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Abstract

In this paper we propose a class of financial market models which are based on telegraph
processes with alternating tendencies and jumps. It is assumed that the jumps have
random sizes and that they occur when the tendencies are switching. These models are
typically incomplete, but the set of equivalent martingale measures can be described in
detail. We provide additional suggestions which permit arbitrage-free option prices as
well as hedging strategies to be obtained.
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1. Introduction

Beginning with the works of Mandelbrot [9] multiple researches have showed that the
(geometric) Brownian model for financial data fails to explain the observed behaviour. We
propose a construction which solves some difficulties usually attributed to Brownian motion.
We use a jump-telegraph process instead of a diffusion process. In the present paper we
assume that the jumps are of random sizes. This assumption generalises the (complete) jump-
telegraph model with deterministic jumps proposed earlier [15]. As a consequence, the model
is incomplete.

Continuous-time telegraph processes have been used before in various probabilistic contexts
(see the pioneering works of Goldstein [6] and Kac [8]; see also [12], [13], [18], and [19]).

In the theory of finance, telegraph processes have primarily been used to express stochastic
volatility (see [3]). However, a ‘telegraph analog’ of the Black–Scholes model was considered
by, e.g. Di Crescenzo and Pellerey [2] and Pogorui and Rodríguez-Dagnino [14]. It should
be noted that the asset pricing models proposed in the above works are based on pure tele-
graph processes without jump components. It is easy to see that these models have arbitrage
opportunities (see [15]).

To avoid arbitrage, a diffusion component can be added to the log-price of a risky asset. For
example, Bladt and Padilla [1] considered a (nonarbitrage) model based on a Markov-modulated
diffusion process. However, this model is not complete, and so their option pricing formulae
depend on undefined switching intensities, λij . Guo [7] proposed a model based on similar
principles, but in contrast with [1], added change-of-state security (COS security), i.e. security
that pays one unit of account when the Markov chain changes state. This completes the market.
For details and comments on this approach, see [16] and the references therein.
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Option pricing in the telegraph model 839

Our model is based on a Markov process {ε(t)}t≥0 with states 0 and 1, and alternating
transition intensities λ0 and λ1. We consider the processes cε(t) and rε(t), and their integrals
(integrated telegraph processes)

T (t) =
∫ t

0
cε(s) ds, R(t) =

∫ t

0
rε(s) ds, t ≥ 0, r0, r1 > 0, c0 > c1.

To avoid arbitrage opportunities, we exploit the pure jump process in our model. Let

J(t) =
∑

1≤n≤N(t)
Yε(τn−),n,

where τn, n ≥ 1, are the switching times of ε(t), N(t) is the number of switchings till time t ,
and Yi,n, n ≥ 1, i = 0, 1, are independent random variables with alternating distributions
supported on (−1,∞).

We propose the market model defined by a two-dimensional stochastic process {B(t),
S(t)}t∈[0,T ], where B(t) = exp(R(t)) and S(t) = S0Et (T + J). Here Et (·) is a stochastic
exponential.

If the jump values Yi,n are deterministic, the model is complete (see [15]). More precisely,
if Y0,n ≡ y0, Y1,n ≡ y1, y0, y1 > −1, and

λ∗
0 := r0 − c0

y0
> 0, λ∗

1 := r1 − c1

y1
> 0, (1.1)

then the risk-neutral measure exists and is unique. The switching intensities under the martingale
measure areλ∗

i , i = 0, 1. Under conditions (1.1) the option pricing formula was derived in [15].
The option price and hedging strategy of this model depend only on observable parameters,
i.e. ri, ci, yi, i = 0, 1, and on the maturity time T . These parameters determine the geometry
of market movements similar to the technical analysis approach. The important peculiarity of
this model is that option prices do not depend on the frequency of jumps. A similar conclusion
is obtained by Naik and Lee [11, Section 4] using risk aversion preferences.

The model under consideration does not contain the standard Brownian component, and
the log-price is not normally distributed. The simplicity of the model helps to clarify the role
of jumps and their pricing. Moreover, our approach allows for diffusion-like behaviour by
allowing infinite activity around the origin or, alternatively, by means of normally distributed
jump values.

In this paper we present a detailed description of risk-neutral measures in the case of random
jump sizes. Moreover, we present a new design of equations for the description of distributions
of jump-telegraph processes and option prices. This description is usually based on the PDE
technique, but in the present paper we exploit integral equations.

The rest of the paper is organized as follows. In Section 2 we describe the distribution
of the telegraph-like process T with jumps. We also present the necessary and sufficient
conditions for the process T + J to be a martingale. In Section 3 we first propose an asset
pricing model based on the jump-telegraph process and then state our main result, Theorem 3.1,
which describes the set of risk-neutral measures for this type of model. In Section 4 we apply
Theorem 3.1 to the problem of pricing and hedging European options in the framework of this
model. In Section 5 we provide a new version of the fundamental equation. We also construct
the self-financing strategies which replicate the European payoff functions when the jump risk
is partially insured. These strategies are not typically predictable because of the incompleteness
of the model. Concluding remarks and future research are given in Section 6.
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2. Telegraph processes and martingales

Let (�,F,P) be a probability space. In addition, we fix a time horizon T and a filtration
{Ft }t∈[0,T ]. Let F = FT .

On the probability space (�,F,P) we define the following two independent objects.

• A (right-continuous) Markov process ε(t) ∈ {0, 1}, t ∈ [0, T ], with alternating transition
intensities λ0 > 0 and λ1 > 0:

P{ε(t +�t) �= ε(t) | ε(t)} = λε(t)�t + o(�t) as �t → +0.

The process ε(t), t ∈ [0, T ], is assumed to be adapted to the filtration {Ft }t∈[0,T ].

• A sequence of independent random variables Yi,n with alternating distributions �0(dy)
and �1(dy): P{Yi,n ∈ dy} = �i(dy), i = 0, 1, n ≥ 1. Suppose that hi := E Yi,n =∫ ∞
−∞ y�i(dy) < ∞.

Note that the switching times 0 = τ0 < τ1 < τ2 < · · · of the Markov process ε = ε(t)

have exponentially distributed increments, i.e. P{τn+1 − τn > t | Fτn} = exp(−λε(τn)t), and
τn+1 − τn, n ≥ 0, are independent.

Let {N(t)}t∈[0,T ] be a counting Poisson process defined as

N(t) = max{n : τn ≤ t}.
Next, we define a telegraph process {T (t)}t∈[0,T ] as

T (t) =
∫ t

0
cε(s) ds (2.1)

and a compound Poisson process {J(t)}t∈[0,T ] as

J(t) =
N(t)∑
n=1

Yεn,n. (2.2)

Here the constants c0, c1 ∈ R are the velocity values of the telegraph process, c1 < c0, and
εn = ε(τn−), n = 1, 2, . . . , is the state of the Markov process ε just before the nth switching.

Processes T (t) and J(t), t ∈ [0, T ], are adapted to the filtration {Ft }t∈[0,T ]. Note that
F0 is not trivial. Moreover, for any t > 0, the distributions of T (t) and J(t) are completely
determined by the initial state ε(0) ∈ {0, 1}.

Fix the initial state ε(0) = i ∈ {0, 1}. Then, for any t > 0, we have the equality in
distribution

T (t)+ J(t)
d= ci t 1{τ1>t} +[ciτ1 + Yi,1 + T̃ (t − τ1)+ J̃(t − τ1)] 1{τ1<t}, (2.3)

where the telegraph process T̃ and jump process J̃ are initiated from the opposite state, 1 − i,
and they are independent of T and J. Here τ1 is the first switching time, and Yi,1 is the value
of the first jump.

Theorem 2.1. The transition densities pi(x, t) := P{T (t) + J(t) ∈ dx | ε(0) = i}/dx,
i = 0, 1, follow the set of integral equations

pi(x, t) = e−λi t δ(x − ci t)+
∫ t

0

(∫ ∞

−∞
p1−i (x − cis − y, t − s)�i(dy)

)
λie

−λis ds (2.4)

for t ≥ 0 and i = 0, 1, where δ(·) is Dirac’s delta function.

https://doi.org/10.1239/jap/1346955337 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955337


Option pricing in the telegraph model 841

The expectations mi(t) = E{T (t)+ J(t) | ε(0) = i}, t ≥ 0, i = 0, 1, satisfy

mi(t) =
(
ci

λi
+ hi

)
(1 − e−λi t )+

∫ t

0
m1−i (t − s)λie

−λis ds, i = 0, 1, (2.5)

where hi = E{Yi,1} = ∫ ∞
−∞ y�i(dy), i = 0, 1.

Proof. Equality (2.4) follows from (2.3). To compute mi(t), we use (2.4):

mi(t) =
∫ ∞

−∞
xpi(x, t) dx

= ci te
−λi t +

∫ ∞

−∞
x

[∫ t

0

(∫ ∞

−∞
p1−i (x − cis − y, t − s)�i(dy)

)
λie

−λis ds

]
dx

= ci te
−λi t +

∫ ∞

−∞

[∫ t

0
λie

−λis
(∫ ∞

−∞
xp1−i (x − cis − y, t − s) dx

)
ds

]
�i(dy).

Applying the change of variable x = x′ + cis + y we have

mi(t) = ci te
−λi t + ci

∫ t

0
sλie

−λis ds +
∫ ∞

−∞
y�i(dy)

∫ t

0
λie

−λis ds

+
∫ t

0
m1−i (t − s)λie

−λis ds

=
(
ci

λi
+ hi

)
(1 − e−λi t )+

∫ t

0
m1−i (t − s)λie

−λis ds.

Integral equations (2.5) can be rewritten in differential form.

Corollary 2.1. The set of equations (2.5) is equivalent to the Cauchy problem

dmi
dt

= ci + λihi − λimi(t)+ λim1−i (t), t > 0, i = 0, 1, (2.6)

with initial conditions m0(0) = m1(0) = 0.

Proof. The initial conditions follow directly from (2.5). Differentiating (2.5) and then
evaluating the integral using integration by parts, with initial conditions m0(0) = m1(0) = 0,
yields

dmi(t)

dt
=

(
ci

λi
+ hi

)
e−λi t −

∫ t

0

∂m1−i (t − s)

∂s
λie

−λis ds

=
(
ci

λi
+ hi

)
e−λi t + λim1−i (t)− λi

∫ t

0
m1−i (t − s)λie

−λis ds

= ci + λihi − λimi(t)+ λim1−i (t).

Remark 2.1. The exact forms of the distribution densities pi(x, t) (with deterministic jump
values) and the expectations mi(t) of the jump-telegraph processes are known; see [15].

The next theorem could be considered as a version of the Doob–Meyer decomposition for
jump-telegraph processes with alternating intensities.
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Theorem 2.2. The process {T (t)+ J(t)}t∈[0,T ] is a martingale if and only if

c0 + λ0h0 = 0 and c1 + λ1h1 = 0. (2.7)

Proof. First note that, for s, t ∈ [0, T ], s < t ,

E{T (t)+ J(t) | Fs} = T (s)+ J(s)+mε(s)(t − s).

Next, the solution of the Cauchy problem for system (2.6) with zero initial conditions is equal
to 0, mi(t) ≡ 0, i = 0, 1, if and only if the equalities in (2.7) hold.

3. Market model and risk-neutral measures

Let {T (t)}t∈[0,T ] be the telegraph process, and let {J(t)}t∈[0,T ] be the jump process defined
on the filtered probability space (�,F, {Ft }t∈[0,T ],P) (see (2.1) and (2.2)). We construct the
financial market model with two assets.

Assume that the prices of the risky asset vary with the stochastic exponential of T + J, i.e.

S(t) = S0Et (T + J) = S0 exp(T (t))
N(t)∏
n=1

(1 + Yεn,n), (3.1)

when the initial price S(0) = S0 > 0 and εn = ε(τn−). The jump values {Yi,n}(i=0,1, n≥1) are
assumed to be supported on (−1,+∞).

The bank account B(t), t ∈ [0, T ], yields alternating interest rates r0, r1 > 0, so

B(t) = exp(R(t)), (3.2)

where R(t) = ∫ t
0 rε(s) ds.

Model (3.1)–(3.2) has no arbitrage possibilities, if the process

B(t)−1S(t) = S0 exp(T (t)− R(t))

N(t)∏
n=1

(1 + Yεn,n)

is martingale with respect to some equivalent measure P̃. Here T (t)− R(t), t ∈ [0, T ], is the
telegraph process with velocities c̄i := ci − ri, i = 0, 1, which is driven by the Poisson process
N(t), t ∈ [0, T ], with alternating intensities λ0, λ1 > 0.

Theorem 3.1. Model (3.1)–(3.2) possesses an equivalent martingale measure P̃ if and only if
there exists a pair of positive functions ϕ0 and ϕ1 such that

c̄0 +
∫ ∞

−1
yϕ0(y)�0(dy) = 0 and c̄1 +

∫ ∞

−1
yϕ1(y)�1(dy) = 0. (3.3)

Under measure P̃, the Poisson rates are λ∗
i = ∫ ∞

−1 ϕi(y)�i(dy) and the jump values are
distributed as �∗

i (dy) = (ϕi(y)/λ
∗
i )�i(dy), i = 0, 1.

Proof. We construct an equivalent probability measure on (�,F, {Ft }t∈[0,T ]) in two steps.
Step 1. Consider the constants c∗i ∈ R and h∗

i > −1 such that c∗i = −λih∗
i , i = 0, 1. Let

T ∗(t) be the telegraph process defined as in (2.1) with velocities c∗0 and c∗1 instead of c0 and

c1, and let J∗(t) = ∑N(t)
n=1 h

∗
εn

be the pure jump process with constant jump values h∗
0 and h∗

1.
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Owing to Theorem 2.2, the process T ∗ +J∗ is a martingale. LetZ = Z(t) be the stochastic
exponential

Z(t) := Et (T
∗ + J∗) = eT ∗(t)

N(t)∏
n=1

(1 + h∗
εn
).

As the first step, we transform the underlying measure P into the equivalent probability measure
P∗ on (�,F, {Ft }t∈[0,T ]) by means of the density

dP∗

dP

∣∣∣∣
Ft

= Z(t). (3.4)

It is known (see [15, Theorem 3]) that, under the new measure P∗, the switching intensities
of process ε become

λ∗
i = λi − c∗i = λi(1 + h∗

i ), i = 0, 1.

Therefore, we can replace the switching intensities λ0 and λ1 by arbitrary λ∗
0 > 0 and λ∗

1 > 0.
Step 2. We pass to the equivalent jump size distributions �∗

i (dy) by virtue of

�∗
i (dy) = ϕ∗

i (y)�i(dy), (3.5)

with a positive integrable function ϕ∗
i (y) such that

∫ ∞
−1 ϕ

∗
i (y)�i(dy) = 1.

Carrying out these two steps yields the new measure P̃ which is equivalent to the original
measure P.

Using Theorem 2.2, it is easy to see that the process T − R + J as well as B−1S are
P̃-martingales if and only if

ci − ri + λ∗
i

∫ ∞

−1
yϕ∗

i (y)�i(dy) = 0, i = 0, 1.

Hence, model (3.1)–(3.2) possesses an equivalent martingale measure if and only if system (3.3)
has an integrable solution ϕ0(y), ϕ1(y). This measure is constructed above: in the first step we
create new switching intensities λ∗

0 and λ∗
1, and in the second step we change the distributions

of the jump values to get the density ϕ∗
i such that ϕ∗

i (y) = ϕi(y)/λ
∗
i , i = 0, 1.

Integrating the latter equality with respect to the measure �i(dy) we obtain

λ∗
i =

∫ ∞

−1
ϕi(y)�i(dy), i = 0, 1, (3.6)

completing the proof.

Remark 3.1. In the particular case when the jump values are deterministic, i.e. �i(dy) =
δ(y − hi) dy, the equations in (3.3) have the form c̄i + λ∗

i hi = 0, i = 0, 1. In this case
Theorem 3.1 is equivalent to Theorem 3 of [15].

4. Pricing European options

Generally speaking, the set of equations (3.3) may have infinitely many solutions. In order
to determine the risk-neutral measure, we should assume an additional condition.

4.1. Jump risk is not priced

Following Merton’s arguments (see [5] and [10]) we suppose that the telegraph component T
and jump component J respectively represent the systematic risk and unsystematic risk of the
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underlying risky asset. So, we assume that, under the change of measure, the distributions of
the jump values are invariant. This assumption is quite reasonable because in the case of the
complete market model (when the alternating jump values are deterministic), under the unique
martingale measure, only jump intensities are changed [15].

If the distributions of the jump values are not changed, then we consider only constant
solutions of the equations in (3.3), i.e. ϕ0 = λ∗

0 and ϕ1 = λ∗
1, where λ∗

0 = −c̄0/h0 and
λ∗

1 = −c̄1/h1 are the new switching intensities, and hi = E Yi,n, i = 0, 1. The risk neutral
measure P∗ is defined by (3.4), and, under this measure, the underlying Markov process ε has
the intensities λ∗

0 and λ∗
1.

The above allows us to write down exact formulae for the option prices. Consider the
function f : R+ → R+, and the European option with maturity time T and payoff function
X = f (S(T )). The option can now be priced as the expectation with respect to the risk neutral
measure P∗, i.e. c = E∗{e−R(T )f (S(T ))}.
4.2. Jump risk is insured

To make another risk-neutral measure choice, we supply the market with an additional
security which magnifies its value by a fixed rate each time there is a change of state, i.e.

Ŝ(t) =
N(t)∏
n=1

(1 + ĥεn). (4.1)

The process {Ŝ(t)}t≥0 is governed by the same Poisson processN and it has deterministic jump
values ĥ0, ĥ1 > 0. This security can be considered as an insurance contract which compensates
losses and gains provoked by state changes and helps to hedge the option with payoff function
X = f (S(T ), Ŝ(T )).

A market formed by {B(t), S(t), Ŝ(t)}, t ∈ [0, T ], is still incomplete, but now we can use
the following approach to make a reasonable choice of risk-neutral measure. First, we change
the measure with respect to the switching intensities. Applying Theorem 3.1 to the asset Ŝ and
using Remark 3.1, we define the equivalent measure with switching intensities λ∗

i = ri/ĥi . We
then make one more change of measure, conserving the form of the distribution of the jump
values Yi,n, i = 0, 1, n ∈ N.

We now give some examples illustrating this approach.

Example 4.1. (Exponential distribution.) Assume that c̄0, c̄1 < 0 and that the alternating
distributions of the jump sizes (under the measure P) are exponential with densities �i(dy) =
ηie−ηiy 1{y>0} dy, ηi > 0, i = 0, 1. Assuming that these distributions, under the martingale

measure P̃ , are also exponential, we set ϕi(y) = αie−aiy 1{y>0}, ai > −ηi, αi > 0. From the
equations in (3.3) we have ai = −ηi + √−αiηi/c̄i .

Under the martingale measure P̃ , the new switching intensities are

λ∗
i = √−c̄iηiαi

(see (3.6)), and the jump sizes are distributed according to (3.5). Hence, αi = λ∗
i

2/(−c̄iηi),
and the new distributions of the sizes of the jumps are

�∗
i (dy) = η∗

i e−η∗
i y 1{y>0} dy, i = 0, 1,

where η∗
i = −λ∗

i /c̄i . Here λ∗
i , i = 0, 1, are defined as λ∗

i = ri/ĥi .
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Example 4.2. (Log-exponential distribution.) Assume that the distribution of Vi,n = log(1 +
Yi,n) is exponential.

More precisely, if c̄i < 0 then the distribution of Vi,n is exponential. If c̄i > 0, we assume
that the distribution of −Vi,n is exponential. For both c̄i < 0 and c̄i > 0, we set the density of
such a random variable as ηie−ηiv 1{v>0}, ηi > 0, i = 0, 1.

Case 1: c̄i < 0. Assume that ηi > 1. The distribution of jump Yi,n is �i(dy) =
ηi(1 + y)−(1+ηi) 1{y>0} dy and hi = E Yi,n = 1/(ηi − 1). Assuming that the distributions of
Yi,n under the martingale measure P̃ are of the same form, we set ϕi(y) = αi(1 + y)−ai 1{y>0},
ai > 1 − ηi, αi > 0.

From the equations in (3.3) we obtain ai = −ηi + (1 + √
�i)/2, where�i = 1+4αiηi/|c̄i |.

Under the martingale measure, the new switching intensities are λ∗
i = αiηi/(ai + ηi) =

2αiηi/(1 + √
�i). Hence, αi = λ∗

i (1 + λ∗
i /|c̄i |)/ηi and the jump sizes Yi,n are distributed

as before, i.e. �∗
i (dy) = η∗

i (1 + y)−(1+η∗
i ) 1{y>0} dy, where η∗

i = αiηi/λ
∗
i = 1 + λ∗

i /|c̄i | and

λ∗
i = ri/ĥi .

Case 2: c̄i > 0 and λ∗
i = ri/ĥi > c̄i . Now the distribution of jump Yi,n is �i(dy) =

ηi(1 + y)ηi−1 1{−1<y<0} dy and hi = E Yi,n = −1/(1 + ηi), ηi > 0. Again, we suppose
that, under the martingale measure, the jump sizes are distributed as before. Then ϕi(y) =
αi(1 + y)ai 1{−1<y<0}, ai > −ηi, αi > 0.

Repeating the same calculations as in the c̄i < 0 case we have ai = −ηi + (−1 + √
�i)/2.

The new switching intensities are λ∗
i = αiηi/(ai + ηi) = 2αiηi/(−1 + √

�i). Hence,
αi = λ∗

i (λ
∗
i /c̄i − 1)/ηi > 0 and the jump sizes Yi,n are distributed as �∗

i (dy) = η∗
i (1 +

y)η
∗
i −1 1{−1<y<0} dy, where η∗

i = αiηi/λ
∗
i and λ∗

i = ri/ĥi > c̄i .

Case 3: c̄i > 0 and λ∗
i = ri/ĥi < c̄i (the case of arbitrage). In this case the model

possesses arbitrage opportunities. If the new distributions of the jump sizes have the same
structure then h̃i = ẼYi,n = −1/(1 + η∗

i ) and −1 < h̃i < 0. Hence, in this case we have
c̄i + λ∗

i h̃i = c̄i − λ∗
i /(1 + η∗

i ) > 0 (because λ∗
i < c̄i and η∗

I > 0). Owing to Theorem 3.1, this
means that the model has no risk-neutral measures.

Example 4.3. (Log-normal distribution.) Assume that the distributions of Vi,n = log(1+Yi,n)
are Gaussian, N (mi, σ

2
i ).

Case 1: c̄i < λ∗
i = ri/ĥi . In this case the distribution of jump Yi,n is

�i(dy) = 1

(1 + y)σi
√

2π
exp

{
−[log(1 + y)−mi]2

2σ 2
i

}
1{y>−1} dy,

and hi = E Yi,n = exp(mi + σ 2
i /2)− 1.

We change the measure, assuming that the new distributions of 1+Yi,n are again log-normal
with the same σi . To this end, we apply ϕi(y) = αieai log(1+y) 1{y>−1}, ai ∈ R, αi > 0.

The equations in (3.3) yield

ai = log(1 − c̄i/λ
∗
i )−mi − σ 2

i /2

σ 2
i

.

Hence, the new intensities are

λ∗
i = αi exp

(
miai + σ 2

i a
2
i

2

)
,
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and αi = λ∗
i exp(−miai − σ 2

i a
2
i /2), λ

∗
i = ri/ĥi > c̄i . The jump sizes Yi,n are distributed as

�∗
i (dy) = 1

(1 + y)σi
√

2π
exp

{
−[log(1 + y)− (mi + σ 2

i ai)]2

2σ 2
i

}
1{y>−1} dy.

Therefore, Vi,n ∼ N (mi + σ 2
i ai , σ

2
i ).

Case 2: c̄i > λ∗
i = ri/ĥi (the case of arbitrage). In this case the model possesses arbitrage

opportunities. Similar to the case of arbitrage in Example 4.2, we have c̄i + λ∗
i h̃i > 0, where

h̃i = ẼYi,n > −1. Again, by Theorem 3.1, the risk-neutral measure is absent.

Remark 4.1. The option prices in the examples presented above can be computed as expecta-
tions with respect to the martingale measure P̃, i.e. c = Ẽ{e−R(T )f (S(T ))}.

5. Model with insurable jump risk: fundamental equation and hedging strategies

Consider the market model with insured jump risk formed by the three assets (B(t), S(t),
Ŝ(t)) defined on the filtered probability space (�,F , {Ft }t∈[0,T ],P); see (3.1), (3.2), and (4.1).

Let f : R
2+ → R+ be a continuous function. Consider a European option with maturity

time T and payoff function X = f (S(T ), Ŝ(T )). Let P̃ be the equivalent martingale measure
in this model.

To price the option, we need to study the master function

Fi(x1, x2, t) := Ẽi{e−R(T−t)f (x1eT (T−t)κ(T − t), x2κ̂(T − t))},
where Ẽi denotes the conditional expectation with respect to the risk-neutral measure P̃ under
the condition {ε(0) = i}, i = 0, 1. Here κ(T − t) = ∏N(T−t)

n=1 (1 + Yεn,n) and κ̂(T − t) =∏N(T−t)
n=1 (1 + ĥεn).
Conditioning on the first switching, similar to (2.3), we obtain the system of integral equations

Fi(x1, x2, t) = e−(λ∗
i +ri )(T−t)f (x1eci (T−t), x2)

+
∫ T

t

λ∗
i e

−(λ∗
i +ri )(s−t)

×
[∫ ∞

−1
F1−i (x1(1 + y)eci (s−t), x2(1 + ĥi ), s)�

∗
i (dy)

]
ds (5.1)

for t < T and i = 0, 1, with the terminal conditions Fi(x1, x2, t)|t↑T = f (x1, x2). Here the
risk-free intensities λ∗

i are defined by the auxiliary security Ŝ, λ∗
i = ri/ĥi , i = 0, 1, and the

distributions �∗
i make the process (B(t)−1S(t), B(t)−1Ŝ(t)), t ∈ [0, T ], martingale.

This system plays the same role as the fundamental equation in the Black–Scholes model.

Remark 5.1. If the payoff function f is continuously differentiable then (5.1) can be rewritten
in an equivalent form, as the system of differential equations (cf. Equation (29) of [17])

∂Fi

∂t
(x1, x2, t)+ cix1

∂Fi

∂x1
(x1, x2, t)

= (ri + λ∗
i )Fi(x1, x2, t)− λ∗

i

∫ ∞

−1
F1−i (x1(1 + y), x2(1 + ĥi ), t)�

∗
i (dy). (5.2)
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Now consider the hedging problem for the option with FT -measurable payoff function X.
Let �t = {ψ0(t), ψ(t), ψ̂(t)} be a trading strategy with the strategy value

Vt = ψ0(t)B(t)+ ψ(t)S(t)+ ψ̂(t)Ŝ(t), t ∈ [0, T ]. (5.3)

We assume that the process �t is Ft -adapted.
The strategy �t = {ψ0(t), ψ(t), ψ̂(t)}, t ∈ [0, T ], replicates the claim X if its terminal

value is equal to the payoff of the option:

VT = X P -almost surely.

We assume that �t, t ∈ [0, T ], replicates the claim X, and that it is self-financing:

dVt = ψ0(t) dB(t)+ ψ(t) dS(t)+ ψ̂(t) dŜ(t), t ∈ [0, T ]. (5.4)

Since the jump occurring at time τn has a nonpredictable value Yi,n, we cannot presume that
the strategy �t is predictable. We assume that between the switching times τn−1 and τn the
portfolio holds ψ̂(τn−1) units of the auxiliary asset, and that the decision is made at time τn−1.
Thus, ψ̂(t) is required to have right-continuous almost-sure paths. Paths of the process ψ(t),
t ∈ [0, T ], are assumed to be left-continuous almost surely.

Under these assumptions, (5.4) may be rewritten in integral form:

Vt = V0 +
∫ t

0
ψ0(s) dB(s)+

∫ t

0
ψ(s)S(s) dT (s)+

N(t)∑
n=1

ψ(τn)Yεn,nS(τn−)

+
N(t)∑
n=1

[ψ̂(τn)(1 + ĥεn)− ψ̂(τn−)]Ŝ(τn−).

The right-hand term follows from∫ t

0
ψ̂(s) dŜ(s) = ψ̂(τN(t))Ŝ(τN(t))− ψ̂(0)Ŝ(0)

=
N(t)∑
n=1

ψ̂(τn)Ŝ(τn)−
N(t)∑
n=1

ψ̂(τn−)Ŝ(τn−)

=
N(t)∑
n=1

[ψ̂(τn)(1 + ĥεn)− ψ̂(τn−)]Ŝ(τn−).

Using balance equation (5.3), i.e. ψ0(t) = B(t)−1(Vt − ψ(t)S(t) − ψ̂(t)Ŝ(t)), we rewrite
the above equation as

Vt = V0 +
∫ t

0
rε(s)Vs ds +

∫ t

0
ψ(s)S(s)(cε(s) − rε(s)) ds −

∫ t

0
ψ̂(s)Ŝ(s)rε(s) ds

+
N(t)∑
n=1

ψ(τn)Yεn,nS(τn−)+
N(t)∑
n=1

[ψ̂(τn)(1 + ĥεn)− ψ̂(τn−)]Ŝ(τn−).

Note that if �t is the hedging strategy for X then the respective strategy value Vt can be
expressed by means of the functions Fi : Vt = Fε(t)(S(t), Ŝ(t), t); see, e.g. [4, Chapter 7].
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By Itô’s formula we obtain

Vt = V0 +
∫ t

0

∂Fε(s)

∂x1
(S(s), Ŝ(s), s)S(s)cε(s) ds +

∫ t

0

∂Fε(s)

∂s
(S(s), Ŝ(s), s) ds

+
N(t)∑
n=1

(Vτn − Vτn−).

Comparing the latter two representations of the strategy value Vt with fundamental equation
(5.2), between jumps we have

ψ(t)S(t)(cε(t) − rε(t))− ψ̂(t)Ŝ(t)rε(t) = A(t), (5.5)

where

A(t) = λ∗
ε(t)

[
Fε(t)(S(t), Ŝ(t), t)−

∫ ∞

−1
F1−ε(t)(S(t)(1 + y), Ŝ(t)(1 + ĥε(t)), t)�

∗
ε(t)(dy)

]
.

At jump times τn,

ψ(τn)Yεn,nS(τn−)+ [ψ̂(τn)(1 + ĥεn)− ψ̂(τn−)]Ŝ(τn−) = Bn, (5.6)

where Bn = Vτn − Vτn−.
In (5.5) passing to the limit as t ↑ τn yields

ψ(τn)c̄εnS(τn−)− ψ̂(τn−1)rεn Ŝ(τn−) = An, c̄εn = cεn − rεn, (5.7)

where
An = lim

t→τn−
A(t)

= λ∗
εn

[
Fεn(S(τn−), Ŝ(τn−), τn−)

−
∫ ∞

−1
F1−εn(S(τn−)(1 + y), Ŝ(τn−)(1 + ĥεn), τn−)�∗

εn
(dy)

]
.

Consequently, from (5.6) and (5.7) we get the portfolio at jump times: for n ≥ 1,

ψ(τn) = (S(τn−)c̄εn)−1[An +Kεnrεn ],
ψ̂(τn) = Ŝ(τn)

−1
[(
Bn − AnYεn,n

c̄εn

)
+Kεn

(
1 − rεnYεn,n

c̄εn

)]
.

(5.8)

Here Kεn = ψ̂(τn−1)Ŝ(τn−1), n ≥ 2,Kε1 = 0.
The strategy between jumps, τn−1 < t < τn (see (5.5)), is

ψ(t) = (S(t)c̄εn)
−1[A(t)+Kεnrεn ], ψ̂(t) = ψ̂(τn−1). (5.9)

Remark 5.2. The strategy �t = {ψ0(t), ψ(t), ψ̂(t)} constructed in this section (see (5.8)–
(5.9)) has a nonpredictable component ψ̂ of the security Ŝ which insured jump risks. To
explain it, note that the market enlarged by introducing the financial instrument Ŝ remains
incomplete.

Remark 5.3. If jump sizes are deterministic, i.e. Yi,n = yi, yi ∈ (−1,∞), we can presume
that the market model is complete and that the strategy is predictable. See [15].
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6. Conclusion

In this paper we proposed a class of financial market models for asset prices that follow an
exponential telegraph process with jumps of random amplitudes. This statistical behaviour
allowed us to describe a set of risk-neutral measures (Theorem 3.1). We considered two
approaches to option pricing that enabled us to obtain the closed formulae: in one approach we
used Merton’s arguments when the jump risk is not priced and in the other approach we added
an additional security which insures jump risks. We also gave a methodology of how to hedge
options in the case of insured jump risk.

Other methodologies of how to choose the risk-neutral measure can also be applied, e.g. the
minimal entropy martingale measure, but we will discuss these in more detail in future work.
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