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Abstract

We extend and unify Fourier-analytic methods for pricing a wide class of options on any underlying
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to select efficient quadrature parameters and to price with guaranteed numerical accuracy.
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1 Introduction

In a large and growing family of financial models, explicit formulas exist for the characteristic functions of
the state variables. Given any such characteristic function, our project is to compute, efficiently and accu-
rately, the prices of a wide class of options on those underlying state variables. Fourier-analytic solutions to
various forms of this problem have appeared in the finance literature. They express option prices in terms of
Fourier-inversion integrals, which are in practice evaluated numerically.

This paper extends and unifies those ideas. In a general setting, we bound the error in the numeri-
cal evaluation of these integrals Bspoint sums, of the kind that may be computed as a discrete Fourier
transform (DFT) by schemes including the fast Fourier transform (FFT). Then we show how these bounds
lead to algorithms that make efficient choices of quadrature parameters and compute prices with guaranteed

numerical accuracy.

1.1 Outline

This paper generalizes Carr-Madan (1999); unifies it with extensions of the relevant elements of Duffie-
Pan-Singleton (2000), Lewis (2001), and Bakshi-Madan (2000); and develops error bounds and error mini-
mization strategies. Carr-Madan’s underlying random varixhikethe logarithm of a terminal stock price,

and their objective is to compute the call price, as a function of log-strike. In terms of the characteristic
function of X, they calculate analytically the Fourier transform of the call price function, damped to enforce
integrability. Inverting this Fourier transform by FFT and then undamping, they recover simultaneously the
call prices at many strikes.

We begin by setting forth the option pricing problem and defining the options to be priced. Our scope
includes not only vanilla calls on variables exponential in a single state variable, but also three other classes
of payoffs. These extended payoff classes contain all of the derivative structures treated in Duffie-Pan-
Singleton (2000), and in particular they allow payoffs dependent on multidimensional state variables.

Next, we derive upper bounds on option prices, intended for use at extreme strikes. These bounds will
become relevant to discretization errors in transform-pricing of optioah atrikes.

In Section 4 we extend, to all four payoff classes, Carr-Madan’s analytic calculation of Fourier trans-
forms, as well as their inversion formula recovering the option price. Also, by taking as given the Bakshi-
Madan (2000fiscountedcharacteristic function, we extend Carr-Madan to allow stochastic interest rates.

As Lewis (2001) observes, transform representations of option prices may be interpreted as contour

integrals in the complex plane; shifts of the contours generate alternative pricing formulas. Applying this



idea, we prove a unified pricing formula encompassing not just our original four but also ten complementary
formulas, including as special cases some well-known transform formulas.

These formulas involve integrals over (a translate of) the real line, so approximation\bpaint sum
is subject to two forms of error: sampling error because the integrand is evaluated numerically only at the
grid points, and truncation error because the upper limit of numeric summation is finite. We then establish
bounds for both kinds of error, in all four payoff classes.

Section 7 addresses strategic issues in error bound minimization. From an error-management perspec-
tive, we apply our bounds analysis to argue in favor of the Carr-Madan one-integral approach to call pricing,
and against the traditional two-integral approach. Then we make recommendations for choosing among our
five one-integral call formulas. For choosing quadrature parameters, we offer a simple algorithm as a robust
alternative to the specific constant parameters suggested in Carr-Madan.

The first appendix facilitates truncation error calculations by providing bounds on the decay of charac-
teristic functions in two prominent models. The second appendix gives sampling error bounds, for subcases

deferred from the main text. The third appendix deals with specific DFT/FFT implementation issues.

1.2 Guiding Principles

Wherever possible, we observe the following principles.

First, we take as primitive the discounted characteristic function. From there, our analysis proceeds to
the computation of option prices. We do not derive any characteristic functions; other papers have already
taken the responsibility of finding characteristic functions given, for example, SDE or generating triplet
specifications of the underlying financial dynamics; and indeed others take the characteristic fasction
the specification of the underlying dynamics. Duplication of research effort will be reduced, one hopes,
by the emerging division of labor between, on one hand, those projects that specify or derive characteristic
functions; and, on the other hand, projects such as this one, which derive option pricing forguéas,
arbitrary characteristic functions.

Second, we strive to maintain generality. We do not assume that the underlying state variable is, say,
a jump-diffusion or levy process. We do not assume that its probability distribution has a density. Time
and the state space may be continuous or discrete. The state variables may be one-dimensional or multi-
dimensional. Interest rates and dividends may be deterministic or stochastic. As long as the discounted
characteristic function for such dynamics is known, option prices are computable. Technical restrictions do
apply, which brings us to the next point.

Third, we formulate our technical conditions with the view that they should facilitate the design of



provably robust pricing algorithms. So we place a premium on expressing assumptions in a complete,

concise, rigorous, and readily testable way.

2 The Option Pricing Problem

Working in a filtered probability spad€, P*,{.%:}), we intend to calculate numerically the time-0 pri@&e
of an option paying at tim& the.%t-measurable random varialilg .

Letr; be the interest rate process, possibly stochastic.

Let M; := exp( [ r<ds) be the timetvalue of a money market account.

Let B; be the timet value of a discount bond maturing bt

2.1 Numeraires and Martingale Measures

Assuming that the prices (&, M, B, and any other assets under consideration) admit no arbitrage, there
must exist a risk-neutral probability meast#render which asset prices, discounted\dbyare martingales.

See Harrison and Kreps (1979) or Delbaen and Schachermayer (1994) for technical definitions of “admit no
arbitrage” that make this statement true. Eedlenote expectation with respectRo Then the option price

and bond price satisfy

Co = E[M7'Cr]

Bo = E[M71].

The positive price procedd is an example of aumeraire ForanynumeraireN there exists a probability
measuredy, said to be risk neutral with respectih meaning that th&k-discounted price of any asset is a

Py-martingale; see El Karoui, Geman, and Rochet (1995). The change of measuretivdka is given by

AR _ No/No
dP |~ Mr/Mo

When the numeraire is chosen to be the pBe®f a T-maturity discount bond, the risk-neutral measure
Ps is known as thd -forward measure. Let us writé for expectation with respect #&. The option price
satisfies, therefore,

Co = BoECy.

In the case of deterministic interest rates, the forward measure is identical to the usual risk-neutral measure.
In our setting, however, interest rates may be stochastic, and the measures are not necessarily identical; the

forward measure has the advantage of discounting outside the expectation.
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2.2 Options

Let thestate variable Xbe an.%#t-measurable random variable with valuesiifi For apayoff function

G:R"x R — R, define
Ca(k) 1= BoE(G(X,K)),
which is the time-Oprice of an option onX, paying G(X,k) at timeT. Thetrigger k is some contract

variable, such as a strike, or the logarithm of a strike.

Our goal is accurate numerical computatiorCgf k) for these cases @:

G1(x,K) := (exp(x) —exp(k)) " bp:=1,b;:=1xeR
Go(x,K) := (x—Kk)* bo:=1b;:=0,xeR
G3(x, k) := exp(by - X)I(bg - x > k) xeR"
Ga(x,k) := (b2 -x)exp(by - x)I(bg - x > k) xeR"

wherel is the indicator function, sé(bp - x > k) equals 1 ifbg - X > Kk, but 0 otherwise. In payoff&z and
Ga, thebg,bs1,b, € R" are arbitrary constants. When it is clear what payoff(s) is/are under discussion, we
may suppress the subscript@for C.

We choose these four functional forms because they include a wide family of payoffs of practical interest.
For example, with payofB;, if one chooseX to be bond yield, or the logarithm of a stock price or FX rate,
then one obtains a call on a stock, bond, or currency. With p&gfif one chooseX to be an interest rate,
or a time-averaged interest rate, then one obtains respectively a European or an Asian option on an interest
rate.

Our G3 and G4 are the payoff classes treated in Duffie-Pan-Singleton (2000). With p&goff one
choosedy andb; appropriately, then one can obtain asset-or-nothing, binary, equity-linked FX, and two-
asset exchange/maximum options, all on the exponentials of componefitsvbfch could be stock price
logarithms or bond yields or FX-rate logarithms. With payGff, if one choosed; = 0 andby and b,
appropriately, then one can obtain basket or spread options on the compon¢nighich could be interest

rates or their time-averages, for example.

3 Upper Bounds on Option Prices at Extreme Strikes

For practical use in bounding numerical transform-inversion errors, it is importar@¢hase dominated by

an expression that is easily evaluated in terms of the characteristic functian of



For eachG=Gy,...,G4, we give two bounds; both bounds are valid foralbut the first is intended for
use with large positivi, whereas the second is intended for use with large nedatiliee usual conventions
abouteo are in force, so each of Theorems 3.1-3.4 holds automatically if the expectation on the right-hand
side is infinite.

The first of these four results is nearly identical to a bound obtained in Broadie-Cvitanic-Soner (1998).

The differences, though minor, make it appropriate to present briefly a full proof.

Theorem 3.1. For any p> 0,

BoEexp((erl)X)( p
(p+1)exp(pk) \ p+1

Proof. For alls> 0 we have

Ce, (K) <

P
) and G, (k) < BoEexp(X).

P+l b \P
&< P D explpl <p+1>

because the left-hand and right-hand sides, as functiorss lnéive equal values and first derivatives at
s= (p+1)exp(k)/p, but the right-hand side has everywhere a positive second derivative. Moreover, since
the right-hand side is positive, the left-hand side can be improvésH@xp(k)) ™.

Now substitutes = exp(X), take expectations, and multiply B¢ to obtain the first bound. The second

bound is obvious. O

Remark3.1 Therefore, ifSr is a nhonnegative random variable w]ﬂ]fis‘r’+1 < oo for somep > 0, then calls
on St must have prices that decay@&K ~P) for strikesk — co.
A corresponding fact for puts follows from Theorem 6.4EB, 9 <  for someq > 0, then puts on on
Sr must have prices that decay@g 1) for strikesK — 0.
Lee (2003) uses these bounds to derive an explicit “moment formula” for the growth of implied volatility

at extreme strikes.

Theorem 3.2. For any p> 0,

BoE exp( pX)
L ——" 7
Cealk) S Dexpl(pk 1)
For any g> 0,
BoE exp(—gX)
< — ——-n T
Cg, (k) < Bo(EX — k) + dexpil—qk
Proof. For allx € R we have
exp( px)

= pexp(pk+1)



because the left-hand and right-hand sides, as functions lodve equal values and first derivatives at
x = k-+1/p, but the right-hand side has everywhere a positive second derivative. Substite, take
expectations, and multiply gy to obtain the first bound.

A similar argument shows that for &

exp(—0gx)
— — - <
(Xx=K " =x—k+(k=x)" <x—k+ Xp1—ql)’

which implies the second bound. O]

Theorem 3.3. For any p> 0,

BoE exp((pho + by) - X)

Co,(K) < and Go, (K) < BoEexp(by - X).

exp(pk)
Proof. For allx € R" we have
exp(pho - X)
. g A rF" 77
]I(bo X> k) < exp(pk) R
which implies the first bound. The second bound is obvious. O

Theorem 3.4.Forany p > 0and p > 0,

BoE exp((pobo + p2bz + b1) - X)

k) <
Call < P2 exp(Pok + 1)

Forany ¢y >0and g > 0,

BoE exp((—0obo — g2bz + b1) - X)
g2 exp(—dok + 1) '

Co, (K) < BoE((b2- X) exp(by - X)) +

Proof. For allx € R" we have

exp( pz2bz - X) exp( pobo - X)
p2e exp( pok)

(b2 -x)I(bg-x > k) <

and
exp(—azbz - X) exp(—qobp - X)
e exp(—0ok)
implying the two bounds. O

(bz-X)H(bo-X> k) = (bz-X)(l—H(bo-Xg k)) <by-x+

Remark3.2 To bound|Cg,|, apply Theorem 3.4 t@bg, b1, by) and(bg, b1, —bz), and take théarger of the
two bounds. To boun@g,|, take thesumof those two bounds, becau® - X| is the sum of(b, - X)* and
(—bz-X)™.



4 From Characteristic Functions to Option Prices

Our starting point is the discounted characteristic funcfiafithe state variabl¥. Unlike the usual charac-
teristic functions of probability theory, the definition dfincludes a discount factor inside the expectation,
which is essential for pricing under stochastic interest rates.

We produce formulas for prices of each of the four option classes, by expressing option price transforms

in terms off, and then inverting the transforms.

4.1 The Discounted Characteristic Function
Let X be anR"-valued random variable. L&ty denote the interior of the set
{VER":Ee"* < oo} .
The complex vectors whose negated imaginary parts akg fiorm a “strip” or “tube”
Nx :={CeC":—-Im({) € Ax}.

Adopting the terminology suggested in Bakshi-Madan (2000), defindisiceunted characteristic function

of X, with respect to a discount factor e(xpfoT r.dt), to be the functiorf : Ax — C where
£(¢) = E(eJo natgdX),
Note that the expectation is with respecPdout f is also related to the forward measig because
£(£)/f(0) = Ee*X,
which is (for { restricted tdR") the usual characteristic function Xfwith respect tdRs.

Theorem 4.1. The discounted characteristic function f is well-defined and analy#iginwhich is a convex

set. Partial derivatives of f may be taken through the expectation.
Proof. This follows from Zemanian (1966), Theorems 4 and 5. O

In certain models, one can derive the discounted characteristic function from an SDE specification of
state variable dynamics. For example, affine jump-diffusion specifications give rise to tractable characteristic
functions, as shown in Heston (1993), Bates (1996, 2000), Bakshi-Cao-Chen (1997), Bakshi-Madan (2000),
Duffie-Pan-Singleton (2000), and Chacko-Das (2002). Outside of that family, Lewis (200@)e3&thu

(1999), and Zhu (2000) obtain characteristic functions also for non-affine volatility and interest rate models.
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In other models, the state variables follow\y processes, and one can derive the characteristic func-
tion from a specification of the generating triplet, or directly take the characteristic function to define the
dynamics. Examples include the Finite Moment Log Stable model in Carr-Wu (2003), the Normal In-
verse Gaussian model in Barndorff-Nielsen (1998), the Generalized Hyperbolic model in Eberlein-Prause
(2002), the Variance Gamma model in Madan-Carr-Chang (1998), and the CGMY and KoBoL models in
Carr-Geman-Madan-Yor (2002) and Boyarchenko-LevendB@QDZ). Extensions of &vy process mod-
els which introduce stochastic time changes also have, in certain cases, explicit solutions for characteristic
functions; see Barndorff-Nielsen/Nicolato/Shephard (2002), Carr-Wu (2002), and Carr-Geman-Madan-Yor
(2003).

Appendix A gives details of the characteristic functions in two models — one in the affine class, and one
in the Lévy class.

Note that if discounted characteristic functions are available not just for state variables but also for path
functionals of the state variables, then our pricing and error control results will apply not just to European
options, but also to path-dependent options. For example, in affine models, the availability of characteristic
functions for time-averages enables us to price Asian options (on the state variables, not on their expo-
nentials). Such availability is, however, the exception rather than the rule. Transform-based pricing of
exotic options is feasible evemithouta readily computable characteristic function for the path-dependent
guantity, provided that the dynamics are simple enough (under geometric Brownian motion, for example,
see Fu-Madan-Wang (1999) or Carr-Sidher (2003) for Asian options, and Geman-Yor (1996) or Pelsser
(2000) for barrier options); but this falls outside the scope of our pricing and error control results, which

assume the availability of the characteristic function.

4.2 Fourier Transform of the Damped Option Price

The usual Fourier transform 6% itself does not exist, becau€g (k) does not decay ds— —oo.
Following Carr-Madan, then, for eactamping constantx > 0, we define thelampedoption price
functioncy g : R — R by
Ca.c(K) := exp(ak)Cg (k).
We will show that the damped option pricg ¢ doeshave a Fourier transformy, g : R — C, well-defined
by
aclt)i= [ e c(kjdk

—00

provided thatx is chosen appropriately.



Theorem 4.2. Assume that G satisfies B Ax. Then there existe > 0 with abg+ b1 € Ax. For any such

o the Fourier transfornt, ¢ of ¢, g exists and

~ _ f(u— (o +1)i) R  f(u—ai)
Cac(W) = o2+ a—uw+i(2a+1)u Ca.G,(U) = W
Gy (U) = LU0 —a(j‘_?3+ ba)i) o) — 22 Df(u(l;OH lgaboerl)i).

Proof. There existsp > o such thatplpy +b; € Ax. So Theorem 3.1, 3.2, 3.3, or 3.4 implies tlagk)
decays exponentially fgk| — . Also c(k) is bounded. Therefore(k) is L and has a Fourier transform;

moreover, the use of Fubini in the following computatiorcdé justified:
Cas(U / &%c, o (K)dk = / &'k BEG(X, K)dk = f (O)F / G(X, K)el@Hukgk

Evaluating the integral,

f (O)Ee((x+l+iu)x f (O)Ee(“““)x

€ (1) = a?+a—uw+i(2a+1)u (1) = (a+iu)?
A _ f(O)E(ePrXeleHiwboX) . _ F(O)E((by- X)ehXel@tiuboX)
CasGS(u) - o+iu COC,G4(U) = atiu .
The result follows becausgy — (aby + by )i € Ax. O

4.3 Fourier Inversion
Option prices may be recovered via Fourier inversion.

Theorem 4.3. Suppose G and satisfy the hypotheses of Theorem 4.2.
In cases G= G1, Gy, the option price is given by

efock
2n

efock

/°° &1Uke, o(u)du— /0 Re[e k¢, 6 (u)]du (4.1)

T

Colk) =

In cases G= Gz, G4, define the average of left and right limiEgk) := [C(k+ 0) — C(k— 0)]/2. Then

_ efock

Co(K) =

|ukA

u:

/ORe[ kg a(u)]du, (4.2)

27r R— o0 T

which can be strengthened (4.1)if ¢ is L .
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Proof. In all cases, the damped option pricitk) is L?, as argued in Theorem 4.2.

In casesG = G; and G = Gy, the damped price(k) is continuous, by the dominated convergence
theorem; and the transformlig, becauséé(u)| < |f(— (o +by)i)|/(u? + a?). Therefore the usual Fourier
inversion recovers; see, for example, Champeney (1987) Theorem 8.2. Undamping with a faco#of
yields (4.1).

In casess = Gz andG = G4, the damped price(k) is locally of bounded variation, becauSéK) is the
difference of two monotonic functions, efgk) is monotonic, and bot(k) and exgok) are bounded on

any finite interval. By, say, Champeney (1987) Theorem 8.12, we have (4.2). O

5 The Pricing Formula for General o

Transform representations of option prices can be viewed as contour integrals in the complex plane. Shifting
the contour across a pole of the integrand changes the value of the integral, a technique which Lewis (2001)
exploits, as will we.

Lewis differs from our approach in that he derives formulas for the transforms of option prices with
respect to thespotvariable Xo; whereas we, like Carr-Madan and Duffie-Pan-Singleton, transform with
respect to thérigger variablek. His assumptions require that the option be written on the exponential of a
variableXr where the distribution okt — Xg is not permitted to depend ofy. Our formulas are not subject
to this restriction and apply to a wider class of underlying state variabléacluding those exhibiting
mean-reversion.

One can modify the formulas of Lewis for non-independent-increments. However, the resulting formulas
in that case do not allow the direct application of FFT to calibrate parameters to the prices of options at
multiple strikes. For that purpose one needs transform-in-strike formulas, which we now derive.

Specifically, lef” :=T'x g :={z€ C: —Im(z)bp+ b1 € Ax}, and definéfg :Fxc— Chy

e et =7

‘69@1(2) = 2

Fboz—bai) Go(z) = —22 D1 P02 b)) 5.1

%e(2) = iz z

Theorem 4.2 proves that fpositivea with obp + by € Ax, we have
Ca,6(U) = Co(u—ai),
and hence, for € I such that-Im(z) > 0,

Gu(2) = [ Z d7Co () dk (5.2)
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Thus, in this region%%(z) is thecomplexourier transform of the unmodified option pri€e (k). Equiv-
alently (modulo rotation by a factor @, ‘ée(z) is the bilateral Laplace transform 6§(k). Rewriting the
conclusion of Theorem 4.3 shows tl&t may be inverted by integrating along the contoufzim= —o in

the complex plane:

co—qai . co—qai R .
Co(k) = Zi / Go(e Mz =+ / T ReCs(2eMdz (G=Gy,Gy)
e, e (5.3)
2— lim / bo(2)e dz= / Re%s(2e ¥dz (G =G3,Gs),
T R—o R—ou 0—ai

again assumingositivea with abg+ by € Ax.

For negativec, the transfornc, g does not exist (foG = Gg,...,Gy); likewise, the integral in (5.2)
does not exist for-Im(z) < 0. Nonetheless, the definitions (5.1) do make sense, and the integrals in (5.3)
do exist forae < 0, but they do not recovéls, because the integration path has shifted across the pole
instead they recov@_G less the contribution of the residueﬁg atz=0. In each cas6 = Gy, ... G4, this
generates one additional pricing formula. In c&se Gy, it generates a second additional formula, because
%6, has a second pole at=1.

Forzeroa (and fora = —1 in caseG = Gy), the final integrals in (5.3) are again well-defined, but now
the integration contour passésougha pole, and the contribution from the residue is cut in half. (The only
exception is in the casé = G, which has a double pole at= 0; this case calls for introducing into the
integrand a term that tames the singularity, without affecting the value of the integral.) This generates two
additional pricing formulas for payoft;, and one additional formula for the other payoffs.

Theorem 5.1 makes this discussion precise. Note that by takiag) in case<ss = Gz andG = Gg,
we recover both of Duffie-Pan-Singleton’s (2000, Prop 2 and Eqgn 3.8) pricing formulas. T@king in
caseG = G; recovers Carr-Madan’s damped-call pricing formula. Taking: O in two instances of case
G = Gz recovers the traditional two-integral call-pricing formulas, which we discuss further in Section 7.1.

Our central pricing result is as follows.

Theorem 5.1. Assume that pc Ax. Leta be any real number such thetyy + b; € Ax. Then in all cases
except(G = Gy, a =0),
co—qot
Co(k) = Rac+ = / Re[%(2)e *7|dz (5.4)

12



where

(

f(—i)—€f(0) a< -1
f(—i)—€f(0)/2 a=-1 —if’(0)—kf(0) a<O
Roc, == f(—i) -l1<a<0 Rac, =4 (=if’(0)—kf(0))/2 a=0
f(—i)/2 o=0 0 o>0
{ 0 o>0
f(—bii) a<O —iby-Of(—b1i) a<O
Recs =4 f(—mi)/2 a=0 Rac, = ¢ —iby-Of(—bi)/2 a=0
0 o>0 0 o>0

and%% is given in(5.1). In cases G= G; and G= Gy, the5G can be replaced by &
We will prove simultaneously Theorem 5.1 and the follow{@= G,; a = 0) theorem.

Theorem 5.2. Assume thatbe Ax. Then we have th@s = Gy; a = 0) formula
1 [Pogs ikzp , L
Carlk) = Rog+ 7 | Relde,(de ™+ 5dz (5.5)

Proofs. For e > 0, see Theorem 4.3.

For o < 0 (except foroe = —1 in caseG = G1): Note that eacles is analytic in the strig x g, except
for a pole atz= 0 (and alsaz =i in caseG = G1). The residue theorem applies to any rectangular path
with horizontal segments on Iy = —a; and Im(z) = —o, and vertical segments on Rg= +R. Since
the integrals over the vertical segments approachR as, it follows that shifting a horizontal contour
across the pole changes the value of the integraltiyithes the residue at that pole. Residue calculation is
straightforward.

Fora = 0 (includinga = —1 in caseG = G;): Our proof will be fora = 0; a similar argument proves
the G = G1; a = —1) formula. Define the functionSs,(2) := Sg,(2) := Sg,(2) = 0 andS;, (2) := 1/7.
Onlx N —Ix,c the function

h(z) :=Ss(2)+3 o€ ™+ Ga(—2) e

(modulo a removable singularity in cagg) is analytic. Choose > 0 such thab; + ebg € Ax. Applying

13



Cauchy’s Theorem to the appropriate rectangle, and then using the redeya@tresults, we have

R—éi R—ei
EFIe@oo/ h(z Eé@w/R ; h(z)dz= —nFI{an00 e h(z) — Ss(2)dz
R—¢i ,\ R+¢i ,\

= Lm [ / 2)e Pzt / —'Z"dz}
47 R—w | J_R¢i R+ei
1[ < = = R

~ 3 |Gallo-+ et - R_E,Gﬂ = Colk)— 28,

as claimed.
Theorem 5.1's final assertion is by continuity@f, andCg,. O

A single piece of numerical integration code (coupled with the appropRate adjustment) can eval-
uate, for example, all five formulas for payd#;; the only difference is the value @f passed into the
procedure. Thus, without writing additional code, one gains the flexibility to choose, say, a negative or zero
« if the integrand should happen to behave better there than it does along pasifivee extent to which
an integrand is “well-behaved” can be quantified by the error bounds that arise from that particular choice
of a. This is the subject of the next section.

Also in the next section we give alternative proofs for many of the formulas in Theorem 5.1. The
contour-shift proof, given above, has the purpose of unifying the various Fourier pricing formulas; but for
the purpose of deriving error bounds, it will be useful to reinterpret the results. For example,<o0r

bounds will exploit the equivalence between contour shiftsgardy relations such as put/call.

6 Bounds for Sampling and Truncation Errors

The Fourier inversion (5.4) can be approximated discretely vid-point sum with a grid spacing & in
the Fourier domain. This quadrature introduces two forms of error (aside from roundoff error): truncation
error because the upper limit of the numeric integration is finite, and sampling error because the integrand
is evaluated numerically only at the grid points. Our bounds will account for both sources of error.

The total error is defined as the absolute difference between the true value

e—ock

Co(K) = R+ /O Re[e ¢, o(u)]du

and the discrete approximation given by tigooint sum

Ni Cac((N+1/2)8)e (12K | (6.1)

n=

SN(K) =33 8(K) :==Ruc+ e“kﬁRe[
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The total error is bounded by the sum of #@mpling errorand thetruncation error
C—3N<|IC—2%|+ |z - 2N,

where>® is defined agN is, except with an infinite upper limit of summation.

Truncation errors can be bounded by a formula that applies regardless of the aign of

Sampling errors, however, will require treatment that depends on the sign@iir strategy is based on
Davies (1973), but he restricts attention to the inversion of characteristic functions to recover probabilities,

which is not always appropriate for us; we extend his approach to the inversion of option price transforms.

6.1 Truncation Error

Carr-Madan and Pan each suggest bounds on the tails of certain Fourier inversion integrals, but our specific

need is to bound the tails of the infiniescretesums that approximate our Fourier integrals.

Theorem 6.1. Assume the hypotheses of Theorem 5.1.
If f is such thatt, ¢ decays as a powet, g(u)| < ®(u)/u*? for all u > up, wherey = 5,6 > 0 and

®(u) = P, g(u) is decreasing in u, then the truncation error

o ®(NA)
=7 (k) — =N (k)| < 76y (NAY

(6.2)
provided that M > up.
If f is such thatt, g decays exponentiallg, c(u)| < ®(u)e~ ™ for all u > up, wherey > 0and®(u) is

decreasing in u, then the truncation error

AD((N+1/2)Ah)
00 _ N < )
provided that M > up.
Proof. In any case,
A (o]
(k) —=NK)| < €= § |&((n+1/2)D)].
Z7(k) — 27 (K)| nﬂ;\(( /2)B)]
In the power decay case,
A > ®(nA) ®(NA) (@ dx  P(NAY)
< < =
An;‘c((n—F 1/2)n)| \An; i8S ar /N X1~ YN
where the middle step uses the convexity of2
In the exponential decay case,
> A > D((N+1/2)h)
y(n+1/2)A
3 [+ /28] < S(N+1/2)8) 5 e < G108 -GN
as claimed. O
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Remark6.1 As observed by Carr and Madan in c&e- G1, and as one can verify also in caSe= G,

the power decay hypothesidwaysholds; specifically, ley = 1 and® = |f(— (o + by)i)|. However, the
resulting bound is typically poor. For practical purposes it is desirable to improve the paower establish
exponential decay, by factoring in the contribution from the laugkecay of| f (u— (a + by )i)|. The nature

of this decay presents itself in the explicit expressionffoexamples appear in Appendix A.

Remark6.2 The requirement thallA > uy can be dropped, by modifying the right-hand sides of (6.2)
and (6.3) as follows: first replace eabl by up (thus bounding the > up/A terms of truncation error).

Then add a second term, to bound MeC n < ug/A terms of the truncation error, by integrating, over the
appropriate finite interval, a bound @fuj valid for u < up, such as the quadratically decaying bound of

Remark 6.1.

6.2 Sampling Error: Positive o

A form of the “aliasing” effect is at work here; by samplingiily at regular discrete intervals, one recovers
notc but rather a periodic function equal to a combinatior ahd infinitely many shifted copies of The
unwanted copies are shifted farther awaylas: 0, so the extreme-strike bounds of Section 3 come into
play.

In the main text, our sampling error analysis will focus on the payoff classes of greatest practical interest,

G1 andGs. For sampling error in casé€® andG,4, see Appendix B.

Theorem 6.2. Assume thatbe Ax and abg + by € Ax with a > 0.

In case G= G; we have

eﬁm/Af(_i) e2n'(oc7p)/Af<_i(p_~_l>) ( D >p:|.

ICe, —Za.6,] < inf [ 1—e4ma/b " (pi1)epk(1— etnle—p/AY \ p+1

p>o: p+1eAx
In case G= Gz, assume also tha(u) = O(u~1"7) as u— o, wherey > 0. Then

it e 2mo/Bf(—iby) T @-P/Af(_j(pby+by))
p>a: pho+breAx 1— e4ra/b epk(l _ e47r(oc—p)/A)

Cos —Za.csl <
Proof. For anyA > 0 and any positive integgr,
c(k—27j/A) +c(k+2mj/A) = / -k () cog 27 ju/A)du
/ u)cog2xju/A)du

where
Fu:i==— S &u+np)e ik,



SinceF is Lipschitz, the Fourier cosine series may be summed:
K) + z [ c(k—2mj/B) +c(k+ 27‘[]/A)] cog2rju/A) = F(U)A.
In particular, takingi = A/2, we have

(k) ~F (/28] = | 3 (1) [c(k_znj/A)+c(k+2nj/A)} .

=1

> ‘

Multiplying by exp(—ak) to undamp the call prices,
S (~1)} e 2I9/0C (K~ 21 /) + F1%/0C K+ 2] /A)} ‘

‘C(k) —zw(k)) _
=1

Therefore, Theorems 3.1-3.4 imply that

© T . e2rj(a—p)/Agg(p+1)X p \"
k) —=°(k)| < B e 2mie/bEeX 1 < ) ] 6.4
j odd
and
o . 7j(a—p)/ARgea(Pbo+b)-X
Cos(k) —Z7(K)| <Bo 5 |& ZI/ARe ™ + ¢ - ] (6.5)
! &P
j odd
The results follow from computing the sums. O

Note that application of these bounds does not require actual computation of infimums. For example,
in caseG = Gy, any choice ofp > a with p+ 1 € Ax produces a valid upper bound, which is subject to

improvement by taking more trial values pf

6.3 Sampling Error: Negative o

The Theorem 6.2 error bounds assumed that0, and must be modified far < O.

We have seen that shifting a Fourier inversion contour across a pole of the integrand changes the value
of the integral. Sampling error bounds will now follow from the fact that the new integral value is the price
of an contract related to the original option via a parity identity, such as put/call.

Specifically, for eacls = Gy, ..., G4, define one “complementary” payd#*, and for cas€s; define a

second complementary pay@f* by

Gi1(x,K) := min(exp(x),exp(k)) bo:=1,bi:=1xeR
G;* (%, k) := (exp(k) —exp(x)) " bo:=1,b; ;=1 xeR
G5(x,K) = (k—x)" bo:=1,b;:=0,xeR
G5(x,k) := exp(by - X)I(bg - x < K) xeR"
G (x,k) := (b2-x) exp(bs - X)I(bp - x < k) xeR".
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These payoffs have the following time-0 values.

Theorem 6.3. Assume thatbe Ax andabgy + b; € Ax.
In cases G= Gy, G3,G4 with o < 0; or in case G= G; with —1 < a < 0, we have

Co (K) = 1 /0 " Re[%s(k)e " dz

T JO—ai

In case G= G; with o < —1, this holds after replacing the ‘Gwith G**.

Proof. Subtract from each original payoff functighits complementary payofs*; then take expectations
to verify the parity relation

BoEG(X, k) — BoEG*(X,K) = Ro- & (6.6)

and similarly forG**. Theorem 5.1 now implies the result.
Alternatively, without using Theorem 5.1, one may adapt Theorem 4.2 and compute directly the complex

Fourier transforms of eadBs-. Inverting as in Theorem 4.3 finishes the proof. Moreover, the negetive-

formulas in Theorem 5.1 would then follow from (6.6). O

This equivalence between contour shifts and parity relations allows us to control the negsingaling
error by bounding the extreme-strike values of tbenplementarpayoffs. In particular, we state explicitly

the complementary bounds for casges- G; andG = Gs.

Theorem 6.4. In case G= G] we have
Ca;(K) <Boe* and Gs; (k) < BoEe”.

In case G= G;* we have, for any ¢ O,

BoEe X ( q

(K <
Coi: (K 1+q \1+gq

q
)e(”‘”k and  Ggy- (K) < Boe®.

In case G= G} we have, for any ¢ 0,

BoEel—abo+by)-X
e-ak

Ca;(k) < and  Ggy(k) < BoEe™™.
Proof. Adapt the reasoning in Theorems 3.1 and 3.3. We omit the details. O

The sampling error bounds now follow.
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Theorem 6.5. Assume thatbe Ax andabg + by € Ax.
In case G= Gy, for a € (—1,0):

g—2n(a+l)/B £ e2ma /D (_j
Coi— 256,/ < O, e 1)
) 1— e4n(a+1)/A 1— edra/b

and fora < —1:

ek+27f(1+°‘>/Af(O) e(1+q)ke—27r(l+q+a)/Af(iq) ( q >q]

Cor —Zac,l < q>_'(”of+1): { 1_enras (14 q)(1— e 4r(ltata)/B)y \ 1+
—0qeAX

In case G= Gg, assume als6(u) = O(u~1~7) as u— o, wherey > 0. Then fora < 0,

Co—Tag < in {ez”“‘*q)/ﬂf(—i(—qbwbl» eZ’m/Au—ibl)]
3 “a,G3l X

q>—o: e—qk(]__ e—47T(OH-Q)/A) 1— ehna/A
—Qho+b1€Ax
Proof. Adapt the reasoning in Theorem 6.2. We omit the details. O

6.4 Sampling Error: Zero o

Here we bound the sampling error along contours that pass through a pole. Thisanedhand, in case
G =Gy, alsooa = —1.

We present results for cas€s= G; andG = Gs3. In each case the option price function can be inter-
preted, after normalization, as a cumulative distribution function, so bounds from the probability literature
apply directly, and we avoid reinvention of the wheel.

Our proof strategy yields, as a by-product, complete alternative proofs of 3 of the 13 formulas in The-
orem 5.1, including théG = G3; o = 0) case, which was Duffie-Pan-Singleton’s (2000, Prop 2) pricing

formula; their proof influenced ours but lacks the highly convenient normalization step.

Theorem 6.6. Assume thatbe Ax and abg + by € Ax.
Then the(a, G) € {(0,G1),(—1,G1),(0,G3) } subcases of Theorem 5.1 all hold.
In case G= Gy, thea = —1 anda = 0 sampling errors are bounded by

; f('Q) q qe(1+q)k \a—21/A
<
< max[q>0!r—]geAx 1+q <1 q 2nq/8 f(—l)e

- i fitp+1) (_p \°
< 2 /A '
< max[f(O)ek ! o0 I[?—IleAx (p+ L)erk21/8) \ p+1

’C61 - Zo—ol,Gl

0
’CGl - zO,Gl

In case G= Gz assume also thal(u) = O(u~1"7) as u— o, wherey > 0. Then

(i(gbp — b1)) f(—i(pbo+b1))] _

e-dk—2z/b) eb(k+27/8)

. f

< inf max
p>0: php+b;eAx
0>0:—qghp+breAx

‘CG3 B 2363
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Proof. Case G=G1, oo = —1:
On some probability spad€,, P1,.7 ) there exists a real-valued random variableith densityp(y) :=
e YE[eXI(X >y)]. Itis easy to verify that

Co; (k) = f(0)PY(Y < k),

and thaty hasP;-characteristic functiorf (u) /[ f (0)(1—iu)]. By the Gil-Pelaez (1951) formula,

Coyr (k) = f(O)ek<; - i/ow Re“é?i/_fﬁ?)) e‘i“"] du> = f((;)ek +71r/0:+i Re[izf((é:l)) e‘iz"} dz

Davies (1973) now directly implies the sampling error bound
Co,—2%16,] < f(O)ekmax[Pl(Y <k—271/B), Py(Y > k+ 27t/A)}.

So for anyq > 0,

BoEe_qX< q >qe(1+q)k

|CGl_Zojl7Gl| < maX|: 1+q 1+q ean/A’

e27T/ABOeX:| 7

as claimed.

Case G=G1, a =0:

On some probability spad€1, P;,.#) there exists a real-valued random varidbleith densityp(y) :=
e'Fs(X >y)f(0)/f(—i). Itis easy to verify that

Co, (k) = F(=DPu(Y > k),

and thaty hasP;-characteristic functiori (u—i)/[f(—i)(iu+1)]. By the Gil-Pelaez formula,

(L L TRz ),
By Davies (1973),

ICo, — 286, | < f(—i) max[Pl(Y <k—271/B), P(Y > k+ 2n/A)]

So for anyp > 0,

BnEe(P+DX p
_ g —21/A 0 P
Ce, Z07(31’ < max[f (o)ek ) (p+ l>ep(k+27r/A) <p_|_ 1) :| ’

as claimed.

Case G=G3, oo =0:
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Define the probability measuR® by dP;/dP := M texp(by - X) /E(M7 L exp(by - X)). Then

Co, = E[M7 1" I(bg- X > k)] = f(—byi)E [ddI:f]I(bo-X > k)] = f(—bai)Ps(bg- X > k),

andf(bgz— b1i)/ f(—bii) is the characteristic function @ - X with respect td. So

Co. = 1(—bai) (; . % /om Re[f(boz— b]:i)/f(—bli)eizk] dz>’

1Z

according to Gil-Pelaez. By Davies (1973),
Cas — 256,| < f(—bai) max[Pg(bo-X < k—2n/A), Py(bp-X > k+ 2n/A)]. (6.7)

Therefore, writinges for expectation with respect 8,

) _ Ege 00X EgePboX
|CGs - Z07(33’ < f(_bll) max |:eq(k27r/A) ’ @b(k+2m/D)

for any positivep andq, as claimed. O

Remark6.3. In the case ofG = Gz with bp = b; = 1 anda = 0, Pan (2002), following Davies, gives
sampling error bounds.

Our G = G3 proof extends Pan, because an alternative way to proceed from (6.7) is (Wiitifgy the
Hessian matrix off):

(bo-X —K)2  —bJH f(—byi)bo+ 2ikbg - Of (—byi) + K2f (—byi)
(2n/B)? (2m/n)? ’

ICos — 2.6, | < f(—bai)Es

which improves her bound. Our other incremental contributions here include the complete explicit formu-
lation of technical assumptions and the generality of vedigis, € R".

This “quadratic” strategy also applies in caSe= G; with & = 0 or —1. However, we prefer sampling
error bounds that go to zero exponentially-id/A, rather than quadratically iy, so Theorem 6.6 reports

only the exponential results.

6.5 Overall Error Bound: an Example

Consider a call on a stock, under Variance Gamma dynamics, as described in Section A.1. Of the five
formulas in casé& = G;, we choosax > 0. The domain conditiomxby + b; € Ax entails the restriction

a+1<a,, wherea, is defined in (A.1). By (A.2) and Theorem 4.2,

|f(u— (o +2)i)| < exp(—rT + (OC+1)(|OQS)+;,LT)).

" <
Coey (W) < u2 h (UBvo2/2)T/vu2
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By Theorem 6.1, truncation error is bounded by

exp(—IT + (a +1)(logS +uT))
meok(vo2/2)T/V(1+ 2T /v)(NA)L+2T/v

By Theorem 6.2, sampling error is bounded by

e—27ra/Af(_i) eZ”(a_p)/Af(—i(p—{—l)) ( p >p
1—e4ma/A  (p41)eP(1—etr(a—p/A)\ p+1

foranyp > a suchthapp+1<a,.

Summing the sampling and truncation bounds gives an overall error bound.

7 How To Minimize Error Bounds?

We propose some strategies for choosingnd the quadrature paramet&tsandA to obtain small error
bounds, given limited computational resources.

Throughout this section, our illustrative problem is to price a vanilla call on a non-dividend-paying
stock whose terminal price & = exp(X). According to Theorem 5.1, we may price using anguch that
a+1e Ax.

Assuming that G Ax and 1€ Ax (mild assumptions sincBe®X < o« and by no-arbitrag&e'* < ),
we may write

AX = (—@ 1+ 5)7

where p andq are positive. One determingsand q from the explicit expression for the characteristic
function; see Appendix A for examples.

Soa may be chosen anywhere (rq— 1, p). This interval comprises five subintervals, corresponding
to the fiveG; formulas in Theorem 5.1.

A central question is how to choose from among theseGvérmulas. While thepricing algorithm is
invariant across all fivee regimes, the fundamental nature of tmundsdiffers across the regimes.

Before addressing this question, let us reject a sixth alternative.

7.1 HowNot To Minimize Error Bounds

Instead of pricing a call as @; payoff, one can price it as the difference of t@g payoffs. Indeed, the

latter approach has dominated the literature (exceptions include Carr-Madan and Lewis).
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Specifically, most authors have priced the call by decomposing it as long an asset-or-nothing call and

short a binary call. Writind< = exp(k) for the strike,

C(K) = EIM7X(Sr — K)*] = E[My 'SI(Sr > K)] — KE[My 'I(Sy > K)

_SE [SLI/TSOH(ST > K)] — KBoE {1“/,5011(& > K)]

= SP5(Sr > K) — KBoPRs(Sr > K).

They calculate both pseudo-probabilities via Gil-Pelaez inversions d¥tlebaracteristic function and the
Ps-characteristic function oXy.
In other words,

Ca,(k) = C& (k) — &g k),

and eaclCg, is evaluated according to tlee= 0 formula proved in Theorem 5.1 and again in Theorem 6.6
(the popular proof corresponds to our second proof). Gaigpproach to call-pricing has some merits, but
from a computational point of view, it has significant disadvantages.

The generalized Carr-Madan approach of directly prigBighas the computational advantage that we
need invert onlyoneFourier transform, instead ofvo distinct characteristic functions.

Moreover, our directs; error bounds have several advantages over combining@yverror bounds.
The first is in truncation error controt, G,, unlike ¢, g,, decays likef divided by thesquareof u, instead
of u. The second is in sampling error control: the strategy of using exponential functions to dominate
payoff functions produces tighter bounds when the payoff is a call than when the payoff is a binary. Third,
note that summing tws error bounds does not take advantage of possible error cancellation between the
two components; in contrast, with onbneintegral to bound, the dire€; approach is not subject to this

inefficiency.

7.2 Choice of Quadrature Parameters, Given amx Regime

Deferring once again the discussion of how to choose from among the figgimes, we address here the
guestion of how to choose quadrature parameaters, andN, givenana regime.

In two of the five regimes, the interval consists of a single point, so the only question is how to choose
N andA. For illustrative purposes, suppose we seek quadrature parameterin-tBagegime, so all three
guadrature parameters are in question.

The computational burden of the numeric Fourier inversion is determined by the grid pointNount

First suppose thatl is fixed and the goal is to find andA that minimize the total error bound for a given
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contractk.

Theorem 6.1 gives truncation error bounds; to be concrete, let us suppose the discounted characteristic
function has power decay, as defined thereufsr0. Theorem 6.2 gives a sampling error bound. Combining
the two, we have the optimization problem

cin [ @Paci(NA) e Bi(—i) @M@ PAf(-i(p+1) [ p P (7.1)
(a.p): 850, | Te%Ky(NAYY = 1—e4ma/b ' (p41)ekp(1—etrla-p)/2)\ p+1) | .

O<a<p<p

The choice of a, A, p) can be automated by commonly available simplex optimization algorithms.

To modify (7.1) for models where the desired decay(n) is guaranteed only foa > up > 0 (see
Theorem 6.1), various options exist. The simplest is to chang@ ttenstraint taA > up/N, but a more
flexible solution is to allow alsé < up/N, but use the Remark 6.2 bound instead.

Instead of minimizing error bounds for a given computational buigetn alternative goal would be
to specify a desired error tolerange and to find the smallesdti for which we can guarantee total error
bounded byn. One strategy here is to choose as trial valuedNfsuccessively increasing powers of 2. For
each trialN, optimize, over(a,A, p), the total error bound in (7.1). Terminate tNeloop when the error

bound is smaller than the target Pricing can then proceed using the optimalA, andN.

7.3 Choice of Regime forx

The remaining question is how to choose from among the five regimes.

With unlimited resources, the answer is simple: compute error bounds in adt fiegimes, and choose
the one with the smallest error bound. Indeed, even with limited resources, this may prove to be a workable
solution.

However, when the potential benefits of testing all five regimes do not justify the computing or program-
ming effort, it is useful to have rules of thumb regarding which of the five formulas to implement. In any
event, these rules also embody a comparative summary of our various bounds for @xipiagoffs.

First consider sampling error. In each of the five regimes, our sampling error bouAd-h&sdecay of
order exg—2np/A), where the “decay rates is apparent from the relevant Theorem.

Since a greater decay rate yields a better sampling error bouddsiafficiently small, Table 1 suggests
the following sampling error guideline. The “call” regime and “put” regime are intervals with widths —
andq respectively; choose from inside thewider of these two intervals — unless both widthendq are
smaller than 2. In that case, choase- —1 or @ = 0, according to whetheyor pis the larger — unless both

p andq are smaller than /2. In that case choose € (—1,0).
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Table 1: Decay rates of sampling error bounds

o range Value of integral Decay ratep of bound Reference
1 AR %, (ke 2 dz on sampling error
(—q—1,-1) put min(—a—1,14+9+a) <q/2 Thm 6.5
-1 half-cash-secured put min(g,1) < min(g,1) | Thm6.6
(—1,0) cash-secured put = covered call min(oc+1,—-a) <1/2 Thm 6.5
0 half-covered call min(p,1) < min(p,1) | Thm 6.6
(0,p) call min(a,p—a) < p/2 Thm 6.2

In other words, a higip = sup{p: Eexp((p+1)X) < «} indicates arX distribution with thin right-hand
tail. Similarly, a highq indicates arX distribution with thin left-hand tail. To control sampling error, the
guideline is to price the call if the right-hand tail is thinner in the sensephaf, but otherwise price the
corresponding put. However, if both tails are sufficiently thick, then instead price either a covered call or
one of the “hybrid” payoffs induced by = —1 or 0.

Now consider truncation error. To develop intuition, we treat only the trivial case whdras zero
variance; it should be understood that the resulting rule of thumb will lose accura$yiivih high variance.

Writing Fp = S/Bg for the T-forward price, we have

[f(u—(a+1)i)] _ |BoBEW (10X  BoFf™! SRy

Cnaa(U) < 3 R

So Theorem 6.1 gives the truncation error bound

So(Fo/K)“
nNA

(7.2)
which is increasing inx if K < Fp, but decreasing imx if K > Fy. The rule of thumb, therefore, is that
to minimize truncation error at low strikes, price the put; at high strikes, price the call. Specifically, in this
zero-variance case, the rule for a given strike is to price whichever contract (put or call) is out-of-the-money-
forward at that strike.

By combining these sampling error and truncation error heuristics, we will generate overall recommen-

dations.
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7.4 Recommendations

In this subsection, assume that we are to price options on equities, whose (risk-adjusted) return distributions
typically exhibit significant negative skew, consistent witb- q.

For the common task of pricing a set of contracts with strikes nearly at-the-money-forward, the sampling-
error heuristics (Table 1) tend to outweigh the truncation-error heuristics (7.2), which are in this case rela-
tively insensitive tox. Therefore we recommend that the default procedure be todtak® andprice the
call.

The primary exception to this rule occurs at strikes away from the money, where truncation error tends
to become morex-sensitive. At large strikes, the effect of (7.2) still favors the- 0 strategy of pricing
the call. However, fosmall strikesit favors the opposite strategy; indeed for strikes sufficiently small, this
effect can swamp the sampling error effect, resulting in the opposite recommendatiom: takel and
price the put

A second exception arises when tKelistribution’s tails are thick, in the sense thak 2 (implying
that stock prices have infinite third moment). In this case the default procedure should be to price the half-
covered call, by takingx = 0, which outperformsx = —1 on sampling error bounds. However, if the
distribution’s tails arevery thick, in the sense that < 1/2, then the default procedure should be to price
price the covered call, by taking = —1/2, which uniquely in(—1,0) attains the sampling bound decay
rate of /2.

A third exception could arise when one wishes to avoid optimizingossibly because of the com-
puting, programming, or mathematical effort involved (where “mathematical” effort refers to the analytic
determination ofp andqg, given an unfamiliar characteristic function). Suppose one needs only a simple
choice fora, that still guarantees the error bounds will go to zero for I&g&inceAx contains the interval
[0,1], the three choicea € {0,—1/2,—1} are all acceptable.

Some caveats apply to the “simple” choiees {0,—1/2,—1}. If one declines to optimize over > 0
or o < —1, then one relinquishes the possibility of obtaining better error bounds — possilalybetter,
especially forN small andp Targe. Moreover, we put “simple” in quotation marks, because susctill
require choices foA andN; and making those choices in an efficient way still requires optimization in
some sense. Note that these caveats apply also to the traditional approach of computing a difference of two

integrals, which has furthermore the error-management disadvantages of Section 7.1.
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7.5 Numerical Examples and Discussion

For numerical examples we take the Variance Gamma model in Table 2 and the Heston model in Table 3.
The parameters come from empirical studies of S&P 500 futures options: VG parameters from Madan-Carr-
Chang (1998) which uses data from 1992-1994, and Heston parameters from Bates (2000) which uses data
from 1988-1993.

For each model we generate two sub-tables: one for optiofis=atlL month, and one for options at
T = 4 months to expiry. Each one shows calls with strikes ranging from 80 to 120, on an underlying with
value 100.

For each model and expiry, we choose the humber of quadrature pbiatgie enough to guarantee
error smaller than one penny.(Q) at all listed strikes. For each strike and each of thedivegimes, we
choosex andA to minimize our error bounds. The tables report éhgriori error bounds and the realized

errors.

Remark7.1 These tables demonstrate that in certain examples with plausible parameters guareatee
accuracy of within one penny (which is0D01 times the underlyin§, = 100), by sampling at a number of

pointsN not in the thousands, but instead well under one hundred, and indeed in some casésunder

Remark7.2 For each contract, our recommended quadrature parameters delivesadedaccuracy of

within one-tenth of a penny (which is@O001 times the underlying).

Remark7.3. The effect of increasing the time to expily depends on the model. To maintain the same
accuracy in the VG model the computational burden decreased {frenB2 to N = 8), whereas in the
Heston model the burden increased (frbim- 8 toN = 16).

Consider the following two pieces of intuition. One effect of increadirig that return densities become
smoother, which thins the tails of the characteristic function, heleceeasingruncation error; this effect
is more significant in/G than Heston, because the former characteristic function decays polynomially, but
the latter decays exponentially. Another effect of increa3ingowever, is that return densities have fatter
tails, which tends to make the characteristic function less smooth, heceasingsampling error; this
effect is more significant itdestonthan VG, because the measure of tail-thinness relevant to our bounds
is the number of finite moments. Under VG, the returns followeay process so the number of moments
is invariant to time horizon, unlike Heston, where volatility is persistent, and hence works to decrease the
number of moments and increase sampling errdr axreases. To see this numerically in Tables 2 and 3,

refer toAx, which shows the number of moments tobelependent under Heston, but not under VG.

Remark7.4. The optimal choice otx regime in our examples agrees with the rules of thumb proposed
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in Sections 7.3 and 7.4. Near-the-money and out-of-the-money, the best error bounds arise from choosing
o > 0 and pricing the call. However, for strikes sufficiently deep-in-the-money, the best error bounds arise
from choosingx < —1 and pricing the out-of-the-money put. The other choes[—1,0] underperformed,

as we would anticipate, given the sufficiently thin tails of the return distributions; the thickest (Heston at 4

months) had = 24.32 andq = 9.97, well above 2.

Remark7.5. The numerics reflect a general viewpoint of this paper, which holds that the freedom to choose
integration path, via the: parameter, plays an essential role in the accuracy, efficiency, and robustness of

the transform approach.
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2(a). T =1 month.N = 32 points.

Table 2: Realized errors ardpriori bounds in fivex regimes, under VG dynamics.

Strike: 80 90 100 110 120
Call price: 20.0057 10.0877 1.2678 0.0138 0.0004
o Error Bound Error Bound Error Bound Error Bound Error Bound
<-1 0.0000 0.0006| -0.0001 0.0032 -0.0061 0.0128| -0.0008 0.0370, -0.0115 0.0829
=-1 0.1045 0.5271] 0.0880 0.5771] 0.4670 0.6258| -0.0109 0.6731] 0.2862 0.7193
€ (-1,0) 0.5403 1.8857| 0.0419 2.0033] 1.4950 2.1127| 0.1028 2.2151] 0.2985 2.3115
=0 0.0872 0.5987| 0.1248 0.6157| 0.4632 0.6312| -0.0271 0.6453] 0.2713 0.6584
>0 -0.0147 0.1056| -0.0019 0.0342] 0.0005 0.0058| -0.0000 0.0006| -0.0000 0.0001]
Optimal -14.98 -13.63 21.25 25.56 28.56
2(b). T =4 months.N = 8 points.

Strike: 80 90 100 110 120
Call price: 20.0565 10.4903 2.8992 0.2310 0.0129
a Error Bound Error Bound Error Bound Error Bound Error Bound
<-1 -0.0000 0.0013] 0.0004 0.0057| -0.0001 0.0191] -0.0138 0.0505| -0.0338 0.1109
=-1 4.3683 7.4092| 4.3888 7.7501] 5.0984 8.0651] 4.8697 8.3584| 4.9340 8.6331
€(-1,0) | 21.7868 36.2630 23.1801 38.5159 25.3678 40.6206 25.9590 42.5988 26.4961 44.4674
=0 4.3509 7.1282| 4.3498 7.6780 5.1691 8.2023| 5.1130 8.7045| 5.1763 9.1873
>0 -0.0144 0.0923] 0.0017 0.0259 -0.0001 0.0055| -0.0003 0.0009, -0.0000 0.0001]

Optimal o -12.85 -11.73 17.55 20.66 23.31

Underlying: & = 100.

Variance Gamma model parametess= 0.1213,v = 0.1686,6 = —0.1436.

The interval of permissibler + 1 values isAx = (—20.26, 39.78) at both time horizons.

CPU time for theN-point quadrature evaluations totale@® sec. for all of 2(a), and.08 sec. for all of 2(b).
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Table 3: Realized errors ardpriori bounds in fivex regimes, under Heston dynamics.

3(a). T =1 month.N = 8 points.

Strike: 80 90 100 110 120
Call price: 20.0043 10.1213 1.8314 0.0150 0.0001
o Error Bound Error Bound Error Bound Error Bound Error Bound
<-1 -0.0000 0.0003| -0.0005 0.0034| -0.0012 0.0225| -0.0066 0.0903 -0.0365 0.2529
=-1 10.1124 15.2531 10.1303 15.7479 10.8452 16.2042 10.5570 16.6283 11.1423 17.0249
€(—1,0) | 39.6391 66.4649 41.6391 70.5012 44.6160 74.3163 46.0391 77.9426 48.3202 81.4054
=0 9.0364 13.8209] 9.6049 15.0579 10.8497 16.2574 11.1304 17.4243 12.1809 18.5626
>0 -0.0547 0.2081| -0.0021 0.0383 0.0001 0.0031] -0.0000 0.0001] -0.0000 0.0000
Optimal -22.20 -19.34 33.12 44.03 52.80

3(b). T =4 months.N = 16 points.

Strike: 80 90 100 110 120
Call price: 20.3808 11.2277 3.7412 0.5343 0.0770
a Error Bound Error Bound Error Bound Error Bound Error Bound
<-1 -0.0004 0.0078| -0.0009 0.0157| -0.0057 0.0284| -0.0186 0.0473 -0.0170 0.0735
=-1 0.4526 0.9876| 0.2692 1.0609| 0.6069 1.1306| 0.4485 1.1972] 0.3552 1.2611
€ (-1,0) 2.4046 5.6995 2.5307 6.0546| 3.5693 6.3855| 3.3662 6.6960, 2.7545 6.9886)
=0 0.5299 1.0613| 0.2947 1.1131) 0.5986 1.1610| 0.4855 1.2058 0.3176 1.2479
>0 -0.0017 0.0107| -0.0010 0.0040, -0.0001 0.0015| -0.0001 0.0005| -0.0000 0.0002

Optimal o -6.11 9.84 10.96 11.98 12.91

Underlying: & = 100.

Heston model parameters:= 1.49,0 = 0.0671,0 = 0.742,p = —0.571. State variablé/y = 0.0262.

Interval of permissiblex + 1 values isAx = (—38.41, 89.59) atT = 1, andAx = (—9.97, 25.32) atT = 4 months.

CPU time for theN-point quadrature evaluations totaled ® sec. for all of 3(a), and.P9 sec. for all of 3(b).
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A Appendix: Examples of Known Characteristic Functions

A.1 Variance Gamma

Reference: Madan-Carr-Chang (1998). The VG model has paraneetérs.

The log priceX = logSr has discounted characteristic function

_ exp(—rT +il[logS+ uT])

f() (1—ivel +vo2l2/2)T/v

wherep :=r+ (1/v)log(1— v — 62v/2); its domain is the strig\x induced byAx = (a_,a, ), where

0 2 02
S Y P A.l
s o2 vo? + o4 A1)
We have the following bound on the largedecay off. Foru > 0,
| (u+wi)| < p(wpu2T7, (A2)
where
P (W) := exp(—rT —wllogS+uT])(ve?/2)~ T/, (A.3)

Hence the VG model’s discounted characteristic function satisfies the power decay condition of Theorem
6.1. So in, for example, the caGe= G, one can tak&y g, (U) = ¢(— (o +1)) and 14+y=2+2T /v.
A.2 Square-Root Stochastic Volatility

Reference: Heston (1993). The model has parametedsc, p, and a state variablé,.

The log priceX = logSr has discounted characteristic function

f(&) =exp[—rT +i{(logS+rT) +C({) +D()Vol,

where
C(e) = ’;i; [(K—pO‘Ci )T — 2Iog(1lgéﬂﬂ
e )
g:=9(¢) = ::Zzgfj

d:=d(¢) == \/(poli—K)?+0%(Li+(2)

The square root and the complex logarithm are multi-valued functions. For the square root here, either of

the two values may be chosen, becafiggeven ind. For the logarithm, however, choosing the wrong value
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can lead to wildly incorrect answers. To defifi@vi) for realw, the correct choice of Idg) is the principal
branch lodz| + arg(z), where—n < arg(z) < n. However, as pointed out by Sabel and Zhu (1999), to
definef (&) for generak, the correct choice of log isot necessarily the principal branch. Instead, the value
of log when{ = u+ wi is determined by the analyticity df, which implies that log must vary continuously
as{ varies from O+ wi to u+ wi.

This issue presents a challenge to the traditional approach of taking the Fourier integrals in Heston
and simply passing the integrands into a numerical integration routine from a standard software library.
Enforcing the required continuity of the log is tricky if the integration routine samples the integrand at an
unpredictable sequence of points. On the other hand, for a method, such as ours, that samples the integrand
at an increasing sequence of points with spadingnforcing continuity typically does not present any
difficulty.

The domain off is the stripAx induced byAx = (a_,a; ), wherea_ < 0 anda; > 1 solve
g(—ia)expd(—ia)T) = 1.

Specifically, if we assume — po > 0, thena_ is the largest (closest to 0) solution(ire,y_), anda, is

the smallest solution ify., ), where

_ 0—2kp=++\/02—4Kkpo +4K?

Yoo 26(1-p?)

For { = u+wi we bound the largerdecay off, as follows. Define
Hri(u) := U?6%(1—p?)
Hro(W) := W?62%(1—p?) —w(2kpo — 62) — k?
Hr(u,w) := Re(d?) = Hga(u) — Hra(W)
Hi (u,w) := Im(d?) = ou(2wo (1— p?) + 6 — 2kp)

h(u,w) := v/Hgr(u,w),

and define

g*(u W) . K ‘G_ZKp’+K2/(G U2—|—W2)
T oV w2 h(u,w) + /(1B —w?)o2(1- p2)

g(u,w) = (1-g"(u,w))/(1+g"(u,w))

s = (14 565) (+ groprrm 1)
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Let up > |w| satisfy 1> g*(uo,w) andh(up,w) > (1/T) maxlog(1/g(uo,W)), 1) andHr1(Uo) > [Hrz(W)]|.

Then for allu > ug, we have

| f(u+wi)| < ¢)(u,w)exp<— \/l—pzwu),

o

where (suppressing the argumefusw) for convenience) we let
X ZKQ/GZ VO+ K'GT
o(u,w) :=J exp| —rT —(logS+rT)w+ ?(K-FPO'W-F vmax0,Hr2))
Y/ J
X exp[ 9 W<K+ |poulmax(1,\/Hr/Hr1) + |pow| + /Hr+ [Hi |)] )

o? )
Hence the square-root stochastic volatility model's discounted characteristic function satisfies the expo-

nential decay condition of Theorem 6.1. So in, for example, the GaseG;, one can taka&b, g, (U) =

o(u,—(o+1))/u.

B Appendix: Sampling Error Bounds for Payoffs G, and G4

Sections 6.2-6.4 gave sampling error bounds@ot G; and G = Gz, which are the payoff classes of
greatest practical interest. The other caSes G, andG = G4 can be treated by similar technigues, albeit

with messier results. Specifically, t /G, version of Theorem 6.2 is as follows.

Theorem B.1. Assume that pe Ax and abg + by € Ax with o > 0.

In case G= G, we have

—2na /A __if/ _ —2mwo /A
o Erel < ot [0l dretng
2 p>c peﬁx 1— e4ra/A A(1—e4ra/b)2
0>0:—0eAX
efZN(qua)/Af(iq) err(afp)/Af(_ip)
Jr

qelqu(l _ e747r(q+oc)/A) + pekarl(l _ ehrn(a— p)/A) ’

In case G= G4, assume also tha(u) = O(u=1~7) as u— o, wherey > 0. Then

_ e 2"%/Byhy, - Of (—iby)
>~ l<max inf
‘CG4 (x,G4’ %=1 (Po,p2,00,0p) |: 1+e—27ra/A

n f(—i(—0obo — gy bo 4 by)) + & 2@ +%)/Af (—i(—qgbg + qaxb2 + by))
qzequk+1(e271«'(Ol+QO)/A _ efzﬂ'(OH*QO)/A)

f (=i (pobo + payrbz + by)) + €2™(#~P)/Af (—i(pobg — paxbz + b1))
pzep0k+1(e727r(a7po)/A _ e27r(oc7po)/A) ’

_|_

where theinf is over all positive p, p2,0do, g2 such that p > o and pbo + p2bz + by € Ax and —qpbg F
0207 + by € Ax.
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Proof. In the proof of Theorem 6.2, replace equations (6.4) and (6.5) with
Ee—9X > e2ri(a—p)/AEehX

ICs, (K) — =°(K)| < Bo i [ezﬂia/ﬂ <EX —k+27(j+1)/A+
=1

qel—ak-27j/8) pekp+l
j odd

and

- . R el —Gobo—x(~1)aab-+by)-X

- —2jo /A i X
(o (k) =27 Bo;ni)fz [ E((x(=1)7b2-X )ebl )+ qze—qu+1eZ7rJ a-+do)/A
e27i(a—po) /A gl Pobo+x (—1)! pobp+by)-X
+ pzepok+l :|

The rest of the proof holds. O

C Appendix: Application of DFT/FFT

We treat here two issues: a recipe for DFT evaluation of the quadrature scheme, and modifications to the
Section 7.2 optimization problem so that the DFT output has the desired contract spacing.

First, our Davies-style discretization sampteat the midpointgn+ 1/2)A of intervals of lengthj,
whereas Carr-Madan’s sampling scheme applies Simpson’s rule to the endpoints of those intervals. For
completeness we describe how to adapt their formulas to midpoint sampling.

Define the discrete Fourier transform (DFT) offfvectorx to be the vectoX where
N
xm: z e—i(Zn/N)(n—l)(m—l)Xn’ m= 1,...,N.

Other definitions exist; this is the one in Carr-Madan, and in a number of standard software packages,
including Matlab.
Using a spacing ok = 2r/(NA) between consecutive triggers, we want to use DFT to compute prices
>N (k) at triggers
Km:=ki+A(m—1), m=1...,N
for arbitraryk;. Typically one would chooslk; such that the intervaks, ki + (N — 1)A] contains all of the
contracts to be priced. By (6.1),

A N
ZN(km): Re &((n—1/2)A)e ei(n=1/2)(ki+A(m-1 ))A}
7rekm _nzl
[ N
- W%Re e (M2 S ¢((n—1/2))e (1M Dibg N 1/2)k1A]
1

MZﬁ’

_ A [ —im(m—1)/N
= 7reT<mRe €

e i(2nr/N)(n—1)(m— 1)6((n 1/2) ) —ik1(n—1/2)A :|’

n=1

34



where the sum is computable as tingh component of the DFT of the vector whosé¢h component is
¢((n—1/2)A) exp(—iki(n—1/2)A).

The second issue is the reciprocity relatioh = 27 /N. ForN fixed, a decrease in Fourier-domain grid
spacingA would cause the contract spacihdo increase.

If one wishes to impose an upper bouhdn spacing between contracts, then the minimum in (7.1)
should be taken oveh > 27r/(N}_») instead ofA > 0. Moreover, in certain instances it is desirable to
constrainA to be an integer timesnz/(N/T), because this forcesto divide A, so that a set of contracts with
trigger spacings ok can be priced in a single DFT, without interpolation.

We deferred this material to an Appendix to emphasize that the analysis in the body of this paper does
not make any assumption tcowthe sum in (6.1) is computed (aside from absence of roundoff error). One
can use the DFT; or its efficient implementation the fast Fourier transform (FFT); or, perhaps even more

efficiently (if few enough strikes need to be simultaneously priced), simple direct summation.
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