + l )  �9 /~(~ ..... ~+~), choose h �9 H E A D  such t ha t  bl(h)  . . . . .  

bk+l (h) = So arbitrari ly.  Then  define 

%o(51 , . . .  ,bk+l) ~ h. (5) 

Suppose tha t  %0 is not  an injection. Then  there  exist some ( b l , . . .  ,bk+l) and 
.. b' (b~, ", k+l) such t ha t  

b' % 0 ( b l , . . . , b k + l )  -- % 0 ( 1 , . . . , b k + l )  = h0 

for some ho �9 H E A D .  Withou t  loss of generality, suppose tha t  b 3 ~ b~. Since 
[Ej[ = IS[, there  exists the bijection Vho : E3 --+ S given by T h e o r e m  2. T hen  
we have so = bj(ho) ~ b~(ho) = So. This  is a contradict ion.  Therefore ,  %0 : 

/~(il ..... ~+1) --~ H E A D  is an injection. Hence,  [HEAD[ > [E(il ..... i s+ i ) [ - - [S[  k+l 
from L e m m a  4. [] 
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3.4 Lower bound on ]JET[ 

Theorem 6. Suppose that each eT E ET is a deterministic encryption function. 
I f  the equality of eq. (2) is satisfied for any i in a (k, n)-one-time traceability 
scheme, then 

log IETI > (k + 1)log ISl . (6) 

Proof. For a fixed so 6 S, consider the mapping %0 :/~(,1 ..... ,k+l) -~ H E A D  de- 

fined by eq. (5). Let %0 (E(i, ,...,ik+,)) ~ {h I h = %o (b l , . . . ,  bk+l), (b l , . . . ,  bk+l ) 6 
/~(ia ..... ik+x))}. Then %o (/~(ix ..... ik+,)) is a subset of headers which can be gener- 
ated by T for So. Therefore, we have 

IETI >_ I'Yso(~:(~ ..... ,~+1))1----I/~(,, ...... ~+1)1 = ISI k+l.  (7) 

The first inequality holds since each eT is deterministic. The first equality holds 
since 7so is an injection as shown in the proof of Theorem 5. The last equality 
comes from Lemma 4. [] 

3.5 Comparison with C F N  scheme 

Chor, Fiat and Naor proposed three traceability schemes [2]. In these schemes, 

log IEil = 4k 2 logn log ISI, log IHEADI = 8k 4 log n log ISI, 
log IEil = 2k ~ log 2 k log n log IS[, log ]HEAD I = 4k 3 log a k log n log ]SI, 
log IEil = 4k log(n/p)/3 log ISI, log IHEADI = 16k 2 log(hip)~3 log ISI, 

respectively, where p is the cheating probability of traitors. The above values are 
much larger than our bounds. 

4 O p t i m u m  o n e - t i m e  u s e  t r a c e a b i l i t y  s c h e m e  

4.1 Opt imum scheme 

In this subsection, we show an optimum (k,n)-one-time traceability scheme 
which meets all our bounds. This means that  our bounds are all tight. (Also, the 
decryption needs polynomial time which Def.1 does not require.) Let IS[ = q, 
where q is a prime and q > n. 

Initialization: The data  supplier T chooses a uniformly random polynomial 
f ( x )  = ao + alx  + . . .  + a k X  k o v e r  GF(q) as his encryption key eT. Next, T gives 
f ( i )  to authorized user i as a personal decryption key e, for 0 < i < n - 1. 

Distributing a session key: For a session key s, T broadcasts the header 

h = ( h o ,  h l , . . . , h k ) = ( s + a o ,  a l , . . . , a k )  

which is computed over GF(q). User i can compute s from h and ei as follows. 

(ho + hi "i + . . .  + hk "i k) - f ( i )  = s. 
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Detection of traitors: When a pirate decoder is confiscated, before an header 
is broadcast, the pirate key ep is exposed. If % contains (u, f (u))  for some u, 
then T decides that  user u is a traitor. (The scheme of [2] can detect traitors 
even if a pirate decoder is given as a blackbox. See [9, Sec.2.2].) 

Definit ion 7. We say that  a (k, n)-one-time traceability scheme is optimum if 
one has equalities in eq.(2), eq.(4) and eq.(6). 

T h e o r e m  8. The above is an optimum (k,n)-one-time traceability scheme. 

Proof. It is clear that  all the equalities of eq.(2), eq.(4) and eq.(6) are satisfied. 
We prove that  Definition 1 is satisfied. Conditions (1), (2) and (4) are clear. 
Suppose that  a coalition C of users { i l , . . . ,  ik } generates a pirate decoder ep with 
probability more than 1/q such that  ep does not include (il, f ( i l ) ) ,  or (i2, f(i2)), 
o r . . . ,  or (ik, f(ik)).  Since ep can decrypt s, ep must contain at least (Xo, f(xo)) 
for some x0 • { i l , . . . ,  ik}. However, this is impossible because deg f ( x )  = k and 
C knows only the k points of f (x ) .  [] 

4.2 Connect ion with  orthogonal  array 

In this subsection, we show that  optimum (k, n)-one-time traceability schemes 
have a strong connection with orthogonal arrays. 

Definit ion 9. An orthogonal array OA(t, l, q) is a qt • l array of q symbols such 
that  in any t columns of the array, every possible t-tuple of symbols occurs in 
exactly one row. The parameter t is called the strength of the OA. 

First, suppose that  there exists an OA(k + 1, k + n, q). Then we show that  
there exists a (k, n)-one-time traceability scheme such that  ISI = q. Without loss 
of generality, assume that  the set of symbols of the OA is {0, 1 , . . .  ,q - 1}. Let 
B = {bi,~ } denote the qk+l • (k + n) matrix of the OA. 

Initialization: The data  supplier T chooses a row of B at random, say the 
r(= eT)th row. T gives b~,~+i(= ei) to user i as his personal key. 

Distributing a session key: For a session key s, T broadcasts 

h = (b~,l,. �9 b~,k, br,k+l + s mod q) 

as a header. User i decrypts s as follows. From br,1,...,br,k and e, = br,k+i, 
he can determine r because the strength of the OA is k + 1. Therefore, he can 
obtain br,k+l and compute s. 

Detection of traitors: When a pirate decoder is confiscated, the pirate key % 
is exposed. If % contains (u, b~,~+~), then T decides that  user u is a traitor. 

Theorem 10. I f  there exists an OA(k + l, k +n, q), then there exists an optimum 
(k, n)-one-time traceability scheme such that ISI = q. 

A proof will be given in the final paper. Next, we show a weak converse. 
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T h e o r e m  11. I f  the equality of eq.(2) is satisfied for any i, then there exists an 
OA(k + 1, n, ISI). 

Proof. Let A L L  ~= {(el , . . . ,e ,~)  I Pr(Sx = e l , . . . ,E ,~  = en) > 0}. Consider a 
IALLI • n matrix B which consists of all ( e l , . . . ,  e~) E ALL.  We show that  this 
matrix B is an OA(k + 1,n, ISI). Any ( e l , . . . ,  e,~) E A L L  can happen together 
with any s E S from Definition 1(4). Suppose that  there exist ( e l , . . . ,  e~) E A L L  

. . . , e  r ~ r f o r s o m e k + 2 < j < n "  and (el, k+l, ek+2, . . . , en)  E A L L  such that  ej ~ ej _ _ 

For a fixed So E S, consider the mapping %0 : /~(1  ..... k+l) --+ H E A D  defined by 
eq.(5). Let "),so(el,... ,ek+l) = ho. Since IE3I = ISI, there exists the bijection 
Vho : Ej -~. S given by Theorem 2. Then we have 

s o = e j ( h o ) ~ e ~ ( h o ) = S o .  

This is a contradiction. Therefore, IALLI = I/~(1 ..... k+l)l = ISI k§ from Lemma 
4. The above discussion holds for V(ei l , . . .  , e,k+,). This means that  B is an 
OA(k + 1,n, ISI). [] 

C o r o l l a r y  12. I f  the equality of eq. (2) is satisfied for any i, then 

IsI § k if IS[ is even and k + 1 < ISl 
n ~  [ S [ + k - 1  i f l S l i s o d d a n d 3 < k + l < [ S [  

Proof. Apply Bush bound [12] to the OA of Theorem 11. We then obtain the 
desired bound. [] 

5 M u l t i p l e - u s e  t r a c e a b i l i t y  s c h e m e  

In this section, we propose a multiple-use (k, n)-traceability scheme. It has much 
smaller keys and much shorter ciphertexts than those of CFN schemes [2]. Fur- 
ther, we prove that  (1) our scheme satisfies computational secrecy if and only 
if EIGamal cryptosystem is secure and (2) that  it satisfies computational trace- 
ability if and only if the discrete log problem is hard. Computational secrecy and 
computational traceability are defined as follows. 

Def in i t ion  13. (1) Computational secrecy: No outside enemy can compute a 
session key s from a header h with nonnegligible probability, even after receiving 
many previous session keys. 
(2) Computational traceability: No coalition C of at most k users can generate 
from their private keys and the public key, a pirate decoder ep such that  none 
of C is detected with nonnegligible probability. 

In each case, an adversary is a probabilistic polynomial time Turing machine 
which can use the data  supplier T as an oracle. 
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5.1 Computat ional ly  secure (k, n)-traceabil ity scheme 

We will combine our opt imum (k, n)-one-time traceabili ty scheme with E1Gamal 
cryptosystem. Let p be a prime power. Let q be a prime such tha t  q ] p -  1, 
q _> n + 1, and let g be a qth root of unity over GF(p).  All the part icipants agree 
on p ,q  and g. Let S = (g) = {s ] s = g= for some x}. 

Initialization: T chooses a random p o l y n o m i a l / ( x )  = ao + a lx  + . . .  + akx k 
over Zq and computes 

Let 

Y o  = g a O ,  Y l  = g a l ,  . . . , Y k  = g a ~ .  

eT = (p,g, yo , . . . , y k ) .  

T g i v e s / ( i )  to authorized user i as e, for 1 < i < n. 
Distributing a session key: For a session key s, T computes a header as 

h(s, r) = (g~, sy~, y [ , . . . ,  y~), 

where r is a random number. Then T broadcasts  h(s ,r) .  Each user i computes 
s from h(s, r) and el as follows. 

• • . . .  • = = s .  

Detection o/traitors: When a pirate decoder is confiscated, the pirate key ep 
is exposed. If  ep contains (u, f ( u ) )  for some u, then T decides that  user u is a 
traitor.  

In our scheme, eT can be made public. This means tha t  everybody can work 
as a da ta  supplier by using this public key eT. We will prove, under reasonable 
assumptions,  tha t  our scheme is computat ionally secure even if eT is a public 
key. 

5.2 Computat ional  secrecy 

Theorem 14. The computational complexity for an eavesdropper to cryptana- 
lyze a new session key in our scheme, after having received previous session keys, 
the public key, the old headers and the new header is as hard (reducible in ex- 
pected polynomial time) to cryptanalyze a plaintext in the E1Gamal scheme when 
the order o /g  is a prime. 

Proof. Let A/J1 correspond with the problem of breaking our scheme and A/J2 
with breaking the s tandard E1Gamal encryption scheme when the order of g is 
a prime. First, it is clear tha t  the existence of a polynomial t ime J~2 implies 
the existence of a polynomial t ime A/J1. Secondly, suppose tha t  there exists a 
polynomial t ime A/ll. We will show A42 by using A41 as a subroutine. Let the 
input to A/t2 be (p,g,y) ,  (ao,~o) (= (gr~176 (= (g~,s lyr ' ) ) .  

A42 computes eT and h(s~,rj)  which will be used as an input to Adl as 
follows. A42 first chooses a l , . . . ,  ak E Zq at random and computes 

yl = g a l , . . . , y k  = gak. 
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Then A42 has obtained a public key eT = (p, g, y, Yl, �9 �9 �9 Yk). Next, 342 computes 
?'j ~j 

Yl , " " , Yk as follows. 

Tj 
a ~ ' = g r ' a ' = y i  f o r i = l , 2 , . . . , k ,  j = 0 , 1 , . . . , 1 .  

Thus, M2 has obtained h ( s j , r : )  such that 

h(s: ,  rj) = (a, fl, a ~ ' , . . .  , oLak) ---- (gr~, s: yrj ,yir~ ' ' ' ' 'YkrJ ). 

NOW, A42 feeds the above eT and h(s: ,  r:) (j = 0 ,1 , . . . ,  l) to 2~41. Next, for any 
s~ E S queried by Adl, 2PI2 computes h(s~,ri)  by using eT and sends h(s~,ri) to 
A41. Note that it is easy to compute h(s i , r , )  by using eT for any si. 

Finally, A42 outputs the output of A41, which is an sj with nonnegligible 
probability. Thus, the existence of J~l implies the existence of Ad2. [] 

5.3 Computational traceability 

Theorem 15. The computational complexity for k traitors of f inding a pirate 
decoder ( u , f ( u ) ) ,  where u • ( Q , . . . , i k } ,  when given the public key and their 
personal keys ( f ( Q ) ) , . . . ,  J ( ik ) )  is as hard as (reducible in expected polynomial 
t ime to) the discrete logarithm problem when the order of g is a prime. 

Proof. We call A/h the algorithm that k traitors would use to find a pirates 
decoder and 3,t2 an algorithm to solve the discrete logarithm problem when the 
order of g is a prime. First, it is clear that the existence of a polynomial time 
3,t2 implies the existence of a polynomial time A41. Secondly, suppose that there 
exists a polynomial time Adl. We show a polynomial time A42 by using ~41 as 
a subroutine. Let the input to A/J2 be (p,g,y). Ad2 first chooses d l , . . . ,  dk at 
random. Then there exists a unique polynomial J(x )  = ao + a l x  + . . .  + akX k 
such that 

y=gaO a n d f ( i j ) = d :  f o r l < j  < k .  

Now 3,t2 computes yj = g% (j -- 1, 2 , . . . ,  k) as follows. It holds that 

(dl , - . . ,dk)  T = ( f ( i l ) , " ' , f ( i k ) )  T = (a0 , ' " , a0 )  T + B x ( a l , . . . , a k )  T, 

where 
i l ,  i21, "" ", i~ l 

B ~ =  . . . .  . 

k ik, i2k, " " , i k ] 

B is nonsingular because it is a Vandermonde matrix. Therefore, we have 

( a l , " ' , a k )  T = B - l ( d l  - a o , . . . , d k  - ao) T. 

Let ( b j l , . . . ,  bjk) be the j th  row of B -1. Then 

% = bj l (dl  - ao) + . . .  + b:k(dk - ao), 

= bj ldl  + " "  + bjkdk - (bjl + " "  + b:k)ao. 
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Hence, 
ga s _~. gbjldl+.. .+b~kdk /ybj1W.. .+bj~.  

for j = 1, 2 , . . . ,  k. Now, A/J2 has obtained a public key eT = (p, g, y, g a l , . . . ,  gab) 
and personal keys of traitors dl = f ( Q ) , . . . ,  dk = f ( i k ) .  

Az[2 feeds eT and (Q, dl) , .  �9 (ik, dk) to 2P[1. Finally, if A, t l  outputs (u, f (u))  
such that  u • { i l , . . . ,  ik}, then A42 can compute f ( x )  from (il, d l ) , . . . ,  (ik, dk) 
and (u, f ( u ) ) .  In this case, Az[2 outputs ao -- f(0) which is the discrete log of y. 
This happens with nonnegligible probability. Otherwise, ,~42 outputs J_. Thus, 
the existence of A41 implies the existence of A~12. [] 

6 A s y m m e t r i c  s c h e m e s  w i t h  a g e n t s / a r b i t e r  

Up to now, we have considered symmetric schemes in which the data  supplier 
T is honest. If T is dishonest, he can easily frame any authorized user as a 
traitor because T knows all the personal keys. To solve this problem, Pfitzmann 
and Waidner [9, 10] showed an asymmetric scheme by combining the symmetric 
scheme of [2] with a two party protocol [1, 7]. This scheme is, however, not 
efficient because at least the symmetric scheme of [2] which it is based on is very 
inefficient. 

In this section, we show two practical asymmetric schemes with agents/arbiter. 

6.1 C o m p u t a t i o n a l l y  secure  a s y m m e t r i c  s c h e me  w i t h  a g e n t s  

This is a multiple-use asymmetric scheme in which there are c agents ,41,. �9 Ac 
who only generate keys cooperatively. In this scheme, 
(1) no user is framed as a traitor even if T and c - 1 agents collude. 
(2) When a pirate decoder is confiscated, T can detect a traitor without any 
help from agents. 
(3) At a trial, T can convince a judge without the help of agents. 

This scheme is obtained by modifying the scheme of Sec.5.1 using the same 
mathematics as in [8]. All the participants agree on p and g. 

Initialization: Each agent A~ chooses a random polynomial f~(x) = a~,o + 
ai,l X -t- �9 .. -{- ai,k xk over Zq and publicizes 

Yl,0=ga"~ . . . ,  Y~,k = ga"k. 

Each A~ secretly gives f i ( j )  to user j .  Let 

A 

f ( x )  zx f i ( x )  = ao + a l x  + . - . a k x  k, yj  = Y~,3 for 0 < j < k. 
i=l  ~=1 

Then yj = gas for 1 < j < k. T uses (P,g, Yo , . . .  ,yk) as a public key eT. Autho- 
rized user j computes f ( j )  = ~ = 1  f~(J) which he uses as his personal key e3, 
w h e r e l < j  < n .  

The phase for Distributing a session key is the same as that  in Sec.5.1. 
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Detection of traitors: When a pirate decoder is confiscated, the pirate key ep 
is exposed. Suppose that  ep contains (u, f (u ) ) .  T decides tha t  user u is a trai tor  
if 

k 

gf( ) = 1 ]  (s) 
i=0  

Trial: If T decides that  user u is a traitor,  then T gives the judge (u, f ( u ) )  
as evidence. The judge is convinced if eq.(8) holds. 

Theorem 16. T and e -  1 agents cannot frame any authorized user as a traitor 
with nonnegligible probability if and only if the discrete log problem is hard. 

A proof and a straightforward use of [8] to achieve verifiability of the cor- 
rectness of f ( i ) ,  will be given in the final paper. 

6.2 Unconditionally secure asymmetric scheme w i t h  a r b i t e r  

This is a one-time use asymmetric scheme in which there is an arbiter .4 who 
generates eT and {ei}. When a pirate decoder is confiscated, A detects a traitor. 
This scheme is obtained by modifying the scheme in Sec.4.1 as follows. Let 
ISI = q, where q is a prime and q >_ n. 

Initialization: An arbiter ,4 gives the data  supplier T two random polynomials 

f l ( X )  ---- a l , 0  -~- al, lX -{-"" + al,kX k, f2(x) = a2,0 + a2,1x + " "  + a2,kx k. 

over GF(q) as eT. Next, .A gives (xi,1, x,,2, f l  (X~,l), f2(x~,2)) to authorized user 
i as el, where each x,,j is independently and randomly chosen from GF(q).  

Distributing a session key: For a session key s, T chooses two random ele- 
ments Sl and s2 such that  s = Sl + s2. Then T broadcasts (hi ,h2)  such that  

hi = (si + ai,o, ai,1,. . .  ,a~,k), where i = 1,2 

as a header. User i computes Sl and s~ as in Sec.4.1 and then obtains s. 
Detection of traitors: When a pirate decoder is confiscated, the pirate key 

ep is exposed. Suppose that  ep contains (x~,l, x~,2, f l  (X~,l), f2(x~,2)). Then the 
arbiter decides tha t  user u is a traitor. 

Theorem 17. T cannot frame any user as a traitor with probability more than 
1/q. 

Proof. Suppose ,4 gave eT to T and el to authorized user i for 1 < i < n. Then 
it is clear that  [{ei}[ = n. On the other hand, T has no information on xi,j. 
Therefore, Pr(  T can frame some user) = n /q  2 < 1/q since q > n. [] 

7 O p e n  p r o b l e m  

The bounds given in this paper only apply to the unconditionally secure case. 
Can these be adapted to a public key scenario? 
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