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Abstract

We extend and unify Fourier-analytic methods for pricing a wide class of options on any underlying
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1 Introduction

In a large and growing family of financial models, explicit formulas exist for the characteristic functions of

the state variables. Given any such characteristic function, our project is to compute, efficiently and accu-

rately, the prices of a wide class of options on those underlying state variables. Fourier-analytic solutions to

various forms of this problem have appeared in the finance literature. They express option prices in terms of

Fourier-inversion integrals, which are in practice evaluated numerically.

This paper extends and unifies those ideas. In a general setting, we bound the error in the numeri-

cal evaluation of these integrals asN-point sums, of the kind that may be computed as a discrete Fourier

transform (DFT) by schemes including the fast Fourier transform (FFT). Then we show how these bounds

lead to algorithms that make efficient choices of quadrature parameters and compute prices with guaranteed

numerical accuracy.

1.1 Outline

This paper generalizes Carr-Madan (1999); unifies it with extensions of the relevant elements of Duffie-

Pan-Singleton (2000), Lewis (2001), and Bakshi-Madan (2000); and develops error bounds and error mini-

mization strategies. Carr-Madan’s underlying random variableX is the logarithm of a terminal stock price,

and their objective is to compute the call price, as a function of log-strike. In terms of the characteristic

function ofX, they calculate analytically the Fourier transform of the call price function, damped to enforce

integrability. Inverting this Fourier transform by FFT and then undamping, they recover simultaneously the

call prices at many strikes.

We begin by setting forth the option pricing problem and defining the options to be priced. Our scope

includes not only vanilla calls on variables exponential in a single state variable, but also three other classes

of payoffs. These extended payoff classes contain all of the derivative structures treated in Duffie-Pan-

Singleton (2000), and in particular they allow payoffs dependent on multidimensional state variables.

Next, we derive upper bounds on option prices, intended for use at extreme strikes. These bounds will

become relevant to discretization errors in transform-pricing of options atall strikes.

In Section 4 we extend, to all four payoff classes, Carr-Madan’s analytic calculation of Fourier trans-

forms, as well as their inversion formula recovering the option price. Also, by taking as given the Bakshi-

Madan (2000)discountedcharacteristic function, we extend Carr-Madan to allow stochastic interest rates.

As Lewis (2001) observes, transform representations of option prices may be interpreted as contour

integrals in the complex plane; shifts of the contours generate alternative pricing formulas. Applying this
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idea, we prove a unified pricing formula encompassing not just our original four but also ten complementary

formulas, including as special cases some well-known transform formulas.

These formulas involve integrals over (a translate of) the real line, so approximation by anN-point sum

is subject to two forms of error: sampling error because the integrand is evaluated numerically only at the

grid points, and truncation error because the upper limit of numeric summation is finite. We then establish

bounds for both kinds of error, in all four payoff classes.

Section 7 addresses strategic issues in error bound minimization. From an error-management perspec-

tive, we apply our bounds analysis to argue in favor of the Carr-Madan one-integral approach to call pricing,

and against the traditional two-integral approach. Then we make recommendations for choosing among our

five one-integral call formulas. For choosing quadrature parameters, we offer a simple algorithm as a robust

alternative to the specific constant parameters suggested in Carr-Madan.

The first appendix facilitates truncation error calculations by providing bounds on the decay of charac-

teristic functions in two prominent models. The second appendix gives sampling error bounds, for subcases

deferred from the main text. The third appendix deals with specific DFT/FFT implementation issues.

1.2 Guiding Principles

Wherever possible, we observe the following principles.

First, we take as primitive the discounted characteristic function. From there, our analysis proceeds to

the computation of option prices. We do not derive any characteristic functions; other papers have already

taken the responsibility of finding characteristic functions given, for example, SDE or generating triplet

specifications of the underlying financial dynamics; and indeed others take the characteristic functionas

the specification of the underlying dynamics. Duplication of research effort will be reduced, one hopes,

by the emerging division of labor between, on one hand, those projects that specify or derive characteristic

functions; and, on the other hand, projects such as this one, which derive option pricing formulas,given

arbitrary characteristic functions.

Second, we strive to maintain generality. We do not assume that the underlying state variable is, say,

a jump-diffusion or Ĺevy process. We do not assume that its probability distribution has a density. Time

and the state space may be continuous or discrete. The state variables may be one-dimensional or multi-

dimensional. Interest rates and dividends may be deterministic or stochastic. As long as the discounted

characteristic function for such dynamics is known, option prices are computable. Technical restrictions do

apply, which brings us to the next point.

Third, we formulate our technical conditions with the view that they should facilitate the design of
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provably robust pricing algorithms. So we place a premium on expressing assumptions in a complete,

concise, rigorous, and readily testable way.

2 The Option Pricing Problem

Working in a filtered probability space(Ω,P∗,{Ft}), we intend to calculate numerically the time-0 priceC0

of an option paying at timeT theFT-measurable random variableCT .

Let rt be the interest rate process, possibly stochastic.

Let Mt := exp(
∫ t

0 rsds) be the time-t value of a money market account.

Let Bt be the time-t value of a discount bond maturing atT.

2.1 Numeraires and Martingale Measures

Assuming that the prices (ofC, M, B, and any other assets under consideration) admit no arbitrage, there

must exist a risk-neutral probability measureP under which asset prices, discounted byM, are martingales.

See Harrison and Kreps (1979) or Delbaen and Schachermayer (1994) for technical definitions of “admit no

arbitrage” that make this statement true. LetE denote expectation with respect toP. Then the option price

and bond price satisfy

C0 = E[M−1
T CT ]

B0 = E[M−1
T ].

The positive price processM is an example of anumeraire. ForanynumeraireN there exists a probability

measurePN, said to be risk neutral with respect toN, meaning that theNt-discounted price of any asset is a

PN-martingale; see El Karoui, Geman, and Rochet (1995). The change of measure fromP to PN is given by

dPN

dP

∣∣∣∣
FT

=
NT/N0

MT/M0
.

When the numeraire is chosen to be the priceBt of a T-maturity discount bond, the risk-neutral measure

PB is known as theT-forward measure. Let us writeE for expectation with respect toPB. The option price

satisfies, therefore,

C0 = B0ECT .

In the case of deterministic interest rates, the forward measure is identical to the usual risk-neutral measure.

In our setting, however, interest rates may be stochastic, and the measures are not necessarily identical; the

forward measure has the advantage of discounting outside the expectation.
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2.2 Options

Let thestate variable Xbe anFT-measurable random variable with values inRn. For apayoff function

G : Rn×R→ R, define

CG(k) := B0E(G(X,k)),

which is the time-0price of an option onX, payingG(X,k) at time T. The trigger k is some contract

variable, such as a strike, or the logarithm of a strike.

Our goal is accurate numerical computation ofCG(k) for these cases ofG:

G1(x,k) := (exp(x)−exp(k))+ b0 := 1,b1 := 1,x∈ R

G2(x,k) := (x−k)+ b0 := 1,b1 := 0,x∈ R

G3(x,k) := exp(b1 ·x)I(b0 ·x > k) x∈ Rn

G4(x,k) := (b2 ·x)exp(b1 ·x)I(b0 ·x > k) x∈ Rn

whereI is the indicator function, soI(b0 · x > k) equals 1 ifb0 · x > k, but 0 otherwise. In payoffsG3 and

G4, theb0,b1,b2 ∈ Rn are arbitrary constants. When it is clear what payoff(s) is/are under discussion, we

may suppress the subscript ofG or C.

We choose these four functional forms because they include a wide family of payoffs of practical interest.

For example, with payoffG1, if one choosesX to be bond yield, or the logarithm of a stock price or FX rate,

then one obtains a call on a stock, bond, or currency. With payoffG2, if one choosesX to be an interest rate,

or a time-averaged interest rate, then one obtains respectively a European or an Asian option on an interest

rate.

Our G3 andG4 are the payoff classes treated in Duffie-Pan-Singleton (2000). With payoffG3, if one

choosesb0 andb1 appropriately, then one can obtain asset-or-nothing, binary, equity-linked FX, and two-

asset exchange/maximum options, all on the exponentials of components ofX, which could be stock price

logarithms or bond yields or FX-rate logarithms. With payoffG4, if one choosesb1 = 0 andb0 andb2

appropriately, then one can obtain basket or spread options on the components ofX, which could be interest

rates or their time-averages, for example.

3 Upper Bounds on Option Prices at Extreme Strikes

For practical use in bounding numerical transform-inversion errors, it is important thatCG be dominated by

an expression that is easily evaluated in terms of the characteristic function ofX.

5



For eachG= G1, . . . ,G4, we give two bounds; both bounds are valid for allk, but the first is intended for

use with large positivek, whereas the second is intended for use with large negativek. The usual conventions

about∞ are in force, so each of Theorems 3.1-3.4 holds automatically if the expectation on the right-hand

side is infinite.

The first of these four results is nearly identical to a bound obtained in Broadie-Cvitanic-Soner (1998).

The differences, though minor, make it appropriate to present briefly a full proof.

Theorem 3.1. For any p> 0,

CG1(k) 6
B0Eexp((p+1)X)

(p+1)exp(pk)

(
p

p+1

)p

and CG1(k) 6 B0Eexp(X).

Proof. For alls> 0 we have

s−ek 6
sp+1

(p+1)exp(pk)

(
p

p+1

)p

because the left-hand and right-hand sides, as functions ofs, have equal values and first derivatives at

s= (p+1)exp(k)/p, but the right-hand side has everywhere a positive second derivative. Moreover, since

the right-hand side is positive, the left-hand side can be improved to(s−exp(k))+.

Now substitutes= exp(X), take expectations, and multiply byB0 to obtain the first bound. The second

bound is obvious.

Remark3.1. Therefore, ifST is a nonnegative random variable withESp+1
T < ∞ for somep > 0, then calls

onST must have prices that decay asO(K−p) for strikesK → ∞.

A corresponding fact for puts follows from Theorem 6.4: ifES−q
T < ∞ for someq > 0, then puts on on

ST must have prices that decay asO(Kq+1) for strikesK → 0.

Lee (2003) uses these bounds to derive an explicit “moment formula” for the growth of implied volatility

at extreme strikes.

Theorem 3.2. For any p> 0,

CG2(k) 6
B0Eexp(pX)
pexp(pk+1)

.

For any q> 0,

CG2(k) 6 B0(EX−k)+
B0Eexp(−qX)
qexp(1−qk)

.

Proof. For allx∈ R we have

x−k 6
exp(px)

pexp(pk+1)
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because the left-hand and right-hand sides, as functions ofx, have equal values and first derivatives at

x = k+ 1/p, but the right-hand side has everywhere a positive second derivative. SubstituteX for x, take

expectations, and multiply byB0 to obtain the first bound.

A similar argument shows that for allx,

(x−k)+ = x−k+(k−x)+ 6 x−k+
exp(−qx)

qexp(1−qk)
,

which implies the second bound.

Theorem 3.3. For any p> 0,

CG3(k) 6
B0Eexp((pb0 +b1) ·X)

exp(pk)
and CG3(k) 6 B0Eexp(b1 ·X).

Proof. For allx∈ Rn we have

I(b0 ·x > k) 6
exp(pb0 ·x)

exp(pk)
,

which implies the first bound. The second bound is obvious.

Theorem 3.4. For any p0 > 0 and p2 > 0,

CG4(k) 6
B0Eexp((p0b0 + p2b2 +b1) ·X)

p2exp(p0k+1)
.

For any q0 > 0 and q2 > 0,

CG4(k) 6 B0E((b2 ·X)exp(b1 ·X))+
B0Eexp((−q0b0−q2b2 +b1) ·X)

q2exp(−q0k+1)
.

Proof. For allx∈ Rn we have

(b2 ·x)I(b0 ·x > k) 6
exp(p2b2 ·x)

p2e
exp(p0b0 ·x)

exp(p0k)

and

(b2 ·x)I(b0 ·x > k) = (b2 ·x)(1− I(b0 ·x 6 k)) 6 b2 ·x+
exp(−q2b2 ·x)

q2e
exp(−q0b0 ·x)

exp(−q0k)
,

implying the two bounds.

Remark3.2. To bound|CG4|, apply Theorem 3.4 to(b0,b1,b2) and(b0,b1,−b2), and take thelarger of the

two bounds. To boundC|G4|, take thesumof those two bounds, because|b2 ·X| is the sum of(b2 ·X)+ and

(−b2 ·X)+.
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4 From Characteristic Functions to Option Prices

Our starting point is the discounted characteristic functionf of the state variableX. Unlike the usual charac-

teristic functions of probability theory, the definition off includes a discount factor inside the expectation,

which is essential for pricing under stochastic interest rates.

We produce formulas for prices of each of the four option classes, by expressing option price transforms

in terms of f , and then inverting the transforms.

4.1 The Discounted Characteristic Function

Let X be anRn-valued random variable. LetAX denote the interior of the set

{
v∈ Rn : Eev·X < ∞

}
.

The complex vectors whose negated imaginary parts are inAX form a “strip” or “tube”

ΛX := {ζ ∈ Cn :−Im(ζ ) ∈ AX}.

Adopting the terminology suggested in Bakshi-Madan (2000), define thediscounted characteristic function

of X, with respect to a discount factor exp(−
∫ T

0 rtdt), to be the functionf : ΛX → C where

f (ζ ) := E
(
e−

∫ T
0 rtdteiζ ·X)

.

Note that the expectation is with respect toP, but f is also related to the forward measurePB, because

f (ζ )/ f (0) = Eeiζ ·X,

which is (forζ restricted toRn) the usual characteristic function ofX with respect toPB.

Theorem 4.1.The discounted characteristic function f is well-defined and analytic inΛX, which is a convex

set. Partial derivatives of f may be taken through the expectation.

Proof. This follows from Zemanian (1966), Theorems 4 and 5.

In certain models, one can derive the discounted characteristic function from an SDE specification of

state variable dynamics. For example, affine jump-diffusion specifications give rise to tractable characteristic

functions, as shown in Heston (1993), Bates (1996, 2000), Bakshi-Cao-Chen (1997), Bakshi-Madan (2000),

Duffie-Pan-Singleton (2000), and Chacko-Das (2002). Outside of that family, Lewis (2000), Schöbel-Zhu

(1999), and Zhu (2000) obtain characteristic functions also for non-affine volatility and interest rate models.
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In other models, the state variables follow Lévy processes, and one can derive the characteristic func-

tion from a specification of the generating triplet, or directly take the characteristic function to define the

dynamics. Examples include the Finite Moment Log Stable model in Carr-Wu (2003), the Normal In-

verse Gaussian model in Barndorff-Nielsen (1998), the Generalized Hyperbolic model in Eberlein-Prause

(2002), the Variance Gamma model in Madan-Carr-Chang (1998), and the CGMY and KoBoL models in

Carr-Geman-Madan-Yor (2002) and Boyarchenko-Levendorskiǐ (2002). Extensions of Ĺevy process mod-

els which introduce stochastic time changes also have, in certain cases, explicit solutions for characteristic

functions; see Barndorff-Nielsen/Nicolato/Shephard (2002), Carr-Wu (2002), and Carr-Geman-Madan-Yor

(2003).

Appendix A gives details of the characteristic functions in two models – one in the affine class, and one

in the Lévy class.

Note that if discounted characteristic functions are available not just for state variables but also for path

functionals of the state variables, then our pricing and error control results will apply not just to European

options, but also to path-dependent options. For example, in affine models, the availability of characteristic

functions for time-averages enables us to price Asian options (on the state variables, not on their expo-

nentials). Such availability is, however, the exception rather than the rule. Transform-based pricing of

exotic options is feasible evenwithout a readily computable characteristic function for the path-dependent

quantity, provided that the dynamics are simple enough (under geometric Brownian motion, for example,

see Fu-Madan-Wang (1999) or Carr-Schröder (2003) for Asian options, and Geman-Yor (1996) or Pelsser

(2000) for barrier options); but this falls outside the scope of our pricing and error control results, which

assume the availability of the characteristic function.

4.2 Fourier Transform of the Damped Option Price

The usual Fourier transform ofCG itself does not exist, becauseCG(k) does not decay ask→−∞.

Following Carr-Madan, then, for eachdamping constantα > 0, we define thedampedoption price

functioncα,G : R→ R by

cα,G(k) := exp(αk)CG(k).

We will show that the damped option pricecα,G doeshave a Fourier transform ˆcα,G : R → C, well-defined

by

ĉα,G(u) :=
∫ ∞

−∞
eiukcα,G(k)dk,

provided thatα is chosen appropriately.
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Theorem 4.2. Assume that G satisfies b1 ∈ AX. Then there existsα > 0 with αb0 +b1 ∈ AX. For any such

α the Fourier transformĉα,G of cα,G exists and

ĉα,G1(u) =
f (u− (α +1)i)

α2 +α −u2 + i(2α +1)u
ĉα,G2(u) =

f (u−α i)
(α + iu)2

ĉα,G3(u) =
f (ub0− (αb0 +b1)i)

α + iu
ĉα,G4(u) =

−ib2 ·∇ f (ub0− (αb0 +b1)i)
α + iu

.

Proof. There existsp > α such thatpb0 + b1 ∈ AX. So Theorem 3.1, 3.2, 3.3, or 3.4 implies thatc(k)

decays exponentially for|k| → ∞. Also c(k) is bounded. Thereforec(k) is L1 and has a Fourier transform;

moreover, the use of Fubini in the following computation of ˆc is justified:

ĉα,G(u) :=
∫ ∞

−∞
eiukcα,G(k)dk=

∫ ∞

−∞
eiukeαkB0EG(X,k)dk= f (0)E

∫ ∞

−∞
G(X,k)e(α+iu)kdk.

Evaluating the integral,

ĉα,G1(u) =
f (0)Ee(α+1+iu)X

α2 +α −u2 + i(2α +1)u
ĉα,G2(u) =

f (0)Ee(α+iu)X

(α + iu)2

ĉα,G3(u) =
f (0)E(eb1·Xe(α+iu)b0·X)

α + iu
ĉα,G4(u) =

f (0)E((b2 ·X)eb1·Xe(α+iu)b0·X)
α + iu

.

The result follows becauseub0− (αb0 +b1)i ∈ ΛX.

4.3 Fourier Inversion

Option prices may be recovered via Fourier inversion.

Theorem 4.3. Suppose G andα satisfy the hypotheses of Theorem 4.2.

In cases G= G1,G2, the option price is given by

CG(k) =
e−αk

2π

∫ ∞

−∞
e−iukĉα,G(u)du=

e−αk

π

∫ ∞

0
Re

[
e−iukĉα,G(u)

]
du. (4.1)

In cases G= G3,G4, define the average of left and right limits̄C(k) := [C(k+0)−C(k−0)]/2. Then

C̄G(k) =
e−αk

2π
lim
R→∞

∫ R

−R
e−iukĉα,G(u)du=

e−αk

π

∫ ∞

0
Re

[
e−iukĉα,G(u)

]
du, (4.2)

which can be strengthened to(4.1) if ĉ is L1.
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Proof. In all cases, the damped option pricec(k) is L1, as argued in Theorem 4.2.

In casesG = G1 and G = G2, the damped pricec(k) is continuous, by the dominated convergence

theorem; and the transform isL1, because|ĉ(u)|6 | f (−(α +b1)i)|/(u2 +α2). Therefore the usual Fourier

inversion recoversc; see, for example, Champeney (1987) Theorem 8.2. Undamping with a factor ofe−αk

yields (4.1).

In casesG = G3 andG = G4, the damped pricec(k) is locally of bounded variation, becauseC(k) is the

difference of two monotonic functions, exp(αk) is monotonic, and bothC(k) and exp(αk) are bounded on

any finite interval. By, say, Champeney (1987) Theorem 8.12, we have (4.2).

5 The Pricing Formula for General α

Transform representations of option prices can be viewed as contour integrals in the complex plane. Shifting

the contour across a pole of the integrand changes the value of the integral, a technique which Lewis (2001)

exploits, as will we.

Lewis differs from our approach in that he derives formulas for the transforms of option prices with

respect to thespot variableX0; whereas we, like Carr-Madan and Duffie-Pan-Singleton, transform with

respect to thetrigger variablek. His assumptions require that the option be written on the exponential of a

variableXT where the distribution ofXT −X0 is not permitted to depend onX0. Our formulas are not subject

to this restriction and apply to a wider class of underlying state variablesX, including those exhibiting

mean-reversion.

One can modify the formulas of Lewis for non-independent-increments. However, the resulting formulas

in that case do not allow the direct application of FFT to calibrate parameters to the prices of options at

multiple strikes. For that purpose one needs transform-in-strike formulas, which we now derive.

Specifically, letΓ := ΓX,G := {z∈ C :−Im(z)b0 +b1 ∈ AX}, and defineĈG : ΓX,G → C by

ĈG1(z) :=
f (z− i)
iz−z2 ĈG2(z) :=

− f (z)
z2

ĈG3(z) :=
f (b0z−b1i)

iz
ĈG4(z) :=

−b2 ·∇ f (b0z−b1i)
z

. (5.1)

Theorem 4.2 proves that forpositiveα with αb0 +b1 ∈ AX, we have

ĉα,G(u) = ĈG(u−α i),

and hence, forz∈ Γ such that−Im(z) > 0,

ĈG(z) =
∫ ∞

−∞
eizkCG(k)dk. (5.2)
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Thus, in this region,ĈG(z) is thecomplexFourier transform of the unmodified option priceCG(k). Equiv-

alently (modulo rotation by a factor ofi), ĈG(z) is the bilateral Laplace transform ofCG(k). Rewriting the

conclusion of Theorem 4.3 shows thatCG may be inverted by integrating along the contour Im(z) =−α in

the complex plane:

CG(k) =
1

2π

∫ ∞−α i

−∞−α i
ĈG(z)e−ikzdz =

1
π

∫ ∞−α i

0−α i
Re[ĈG(z)e−ikz]dz (G = G1,G2)

C̄G(k) =
1

2π
lim
R→∞

∫ R−α i

−R−α i
ĈG(z)e−ikzdz=

1
π

∫ ∞−α i

0−α i
Re[ĈG(z)e−ikz]dz (G = G3,G4),

(5.3)

again assumingpositiveα with αb0 +b1 ∈ AX.

For negativeα, the transform ˆcα,G does not exist (forG = G1, . . . ,G4); likewise, the integral in (5.2)

does not exist for−Im(z) < 0. Nonetheless, the definitions (5.1) do make sense, and the integrals in (5.3)

do exist forα < 0, but they do not recover̄CG, because the integration path has shifted across the polez= 0;

instead they recover̄CG less the contribution of the residue of̂CG at z= 0. In each caseG = G1, . . .G4, this

generates one additional pricing formula. In caseG = G1, it generates a second additional formula, because

ĈG1 has a second pole atz= i.

For zeroα (and forα =−1 in caseG = G1), the final integrals in (5.3) are again well-defined, but now

the integration contour passesthrougha pole, and the contribution from the residue is cut in half. (The only

exception is in the caseG = G2 which has a double pole atz= 0; this case calls for introducing into the

integrand a term that tames the singularity, without affecting the value of the integral.) This generates two

additional pricing formulas for payoffG1, and one additional formula for the other payoffs.

Theorem 5.1 makes this discussion precise. Note that by takingα = 0 in casesG = G3 andG = G4,

we recover both of Duffie-Pan-Singleton’s (2000, Prop 2 and Eqn 3.8) pricing formulas. Takingα > 0 in

caseG = G1 recovers Carr-Madan’s damped-call pricing formula. Takingα = 0 in two instances of case

G = G3 recovers the traditional two-integral call-pricing formulas, which we discuss further in Section 7.1.

Our central pricing result is as follows.

Theorem 5.1. Assume that b1 ∈ AX. Letα be any real number such thatαb0 +b1 ∈ AX. Then in all cases

except(G = G2;α = 0),

C̄G(k) = Rα,G +
1
π

∫ ∞−α i

0−α i
Re[ĈG(z)e−ikz]dz (5.4)
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where

Rα,G1 :=



f (−i)−ek f (0) α <−1

f (−i)−ek f (0)/2 α =−1

f (−i) −1 < α < 0

f (−i)/2 α = 0

0 α > 0

Rα,G2 :=


−i f ′(0)−k f(0) α < 0

(−i f ′(0)−k f(0))/2 α = 0

0 α > 0

Rα,G3 :=


f (−b1i) α < 0

f (−b1i)/2 α = 0

0 α > 0

Rα,G4 :=


−ib2 ·∇ f (−b1i) α < 0

−ib2 ·∇ f (−b1i)/2 α = 0

0 α > 0

andĈG is given in(5.1). In cases G= G1 and G= G2, theC̄G can be replaced by CG.

We will prove simultaneously Theorem 5.1 and the following(G = G2;α = 0) theorem.

Theorem 5.2. Assume that b1 ∈ AX. Then we have the(G = G2;α = 0) formula

CG2(k) = R0,G2 +
1
π

∫ ∞

0
Re[ĈG2(z)e

−ikz]+
1
z2dz. (5.5)

Proofs. For α > 0, see Theorem 4.3.

For α < 0 (except forα = −1 in caseG = G1): Note that eachĈG is analytic in the stripΓX,G, except

for a pole atz = 0 (and alsoz = i in caseG = G1). The residue theorem applies to any rectangular path

with horizontal segments on Im(z) = −α1 and Im(z) = −α2, and vertical segments on Re(z) = ±R. Since

the integrals over the vertical segments approach 0 asR→ ∞, it follows that shifting a horizontal contour

across the pole changes the value of the integral by 2π i times the residue at that pole. Residue calculation is

straightforward.

For α = 0 (includingα =−1 in caseG = G1): Our proof will be forα = 0; a similar argument proves

the (G = G1; α = −1) formula. Define the functionsSG1(z) := SG3(z) := SG4(z) := 0 andSG2(z) := 1/z2.

On ΓX,G∩−ΓX,G the function

h(z) := SG(z)+
1
2

[
ĈG(z)e−izk+ ĈG(−z)eizk

]
(modulo a removable singularity in caseG2) is analytic. Chooseε > 0 such thatb1± εb0 ∈ AX. Applying

13



Cauchy’s Theorem to the appropriate rectangle, and then using the relevantα 6= 0 results, we have

1
2π

lim
R→∞

∫ R

−R
h(z)dz=

1
2π

lim
R→∞

∫ R−ε i

−R−ε i
h(z)dz=

1
2π

lim
R→∞

∫ R−ε i

−R−ε i
h(z)−SG(z)dz

=
1

4π
lim
R→∞

[∫ R−ε i

−R−ε i
ĈG(z)e−izkdz+

∫ R+ε i

−R+ε i
ĈG(z)e−izkdz

]
=

1
2

[
C̄G(k)+(C̄G(k)−R−ε,G)

]
= C̄G(k)− R−ε,G

2
,

as claimed.

Theorem 5.1’s final assertion is by continuity ofCG1 andCG2.

A single piece of numerical integration code (coupled with the appropriateRα,G adjustment) can eval-

uate, for example, all five formulas for payoffG1; the only difference is the value ofα passed into the

procedure. Thus, without writing additional code, one gains the flexibility to choose, say, a negative or zero

α if the integrand should happen to behave better there than it does along positiveα. The extent to which

an integrand is “well-behaved” can be quantified by the error bounds that arise from that particular choice

of α. This is the subject of the next section.

Also in the next section we give alternative proofs for many of the formulas in Theorem 5.1. The

contour-shift proof, given above, has the purpose of unifying the various Fourier pricing formulas; but for

the purpose of deriving error bounds, it will be useful to reinterpret the results. For example, ourα < 0

bounds will exploit the equivalence between contour shifts andparity relations, such as put/call.

6 Bounds for Sampling and Truncation Errors

The Fourier inversion (5.4) can be approximated discretely via anN-point sum with a grid spacing of∆ in

the Fourier domain. This quadrature introduces two forms of error (aside from roundoff error): truncation

error because the upper limit of the numeric integration is finite, and sampling error because the integrand

is evaluated numerically only at the grid points. Our bounds will account for both sources of error.

The total error is defined as the absolute difference between the true value

CG(k) = Rα,G +
e−αk

π

∫ ∞

0
Re

[
e−iukĉα,G(u)

]
du

and the discrete approximation given by theN-point sum

ΣN(k) := ΣN,∆
α,G(k) := Rα,G +e−αk ∆

π
Re

[N−1

∑
n=0

ĉα,G((n+1/2)∆)e−i(n+1/2)k∆
]
. (6.1)

14



The total error is bounded by the sum of thesampling errorand thetruncation error

|C−ΣN|6 |C−Σ∞|+ |Σ∞−ΣN|,

whereΣ∞ is defined asΣN is, except with an infinite upper limit of summation.

Truncation errors can be bounded by a formula that applies regardless of the sign ofα.

Sampling errors, however, will require treatment that depends on the sign ofα. Our strategy is based on

Davies (1973), but he restricts attention to the inversion of characteristic functions to recover probabilities,

which is not always appropriate for us; we extend his approach to the inversion of option price transforms.

6.1 Truncation Error

Carr-Madan and Pan each suggest bounds on the tails of certain Fourier inversion integrals, but our specific

need is to bound the tails of the infinitediscretesums that approximate our Fourier integrals.

Theorem 6.1. Assume the hypotheses of Theorem 5.1.

If f is such thatĉα,G decays as a power|ĉα,G(u)|6 Φ(u)/u1+γ for all u > u0, whereγ ≡ γα,G > 0 and

Φ(u)≡Φα,G(u) is decreasing in u, then the truncation error

|Σ∞(k)−ΣN(k)|6 Φ(N∆)
πeαkγ(N∆)γ

, (6.2)

provided that N∆ > u0.

If f is such thatĉα,G decays exponentially|ĉα,G(u)|6 Φ(u)e−γu for all u > u0, whereγ > 0 andΦ(u) is

decreasing in u, then the truncation error

|Σ∞(k)−ΣN(k)|6 ∆Φ((N+1/2)∆)
2πeαk+γN∆ sinh(γ∆/2)

, (6.3)

provided that N∆ > u0.

Proof. In any case,

|Σ∞(k)−ΣN(k)|6 e−αk ∆
π

∞

∑
n=N

∣∣ĉ((n+1/2)∆)
∣∣.

In the power decay case,

∆
∞

∑
n=N

∣∣ĉ((n+1/2)∆)
∣∣ 6 ∆

∞

∑
n=N

Φ(n∆)
[(n+1/2)∆]γ+1 6

Φ(N∆)
∆γ

∫ ∞

N

dx
xγ+1 =

Φ(N∆)
γ(N∆)γ

,

where the middle step uses the convexity of 1/x2.

In the exponential decay case,

∞

∑
n=N

∣∣ĉ((n+1/2)∆)
∣∣ 6 Φ((N+1/2)∆)

∞

∑
n=N

e−γ(n+1/2)∆ 6
Φ((N+1/2)∆)

eγ(N+1/2)∆−eγ(N−1/2)∆ ,

as claimed.
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Remark6.1. As observed by Carr and Madan in caseG = G1, and as one can verify also in caseG = G2,

the power decay hypothesisalwaysholds; specifically, letγ = 1 andΦ = | f (−(α + b1)i)|. However, the

resulting bound is typically poor. For practical purposes it is desirable to improve the powerγ or to establish

exponential decay, by factoring in the contribution from the large-u decay of| f (u− (α +b1)i)|. The nature

of this decay presents itself in the explicit expression forf ; examples appear in Appendix A.

Remark6.2. The requirement thatN∆ > u0 can be dropped, by modifying the right-hand sides of (6.2)

and (6.3) as follows: first replace eachN∆ by u0 (thus bounding then > u0/∆ terms of truncation error).

Then add a second term, to bound theN 6 n < u0/∆ terms of the truncation error, by integrating, over the

appropriate finite interval, a bound on ˆc(u) valid for u < u0, such as the quadratically decaying bound of

Remark 6.1.

6.2 Sampling Error: Positive α

A form of the “aliasing” effect is at work here; by sampling ˆc only at regular discrete intervals, one recovers

not c but rather a periodic function equal to a combination ofc and infinitely many shifted copies ofc. The

unwanted copies are shifted farther away as∆ → 0, so the extreme-strike bounds of Section 3 come into

play.

In the main text, our sampling error analysis will focus on the payoff classes of greatest practical interest,

G1 andG3. For sampling error in casesG2 andG4, see Appendix B.

Theorem 6.2. Assume that b1 ∈ AX andαb0 +b1 ∈ AX with α > 0.

In case G= G1 we have

|CG1 −Σ∞
α,G1

|6 inf
p>α: p+1∈AX

[
e−2πα/∆ f (−i)
1−e−4πα/∆ +

e2π(α−p)/∆ f (−i(p+1))
(p+1)epk(1−e4π(α−p)/∆)

(
p

p+1

)p]
.

In case G= G3, assume also that̂c(u) = O(u−1−γ) as u→ ∞, whereγ > 0. Then

|CG3 −Σ∞
α,G3

|6 inf
p>α: pb0+b1∈AX

[
e−2πα/∆ f (−ib1)

1−e−4πα/∆ +
e2π(α−p)/∆ f (−i(pb0 +b1))

epk(1−e4π(α−p)/∆)

]
.

Proof. For any∆ > 0 and any positive integerj,

c(k−2π j/∆)+c(k+2π j/∆) =
1
π

∫ ∞

−∞
e−iukĉ(u)cos(2π ju/∆)du

= 2
∫ ∆

0
F(u)cos(2π ju/∆)du,

where

F(u) :=
1

2π

∞

∑
n=−∞

ĉ(u+n∆)e−i(u+n∆)k.
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SinceF is Lipschitz, the Fourier cosine series may be summed:

c(k)+
∞

∑
j=1

[
c(k−2π j/∆)+c(k+2π j/∆)

]
cos(2π ju/∆) = F(u)∆.

In particular, takingu = ∆/2, we have∣∣c(k)−F(∆/2)∆
∣∣ =

∣∣∣∣ ∞

∑
j=1

(−1) j
[
c(k−2π j/∆)+c(k+2π j/∆)

]∣∣∣∣.
Multiplying by exp(−αk) to undamp the call prices,∣∣∣C(k)−Σ∞(k)

∣∣∣ =
∣∣∣∣ ∞

∑
j=1

(−1) j
[
e−2π jα/∆C(k−2π j/∆)+e2π jα/∆C(k+2π j/∆)

]∣∣∣∣.
Therefore, Theorems 3.1-3.4 imply that

|CG1(k)−Σ∞(k)|6 B0

∞

∑
j=1
j odd

[
e−2π jα/∆EeX +

e2π j(α−p)/∆Ee(p+1)X

(p+1)ekp

(
p

p+1

)p]
(6.4)

and

|CG3(k)−Σ∞(k)|6 B0

∞

∑
j=1
j odd

[
e−2π jα/∆Eeb1·X +

e2π j(α−p)/∆Ee(pb0+b1)·X

ekp

]
. (6.5)

The results follow from computing the sums.

Note that application of these bounds does not require actual computation of infimums. For example,

in caseG = G1, any choice ofp > α with p+ 1 ∈ AX produces a valid upper bound, which is subject to

improvement by taking more trial values ofp.

6.3 Sampling Error: Negativeα

The Theorem 6.2 error bounds assumed thatα > 0, and must be modified forα < 0.

We have seen that shifting a Fourier inversion contour across a pole of the integrand changes the value

of the integral. Sampling error bounds will now follow from the fact that the new integral value is the price

of an contract related to the original option via a parity identity, such as put/call.

Specifically, for eachG = G1, . . . ,G4, define one “complementary” payoffG∗, and for caseG1 define a

second complementary payoffG∗∗ by

G∗
1(x,k) := min(exp(x),exp(k)) b0 := 1,b1 := 1,x∈ R

G∗∗
1 (x,k) := (exp(k)−exp(x))+ b0 := 1,b1 := 1,x∈ R

G∗
2(x,k) := (k−x)+ b0 := 1,b1 := 0,x∈ R

G∗
3(x,k) := exp(b1 ·x)I(b0 ·x 6 k) x∈ Rn

G∗
4(x,k) := (b2 ·x)exp(b1 ·x)I(b0 ·x 6 k) x∈ Rn.
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These payoffs have the following time-0 values.

Theorem 6.3. Assume that b1 ∈ AX andαb0 +b1 ∈ AX.

In cases G= G2,G3,G4 with α < 0; or in case G= G1 with−1 < α < 0, we have

C̄G∗(k) =
1
π

∫ ∞−α i

0−α i
Re[ĈG(k)e−izk]dz.

In case G= G1 with α <−1, this holds after replacing the G∗ with G∗∗.

Proof. Subtract from each original payoff functionG its complementary payoffG∗; then take expectations

to verify the parity relation

B0EG(X,k)−B0EG∗(X,k) = R0−,G (6.6)

and similarly forG∗∗. Theorem 5.1 now implies the result.

Alternatively, without using Theorem 5.1, one may adapt Theorem 4.2 and compute directly the complex

Fourier transforms of eachCG∗ . Inverting as in Theorem 4.3 finishes the proof. Moreover, the negative-α

formulas in Theorem 5.1 would then follow from (6.6).

This equivalence between contour shifts and parity relations allows us to control the negative-α sampling

error by bounding the extreme-strike values of thecomplementarypayoffs. In particular, we state explicitly

the complementary bounds for casesG = G1 andG = G3.

Theorem 6.4. In case G= G∗
1 we have

CG∗
1
(k) 6 B0ek and CG∗

1
(k) 6 B0EeX.

In case G= G∗∗
1 we have, for any q> 0,

CG∗∗
1
(k) 6

B0Ee−qX

1+q

(
q

1+q

)q

e(1+q)k and CG∗∗
1
(k) 6 B0ek.

In case G= G∗
3 we have, for any q> 0,

CG∗
3
(k) 6

B0Ee(−qb0+b1)·X

e−qk and CG∗
3
(k) 6 B0Eeb1·X.

Proof. Adapt the reasoning in Theorems 3.1 and 3.3. We omit the details.

The sampling error bounds now follow.
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Theorem 6.5. Assume that b1 ∈ AX andαb0 +b1 ∈ AX.

In case G= G1, for α ∈ (−1,0):

|CG1 −Σ∞
α,G1

|6 ek−2π(α+1)/∆ f (0)
1−e−4π(α+1)/∆ +

e2πα/∆ f (−i)
1−e4πα/∆ .

and forα <−1:

|CG1 −Σ∞
α,G1

|6 inf
q>−(α+1):
−q∈AX

[
ek+2π(1+α)/∆ f (0)

1−e4π(1+α)/∆ +
e(1+q)ke−2π(1+q+α)/∆ f (iq)
(1+q)(1−e−4π(1+q+α)/∆)

(
q

1+q

)q]
.

In case G= G3, assume alsôc(u) = O(u−1−γ) as u→ ∞, whereγ > 0. Then forα < 0,

|CG3 −Σ∞
α,G3

|6 inf
q>−α:

−qb0+b1∈AX

[
e−2π(α+q)/∆ f (−i(−qb0 +b1))

e−qk(1−e−4π(α+q)/∆)
+

e2πα/∆ f (−ib1)
1−e4πα/∆

]
.

Proof. Adapt the reasoning in Theorem 6.2. We omit the details.

6.4 Sampling Error: Zero α

Here we bound the sampling error along contours that pass through a pole. This meansα = 0 and, in case

G = G1, alsoα =−1.

We present results for casesG = G1 andG = G3. In each case the option price function can be inter-

preted, after normalization, as a cumulative distribution function, so bounds from the probability literature

apply directly, and we avoid reinvention of the wheel.

Our proof strategy yields, as a by-product, complete alternative proofs of 3 of the 13 formulas in The-

orem 5.1, including the(G = G3; α = 0) case, which was Duffie-Pan-Singleton’s (2000, Prop 2) pricing

formula; their proof influenced ours but lacks the highly convenient normalization step.

Theorem 6.6. Assume that b1 ∈ AX andαb0 +b1 ∈ AX.

Then the(α,G) ∈ {(0,G1),(−1,G1),(0,G3)} subcases of Theorem 5.1 all hold.

In case G= G1, theα =−1 andα = 0 sampling errors are bounded by∣∣∣CG1 −Σ∞
−1,G1

∣∣∣ 6 max

[
inf

q>0:−q∈AX

f (iq)
1+q

(
q

1+q

)qe(1+q)k

e2πq/∆ , f (−i)e−2π/∆
]

∣∣∣CG1 −Σ∞
0,G1

∣∣∣ 6 max

[
f (0)ek−2π/∆, inf

p>0: p+1∈AX

f (−i(p+1))
(p+1)ep(k+2π/∆)

(
p

p+1

)p]
.

In case G= G3 assume also that̂c(u) = O(u−1−γ) as u→ ∞, whereγ > 0. Then∣∣∣CG3 −Σ∞
0,G3

∣∣∣ 6 inf
p>0: pb0+b1∈AX
q>0:−qb0+b1∈AX

max

[
f (i(qb0−b1))
e−q(k−2π/∆) ,

f (−i(pb0 +b1))
ep(k+2π/∆)

]
.

19



Proof. Case G= G1, α =−1:

On some probability space(Ω1,P1,F ) there exists a real-valued random variableY with densityϕ(y) :=

e−yE[eXI(X > y)]. It is easy to verify that

CG∗∗
1
(k) = f (0)ekP1(Y < k),

and thatY hasP1-characteristic functionf (u)/[ f (0)(1− iu)]. By the Gil-Pelaez (1951) formula,

CG∗∗
1
(k) = f (0)ek

(
1
2
− 1

π

∫ ∞

0
Re

[
f (u)/ f (0)
iu(1− iu)

e−iuk
]
du

)
=

f (0)ek

2
+

1
π

∫ ∞+i

0+i
Re

[
f (z− i)

iz(iz+1)
e−izk

]
dz.

Davies (1973) now directly implies the sampling error bound

|CG1 −Σ∞
−1,G1

|6 f (0)ek max
[
P1(Y < k−2π/∆), P1(Y > k+2π/∆)

]
.

So for anyq > 0,

|CG1 −Σ∞
−1,G1

|6 max

[
B0Ee−qX

1+q

(
q

1+q

)qe(1+q)k

e2πq/∆ , e−2π/∆B0eX
]
,

as claimed.

Case G= G1, α = 0:

On some probability space(Ω1,P1,F ) there exists a real-valued random variableY with densityϕ(y) :=

eyPB(X > y) f (0)/ f (−i). It is easy to verify that

CG1(k) = f (−i)P1(Y > k),

and thatY hasP1-characteristic functionf (u− i)/[ f (−i)(iu+1)]. By the Gil-Pelaez formula,

CG1(k) = f (−i)
(

1
2

+
1
π

∫ ∞

0
Re

[
f (z− i)/ f (−i)

iz(iz+1)
e−izk

]
dz

)
.

By Davies (1973),

|CG1 −Σ∞
0,G1

|6 f (−i)max
[
P1(Y < k−2π/∆), P1(Y > k+2π/∆)

]
.

So for anyp > 0,

|CG1 −Σ∞
0,G1

|6 max

[
f (0)ek−2π/∆,

B0Ee(p+1)X

(p+1)ep(k+2π/∆)

(
p

p+1

)p]
.

as claimed.

Case G= G3, α = 0:
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Define the probability measureP3 by dP3/dP := M−1
T exp(b1 ·X)/E(M−1

T exp(b1 ·X)). Then

CG3 = E[M−1
T eb1·XI(b0 ·X > k)] = f (−b1i)E

[
dP3

dP
I(b0 ·X > k)

]
= f (−b1i)P3(b0 ·X > k),

and f (b0z−b1i)/ f (−b1i) is the characteristic function ofb0 ·X with respect toP3. So

C̄G3 = f (−b1i)
(

1
2

+
1
π

∫ ∞

0
Re

[
f (b0z−b1i)/ f (−b1i)

iz
e−izk

]
dz

)
,

according to Gil-Pelaez. By Davies (1973),

|CG3 −Σ∞
0,G3

|6 f (−b1i)max
[
P3(b0 ·X < k−2π/∆), P3(b0 ·X > k+2π/∆)

]
. (6.7)

Therefore, writingE3 for expectation with respect toP3,

|CG3 −Σ∞
0,G3

|6 f (−b1i)max

[
E3e−qb0·X

e−q(k−2π/∆) ,
E3epb0·X

ep(k+2π/∆)

]
for any positivep andq, as claimed.

Remark6.3. In the case ofG = G3 with b0 = b1 = 1 andα = 0, Pan (2002), following Davies, gives

sampling error bounds.

Our G = G3 proof extends Pan, because an alternative way to proceed from (6.7) is (writingH f for the

Hessian matrix off ):

|CG3 −Σ∞
0,G3

|6 f (−b1i)E3
(b0 ·X−k)2

(2π/∆)2 =
−b>0 H f (−b1i)b0 +2ikb0 ·∇ f (−b1i)+k2 f (−b1i)

(2π/∆)2 ,

which improves her bound. Our other incremental contributions here include the complete explicit formu-

lation of technical assumptions and the generality of vectorsb0,b1 ∈ Rn.

This “quadratic” strategy also applies in caseG = G1 with α = 0 or−1. However, we prefer sampling

error bounds that go to zero exponentially in−1/∆, rather than quadratically in∆, so Theorem 6.6 reports

only the exponential results.

6.5 Overall Error Bound: an Example

Consider a call on a stock, under Variance Gamma dynamics, as described in Section A.1. Of the five

formulas in caseG = G1, we chooseα > 0. The domain conditionαb0 + b1 ∈ AX entails the restriction

α +1 < a+, wherea+ is defined in (A.1). By (A.2) and Theorem 4.2,

|ĉα,G1(u)|6 | f (u− (α +1)i)|
u2 6

exp(−rT +(α +1)(logS0 + µT))
(u2νσ2/2)T/νu2

.
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By Theorem 6.1, truncation error is bounded by

exp(−rT +(α +1)(logS0 + µT))
πeαk(νσ2/2)T/ν(1+2T/ν)(N∆)1+2T/ν

.

By Theorem 6.2, sampling error is bounded by

e−2πα/∆ f (−i)
1−e−4πα/∆ +

e2π(α−p)/∆ f (−i(p+1))
(p+1)ekp(1−e4π(α−p)/∆)

(
p

p+1

)p

for any p > α such thatp+1 < a+.

Summing the sampling and truncation bounds gives an overall error bound.

7 How To Minimize Error Bounds?

We propose some strategies for choosingα and the quadrature parametersN and∆ to obtain small error

bounds, given limited computational resources.

Throughout this section, our illustrative problem is to price a vanilla call on a non-dividend-paying

stock whose terminal price isST = exp(X). According to Theorem 5.1, we may price using anyα such that

α +1∈ AX.

Assuming that 0∈ AX and 1∈ AX (mild assumptions sinceEe0·X < ∞ and by no-arbitrageEe1·X < ∞),

we may write

AX = (−q̄, 1+ p̄),

where p̄ and q̄ are positive. One determines ¯p and q̄ from the explicit expression for the characteristic

function; see Appendix A for examples.

Soα may be chosen anywhere in(−q̄−1, p̄). This interval comprises five subintervals, corresponding

to the fiveG1 formulas in Theorem 5.1.

A central question is how to choose from among these fiveG1 formulas. While thepricing algorithm is

invariant across all fiveα regimes, the fundamental nature of theboundsdiffers across theα regimes.

Before addressing this question, let us reject a sixth alternative.

7.1 HowNot To Minimize Error Bounds

Instead of pricing a call as aG1 payoff, one can price it as the difference of twoG3 payoffs. Indeed, the

latter approach has dominated the literature (exceptions include Carr-Madan and Lewis).
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Specifically, most authors have priced the call by decomposing it as long an asset-or-nothing call and

short a binary call. WritingK = exp(k) for the strike,

C(k) = E[M−1
T (ST −K)+] = E[M−1

T STI(ST > K)]−KE[M−1
T I(ST > K)]

= S0E

[
ST/S0

MT
I(ST > K)

]
−KB0E

[
1/B0

MT
I(ST > K)

]
= S0PS(ST > K)−KB0PB(ST > K).

They calculate both pseudo-probabilities via Gil-Pelaez inversions of thePS-characteristic function and the

PB-characteristic function ofXT .

In other words,

CG1(k) = Cb0=b1=1
G3

(k)−ekCb0=1,b1=0
G3

(k),

and eachCG3 is evaluated according to theα = 0 formula proved in Theorem 5.1 and again in Theorem 6.6

(the popular proof corresponds to our second proof). ThisG3 approach to call-pricing has some merits, but

from a computational point of view, it has significant disadvantages.

The generalized Carr-Madan approach of directly pricingG1 has the computational advantage that we

need invert onlyoneFourier transform, instead oftwodistinct characteristic functions.

Moreover, our directG1 error bounds have several advantages over combining twoG3 error bounds.

The first is in truncation error control: ˆcα,G1, unlike ĉα,G3, decays likef divided by thesquareof u, instead

of u. The second is in sampling error control: the strategy of using exponential functions to dominate

payoff functions produces tighter bounds when the payoff is a call than when the payoff is a binary. Third,

note that summing twoG3 error bounds does not take advantage of possible error cancellation between the

two components; in contrast, with onlyoneintegral to bound, the directG1 approach is not subject to this

inefficiency.

7.2 Choice of Quadrature Parameters, Given anα Regime

Deferring once again the discussion of how to choose from among the fiveα regimes, we address here the

question of how to choose quadrature parametersα, ∆, andN, givenanα regime.

In two of the five regimes, theα interval consists of a single point, so the only question is how to choose

N and∆. For illustrative purposes, suppose we seek quadrature parameters in theα > 0 regime, so all three

quadrature parameters are in question.

The computational burden of the numeric Fourier inversion is determined by the grid point countN.

First suppose thatN is fixed and the goal is to findα and∆ that minimize the total error bound for a given
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contractk.

Theorem 6.1 gives truncation error bounds; to be concrete, let us suppose the discounted characteristic

function has power decay, as defined there, foru> 0. Theorem 6.2 gives a sampling error bound. Combining

the two, we have the optimization problem

min
(α,∆,p): ∆>0,

0<α<p<p̄

[
Φα,G1(N∆)
πeαkγ(N∆)γ

+
e−2πα/∆ f (−i)
1−e−4πα/∆ +

e2π(α−p)/∆ f (−i(p+1))
(p+1)ekp(1−e4π(α−p)/∆)

(
p

p+1

)p]
. (7.1)

The choice of(α,∆, p) can be automated by commonly available simplex optimization algorithms.

To modify (7.1) for models where the desired decay in ˆc(u) is guaranteed only foru > u0 > 0 (see

Theorem 6.1), various options exist. The simplest is to change the∆ constraint to∆ > u0/N, but a more

flexible solution is to allow also∆ 6 u0/N, but use the Remark 6.2 bound instead.

Instead of minimizing error bounds for a given computational budgetN, an alternative goal would be

to specify a desired error toleranceη , and to find the smallestN for which we can guarantee total error

bounded byη . One strategy here is to choose as trial values forN successively increasing powers of 2. For

each trialN, optimize, over(α,∆, p), the total error bound in (7.1). Terminate theN loop when the error

bound is smaller than the targetη . Pricing can then proceed using the optimalα, ∆, andN.

7.3 Choice of Regime forα

The remaining question is how to choose from among the five regimes.

With unlimited resources, the answer is simple: compute error bounds in all fiveα regimes, and choose

the one with the smallest error bound. Indeed, even with limited resources, this may prove to be a workable

solution.

However, when the potential benefits of testing all five regimes do not justify the computing or program-

ming effort, it is useful to have rules of thumb regarding which of the five formulas to implement. In any

event, these rules also embody a comparative summary of our various bounds for pricingG1 payoffs.

First consider sampling error. In each of the five regimes, our sampling error bound has∆→ 0 decay of

order exp(−2πρ/∆), where the “decay rate”ρ is apparent from the relevant Theorem.

Since a greater decay rate yields a better sampling error bound for∆ sufficiently small, Table 1 suggests

the following sampling error guideline. The “call” regime and “put” regime are intervals with widths ¯p

andq̄ respectively; chooseα from inside thewider of these two intervals – unless both widths ¯p andq̄ are

smaller than 2. In that case, chooseα =−1 orα = 0, according to whether ¯q or p̄ is the larger – unless both

p̄ andq̄ are smaller than 1/2. In that case chooseα ∈ (−1,0).
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Table 1: Decay rates of sampling error bounds

α range Value of integral Decay rateρ of bound Reference

1
π

∫ ∞−α i
0−α i Re[ĈG1(k)e

−izk]dz on sampling error

(−q̄−1,−1) put min(−α −1,1+q+α) 6 q̄/2 Thm 6.5

−1 half-cash-secured put min(q,1) 6 min(q̄,1) Thm 6.6

(−1,0) cash-secured put = covered call min(α +1,−α) 6 1/2 Thm 6.5

0 half-covered call min(p,1) 6 min(p̄,1) Thm 6.6

(0, p̄) call min(α, p−α) 6 p̄/2 Thm 6.2

In other words, a high ¯p= sup{p : Eexp((p+1)X) < ∞} indicates anX distribution with thin right-hand

tail. Similarly, a high ¯q indicates anX distribution with thin left-hand tail. To control sampling error, the

guideline is to price the call if the right-hand tail is thinner in the sense that ¯p > q̄, but otherwise price the

corresponding put. However, if both tails are sufficiently thick, then instead price either a covered call or

one of the “hybrid” payoffs induced byα =−1 or 0.

Now consider truncation error. To develop intuition, we treat only the trivial case whereX has zero

variance; it should be understood that the resulting rule of thumb will lose accuracy forX with high variance.

Writing F0 = S0/B0 for theT-forward price, we have

|ĉα,G1(u)|6 | f (u− (α +1)i)|
u2 =

|B0Eei(u−(α+1)i)X|
u2 =

B0Fα+1
0

u2 =
S0Fα

0

u2 .

So Theorem 6.1 gives the truncation error bound

S0(F0/K)α

πN∆
, (7.2)

which is increasing inα if K < F0, but decreasing inα if K > F0. The rule of thumb, therefore, is that

to minimize truncation error at low strikes, price the put; at high strikes, price the call. Specifically, in this

zero-variance case, the rule for a given strike is to price whichever contract (put or call) is out-of-the-money-

forward at that strike.

By combining these sampling error and truncation error heuristics, we will generate overall recommen-

dations.
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7.4 Recommendations

In this subsection, assume that we are to price options on equities, whose (risk-adjusted) return distributions

typically exhibit significant negative skew, consistent with ¯p > q̄.

For the common task of pricing a set of contracts with strikes nearly at-the-money-forward, the sampling-

error heuristics (Table 1) tend to outweigh the truncation-error heuristics (7.2), which are in this case rela-

tively insensitive toα. Therefore we recommend that the default procedure be to takeα > 0 andprice the

call.

The primary exception to this rule occurs at strikes away from the money, where truncation error tends

to become moreα-sensitive. At large strikes, the effect of (7.2) still favors theα > 0 strategy of pricing

the call. However, forsmall strikes, it favors the opposite strategy; indeed for strikes sufficiently small, this

effect can swamp the sampling error effect, resulting in the opposite recommendation: takeα < −1 and

price the put.

A second exception arises when theX distribution’s tails are thick, in the sense that ¯p < 2 (implying

that stock prices have infinite third moment). In this case the default procedure should be to price the half-

covered call, by takingα = 0, which outperformsα = −1 on sampling error bounds. However, if theX

distribution’s tails arevery thick, in the sense that ¯p < 1/2, then the default procedure should be to price

price the covered call, by takingα = −1/2, which uniquely in(−1,0) attains the sampling bound decay

rate of 1/2.

A third exception could arise when one wishes to avoid optimizingα, possibly because of the com-

puting, programming, or mathematical effort involved (where “mathematical” effort refers to the analytic

determination of ¯p and q̄, given an unfamiliar characteristic function). Suppose one needs only a simple

choice forα, that still guarantees the error bounds will go to zero for largeN. SinceAX contains the interval

[0,1], the three choicesα ∈ {0,−1/2,−1} are all acceptable.

Some caveats apply to the “simple” choicesα ∈ {0,−1/2,−1}. If one declines to optimize overα > 0

or α < −1, then one relinquishes the possibility of obtaining better error bounds – possiblymuchbetter,

especially forN small and ¯p large. Moreover, we put “simple” in quotation marks, because suchα still

require choices for∆ andN; and making those choices in an efficient way still requires optimization in

some sense. Note that these caveats apply also to the traditional approach of computing a difference of two

integrals, which has furthermore the error-management disadvantages of Section 7.1.
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7.5 Numerical Examples and Discussion

For numerical examples we take the Variance Gamma model in Table 2 and the Heston model in Table 3.

The parameters come from empirical studies of S&P 500 futures options: VG parameters from Madan-Carr-

Chang (1998) which uses data from 1992–1994, and Heston parameters from Bates (2000) which uses data

from 1988–1993.

For each model we generate two sub-tables: one for options atT = 1 month, and one for options at

T = 4 months to expiry. Each one shows calls with strikes ranging from 80 to 120, on an underlying with

value 100.

For each model and expiry, we choose the number of quadrature pointsN large enough to guarantee

error smaller than one penny (0.01) at all listed strikes. For each strike and each of the fiveα regimes, we

chooseα and∆ to minimize our error bounds. The tables report thea priori error bounds and the realized

errors.

Remark7.1. These tables demonstrate that in certain examples with plausible parameters, we canguarantee

accuracy of within one penny (which is 0.0001 times the underlyingS0 = 100), by sampling at a number of

pointsN not in the thousands, but instead well under one hundred, and indeed in some cases underten.

Remark7.2. For each contract, our recommended quadrature parameters delivered arealizedaccuracy of

within one-tenth of a penny (which is 0.00001 times the underlying).

Remark7.3. The effect of increasing the time to expiryT depends on the model. To maintain the same

accuracy in the VG model the computational burden decreased (fromN = 32 to N = 8), whereas in the

Heston model the burden increased (fromN = 8 toN = 16).

Consider the following two pieces of intuition. One effect of increasingT is that return densities become

smoother, which thins the tails of the characteristic function, hencedecreasingtruncation error; this effect

is more significant inVG than Heston, because the former characteristic function decays polynomially, but

the latter decays exponentially. Another effect of increasingT, however, is that return densities have fatter

tails, which tends to make the characteristic function less smooth, henceincreasingsampling error; this

effect is more significant inHestonthan VG, because the measure of tail-thinness relevant to our bounds

is the number of finite moments. Under VG, the returns follow a Lévy process so the number of moments

is invariant to time horizon, unlike Heston, where volatility is persistent, and hence works to decrease the

number of moments and increase sampling error asT increases. To see this numerically in Tables 2 and 3,

refer toAX, which shows the number of moments to beT-dependent under Heston, but not under VG.

Remark7.4. The optimal choice ofα regime in our examples agrees with the rules of thumb proposed
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in Sections 7.3 and 7.4. Near-the-money and out-of-the-money, the best error bounds arise from choosing

α > 0 and pricing the call. However, for strikes sufficiently deep-in-the-money, the best error bounds arise

from choosingα <−1 and pricing the out-of-the-money put. The other choicesα ∈ [−1,0] underperformed,

as we would anticipate, given the sufficiently thin tails of the return distributions; the thickest (Heston at 4

months) had ¯p = 24.32 and ¯q = 9.97, well above 2.

Remark7.5. The numerics reflect a general viewpoint of this paper, which holds that the freedom to choose

integration path, via theα parameter, plays an essential role in the accuracy, efficiency, and robustness of

the transform approach.
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Table 2: Realized errors anda priori bounds in fiveα regimes, under VG dynamics.

2(a). T = 1 month.N = 32 points.

Strike: 80 90 100 110 120

Call price: 20.0057 10.0877 1.2678 0.0138 0.0004

α Error Bound Error Bound Error Bound Error Bound Error Bound

<−1 0.0000 0.0006 -0.0001 0.0032 -0.0061 0.0128 -0.0008 0.0370 -0.0115 0.0829

=−1 0.1045 0.5271 0.0880 0.5771 0.4670 0.6258 -0.0109 0.6731 0.2862 0.7193

∈ (−1,0) 0.5403 1.8857 0.0419 2.0033 1.4950 2.1127 0.1028 2.2151 0.2985 2.3115

= 0 0.0872 0.5987 0.1248 0.6157 0.4632 0.6312 -0.0271 0.6453 0.2713 0.6584

> 0 -0.0147 0.1056 -0.0019 0.0342 0.0005 0.0058 -0.0000 0.0006 -0.0000 0.0001

Optimalα -14.98 -13.63 21.25 25.56 28.56

2(b). T = 4 months.N = 8 points.

Strike: 80 90 100 110 120

Call price: 20.0565 10.4903 2.8992 0.2310 0.0129

α Error Bound Error Bound Error Bound Error Bound Error Bound

<−1 -0.0000 0.0013 0.0004 0.0057 -0.0001 0.0191 -0.0138 0.0505 -0.0338 0.1109

=−1 4.3683 7.4092 4.3888 7.7501 5.0984 8.0651 4.8697 8.3584 4.9340 8.6331

∈ (−1,0) 21.7868 36.2630 23.1801 38.5159 25.3678 40.6206 25.9590 42.5988 26.4961 44.4674

= 0 4.3509 7.1282 4.3498 7.6780 5.1691 8.2023 5.1130 8.7045 5.1763 9.1873

> 0 -0.0144 0.0923 0.0017 0.0259 -0.0001 0.0055 -0.0003 0.0009 -0.0000 0.0001

Optimalα -12.85 -11.73 17.55 20.66 23.31

Underlying:S0 = 100.

Variance Gamma model parameters:σ = 0.1213,ν = 0.1686,θ =−0.1436.

The interval of permissibleα +1 values isAX = (−20.26, 39.78) at both time horizons.

CPU time for theN-point quadrature evaluations totaled 0.25 sec. for all of 2(a), and 0.08 sec. for all of 2(b).
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Table 3: Realized errors anda priori bounds in fiveα regimes, under Heston dynamics.

3(a). T = 1 month.N = 8 points.

Strike: 80 90 100 110 120

Call price: 20.0043 10.1213 1.8314 0.0150 0.0001

α Error Bound Error Bound Error Bound Error Bound Error Bound

<−1 -0.0000 0.0003 -0.0005 0.0034 -0.0012 0.0225 -0.0066 0.0903 -0.0365 0.2529

=−1 10.1124 15.2531 10.1303 15.7479 10.8452 16.2042 10.5570 16.6283 11.1423 17.0249

∈ (−1,0) 39.6391 66.4649 41.6391 70.5012 44.6160 74.3163 46.0391 77.9426 48.3202 81.4054

= 0 9.0364 13.8209 9.6049 15.0579 10.8497 16.2574 11.1304 17.4243 12.1809 18.5626

> 0 -0.0547 0.2081 -0.0021 0.0383 0.0001 0.0031 -0.0000 0.0001 -0.0000 0.0000

Optimalα -22.20 -19.34 33.12 44.03 52.80

3(b). T = 4 months.N = 16 points.

Strike: 80 90 100 110 120

Call price: 20.3808 11.2277 3.7412 0.5343 0.0770

α Error Bound Error Bound Error Bound Error Bound Error Bound

<−1 -0.0004 0.0078 -0.0009 0.0157 -0.0057 0.0284 -0.0186 0.0473 -0.0170 0.0735

=−1 0.4526 0.9876 0.2692 1.0609 0.6069 1.1306 0.4485 1.1972 0.3552 1.2611

∈ (−1,0) 2.4046 5.6995 2.5307 6.0546 3.5693 6.3855 3.3662 6.6960 2.7545 6.9886

= 0 0.5299 1.0613 0.2947 1.1131 0.5986 1.1610 0.4855 1.2058 0.3176 1.2479

> 0 -0.0017 0.0107 -0.0010 0.0040 -0.0001 0.0015 -0.0001 0.0005 -0.0000 0.0002

Optimalα -6.11 9.84 10.96 11.98 12.91

Underlying:S0 = 100.

Heston model parameters:κ = 1.49,θ = 0.0671,σ = 0.742,ρ =−0.571. State variable:V0 = 0.0262.

Interval of permissibleα +1 values isAX = (−38.41, 89.59) atT = 1, andAX = (−9.97, 25.32) atT = 4 months.

CPU time for theN-point quadrature evaluations totaled 0.16 sec. for all of 3(a), and 0.29 sec. for all of 3(b).

30



A Appendix: Examples of Known Characteristic Functions

A.1 Variance Gamma

Reference: Madan-Carr-Chang (1998). The VG model has parametersσ , θ , ν .

The log priceX = logST has discounted characteristic function

f (ζ ) =
exp(−rT + iζ [logS0 + µT])
(1− iνθζ +νσ2ζ 2/2)T/ν

,

whereµ := r +(1/ν) log(1−θν −σ2ν/2); its domain is the stripΛX induced byAX = (a−,a+), where

a± =− θ

σ2 ±
√

2
νσ2 +

θ 2

σ4 . (A.1)

We have the following bound on the large-u decay off . Foru > 0,

| f (u+wi)|6 φ(w)u−2T/ν , (A.2)

where

φ(w) := exp(−rT −w[logS0 + µT])(νσ
2/2)−T/ν . (A.3)

Hence the VG model’s discounted characteristic function satisfies the power decay condition of Theorem

6.1. So in, for example, the caseG = G1, one can takeΦα,G1(u) = φ(−(α +1)) and 1+ γ = 2+2T/ν .

A.2 Square-Root Stochastic Volatility

Reference: Heston (1993). The model has parametersκ, θ , σ , ρ, and a state variableV0.

The log priceX = logST has discounted characteristic function

f (ζ ) = exp[−rT + iζ (logS0 + rT )+C(ζ )+D(ζ )V0],

where

C(ζ ) :=
κθ

σ2

[
(κ −ρσζ i +d)T−2log

(
1−gedT

1−g

)]
D(ζ ) :=

κ −ρσζ i +d
σ2

(
1−edT

1−gedT

)
g := g(ζ ) :=

κ −ρσζ i +d
κ −ρσζ i−d

d := d(ζ ) :=
√

(ρσζ i−κ)2 +σ2(ζ i +ζ 2).

The square root and the complex logarithm are multi-valued functions. For the square root here, either of

the two values may be chosen, becausef is even ind. For the logarithm, however, choosing the wrong value
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can lead to wildly incorrect answers. To definef (wi) for realw, the correct choice of log(z) is the principal

branch log|z|+ arg(z), where−π < arg(z) < π. However, as pointed out by Schöbel and Zhu (1999), to

define f (ζ ) for generalζ , the correct choice of log isnotnecessarily the principal branch. Instead, the value

of log whenζ = u+wi is determined by the analyticity off , which implies that log must vary continuously

asζ varies from 0+wi to u+wi.

This issue presents a challenge to the traditional approach of taking the Fourier integrals in Heston

and simply passing the integrands into a numerical integration routine from a standard software library.

Enforcing the required continuity of the log is tricky if the integration routine samples the integrand at an

unpredictable sequence of points. On the other hand, for a method, such as ours, that samples the integrand

at an increasing sequence of points with spacing∆, enforcing continuity typically does not present any

difficulty.

The domain off is the stripΛX induced byAX = (a−,a+), wherea− < 0 anda+ > 1 solve

g(−ia)exp(d(−ia)T) = 1.

Specifically, if we assumeκ −ρσ > 0, thena− is the largest (closest to 0) solution in(−∞,y−), anda+ is

the smallest solution in(y+,∞), where

y± :=
σ −2κρ ±

√
σ2−4κρσ +4κ2

2σ(1−ρ2)
.

For ζ = u+wi we bound the large-u decay off , as follows. Define

HR1(u) := u2
σ

2(1−ρ
2)

HR2(w) := w2
σ

2(1−ρ
2)−w(2κρσ −σ

2)−κ
2

HR(u,w) := Re(d2) = HR1(u)−HR2(w)

HI (u,w) := Im(d2) = σu(2wσ(1−ρ
2)+σ −2κρ)

h(u,w) :=
√

HR(u,w),

and define

g∗(u,w) :=
κ

σ
√

u2 +w2
+

|σ −2κρ|+κ2/(σ
√

u2 +w2)
h(u,w)+

√
(u2−w2)σ2(1−ρ2)

g(u,w) := (1−g∗(u,w))
/
(1+g∗(u,w))

J(u,w) :=
(

1+
1

g(u)

)(
1+

1
g(u)exp(Th(u,w))−1

)
.
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Let u0 > |w| satisfy 1> g∗(u0,w) andh(u0,w) > (1/T)max(log(1/g(u0,w)),1) andHR1(u0) > |HR2(w)|.

Then for allu > u0, we have

| f (u+wi)|6 φ(u,w)exp

(
−

√
1−ρ2V0 +κθT

σ
u

)
,

where (suppressing the arguments(u,w) for convenience) we let

φ(u,w) := J2κθ/σ2
exp

[
− rT − (logS0 + rT )w+

V0 +κθT
σ2 (κ +ρσw+

√
max(0,HR2))

]
×exp

[
V0

σ2

J
exp(Th)

(
κ + |ρσu|max(1,

√
HR/HR1)+ |ρσw|+

√
HR+ |HI |

)]
.

Hence the square-root stochastic volatility model’s discounted characteristic function satisfies the expo-

nential decay condition of Theorem 6.1. So in, for example, the caseG = G1, one can takeΦα,G1(u) =

φ(u,−(α +1))/u2.

B Appendix: Sampling Error Bounds for Payoffs G2 and G4

Sections 6.2-6.4 gave sampling error bounds forG = G1 and G = G3, which are the payoff classes of

greatest practical interest. The other casesG = G2 andG = G4 can be treated by similar techniques, albeit

with messier results. Specifically, theG2/G4 version of Theorem 6.2 is as follows.

Theorem B.1. Assume that b1 ∈ AX andαb0 +b1 ∈ AX with α > 0.

In case G= G2 we have

|CG2 −Σ∞
α,G2

|6 inf
p>α: p∈AX
q>0:−q∈AX

[
e−2πα/∆(−i f ′(0)−k)

1−e−4πα/∆ +
4πe−2πα/∆ f (0)
∆(1−e−4πα/∆)2

+
e−2π(q+α)/∆ f (iq)

qe1−qk(1−e−4π(q+α)/∆)
+

e2π(α−p)/∆ f (−ip)
pepk+1(1−e4π(α−p)/∆)

]
.

In case G= G4, assume also that̂c(u) = O(u−1−γ) as u→ ∞, whereγ > 0. Then

|CG4 −Σ∞
α,G4

|6 max
χ=±1

inf
(p0,p2,q0,q2)

[
e−2πα/∆χb2 ·∇ f (−ib1)

1+e−2πα/∆

+
f (−i(−q0b0−q2χb2 +b1))+e−2π(α+q0)/∆ f (−i(−q0b0 +q2χb2 +b1))

q2e−q0k+1(e2π(α+q0)/∆−e−2π(α+q0)/∆)

+
f (−i(p0b0 + p2χb2 +b1))+e2π(α−p0)/∆ f (−i(p0b0− p2χb2 +b1))

p2ep0k+1(e−2π(α−p0)/∆−e2π(α−p0)/∆)

]
,

where theinf is over all positive p0, p2,q0,q2 such that p0 > α and p0b0± p2b2 + b1 ∈ AX and−q0b0∓

q2b2 +b1 ∈ AX.
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Proof. In the proof of Theorem 6.2, replace equations (6.4) and (6.5) with

|CG2(k)−Σ∞(k)|6 B0

∞

∑
j=1
j odd

[
e−2π jα/∆

(
EX−k+2π( j +1)/∆+

Ee−qX

qe1−q(k−2π j/∆)

)
+

e2π j(α−p)/∆EepX

pekp+1

]

and

|CG4(k)−Σ∞(k)|6 B0 max
χ=±1

∞

∑
j=1

[
e−2π jα/∆E((χ(−1) jb2 ·X)eb1·X)+

Ee(−q0b0−χ(−1) j q2b2+b1)·X

q2e−q0k+1e2π j(α+q0)/∆

+
e2π j(α−p0)/∆Ee(p0b0+χ(−1) j p2b2+b1)·X

p2ep0k+1

]
.

The rest of the proof holds.

C Appendix: Application of DFT/FFT

We treat here two issues: a recipe for DFT evaluation of the quadrature scheme, and modifications to the

Section 7.2 optimization problem so that the DFT output has the desired contract spacing.

First, our Davies-style discretization samples ˆc at the midpoints(n+ 1/2)∆ of intervals of length∆,

whereas Carr-Madan’s sampling scheme applies Simpson’s rule to the endpoints of those intervals. For

completeness we describe how to adapt their formulas to midpoint sampling.

Define the discrete Fourier transform (DFT) of anN-vectorx to be the vectorX where

Xm =
N

∑
n=1

e−i(2π/N)(n−1)(m−1)xn, m= 1, . . . ,N.

Other definitions exist; this is the one in Carr-Madan, and in a number of standard software packages,

including Matlab.

Using a spacing ofλ = 2π/(N∆) between consecutive triggers, we want to use DFT to compute prices

ΣN(km) at triggers

km := k1 +λ (m−1), m= 1, . . . ,N

for arbitraryk1. Typically one would choosek1 such that the interval[k1,k1 +(N−1)λ ] contains all of the

contracts to be priced. By (6.1),

ΣN(km) =
∆

πeαkm
Re

[ N

∑
n=1

ĉ((n−1/2)∆)e−i(n−1/2)(k1+λ (m−1))∆
]

=
∆

πeαkm
Re

[
e−i(m−1)λ∆/2

N

∑
n=1

ĉ((n−1/2)∆)e−i(n−1)(m−1)λ∆e−i(n−1/2)k1∆
]

=
∆

πeαkm
Re

[
e−iπ(m−1)/N

N

∑
n=1

e−i(2π/N)(n−1)(m−1)ĉ((n−1/2)∆)e−ik1(n−1/2)∆
]
,
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where the sum is computable as them-th component of the DFT of the vector whosen-th component is

ĉ((n−1/2)∆)exp(−ik1(n−1/2)∆).

The second issue is the reciprocity relationλ∆ = 2π/N. ForN fixed, a decrease in Fourier-domain grid

spacing∆ would cause the contract spacingλ to increase.

If one wishes to impose an upper boundλ̄ on spacing between contracts, then the minimum in (7.1)

should be taken over∆ > 2π/(Nλ̄ ) instead of∆ > 0. Moreover, in certain instances it is desirable to

constrain∆ to be an integer times 2π/(Nλ̄ ), because this forcesλ to divideλ̄ , so that a set of contracts with

trigger spacings of̄λ can be priced in a single DFT, without interpolation.

We deferred this material to an Appendix to emphasize that the analysis in the body of this paper does

not make any assumption onhow the sum in (6.1) is computed (aside from absence of roundoff error). One

can use the DFT; or its efficient implementation the fast Fourier transform (FFT); or, perhaps even more

efficiently (if few enough strikes need to be simultaneously priced), simple direct summation.
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Boyarchenko, S. I. and S. Z. Levendorskiǐ (2002).Non-Gaussian Merton-Black-Scholes Theory. World

Scientific.

Broadie, M., J. Cvitanic, and H. M. Soner (1998). Optimal replication of contingent claims under portfo-

lio constraints.Review of Financial Studies 11(1), 59–79.

35



Carr, P., H. Geman, D. Madan, and M. Yor (2002, April). The fine structure of asset returns: An empirical

investigation.Journal of Business 75(2), 305–332.

Carr, P., H. Geman, D. Madan, and M. Yor (2003). Stochastic volatility for Lévy processes.Mathematical
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