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Optimum Transmission Ranges in a Direct-Sequence 
Spread-Spectrum Multihop Packet Radio Network 

Abstract-ln this paper, we obtain the optimum transmission ranges 
to maximize throughput for a direct-sequence spread-spectrum mul- 
tihop packet radio network. In the analysis, we model the network self- 
interference as a random variahle which is equal to the sum of the 
interference power of all other terminals plus hackground noise. The 
model is applicable to other spread spectrum schemes where the inter- 
ference of one user appears as a noise source with constant power spec- 
tral density to the other users. The network terminals are modeled as 
a random Poisson field of interference power emitters. The statistics 
of the interference power at a receiving terminal are obtained and show 
to be the stable distributions of a parameter that is dependent on the 
propagation power loss law. The optimum transmission range in such 
a network is of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC K “  where Cis a constant, K is a function of 
the processing gain, the background noise power spectral density, and 
the degree of error-correction coding used, and (Y is related to the power 
loss law. The results obtained can he used in heuristics to determine 
optimum routing strategies in multihop networks. 

I .  INTRODUCTION 

N a large distributed packet radio network, it is not al- I ways desirable for a terminal with a packet to send to 
attempt to transmit directly to the destination. It may be 
the case that the destination terminal is out of the trans- 
mitter’s range, in which case it is impossible to transmit 
directly to the destination, or that the destination is within 
range, but the transmission protocol dictates that the 
packet take a series of short hops so as to achieve “space 
reuse” [ 11-[3] which results in a higher network through- 
put. If a packet is transmitted directly to the destination, 
then there is no “store and forward” delay, but due to a 

larger number of potentially interfering terminals, the 
probability of a successful transmission is smaller than 
that for short-hop transmission. Using a model where ter- 
minals are assumed to be randomly distributed on the 
plane, Kleinrock and Silvester [1]-[2] were able to show 
that, to maximize overall network throughput, a terminal 

should transmit with a power so that the average number 
of terminals within range is six. Subsequent refinements 
to this analysis [4]-[5] which also include different rout- 
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ing strategies have resulted in the conclusion that the 
number of neighbors of a terminal should be approxi- 
mately six-eight. 

These results were derived for narrow-band radio net- 
works where at most one successful transmission at a time 
can occur in a given region of space. With spread spec- 

trum signaling [6], multiple simultaneous successful 
transmissions are possible. and the above results do not 
apply. Moreover, the model used in these analyses as- 

sumes that the reception of a packet is independent of the 
distance from the transmitter to the receiver, as long as 
this distance is less than a critical radius. Also, if another 
terminal is undergoing a reception just outside of the 
transmission range of node X ,  then according to these 
models, the reception is unaffected by the interference 
from a transmission by node X .  In this paper, we are con- 
cerned with the solution of the above problem (i.e., de- 
termining the optimum transmission ranges) for the direct 
sequence spread spectrum (DSSS) case. In the work re- 
ported in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111-[SI, the main issue is the choice of a trans- 
mitting power which defines a transmission radius that de- 

pends on the background noise. The choice of 
transmission power is a compromise between network 
connectivity and network interference which occurs in the 
form of packet collisions from terminals transmitting 
within the receiving radius. In such a model, the prob- 
ability of packet success is assumed not to be a strong 
function of the distance between the transmitter and re- 
ceiver if this distance is less than the transmission radius. 
In the case of spread spectrum transmission, a receiver 
will pick up some noise from each transmitter, and the 
packet error probability will be strongly dependent on the 
signal strength, even within the transmission radius. If the 
source of interference is mostly from other users, the 
probability of packet success will not depend as much on 
the absolute transmission power that each terminal uses 
since scaling the signal power also scales the interference 
by the same amount, but more on the transmission range 
selection. The transmission range should be expressed 
relative to the average distance between terminals. A re- 

lated measure is the average number of terminals that are 
closer to the receiver than the transmitter. The transmis- 
sion range must, of course, be less than the link distance 
or transmission radius that is defined by the transmitter 
power used. In general, the greater the transmission range, 
the lower is the probability of the transmission being suc- 

cessful. If the objective function is expected forward 
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progress per transmission, then there is an optimum dis- 
tance that the packet should attempt to travel per hop, and 
this distance is not necessarily the full distance to the des- 
tination. We assume that the transmitted power and pro- 
cessing gain are fixed, and that the main source of inter- 

ference is multiaccess interference, and we find the 
expected forward progress per transmission, defined as the 
product of the probability of success times the link dis- 
tance, in terms of the expected number of interferers that 
are closer to the receiver than the transmitter. 

We derive the statistics of the received interference 
power at a terminal for a class of signal propagation laws 
(i.e., how the strength of a propagating signal varies with 
distance). For the inverse fourth power law (commonly 
used for ground radio), we show that the optimum trans- 
mission range is such that on the average, the number of 
terminals closer to the transmitter than the receiver is pro- 
portional to the square root of the processing gain.' Even 
though the analysis presented in this paper is for the direct 
sequence form of spread spectrum, depending on the de- 
tection scheme, the methdology may also be applicable to 
other spread spectrum schemes. 

It is hoped that the technique presented here to analyze 
the interference at a terminal will have wider ranging im- 
plications in the analysis of routing strategies, adaptive 
techniques involving the variation of transmitter power, 
and the impact of jammers whose positions are randomly 
varying in space [7]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. MULTIHOP NETWORKS 

In most multihop network models employed by re- 
searchers thus far, each transmitter is assumed to use the 
same transmitting power. This power is assumed to de- 

termine a circle such that each terminal lying within the 
circle hears the given transmission, and any terminal lying 
outside the circle is completely unaffected by the trans- 
mission. If we denote the strength of the transmitted sig- 
nal as a function of the distance from the transmitter by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g (  r j  (where g stands for gain), then the above model cor- 
responds to a g of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is some constant and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, is the critical radius de- 
termined by the transmitted power. With this model, the 
network can be represented by a graph with vertices cor- 

responding to the terminals and an edge present between 
two vertices if and only if the distance between them is 
less than ro. According to the model, a transmitted packet 
is successful if and only if no other terminal adjacent to 
the destination transmits at the same time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A weakness of the above model can be illustrated with 
the aid of Fig. 1 which depicts a network of four terminals 

'The processing gain is equal to the ratio of the system bandwidth to the 
uncoded data rate (see 16. p. 13811. 

Fig. I .  The effect of transmission radius on interference 

that use a constant (equal) power to communicate. If the 
transmitting power is such that the critical radius is deter- 

mined to be r,, then according to the model, terminals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal  
and bl can successfully transmit to terminals u2 and b2, 
respectively, at the same time. However, if the powers 

are increased so that the critical radius becomes r-6, then 
the above two communications cannot occur simulta- 
neously. On the other hand, from a communication theory 
point of view, we know that the important parameter de- 
termining the success of a transmission is the signal-to- 
noise ratio at the receiver, which is not strongly depen- 
dent on the transmission power as long as all terminals 
transmit with the same power and the background noise 
is much smaller than the interference power. 

The main drawback to the above model is that it does 
not discriminate between the differences in distance to a 

receiver of two transmitting terminals as long as the ter- 
minals are within the critical radius. An improved model 
is the capture model studied in [8]-[10], which is suited 
to FM transmission. If a given transmitting terminal, at 
distance rl  from the receiver, is the closest transmitting 
terminal to the receiver, and if the next closest transmit- 
ting terminal is at a distance r2, then the given transmis- 
sion will be successful if rl < r, and the ratio r 2 / r I  ex- 
ceeds a threshold called the capture ratio. 

The above models have been used for the nonspread 
spectrum case. A straightforward extension of these 
models to spread spectrum would result by setting a 
threshold on the maximum possible number of successful 
simultaneous transmissions and declaring that any time 
the number of transmissions exceeds the threshold, all 
transmissions are lost. However, since the powers of the 

various interferers vary greatly due to differences in their 
distances to the receiver, the number of transmitting ter- 
minals is not a good variable to work with in accounting 
for network interference at a particular receiver. This is 
especially the case with DSSS signaling. The analysis 
presented in this paper is an enhancement of that in [ l  11 
where we use the sum of the interference powers to model 
multiuser interference. This approach to interference 
modeling has been used in many analyses of cellular radio 
systems (e.g., [ 12]), spread spectrum multiple-access 
systems (e.g., [13]-[14]j, and has recently also been 
adopted for throughput analysis of packet radio networks 
with fixed topologies and prespecified routing schemes in 

1151. 
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111. SYSTEM MODEL 

We assume a multihop packet radio network operating 
under heavy traffic conditions. The system is slotted, and 
in each slot, a terminal transmits a packet with probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p .  The slot duration is assumed to be sufficiently large so 
as to allow a preamble for spreading code and carrier syn- 
chronization. The traffic matrix is assumed to be uniform. 

We are interested in calculating performance over many 
different changing topologies rather than for a specific ter- 
minal configuration. As a result, we obtain statistical per- 

formance values over a set of topologies. To do this, we 
model the positions of the terminals as a Poisson point 
process in the plane with parameter A. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA is the area of 
a given region R in the plane, then the probability of find- 
ing k terminals in R is given by 

CA”( 
P [ k  in RI = (2 )  k! 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is the average number of terminals per unit area. 
We assume that during each slot, the network topology is 
constant; hence, the interference level will be constant 

over a packet transmission time. We also assume that the 
interference is independent from slot to slot. This is the 
assumption that was made in [1]-[2] and other work that 

followed. With this assumption, we may apply the results 
to a network with dynamically changing topology or to 

obtain average performance results for a collection of ran- 
dom networks. In this work, we are interested in obtain- 
ing optimum transmission ranges; hence, we assume a 
prespecified link in the network with a given distance R. 
The objective is to optimize the expected forward prog- 
ress for a packet transmission as a function of the distance 
of the link in the presence of unknown network interferers 
that are modeled as a Poisson process. This philosophy is 
also consistent with the approach taken in [13] where a 
centralized system is analyzed. 

IV. INTERFERENCE MODELING 

The collision model for channel interference is not ap- 
plicable in the case of DSSS signaling or when interfering 

signals have small powers. An alternative model that is 
not usually used in the narrow-band packet radio network 
literature, but has been used in many analysis of DSSS 
systems such as in [12]-[14] is that of summing the in- 
terference powers and treating the total interference as 
Gaussian noise. At the network analysis level, many 
spread spectrum schemes may be modeled this way. In 
this paper, we assume a direct sequence scheme with bi- 
nary phase shift keying (DS/BPSK), although many other 
schemes such as DS/DPSK and the DPSK schemes that 
have been considered for cellular radio (e.g., [ 121) allow 
the same type of analysis. 

From a network analysis viewpoint, we are usually in- 
terested in calculating the probability of packet success 
given that the receiver is idle. This calculation is usually 
conditioned on some state of the network, and a tractable 
state model cannot usually contain much more than infor- 

mation on which terminals are transmitting and what are 

their received powers. A desirable model to work with in 
spread spectrum is the threshold model where we assume 
that the packet is successful if the signal to interference 
power ratio is greater than some threshold. To apply the 
threshold model, the variance of the interference at the 
detector must be directly related to the received interfer- 
ence power. In DS/BPSK systems with a large processing 
gain, it can indeed be shown that the noise at the detector 
due to one interferer is approximately Gaussian; however, 
the variance depends on the relative chip phase of the sig- 
nal to the interferer. For the case of many interfering sig- 
nals with approximately equal levels of interference, the 
chip phases average out and the noise variance is constant 
for a prespecified location of interferers. However, in 
some DS/BPSK system models with one strong interferer, 
the variance of the noise at the detector is a random vari- 
able that depends on the chip phase of the signal relative 
to the interferer. For a given total received power, the 
noise at the detector will have a variance that will vary 
from packet to packet. This variation can, however, be 
made small if there is an offset between the clocks of the 

various signals. We will assume this to be the case in this 
paper. 

Threshold models in digital communications are ulti- 
mately dependent on the degree of error-correction cod- 
ing. If the interference over a packet can be modeled as 
Gaussian noise, then the probability of packet success as 
a function of the signal-to-interference ratio is a smooth 
curve with a slope in the transition region that depends on 
the degree of error correction; for good long codes, the 
curve approaches a step function. In this paper, we model 
the actual smooth curve. 

To calculate the packet success probability, we assume 
that the level of interference is constant over the trans- 
mission of a packet. The noise at the detector is due to 
interference from other users and to a constant back- 
ground noise with power spectral density N 0 / 2 .  We de- 
note the symbol energy-to-noise ratio at the detector by 
Eh/Noef  where N0,,/2 is an equivalent white noise power 
spectral density for the same SNR at the detector. If the 
received signal has power Po and the interferers have 
powers PI,  P,, . * , P,, the average symbol energy-to- 

noise ratio at the detector in the case of DS/BPSK with 
rectangular chip pulse is then (see [16, eq. (17)] for a 
similar result with equal powers) 

- I  

p&(2K NOeff 3LP0 + -  jO) ( 3 )  

where L is the processing gain, Y = Cy=,  P, ,  and vo = 

&/No. The parameter p0 is the SNR at the detector in the 
absence of interferers. 

For a given p ,  the probability of symbol error is 

p c  = ierfc (4). (4) 

The probability of packet success is dependent on the cod- 
ing scheme. We denote the probability of packet success 
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conditioned on the SNR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (  p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an example, for a 
t-error-correcting block code of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn,  and under our 
assumption that symbol errors are independent given p ,  
we have 

~ [ s u c c e s s / p ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA s (  p )  

( 5 )  

From packet to packet, the parameter p is a random vari- 
able with density functionf,( . ) . The unconditional prob- 

ability of packet success can then be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r m  

r m  

= I, [ l  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF , ( x ) ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs’(x) CLX (6) 

where the second expression is obtained after an integra- 
tion by parts and F,, ( . ) is the probability distribution 
function of p .  

V. INTERFERENCE AT A GIVEN TERMINAL 

To evaluate the above probability of packet success, we 
need to obtain the probability density function f, ( ) . We 
prefer, though, to obtain the probability density f y  ( . ) 
first, i.e., the probability density function for the multi- 
user interference power. Towards this end, we may as- 

sume that the terminal at which we are interested in ob- 
taining the interference power is located at the origin. 

Let g ( r )  be the power of a given signal at a distance r 
from the transmitter of the signal. In general, the exact 
form of g will depend on the environment; however, it 
will always be very large for small zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI’, and will approach 
zero as r + w.  For the moment, though, so as not to 
restrict ourselves to any particular environment, we 
merely assume that g ( r )  satisfies the following two con- 
ditions: 

1) g ( r )  is monotone decreasing, lim g ( r )  = 03, 

r - 0  

and lim g ( r )  = 0 
r+m 

2) lim r 2 g ( r )  = 0. 
r + m  

Without condition (7b), it can be shown that the interfer- 
ence power at a given terminal would be infinite for an 
infinite network. We will see later that in order for the 
characteristic function of the interference power to exist, 
we require that condition (7b) hold. The above expression 
for the power loss law is a far-field approximation that 

does not hold close to the transmitter where the transmit- 
ted signal attains a maximum. We assume that this max- 
imum is sufficient to cause a transmission error, even in 
the case of one interferer; hence, the above function will 

result in the same probability of error while being easier 
to handle analytically. 

Let X be a Poisson process in the plane with the average 
number of points per unit area equal to A. A sample func- 
tion of X is determined by a set of points in the plane 
which will correspond to locations of terminals. The 
probability law for X is determined by (2). We assume 
that the probability that a terminal is transmitting is p .  
The set of transmitting terminals also forms a Poisson 
process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX‘ with parameter XI = Xp. Now, with each sam- 
ple function of X‘ ,  we can associate the random variable 

Y = C g ( r i )  

where the summation is over all the points of the sample 
function, and r, is the distance of the ith point to the ori- 
gin. We assume that each terminal (i.e., each point of the 
sample function) is transmitting. Thus, Y is the total in- 
terference power at the origin, and we wish to find its 

probability density. 
Let Y, be the interference power received from those 

terminals which are in a disk or radius a ,  i .e. ,  

r, c 11 
(9)  

Thus, we have 1imu-+- Y ,  = Y. We work with Yo and then 
let a + 00 to obtain the characteristic function of Y. The 
probability density function is then the inverse Fourier 
transform. Let be the characteristic function of Y , ,  
i.e., 

$y,,(o) = E(elWY‘l 1. (10) 

Using conditional expectations, this may be evaluated as 

E (  eiWY“) = E (  E (  efWy<’ /k  in D, ) )  

where “ k  in D,” is the event that there are k terminals in 
the disk of radius a ,  and the expectation is over the ran- 
dom variable Yo. 

Now, given that there are k points in D , ,  and due to the 
nature of the Poisson process, the distribution of their lo- 
cations is that of k independent and identically distributed 

points with uniform distribution. If R is the distance to 
the origin of a point that is uniformly distributed in Du, 
then the probability density of R is 

f R ( T )  = [ a L  
0 otherwise. 

Also, since the characteristic function of the sum of a 
number of independent random variables is the product of 
the individual characteristic functions, we have 

E (  e‘“‘/k in 0,)  = 

Note that in (1 3 ) ,  we are considering U,, to be the sum of 
k random variables which are functions of the random 



variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR;, and each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARj has the density given by (12). 
Thus, substituting (13) in (1 1) and summing the series, 
we obtain 

Integrating by parts, the exponent of (14), letting a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03, 

and using condition (7a), we obtain, after some simplifi- 
cation, the characteristic function of Y 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg - '  ( . ) denotes the inverse of g ( ) . 

A .  Statistics for  a Class of Propagation Laws 

To proceed further, we must now specify zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg (  r )  . We 
specify it only up to a multiplicative constant since the 
results that we obtain will be independent of scaling fac- 
tors. In free space, g ( r )  would be l / v 2 ;  however, this 
does not satisfy (7b). This means, as we will see shortly, 
that if we are going to assume the ideal law for g, then 
we cannot assume an infinite network, for the interference 
power would be strongly dependent on the network size. 
On the ground, g ( r )  takes the form l / r 4  [17]; thus, to 
work out this case and any other cases where the depen- 
dency on r is not exactly an inverse fourth power, we 
consider the following class of propagation laws: 

For this class of propagation laws, (15) becomes 

4 y ( w )  = exp ( i X t m  j, t P e i w r  d t )  (17)  

where CY = 2 / y .  The integral in (17) may be evaluated to 
obtain the following: 

where r (  ) is the gamma function and 4 y  ( U )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4; ( - U ) .  The probability laws with characteristic func- 
tions given by (18) are the stable laws of exponent CY with 
the restriction 0 < CY < 1 [18]. For CY = 1 /2 ,  (18) be- 
comes 

~ $ ~ ( w )  = exp (-nJ?r/2(1 - i ) X , & ) .  (19) 

This probability law (CY = 1 / 2 )  is the inverse Gaussian 
probability law, and is the only one of the stable laws, for 
the case 0 < a < 1, which is known to have a density 
given by a closed-form expression. The density for CY = 
1 /2  is given by 

and the distribution function is 

In general, for 0 < CY < 1, the densities can be found as 
infinite series (see [18, pp. 581-5831). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = .rrh,r( 1 
- a ) ;  then the density, obtained by taking the inverse 
Fourier transform of (1 8), is 
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which, for CY = 1 /2 ,  results in a series expansion for (20). 
The general distribution function is 

VI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPROBABILITY OF PACKET SUCCESS 

We assume a 1 /r4 propagation power loss law. Using 
the above distribution function for the interference, the 
probability of packet success is now computed. Let the 
distance between the transmitter and receiver be R. The 
signal power is then 1 /R4.  The random variables Y and p 
are related through (3); hence, the probability distribution 
function for p may be obtained from that of Y in (21) as 

where 

K ( p )  = (; - ;). 
Substituting (24) in (6), we obtain the probability of 
packet success 

In the above equation, K (  p )  + 1 may be interpreted 
as a multiple-access capability [ 141, in the case of equal 
interference powers, given the required SNR p at the de- 

tector [as can be seen from (3)]. The function s '  ( . ) de- 
pends on the level of coding. For the best long codes, this 
function approaches a delta function at some value of p ,  
pLc. The integral can then be easily evaluated, and the re- 
sult corresponds to working with a reception model based 

on a threshold assumption. In any case, it can be seen that 
for the purpose of probability of packet success calcula- 
tions, we can always assume a threshold model. The 
above eauation gives the means to obtain the effective 
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threshold, defined as the threshold, which when used with 
the threshold model, gives the same results as (25). 

VII. OPTIMUM TRANSMISSION RANGES 

We are now ready to apply the above statistics of the 
interference power to the determination of the optimum 
transmission range in a multihop network. First, we find 
an expression for nodal throughput as a function of the 
link distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ,  the average number of terminals per unit 
area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. the transmission probability p ,  and the processing 
gain L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.  Local Throughput 

The local throughput is the rate at which a terminal suc- 
cessfully transmits packets. For a network with uniform 
traffic (as we assume here) and assuming that the routing 
is “balanced,” then the local throughput will be the same 
for all terminals. In terms of packets per slot, the local 
throughput will simply be the probability of success. Let 
[be the local throughput from terminal A ,  and let terminal 
B designate a generic destination terminal; then we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ = P I A  transmits] . P [ B  does not transmit] 

. P [  packet received/B does not transmit]. 

Given that B does not transmit, it may not receive A’s 
transmission for one of the following two reasons: 1) B 
may receive a transmission from another terminal, or 2) 
the interference power at B may exceed the threshold. 
These two events are not strictly independent, and the ex- 
act calculation of the last factor of (26) is a difficult task. 
The lack of strict independence is due to the fact that if 
the interference power is large, then there is a greater 
probability of a large number of terminals in the vicinity 

of B. However, we will see shortly that the probability 
that B receives another transmission is weakly dependent 
on the number of terminals in the vicinity of B, and we 

may assume that the above two events are independent. 
If all terminals transmit with probability p (heavy traffic 
case), then the first two factors of (26) are given by p (  1 

- p )  . Now, due to the memoryless property of the Pois- 
son distribution, if we fix a transmitter and receiver, ter- 
minals A and B, the remaining terminals are still Poisson 
distributed with parameter A; thus, the probability of the 
second of the above events is simply P,7 and (26) becomes 

B chooses 

A’s transmission ~ 

To obtain the probability that B chooses A’s transmis- 
sion, we need to know how many terminals are transmit- 
ting to B. If k terminals (including A )  are transmitting to 
B, then we assume that the probability that B receives A’s 
transmission (assuming, of course, that B does not trans- 
mit and the interference power is less than the threshold) 

is I l k .  The exact calculation that B chooses A’s trans- 
mission is very difficult. We do not know exactly how 

many terminals are potential transmitters to B; and of the 
potential transmitters to B, we do not know the probabil- 
ity of a transmission to B from a given one of them. These 
parameters are tied to the results that we are trying to ob- 
tain. If the number of potential transmitters to B is n ,  and 
if we assume that each of these can transmit to n terminals 
(hence, the probability of a transmission to B is p / n ) ,  
i.e., local traffic is uniform, then we have 

B chooses 

A’s transmission 

where the summation results from conditioning on the 
number of transmissions addressed to B. Substituting (28) 
in (27), we obtain 

(29)  

We have plotted the factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, ( p ) versus p for different 
values of rz in Fig. 2. From the plots, we see that for n > 
2, ~ , , ( p )  is not too sensitive to n ,  and we verify our in- 
dependence assumption. We therefore assume that n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
03. Letting n + 00 in (29), we obtain 

r = .(P> * p ,  

~ ( p )  L 7 , (p )  = ( I  - p ) ( l  - e - ” ) .  

In [19], we discussed two factors which affect the 
throughput of a spread spectrum network and referred to 

them as the tendency to pair up and the availability of a 
channel. In terms of our notation here, 7 is the tendency 
to pair up (given per terminal) and P,  is the availability 
of a channel. From the above assumption that the two 
events given by 1) and 2) are independent, we have gained 
the factorization of the throughput into these two factors. 

(30) 

where 

B. Expected Progress per Slot 

Using the system model previously described, we de- 
termine the optimum transmission range by using the ex- 
pected forward progress of a packet per slot as the per- 
formance criterion. In a multihop network, the probability 

of packet success increases as the link distance decreases. 
However, in choosing a small link distance, the number 
of hops that the packet must take is increased and the net- 
work internal traffic is artificially increased. This, in turn, 
causes the probability of packet success to decrease. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
performance measure is required which increases with an 
increase in the packet success probability and decreases 

as the number of hops increases. The expected forward 
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P .  

progress per slot [ 11-[5] is such a measure. The expected 
forward progress per slot Z is 

Z = r - R .  (31) 

To express the following results in terms of dimensionless 
quantities, we let N = X7rR2. N will be the average num- 
ber of terminals which are closer to A than B ,  and in terms 
of N, R = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. For the propagation law given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 
= 4 ( i .e . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY = 1 / 2 ) ,  we obtain the following [it results 
from substituting (30) in (31) and using (28) and (25)]: 

AZ = - p ) ( l  - e - p )  

PROBABILITY OF TRANSMISSION 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  Expected progress per hop versus probability of transmission 

We have multiplied Z by A in (32) so that the right-hand 
side is dimensionless. Note that contrary to the analysis 

in [ 11-[5], N is not to be interpreted as the average num- 
ber of neighbors of a given terminal ( A  in our case). 
Rather, N is the average number of terminals that are 
within the chosen range. 

To compute (32), we need the coding function s( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp )  . 
As an example, we assume a highly coded system so that 
s ( . ) is close to a step function at some critical SNR which 
we denote as the parameter pc. The derivative is then ap- 
proximately given by s ’ (  p )  = 6 (  p - p c )  and (32) be- 
comes 

(33)  

In the above, K is a function of pc, the required SNR for 
the coding scheme used, and also implicitly a function of 
po and the processing gain L .  K is directly proportional to 
the processing gain. The parameter pc is mainly depen- 
dent on the level of coding, and assuming a fixed back- 

ground noise level, is mainly dependent on the link 
distance R. Setting K equal to zero, we obtain the maxi- 
mum link distance as Ro = ( Tx/( pcNo))  ‘I4. Even though 
the maximum link distance is R,, the probability of re- 

ception becomes very small for link distances close to Ro, 
and an optimum transmission range will be considerably 
smaller than Ro. 

VIII. PARAMETER OPTIMIZATION 

We have plotted (33) in Figs. 3-5 for the cases of K (  p c )  
equal to 10, 100, and 1000 and for different values of the 
parameter N .  From the figures, we note that in each case, 
there is an optimum value of N ,  and as N increases from 
this value, the expected forward progress decreases. Al- 
though we only show four plots for each case of K ,  the N 
yielding the maximum expected progress for the given K 
and at the optimum p has been chosen as the value over 
all N which yields the maximum expected progress at its 
optimum probability of transmission p .  

In Fig. 6 ,  we show plots of the maximum expected 
progress versus N with K as a parameter, that is, the peaks 
in the plots of Figs. 3-5 versus N .  An interesting obser- 

vation is the relation between the optimum N, that is, the 
N yielding the maximum expected progress in Fig. 6, and 
the corresponding value of K. 

To find the parameters yielding the maximum expected 
forward progress, we may optimize (32) over the param- 
eters p and N .  Setting the partial derivatives with respect 
to p and N to zero yields the following two equations: 

2 (1  - p ) ( l  - e - p )  
(34b ) - - 

&p[e-P(2  - p )  - 11 

where $( p )  = ( p N / 2 )  d7r/K( p ) .  To solve the above, 
we assume a fixed L and po, and then solve (34a) for the 
function $( p )  . For a fixed L and po, such a solution 
amounts to finding a value for the product p N .  We then 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Expected progress per hop versus probability of transmission. 

K:1000 
- 
ROBABltlTY OF TRANSMISSION p 

Fig. 5. Expected progress per hop versus probability of transmission. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Expected progress per hop for optimum probability of transmission 
versus the expected number of interferers that are closer to the receiver 
than the transmission N .  

substitute for $( p )  in the left side of (34b), evaluate the 
integral, and solve the resulting equation for p .  N is then 

obtained from $ and p .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an example, for s ( ) equal to 
a step function at p = pc,  we obtain 

and 

IX. GENERALIZATIONS 
In the previous analysis, we were concerned with a net- 

work on the plane, and we determined optimum transmis- 

sion ranges only for the case of an inverse fourth power 
propagation loss law. It turns out that the results obtained 
for the interference statistics can be easily generalized to 

d-dimensional space, and similar results for the optimum 
transmission range can be obtained. Although only the 
additional cases of one dimensional and three dimensional 
have any physical significance, the following expressions 
hold for any dimension. 

A .  Interference Statistics 

We assume, as previously, that we have an infinite net- 
work. The terminals are distributed according to a Pois- 

son law on a d-dimensional space. The meaning here is 
that if V is the volume of a region R in d-dimensional 
space, then the number of terminals in R has the following 
distribution: 

e - ” “ ( h ~ ) ~  
P [ k  in RI = (36) k! 

where h is the average number of terminals per unit vol- 
ume. 

We may follow the same procedure that led to (15) 
where, instead of working with a sphere in two-dimen- 
sional space (i .e. ,  a circle), we work with a sphere in 
d-dimensional space. The generalized version of (15) is 

C $ ~ ( W )  = exp iKdhw [ g- l ( t ) ] de ’w ‘  dr ( 1, 
where Kd is the volume of the unit sphere in d-dimen- 
sional space ( K ,  = 2,  K2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  K3 = 47r/3, etc.). Assum- 
ing the class of propagation laws given by (16), (37) be- 
comes 

~ $ ~ ( o )  = exp ( -Kdxr(  1 - a ) e - ’ T e / 2 0 U )  w > o 
(38) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = a/-y. We note that for the interference to be 
finite, we must have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy > d. 

The probability distribution function in the general case 
is given by (23) where p = K,, AT ( 1 - a). 

B. Optimum Transmission Ranges 

expected forward progress and obtain 

( x ) ” ~ z  = (N/K, ) ’ ’~ ( I  - p ) ( l  - e-” )  

In a similar manner as for ( 3 2 ) ,  we may calculate the 

As previously, Z is multiplied by A l l d  so as to make the 
expected forward progress dimensionless. Also, as pre- PO = 0.271. (35b) 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SOMI: OF T H ~  CONSTANTS I N  (40) 

I C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) I 

viously, we would like to find the optimum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN as a func- 

tion of K and for the optimum transmission probability p .  
We may optimize over the parameters p and N as before. 
For the case of a step coding function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( ) , we summa- 
rize the results as follows: for a given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd and CY, the opti- 
mum transmission range No is given by the relation 

As previously, No is proportional to a power of the param- 
eter K (  p c ) .  We give a few values of the constant C in 
Table I .  

We summarize the above results. In obtaining the in- 
terference statistics, the important parameters are d,  the 
dimension of the network, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, the exponent of the 
propagation loss law. Given these two parameters. we de- 
fine CY = d / y .  The interference statistics are then given 
by the stable law of exponent CY, and the optimum No is 
proportional to K N (  p, . )  where K (  * ) is defined as in (24) 
and Table I gives a few of the proportionality constants. 

X. SUMMARY A N D  CONCLUSIONS 

Multihop packet radio models used in the past have used 
the concept of a transmission radius where within a given 
radius of a transmitter, a packet has an “equal” prob- 
ability of being received. This model essentially assumes 
a step function for the signal strength versus distance from 
the transmitter. In this paper, we have taken a new ap- 
proach: a signal is assumed to decay i n  strength according 
to a gradually decreasing function of the distance from the 
transmitter. By assuming a random distribution of the ter- 

minals, we were able to obtain the statistics of the inter- 
ference power from all other transmissions at a particular 
receiver. Assuming an inverse power law for the signal 
strength versus distance from the transmitter, we showed 
that the probability laws of the interference power are the 
stable laws with parameter CY restricted to 0 < CY < 1.  
The case of an inverse fourth power propagation law, 
which results from ground wave propagation, corresponds 

to the stable law with CY = 1/2,  which has a density 
known as the inverse Gaussian probability density. 

In a multihop packet radio network, there is usually a 
tradeoff between the distance covered in one hop and the 
probability of a successful transmission. Using the above 
interference analysis, we proceeded to obtain the opti- 
mum transmission range for a DSSS network. For a nar- 
row-band packet radio network, previous results have 
concluded that the range of a transmission should be such 
that on the average there are approximately six-eight ter- 

minals closer to the transmitter than the receiver. For a 
spread spectrum system, we expect different results since 
multiple simultaneously successful transmissions are pos- 
sible. In the spirit of the analysis of Kleinrock and Silves- 
ter [1]-[3], we have concluded that in a direct sequence 
spread spectrum network, the range of a transmission 
should be chosen so that on the average there are 1.33 

terminals closer to the transmitter than the re- 
ceiver where K (  p ( . )  is a parameter that is proportional to 
the processing gain, which can be interpreted as the effec- 
tive maximum number of simultaneously successful trans- 
missions possible in some region as a function of the ef- 
fective SNR pf. required for a particular coding scheme. 
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