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We present a multivariate stochastic volatility model with leverage, which is flexible
enough to recapture the individual dynamics as well as the interdependencies between
several assets, while still being highly analytically tractable.

First, we derive the characteristic function and give conditions that ensure its analyti-
city and absolute integrability in some open complex strip around zero. Therefore we can
use Fourier methods to compute the prices of multi-asset options efficiently. To show the
applicability of our results, we propose a concrete specification, the OU-Wishart model,
where the dynamics of each individual asset coincide with the popular Γ-OU BNS model.
This model can be well calibrated to market prices, which we illustrate with an example
using options on the exchange rates of some major currencies. Finally, we show that
covariance swaps can also be priced in closed form.
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1. Introduction

This paper deals with the pricing of options depending on several underlying assets. While there is a
vast amount of literature on the pricing of single-asset options, see e.g. Cont and Tankov (2004) or
Schoutens (2003) for an overview, the amount of literature considering the multi-asset case is rather
limited. This is most likely due to the fact that the trade-off between flexibility and tractability is par-
ticularly delicate in a multivariate setting. On the one hand, the model under consideration should be
flexible enough to recapture stylized facts observed in real option prices. When dealing with multiple
underlyings, this becomes challenging, since not only the individual assets but also their joint beha-
viour has to be taken into account. On the other hand, one needs enough mathematical structure to
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1. Introduction

calculate option prices in the first place and to be able to calibrate the model to market prices. Due
to an increasing number of state variables and parameters, this is also not an easy task in a multidi-
mensional framework. In this article we propose the multivariate OU-type stochastic volatility model
of Pigorsch and Stelzer (2009) in the generalised form introduced in Barndorff-Nielsen and Stelzer
(2011), which seems to present a reasonable compromise between these competing requirements. The
log-price processes Y = (Y 1, . . . ,Y d) of d financial assets are modelled as

dYt = (µ +β (Σt))dt +Σ
1
2
t dWt +ρ(dLt), (1.1)

dΣt = (AΣt +ΣtAT)dt +dLt , (1.2)

where µ ∈ Rd , A is a real d×d matrix, and β , ρ are linear operators from the real d×d matrices to
Rd . Moreover, W is an Rd-valued Wiener process and L is an independent matrix subordinator, i.e. a
Lévy process which only has positive semidefinite increments. Hence, the covariance process Σ is an
Ornstein-Uhlenbeck (henceforth OU) type process with values in the positive semidefinite matrices,
cf. Barndorff-Nielsen and Stelzer (2007). Thus we call (1.1), (1.2) the multivariate stochastic volatility
model of OU type. The positive semidefinite OU type process Σ introduces a stochastic volatility and,
what is difficult to achieve using several univariate models, a stochastic correlation between the assets.
Moreover, Σ is mean reverting and increases only by jumps. The jumps represent the arrival of new
information that results in positive shocks in the volatility and positive or negative shocks in the
correlation of some assets. Due to the leverage term ρ(dLt) they are correlated with price jumps. The
present model is a multivariate generalisation of the non-Gaussian OU type stochastic volatility model
introduced by Barndorff-Nielsen and Shepard (2001) (henceforth BNS model). For one underlying,
these models are found to be both flexible and tractable in Nicolato and Venardos (2003). The key
reason is that the characteristic function of the return process can often be computed in closed form,
which allows European options to be be priced efficiently using the Fourier methods introduced by
Carr and Madan (1999b) and Raible (2000). In the present study, we show that a similar approach is
also applicable in the multivariate case. Recently, Benth and Vos (2009) discussed a somewhat similar
model in the context of energy markets. However, they do not establish conditions for the applicability
of Fourier pricing and, more importantly, do not calibrate their model to market prices.

Alternatively, the covariance process Σ can also be modelled by other processes taking values in the
positive semidefinite matrices. In particular, several authors have advocated to use a diffusion model
based on the Wishart process, cf., Da Fonseca, Grasselli and Tebaldi (2007), Gourieroux (2007),
Gourieroux and Sufana (2010), Da Fonseca and Grasselli (2010), for instance. This leads to a mul-
tivariate generalisation of the model of Heston (1993). However, there is empirical evidence suggest-
ing that volatility jumps (together with the stock price), cf. Jacod and Todorov (2010), which cannot
be recaptured by a diffusion model. Moreover, the treatment of square-root processes on the cone of
positive semidefinite matrices is mathematically quite involved, see Cuchiero, Filipović, Mayerhofer
and Teichmann (2010).1 For example, whereas Da Fonseca and Grasselli (2010) have very recently
succeeded in calibrating their model to market prices, the resulting parameters do no satisfy the drift
condition for the existence of the underlying square-root diffusion, suggesting that a more sophistic-
ated optimization routine is necessary.

Another possible approach is to consider multivariate models based on a concatenation of uni-
variate building blocks. This approach is taken, e.g., by Luciano and Schoutens (2006) using Lévy

1This study generalizes the theory of affine processes from the positive univariate factors treated in Duffie, Pan and
Singleton (2000); Duffie, Filipović and Schachermayer (2003) to stochastic factor processes taking values in the cone of
symmetric positive semidefinite matrices. In particular, to ensure the existence of square-root processes, a quite intricate
drift condition turns out to be necessary.
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processes, by Dimitroff, Lorenz and Szimayer (2010), who consider a multivariate Heston model,
and by Hubalek and Nicolato (2005), who put forward a multifactor BNS model. However, all these
models have either a somewhat limited capability to catch complex dependence structures (compare
Section 4.2) or lead to tricky (factor) identification issues. Apart from models where all parameters are
determined by single-asset options, we are not aware of successful calibrations of such models. The
paper of Ma (2009) proposes a two-dimensional Black-Scholes model where the correlation between
the two Brownian motions is stochastic and given by a diffusion process with values in an interval
contained in [−1,1]. However, pricing can only be done via Monte-Carlo simulation in this model. In
addition, an extension to higher dimensions is not obvious, since the necessary positive semidefinite-
ness of the correlation matrix of the Brownian noise imposes additional constraints, which are hard to
incorporate.

The remainder of this paper is organised as follows. Sections 2.1 and 2.2 introduce the multivari-
ate stochastic volatility model of OU type. Afterwards, we derive the joint characteristic function of
(Yt ,Σt). We then show in Section 2.4 that a simple moment condition on L implies analyticity and ab-
solute integrability of the moment generating function of Yt in some open complex strip around zero.
Equivalent martingale measures are discussed in Section 2.5, where we also present a subclass that
preserves the structure of our model. In Section 3, we recall how to use Fourier methods to compute
prices of multi-asset options efficiently. Subsequently, we propose the OU-Wishart model, where L is
a compound Poisson process with Wishart distributed jumps. It turns out that the OU-Wishart model
has margins which are in distribution equivalent to a Γ-OU BNS model, one of the tractable specific-
ations commonly used in the univariate case. Moreover, the characteristic function can be computed
in closed form, which makes option pricing and calibration particularly feasible. In an illustrative ex-
ample we calibrate a bivariate OU-Wishart model to market prices, and compare its performance to
the multivariate Variance Gamma model of Luciano and Schoutens (2006) and a multivariate exten-
sion with stochastic volatility. As a final application, we show that covariance swaps can also be priced
in closed form in Section 5. The appendix contains a result on multidimensional analytic functions
which is needed to establish the regularity of the moment generating function in Section 2.4.

Notation

Md,n(R) (resp. Md,n(C)) represent the d×n matrices with real (resp. complex) entries. We abbreviate
Md(·) = Md,d(·). Sd denotes the subspace of Md(R) of all symmetric matrices. We write S+d for the
cone of all positive semidefinite matrices, and S++

d for the open cone of all positive definite matrices.
The identity matrix in Md(R) is denoted by Id . σ(A) denotes the set of all eigenvalues of A ∈Md(C).
We write Re(z) and Im(z) for the real or imaginary part of z ∈ Cd or z ∈ Md(C), which has to be
understood componentwise. The components of a vector or matrix are denoted by subscripts, however
for stochastic processes we use superscripts to avoid double indices.

On Rd , we typically use the Euclidean scalar product, 〈x,y〉Rd := xTy, and on Md(R) or Sd the
scalar products given by 〈A,B〉Md(R) := tr(ATB) or 〈A,B〉Sd

:= tr(AB) respectively. However, due to the
equivalence of all norms on finite dimensional vector spaces, most results here hold true independently
of the norm. We also write 〈x,y〉 = xTy for x,y ∈ Cd , although this is only a bilinear form but not a
scalar product on Cd .

We denote by vec : Md(R)→ Rd2
the bijective linear operator that stacks the columns of a matrix

below one other. With the above norms, vec is a Hilbert space isometry. Likewise, for a symmetric
matrix S ∈ Sd we denote by vech(S) the vector consisting of the columns of the upper-diagonal part
including the diagonal.

Furthermore, we employ an intuitive notation concerning integration with respect to matrix-valued
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2. The multivariate stochastic volatility model of OU type

processes. For an Mm,n(R)-valued Lévy process L, and Md,m(R) resp. Mn,p(R)- valued processes X ,Y
integrable with respect to L, the term

∫ t
0 Xs dLsYs is to be understood as the d× p (random) matrix with

(i, j)-th entry ∑
m
k=1 ∑

n
l=1
∫ t

0 X ik
s dLkl

s Y l j
s .

2. The multivariate stochastic volatility model of OU type

For the remainder of the paper, fix a filtered probability space (Ω,F ,(Ft)t∈[0,T ],P) in the sense of
Jacod and Shiryaev (2003, I.1.3), where F0 = {Ω, /0} is trivial and T > 0 is a a fixed terminal time.

2.1. Positive semidefinite processes of OU type

To formulate our model, we need to introduce the concept of matrix subordinators as studied in
Barndorff-Nielsen and Pérez-Abreu (2008).

Definition 2.1. An Sd-valued Lévy Process L = (Lt)t∈R+ is called matrix subordinator, if Lt−Ls ∈ S+d
for all t > s.

The characteristic function of a matrix subordinator L is given by E(eitr(ZL1)) = exp(ψL(Z)) for the
characteristic exponent

ψL(Z) = itr(γLZ)+
∫
S+d
(eitr(XZ)−1)κL(dX), Z ∈Md(R),

where γL ∈ S+d and κL is a Lévy measure on Sd with κL(Sd\S+d ) = 0 and
∫
{||X ||≤1} ||X || κL(dX)< ∞.

Positive semidefinite processes of OU type are a generalisation of nonnegative OU type processes
(cf. Barndorff-Nielsen and Stelzer (2007)). Let L be a matrix subordinator and A ∈Md(R). The posit-
ive semidefinite OU type process Σ=(Σt)t∈R+ is defined as the unique strong solution to the stochastic
differential equation

dΣt = (AΣt +ΣtAT)dt +dLt , Σ0 ∈ S+d . (2.1)

It is given by

Σt = eAt
Σ0eATt +

∫ t

0
eA(t−s) dLs eAT(t−s). (2.2)

Since Σt ∈ S+d for all t ∈R+, this process can be used to model the stochastic evolution of a covariance
matrix. As in the univariate case there exists a closed form expression for the integrated volatility.
Suppose

0 /∈ σ(A)+σ(A). (2.3)

Then the integrated OU type process Σ+ is given by

Σ
+
t :=

∫ t

0
Σs ds = A−1(Σt −Σ0−Lt), (2.4)

where A : X 7→ AX +XAT. Note that condition (2.3) implies that the operator A is invertible, cf. Horn
and Johnson (1990, Theorem 4.4.5). In the case where Σ is mean reverting, i.e., A only has eigenvalues
with strictly negative real part, condition (2.3) is trivially satisfied.
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2.2. Definition and marginal dynamics of the model

The following model was introduced and studied in Pigorsch and Stelzer (2009) from a statistical
point of view in the no-leverage case and has also been considered in Barndorff-Nielsen and Stelzer
(2011). Here we discuss its applicability to option pricing.

Let L be a matrix subordinator with characteristic exponent ψL and W an independent Rd-valued
Wiener process. The multivariate stochastic volatility model of OU type is then given by

dYt = (µ +β (Σt))dt +Σ
1
2
t dWt +ρ(dLt), Y0 ∈ Rd (2.5)

dΣt = (AΣt +ΣtAT)dt +dLt , Σ0 ∈ S+d , (2.6)

with linear operators β ,ρ : Md(R)→ Rd , µ ∈ Rd , and A ∈Md(R) such that 0 /∈ σ(A)+σ(A).
We have specified the risk premium β and the leverage operator ρ in a quite general form. The

following specification turns out to be particularly tractable.

Definition 2.2. We call β and ρ diagonal if, for β1, . . . ,βd ∈ R and ρ1, . . . ,ρd ∈ R,

β (X) =

 β1X11
...

βdXdd

 , ρ(X) =

 ρ1X11
...

ρdXdd

 , ∀X ∈Md(R).

In the following, we will denote for each i ∈ {1, . . . ,d} by β i(X) and ρ i(X) the i-th component
of the vector β (X) or ρ(X) respectively. The marginal dynamics of the individual assets have been
derived in Barndorff-Nielsen and Stelzer (2011, Proposition 4.3).

Theorem 2.3. Let i ∈ {1, . . . ,d}. Then we have

(
Y i

t
)

t∈R+

f idi
=

(
µit +β

i(Σ+
t )+

∫ t

0
(Σii

s )
1
2 dW i

s +ρ
i(Lt)

)
t∈R+

,

where
f idi
= denotes equality of all finite dimensional distributions.

Let us now consider the case where A is a diagonal matrix, A =

(
a1 0

. . .
0 ad

)
, and β , ρ are diagonal

as well. Then, for every i ∈ {1, . . . ,d}, we have

dY i
t

f idi
= (µi +βiΣ

ii
t )dt +(Σii

t )
1
2 dW i

t +ρi dLii
t , (2.7)

dΣ
ii
t = 2aiΣ

ii
t dt +dLii

t . (2.8)

Evidently, every diagonal element Lii, i = 1, . . . ,d, of a matrix subordinator L is a univariate subor-
dinator, and thus Σii is a nonnegative OU type process. Consequently, the model for the i-th asset is
equivalent in distribution to a univariate BNS model.

2.3. Characteristic function

Let 〈·, ·〉V , 〈·, ·〉W be bilinear forms as introduced in the notation, where V ,W may be either Rd , Cd or
Md(·). Given a linear operator T : V →W , the adjoint T ∗ : W →V is the unique linear operator such
that 〈T x,y〉W = 〈x,T ∗y〉V for all x ∈V and y ∈W . Directly by definition we obtain the following

5



2. The multivariate stochastic volatility model of OU type

Lemma 2.4. Let y ∈ Rd , z ∈Md(R) and t ∈ R+. Then the adjoints of the linear operators

A : X 7→ AX +XAT, B(t) : X 7→ eAtXeATt −X ,

C (t) : X 7→ eAtXeATtz+β (A−1(B(t)X))yT+ρ(X)yT+
i
2

yyTA−1(B(t)X)

on Md(C) are given by

A∗ : X 7→ ATX +XA, B(t)∗ : X 7→ eATtXeAt −X ,

C (t)∗ : X 7→ eATtXzTeAt +ρ
∗(Xy)+B(t)∗A−∗

(
β
∗(Xy)+

i
2

XyyT
)
.

Note that for diagonal ρ it holds that ρ∗(X) =

(
ρ1X11 0

. . .
0 ρdXdd

)
for all X ∈Md(R).

Our main objective in this section is to compute the joint characteristic function of (Yt ,Σt). This will
pave the way for Fourier pricing of multi-asset options later on. Note that we use the scalar product

〈(x1,y1),(x2,y2)〉 := xT1 x2 + tr(yT1 y2)

on Rd×Md(R).

Theorem 2.5 (Joint characteristic function). For every (y,z) ∈ Rd ×Md(R) and t ∈ R+, the joint
characteristic function of (Yt ,Σt) is given by

E[exp(i〈(y,z),(Yt ,Σt)〉)] = exp
{

iyT(Y0 +µt)+ itr(Σ0eATtzeAt)

+itr
(

Σ0

(
eATtA−∗

(
β
∗(y)+

i
2

yyT
)

eAt −A−∗
(

β
∗(y)+

i
2

yyT
)))

+
∫ t

0
ψL

(
eATszeAs +ρ

∗(y)+ eATsA−∗
(

β
∗(y)+

i
2

yyT
)

eAs−A−∗
(

β
∗(y)+

i
2

yyT
))

ds
}
,

where A−∗ := (A∗)−1 denotes the inverse of the adjoint of A : X 7→ AX +XAT, that is, the inverse of
A∗ : X 7→ ATX +XA.

Note that for z = 0 we obtain the characteristic function of Yt .

Proof. Since Σ is adapted to the filtration generated by L, and by the independence of L and W ,

E[exp(〈(y,z),(Yt ,Σt)〉)] = eiyT(Y0+µt)E
[

eitr(zTΣt)+iyT(β (Σ+
t )+ρ(Lt))E

(
eiyT

∫ t
0 Σ

1
2
s dWs

∣∣∣(Ls)s∈R+

)]
= eiyT(Y0+µt)E

[
eitr(zTΣt)+iyT(β (Σ+

t )+ρ(Lt)) exp
(
−1

2
yTΣ

+
t y
)]

.

By (2.4) and using the fact that the trace is invariant under cyclic permutations the last term equals

eiyT(Y0+µt)E
[
eitr(zTΣt+β (A−1(Σt−Σ0−Lt))yT+ρ(Lt)yT+ i

2 yyTA−1(Σt−Σ0−Lt))
]
.

In view of (2.2), we have

Σt −Σ0−Lt =
∫ t

0
B(t− s)dLs +B(t)Σ0,
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2. The multivariate stochastic volatility model of OU type

for the linear operator B(t) from Lemma 2.4. Therefore

E[exp(i〈(y,z),(Yt ,Σt)〉]

=exp
(

iyT(Y0 +µt)+ itr
(

zTeAt
Σ0eATt +β (A−1(B(t)Σ0))yT+

i
2

yyTA−1(B(t)Σ0)

))
× E

[
exp
(

itr
(

zT
∫ t

0
eA(t−s) dLs eAT(t−s)+β

(
A−1

(∫ t

0
eA(t−s) dLs eAT(t−s)−Lt

))
yT

+ρ(Lt)yT+
i
2

yyTA−1
(∫ t

0
eA(t−s) dLs eAT(t−s)−Lt

)))]
=exp

(
iyT(Y0 +µt)+ itr

(
zTeAt

Σ0eATt +β (A−1(B(t)Σ0))yT+
i
2

yyTA−1(B(t)Σ0)

))
× E

[
exp

(
itr

((∫ t

0
C (t− s)dLs

)T

Id

))]

with the linear operator C (t) from Lemma 2.4, since A−1
(∫ t

0 eA(t−s) dLs eAT(t−s)−Lt

)
∈ Sd . An im-

mediate multivariate generalisation of results obtained in Rajput and Rosinski (1989, Proposition 2.4)
(see also Eberlein and Raible (1999, Lemma 3.1)) yields an explicit formula for the expectation above:

E

[
exp

(
itr

((∫ t

0
C (t− s)dLs

)T

Id

))]
= exp

(∫ t

0
ψL (C (s)∗Id) ds

)
.

By Lemma 2.4 we have

e
∫ t

0 ψL(C (s)∗Id)ds = e
∫ t

0 ψL

(
eATszTeAs+ρ∗(y)+eATsA−∗(β ∗(y)+ i

2 yyT)eAs−A−∗(β ∗(y)+ i
2 yyT)

)
ds
.

This expression is well-defined, because

eATszTeAs +ρ
∗(y)+ eATsA−∗

(
β
∗(y)+

i
2

yyT
)

eAs−A−∗
(

β
∗(y)+

i
2

yyT
)
∈Md(R)+ iS+d ,

for all s ∈ [0, t]. Indeed, this follows from

eATsA−∗
(

yyT
)

eAs−A−∗
(

yyT
)
=
∫ s

0
eATuyyTeAu du ∈ S+d . (2.9)

Finally, we infer from Lemma 2.4 that

tr
(

β (A−1(B(t)Σ0))yT+
i
2

yyTA−1(B(t)Σ0)

)
= tr

(
Σ0

(
B(t)∗A−∗

(
β
∗(y)+

i
2

yyT
)))

,

which gives the desired result by noting that tr(zΣt) = tr(zTΣt).

2.4. Regularity of the moment generating function

In this section we provide conditions ensuring that the characteristic function of Yt admits an ana-
lytic extension ΦYt to some open convex neighbourhood of 0 in Cd . Afterwards, we show absolute
integrability. The regularity results obtained in this section will allow us to apply Fourier methods in
Section 3 to compute option prices efficiently.
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2. The multivariate stochastic volatility model of OU type

Definition 2.6. For any t ∈ [0,T ], the moment generating function of Yt is defined as

ΦYt (y) := E[exp(yTYt)],

for all y ∈ Cd such that the expectation exists.

Note that ΦYt may not exist anywhere but on iRd , where it coincides with the characteristic function
of Yt . The next lemma is a first step towards conditions for the existence and analyticity of the moment
generating function ΦYt in a complex neighbourhood of zero.

Lemma 2.7. Let L be a matrix subordinator with cumulant transform ΘL, that is

ΘL(Z) = ψL(−iZ) = tr(γLZ)+
∫
S+d
(etr(XZ)−1)κL(dX), Z ∈Md(C),

and let ε > 0. Then ΘL is analytic on the open convex set

Sε := {Z ∈Md(C) : ||Re(Z)||< ε}−S+d , (2.10)

if and only if ∫
{||X ||≥1}

etr(RX)
κL(dX)< ∞ for all R ∈Md(R) with ||R||< ε. (2.11)

Proof. If (2.11) holds, Duffie et al. (2003, Lemma A.2) implies that Z 7→ E(etr(ZL1)) = eΘL(Z) is ana-
lytic on Sε . Due to Assumption (2.11), dominated convergence yields that ΘL is continuous on Sε .
The claim now follows from Lemma A.1. Conversely, if ΘL is analytic on Sε , then Duffie et al. (2003,
Lemma A.4) implies that E(tr(ZL1)) = eΘL(Z) for all Z ∈ Sε . Thus, by Sato (1999, Theorem 25.17),
Condition (2.11) holds.

The next theorem is a nontrivial (especially due to the involved heavy matrix calculus) general-
ization of Nicolato and Venardos (2003, Theorem 2.2) to the multivariate case. It holds for all sub-
multiplicative matrix norms on Md(R) that satisfy

∣∣∣∣yyT
∣∣∣∣ = ||y||2 for all y ∈ Rd , where we use the

Euclidean norm on Rd . For example, this holds true for the Frobenius and the spectral norm (the
operator norm associated to the Euclidean norm).

Theorem 2.8 (Strip of analyticity). Suppose the matrix subordinator L satisfies∫
{||X ||≥1}

etr(RX)
κL(dX)< ∞ for all R ∈Md(R) with ||R||< ε, (2.12)

for some ε > 0. Then the moment generating function ΦYt of Yt is analytic on the open convex set

Sθ := {y ∈ Cd : ||Re(y)||< θ},

where

θ :=− ||ρ||
(e2||A||t +1) ||A−1||

− ||β ||+
√

∆ > 0 (2.13)

with

∆ :=
(

||ρ||
(e2||A||t +1) ||A−1||

+ ||β ||
)2

+
2ε

(e2||A||t +1) ||A−1||
.

Moreover,

ΦYt (y) = exp
(

yT(Y0 +µt)+ tr(Σ0Hy(t))+
∫ t

0
ΘL (Hy(s)+ρ

∗(y)) ds
)

(2.14)
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2. The multivariate stochastic volatility model of OU type

for all y ∈ Sθ , where

Hy(s) := eATsA−∗
(

β
∗(y)+

1
2

yyT
)

eAs−A−∗
(

β
∗(y)+

1
2

yyT
)
. (2.15)

Proof. The main part of the proof is to show that the function

G(y) := exp
(

yT(Y0 +µt)+ tr(Σ0Hy(t))+
∫ t

0
ΘL (Hy(s)+ρ

∗(y)) ds
)

is analytic on Sθ . First we want to find a θ such that for all u ∈ Rd with ||u|| < θ , it holds that
||Hu(s)+ρ∗(u)||< ε for all s ∈ [0, t]. Since

||Hu(s)+ρ
∗(u)||=

∣∣∣∣∣∣∣∣eATsA−∗
(

β
∗(u)+

1
2

uuT
)

eAs−A−∗
(

β
∗(u)+

1
2

uuT
)
+ρ

∗(u)
∣∣∣∣∣∣∣∣

≤ 1
2
(e2||A||t +1)

∣∣∣∣A−1∣∣∣∣ ||u||2 +(||ρ||+(e2||A||t +1)
∣∣∣∣A−1∣∣∣∣ ||β ||) ||u|| ,

we have to find the roots of the polynomial

p(x) :=
1
2
(e2||A||t +1)

∣∣∣∣A−1∣∣∣∣x2 +
(
||ρ||+(e2||A||t +1)

∣∣∣∣A−1∣∣∣∣ ||β ||)x− ε.

The positive one is given by θ as stated in (2.13). Note that θ > 0, because p is a cup-shaped parabola
with p(0) =−ε < 0.

Now let y ∈ Sθ , i.e. y = u+ iv with ||u||< θ . Using Re(yyT) = uuT− vvT and (2.9) we get

Re(Hy(s)+ρ
∗(y)) = Hu(s)+ρ

∗(u)− 1
2

(
eATsA−∗(vvT)eAs−A−∗(vvT)

)
= Hu(s)+ρ

∗(u)− 1
2

∫ s

0
eATrvvTeAr dr.

Because of
∫ s

0 eATrvvTeAr dr ∈ S+d , we have∫
{||X ||≥1}

etr(Re(Hy(s)+ρ∗(y))X)
κL(dX) =

∫
{||X ||≥1}

etr((Hu(s)+ρ∗(u))X)e−
1
2 tr
((∫ s

0 eATrvvTeAr dr
)

X
)

κL(dX)< ∞

by Assumption (2.12), since ||Hu(s)+ρ∗(u)||< ε . Thus, by Lemma 2.7 the function

Sθ ∈ y 7→ΘL(Hy(s)+ρ
∗(y))

is analytic on Sθ for every s ∈ [0, t]. An application of Fubini’s and Morera’s theorem shows that
integration over [0, t] preserves analyticity, cf. Königsberger (2004, p. 228), hence G is analytic on Sθ .
Obviously, we have ΦYt (iy) = G(iy) for all y ∈ Rd by Theorem 2.5 and the definition of G. Thus,
Duffie et al. (2003, Lemma A.4) finally implies ΦYt ≡ G on Sθ .

With Theorem 2.8 at hand, we can establish the following result:

Theorem 2.9 (Absolute integrability). If (2.12) holds for some ε > 0, the mapping w 7→ ΦYt (y+ iw)
is absolutely integrable, for all y ∈ Rd with ||y||< θ , where θ is given as in Theorem 2.8.
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2. The multivariate stochastic volatility model of OU type

Proof. As in the proof of Theorem 2.8, we obtain from

Re(Hy+iw(s)) = Hy(s)−
1
2

∫ s

0
eATswwTeAs ds

and Re(etr(Z))≤ |etr(Z)|= eRe(tr(Z)) = etr(Re(Z)) for Z ∈Md(C), that

Re
(∫ t

0

∫
S+d

(
etr((Hy+iw(s)+ρ∗(y+iw))X)−1

)
κL(dX)ds

)
≤
∫ t

0

∫
S+d

(
etr((Hy(s)+ρ∗(y))X)−1

)
κL(dX)ds.

Using this inequality yields

|ΦYt (y+ iw)| ≤ΦYt (y)e
− 1

2 tr(Σ0(eATt A−∗(wwT)eAt−A−∗(wwT)))− 1
2
∫ t

0 tr(γL(eATsA−∗(wwT)eAs−A−∗(wwT)))ds

= ΦYt (y)e
− 1

2〈(A−1B(t)(Σ0)+
∫ t

0 A−1B(s)(γL)ds)w,w〉

with B(t) as in Lemma 2.4. Note that A−1B(t)(Σ0)+
∫ t

0 A−1B(s)(γL)ds ∈ S+d , hence∫
Rd
|ΦYt (y+ iw)|dw≤ΦYt (y)

∫
Rd

e−
1
2〈(A−1B(t)(Σ0)+

∫ t
0 A−1B(s)(γL)ds)w,w〉 dw < ∞,

by Theorem 2.8, and because the integrand is proportional to the density of a multivariate Normal
distribution.

2.5. Martingale Conditions and Equivalent Martingale Measures

For notational convenience, we work in this section with the model

dYt = (µ +β (Σt))dt +Σ
1
2
t dWt +ρ(dLt), Y0 ∈ Rd , (2.16)

dΣt = (γL +AΣt +ΣtAT)dt +dLt , Σ0 ∈ S++
d , (2.17)

where L is a driftless matrix subordinator with Lévy measure κL. Clearly, this is our multivariate
stochastic volatility model of OU type (2.5), (2.6), except that µ in (2.5) is replaced by µ − ρ(γL),
such that there is no deterministic drift from the leverage term ρ(dLt).

In mathematical finance, Y is used to model the joint dynamics of the log-returns of d assets with
price processes Si

t = Si
0eY i

t , where we set Y i
0 = 0 from now on and, hence, S0 denotes the vector of

initial prices.
The martingale property of the discounted stock prices (e−rtSt)t∈[0,T ] for a constant interest rate

r > 0 can be characterised as follows.

Theorem 2.10. The discounted price process (e−rtSt)t∈[0,T ] is a martingale if and only if, for i =
1, . . . ,d, ∫

{||X ||>1}
eρ i(X)

κL(dX)< ∞, (2.18)

and

β
i(X) =−1

2
Xii, X ∈ S+d , (2.19)

µi = r−
∫
S+d
(eρ i(X)−1)κL(dX). (2.20)

10



2. The multivariate stochastic volatility model of OU type

Proof. Define Ŝt := e−rtSt for all t ∈ [0,T ] and let i ∈ {1, . . . ,d}. By Itô’s formula and Jacod and
Shiryaev (2003, III.6.35), Ŝ i is a local martingale if and only if (2.18), (2.19) and (2.20) hold. Thus it
remains to show that it is actually a true martingale under the stated assumptions. Since Ŝ is a positive
local martingale, it is a supermartingale and hence a martingale if and only if E(Ŝ i

T ) = Ŝ i
0 for all

i ∈ {1, . . . ,d}. This can be seen as follows. By Theorem 2.3, (2.19) and (2.20) we have

E(Ŝ i
T ) = Ŝ i

0E
(

exp
(
(µ i− r)T +β

i(Σ+
T )+

∫ T

0
(Σii

s )
1
2 dW i

s +ρ
i(LT )

))
= Ŝ i

0e
−T

∫
S+d

(eρi(X)−1)κL(dX)
E
(

e−
1
2 (Σ

+
T )

ii+ρ i(LT )E
(

e
∫ T

0 (Σii
s )

1
2 dW i

s

∣∣∣∣(Ls)s∈[0,T ]

))
= Ŝ i

0e
−T

∫
S+d

(eρi(X)−1)κL(dX)
E
(

eρ i(LT )
)

= Ŝ i
0.

This proves the assertion.

As in Nicolato and Venardos (2003, Theorem 3.1), it is possible to characterise the set of all equi-
valent martingale measures (henceforth EMMs), if the underlying filtration is generated by W and
L. More specifically, it follows from the Martingale Representation Theorem (cf. Jacod and Shiryaev
(2003, III.4.34)), that the density process Zt = E(dQ

dP |Ft) of any equivalent martingale measure Q can
be written as

Z = E

(∫ ·
0

ψsdWs +(Y −1)∗ (µL−ν
L)

)
(2.21)

for suitable processes ψ and Y in this case. Here µL resp. νL denote the random measure of jumps
resp. its compensator (cf. Jacod and Shiryaev (2003, II.1) for more details). Under an arbitrary EMM,
L may not be a Lévy process, and W and L may not be independent. However, there is a subclass of
structure preserving EMMs under which L remains a Lévy process independent of W . This translates
into the following specifications of ψ and Y (cf. Nicolato and Venardos (2003, Theorem 3.2) for the
univariate case):

Theorem 2.11 (Structure preserving EMMs). Let y : S+d → (0,∞) such that

(i)
∫
S+d
(
√

y(X)−1)2 κL(dX)< ∞,

(ii)
∫
{||X ||>1} eρ i(X) κ

y
L(dX)< ∞, i = 1, . . . ,d,

where κ
y
L(B) :=

∫
B y(X)κL(dX) for B ∈B(S+d ). Define the Rd-valued process (ψt)t∈[0,T ] as

ψt =−Σ
− 1

2
t

µ +β (Σt)+
1
2

 Σ11
t
...

Σdd
t

+


∫
S+d
(eρ1(X)−1)κ

y
L(dX)

...∫
S+d
(eρd(X)−1)κ

y
L(dX)

−1r

 ,

where 1 = (1, . . . ,1)T ∈Rd . Then Z = E (
∫ ·

0 ψsdWs+(y−1)∗ (µL−νL)) is a density process, and the
probability measure Q defined by dQ

dP =ZT is an equivalent martingale measure. Moreover, W Q :=W−∫ ·
0 ψsds is a Q-standard Brownian motion, and L is an independent driftless Q-matrix subordinator

with Lévy measure κ
y
L. The Q-dynamics of (Y,Σ) are given by

dY i
t =

(
r−

∫
S+d
(eρ i(X)−1)κ

y
L(dX)− 1

2
Σ

ii
t

)
dt +

(
Σ

1
2
t dW Q

t

)i

+ρ
i(dLt), i = 1, . . . ,d,

dΣt = (γL +AΣt +ΣtAT)dt +dLt .

11



3. Option pricing using integral transform methods

Proof. Since y−1 > −1, Z is strictly positive by Jacod and Shiryaev (2003, I.4.61). The martingale
property of Z follows along the lines of the proof of Nicolato and Venardos (2003, Theorem 3.2). The
remaining assertions follow from Kallsen (2006, Proposition 1) and the Lévy-Khintchine formula by
applying the Girsanov-Jacod-Mémin Theorem as in Kallsen (2006, Proposition 4) to the R 1

2 d(d+1)-
valued process

L̃ =

(
W Q

0

)
+vech(L),

where W Q :=W −
∫ ·

0 ψsds.

The previous theorem shows that it is possible to use a model of the same type under the real-
world probability measure P and some EMM Q, e.g. to do option pricing and risk management within
the same model class. The model parameters under Q can be determined by calibration, the model
parameters under P by statistical methods.

3. Option pricing using integral transform methods

In this section we first recall results of Eberlein, Glau and Papapantoleon (2009) on Fourier pricing in
general multivariate semimartingale models. To this end, let S = (S1

0eY 1
, . . . ,Sd

0eY d
) be a d-dimensional

semimartingale such that the discounted price process (e−rtSt)t∈[0,T ] is a martingale under some pri-
cing measure Q, for some constant instantaneous interest rate r > 0.

We want to determine the price EQ(e−rT f (YT − s)) of a European option with payoff f (YT − s) at
maturity T , where f : Rd → R+ is a measurable function and s := (− log(S1

0), . . . ,− log(Sd
0)). Denote

by f̂ the Fourier transform of f . The following theorem is from Eberlein et al. (2009, Theorem 3.2) and
represents a multivariate generalisation of integral transform methods first introduced in the context
of option pricing by Carr and Madan (1999b) and Raible (2000).

Theorem 3.1 (Fourier Pricing). Fix R ∈ Rd , let g(x) := e−〈R,x〉 f (x) for x ∈ Rd , and assume that

(i) g ∈ L1∩L∞, (ii) ΦYT (R)< ∞, (iii) w 7→ΦYT (R+ iw) belongs to L1.

Then,

EQ(e−rT f (YT − s)) =
e−〈R,s〉−rT

(2π)d

∫
Rd

e−i〈u,s〉
ΦYT (R+ iu) f̂ (iR−u)du. (3.1)

Observe that Theorems 2.8 and 2.9 show that Conditions (ii) and (iii) are satisfied for our multivari-
ate stochastic volatility model of OU type (2.5), (2.6) if condition (2.12) holds, i.e., if L has enough
exponential moments. More specifically, the vector R has to lie in the intersection of the domains of
ΦYT and f̂ .

We now present some examples. As is well-known, the Fourier transform of the payoff function of
a plain vanilla call option with strike K > 0, f (x) = (ex−K)+ is given by

f̂ (z) =
K1+iz

iz(1+ iz)
(3.2)

for z ∈ C with Im(z) > 1. The Fourier transforms of many other single-asset options like barrier,
self-quanto and power options as well as multi-asset options like worst-of and best-of options can be
found, e.g., in the survey Eberlein et al. (2009). From the unpublished paper of Hubalek and Nicolato
(2005) we have the following formulae for basket and spread options.

12



3. Option pricing using integral transform methods

Example 3.1. (i) The Fourier transform of f (x) = (K−∑
d
j=1 ex j)+, K > 0, that is the payoff func-

tion of a basket put option, is given by

f̂ (z) = K1+i∑
d
j=1 z j

∏
d
j=1 Γ(iz j)

Γ(2+ i∑
d
j=1 z j)

for all z ∈ Cd with Im(z j) < 0, j = 1, . . . ,d. The price of the corresponding call can easily be
derived using the put-call-parity (K− x)+ = (x−K)+− x+K. Since we have separated the
initial values s in (3.1), we can use FFT methods to compute the prices of weighted baskets for
several weights efficiently.

(ii) The Fourier transform of the payoff function of a spread call option, f (x) = (ex1 − ex2 −K)+,
K > 0, is given by

f̂ (z) =
K1+iz1+iz2

iz1(1+ iz1)

Γ(iz2)Γ(−iz1− iz2−1)
Γ(−iz1−1)

for all z ∈C2 with Im(z1)> 1, Im(z2)< 0 and Im(z1+ z2)> 1, see also Hurd and Zhou (2010).

Since the Fourier transform of (ex1− ex2)+ does not exist anywhere, we cannot use Theorem 3.1 to
price zero-strike spread options. Nevertheless, we can derive a similar formula directly. Alternatively,
one could use the change of numeraire technique of Margrabe (1978), which would lead to formulae
of a similar complexity.

Proposition 3.2 (Spread options with zero strike). Suppose that

Φ(Y 1
T ,Y

2
T )
(R,1−R)< ∞ for some R > 1.

Then the price of a zero-strike spread option with payoff (S1
0eY 1

T −S2
0eY 2

T )+ is given by

EQ(e−rT (S1
T −S2

T )
+) =

eR(s2−s1)−s2−rT

2π

∫
R

eiu(s2−s1)
Φ(Y 1

T ,Y
2
T )
(R+ iu,1−R− iu)

(R+ iu)(R+ iu−1)
du,

where s1 =− ln(S1
0) and s2 =− ln(S2

0).

Observe that unlike for K > 0, one only has to compute a one-dimensional integral to determine the
price of a zero-strike spread option. This will be exploited in the calibration procedure in Section 4.

Proof. Let R > 1 and define fK(x) = (ex−K)+ for K > 0, and gK(x) = e−Rx fK(x). By Fourier inver-
sion and (3.2) we have

fey(x) =
1

2π

∫
R

e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)
du,

for all y ∈ R. Hence, for the function hey(x) := (S1
0ex−S2

0ey)+ = fey−s2 (x− s1) we get

hey(x) =
1

2π
eR(s2−s1)−s2

∫
R

eiu(s2−s1)
e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)
du.

Finally, by Fubini’s theorem

EQ(heY 2
T
(Y 1

T )) =
eR(s2−s1)−s2

2π

∫
R2

∫
R

eiu(s2−s1)
e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)
duP(Y 1

T ,Y
2
T )
(dx,dy)

=
eR(s2−s1)−s2

2π

∫
R

eiu(s2−s1)
Φ(Y 1

T ,Y
2
T )
(R+ iu,1−R− iu)

(R+ iu)(R+ iu−1)
du,
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4. Calibration of the OU-Wishart model

where the application of Fubini’s theorem is justified by∫
R2

∫
R

∣∣∣ e(R+iu)xe(1−R−iu)y

(R+ iu)(R+ iu−1)

∣∣∣duP(Y 1
T ,Y

2
T )
(dx,dy) =

∫
R2

eRxe(1−R)y
∫
R
|ĝ1(u)|duP(Y 1

T ,Y
2
T )
(dx,dy)

≤ ||ĝ1||L1 Φ(Y 1
T ,Y

2
T )
(R,1−R)< ∞,

since ||ĝ1||L1 < ∞ as shown in Eberlein et al. (2009, Example 5.1).

4. Calibration of the OU-Wishart model

We now put forward a specific parametric specification of the model discussed in Section 2. To this
end, let n ∈ N, Θ ∈ S+d and let X be a d× n random matrix with i.i.d. standard normal entries. Then
the matrix M := Θ

1
2 XXTΘ

1
2 is said to be Wishart distributed, written M ∼ Wd(n,Θ). Note that this

definition can be extended to noninteger n > d−1 using the characteristic function

Z 7→ det(Id−2iZΘ)−
1
2 n, (4.1)

see Gupta and Nagar (2000, Theorem 3.3.7). Since M ∈ S+d almost surely, we can define a compound
Poisson matrix subordinator L with intensity λ and Wd(n,Θ) distributed jumps. We call the resulting
multivariate stochastic volatility model of OU type OU-Wishart model.

Remark 4.1. There exists a subclass of structure preserving EMMs Q (cf. Theorem 2.11) such that we
have an OU-Wishart model under both P and Q. This means that L is a compound Poisson process with
Wd(n,Θ) distributed jumps and intensity λ under P, and Wd(ñ,Θ̃) distributed jumps with intensity λ̃

under Q. We only need to assume that the Wishart distribution under both P and Q has a Lebesgue
density, i.e. n, ñ> d−1 and Θ,Θ̃∈ S++

d . Then one simply has to take y as the quotient of the according
Lévy densities. Hence, by Gupta and Nagar (2000, 3.2.1), y has to be defined as

y(X) =
λ̃

λ

(
2

1
2 (ñ−n)d Γd

(1
2 ñ
)

Γd
(1

2 n
) det(Θ̃)

1
2 ñ

det(Θ)
1
2 n

)−1

det(X)
1
2 (ñ−n)e−

1
2 tr((Θ̃−1−Θ−1)X), X ∈ S+d .

Since we have
∫
S+d

etr(RX) κL(dX) = λ det(Id−2RΘ)−
1
2 n by (4.1), we see that the compound Poisson

process L has exponential moments as long as ||R|| < 1
2||Θ|| , where ||·|| denotes the spectral norm.

Consequently, (2.12) holds for ε := 1
2||Θ|| , and we can apply the integral transform methods from the

previous section to compute prices of multi-asset options.
Note that for the particularly simple special case of diagonal A, β and ρ , each asset follows a

BNS model at the margins by (2.7) and (2.8). In particular, for n = 2 we see that Lii, i = 1, . . . ,d, is a
compound Poisson subordinator with exponentially distributed jumps, thus we have in distribution the
Γ-OU BNS model with stationary Gamma distribution at the margins, cf., e.g., Nicolato and Venardos
(2003, Section 2.2). Then, the characteristic functions of the single assets are known in closed form.
Note that while the characteristic function of the stationary distribution of the marginal OU type
process is still known for n 6= 2, it no longer corresponds to a Gamma distribution in this case.

4.1. The OU-Wishart model in dimension 2

We work directly under a pricing measure Q and consider the following specific two-dimensional case
of our model, where we restrict ourselves in particular to a diagonal mean-reversion matrix A and a
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4. Calibration of the OU-Wishart model

leverage term ρ such that both jumps of the respective variance and of the covariance enter the price.
Our model is given by(

dY 1
t

dY 2
t

)
=

((
µ1
µ2

)
− 1

2

(
Σ11

t
Σ22

t

))
dt +

(
Σ11

t Σ12
t

Σ12
t Σ22

t

) 1
2
(

dW 1
t

dW 2
t

)
+

(
ρ1 dL11

t +ρ12 dL12
t

ρ2 dL22
t +ρ21 dL12

t

)
(

dΣ11
t dΣ12

t
dΣ12

t dΣ22
t

)
=

((
γ1 0
0 γ2

)
+

(
2a1Σ11

t (a1 +a2)Σ
12
t

(a1 +a2)Σ
12
t 2a2Σ22

t

))
dt +

(
dL11

t dL12
t

dL12
t dL22

t

)
with initial values

Y0 =

(
0
0

)
, Σ0 =

(
Σ11

0 Σ12
0

Σ12
0 Σ22

0

)
∈ S++

2 ,

and parameters γ1,γ2 ≥ 0, a1,a2 < 0, ρ1,ρ2,ρ12,ρ21 ∈ R. L is a compound Poisson process with in-
tensity λ and W2(n,Θ)-jumps, where n = 2 and

Θ =

(
Θ11 Θ12
Θ12 Θ22

)
∈ S+2 .

Therefore all components of L jump at the same time. Since the second order properties of the Wis-
hart distribution are known explicitly, cf. Gupta and Nagar (2000, Theorem 3.3.15), the conditional
covariances of the jumps are given by

Cov(∆L11
t ,∆L12

t |∆L11
t 6= 0) = 4Θ11Θ12,

Cov(∆L22
t ,∆L12

t |∆L11
t 6= 0) = 4Θ22Θ12,

Cov(∆L11
t ,∆L22

t |∆L11
t 6= 0) = 4Θ

2
12.

This shows that even if ρ is diagonal, i.e., ρ12 = 0 = ρ21, the leverage terms of both assets are correl-
ated. If ρ is non-diagonal, then the parameter θ12 also has an influence on the marginal distribution of
each asset.

Multi-asset option pricing By (2.14) and (4.1), the joint moment generating function of (Y 1,Y 2)
is given by

E[eyTYt ] = exp
(

yTµt + tr(Σ0Hy(t))+
∫ t

0
tr(γLHy(s))ds+λ

∫ t

0

1
det(I2−2(Hy(s)+ρ∗(y))Θ)

ds−λ t
)

with Hy as in (2.15), A =
(

a1 0
0 a2

)
, γL =

(
γ1 0
0 γ2

)
and ρ∗(y) =

(
ρ1y1 ρ12y1
ρ21y2 ρ2y2

)
. It does not seem to be

possible to obtain a closed form expression in terms of ordinary functions, unless one sets a1 = a2 =: a.

In this case, if ∆ =
√

4b0b2−b2
1 6= 0, one has

E[ey1Y 1
t +y2Y 2

t ] =exp
{

y1µ1t + y2µ2t +
e2at −1

4a
tr
(

Σ0

(
y2

1− y1 y1y2
y1y2 y2

2− y2

))
+

1
4a

(
γ1(y2

1− y1)+ γ2(y2
2− y2)

)( 1
2a

(e2at −1)− t
)

+
λ

2ab0

[
b1

∆

(
arctan

(
2b2 +b1

∆

)
− arctan

(
2b2e2at +b1

∆

))
+

1
2

ln
(

b0 +b1 +b2

b2e4at +b1e2at +b0

)]
+

λ

b0
t−λ t

}
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4. Calibration of the OU-Wishart model

with coefficients

b0 := 1+4det(B−C)+2tr(B−C),

b1 :=−8det(B)+4tr(B)tr(C)−4tr(BC)−2tr(B),

b2 := 4det(B),

∆ :=
√

4b0b2−b2
1,

and matrices

B :=
1
4a

(
y2

1− y1 y1y2
y1y2 y2

2− y2

)
Θ, C :=

(
ρ1y1 ρ12y1
ρ21y2 ρ2y2

)
Θ.

Note that arctan has to be understood as a function of complex argument to cover the case where the
term in the square root of ∆ is negative. If ∆ = 0, we obtain

E[ey1Y 1
t +y2Y 2

t ] =exp
{

y1µ1t + y2µ2t +
e2at −1

4a
tr
(

Σ0

(
y2

1− y1 y1y2
y1y2 y2

2− y2

))
+

1
4a

(
γ1(y2

1− y1)+ γ2(y2
2− y2)

)( 1
2a

(e2at −1)− t
)

+
λ

2ab0

[
b1

2b2e2at +b1
− b1

2b2 +b1
+

1
2

ln
(

b0 +b1 +b2

b2e4at +b1e2at +b0

)]
+

λ

b0
t−λ t

}
.

Using det(A+B) = det(A)+det(B)+ tr(A)tr(B)− tr(AB) for A,B∈M2(R), the above formulae follow
from

det(I2−2(Hy(s)+ρ
∗(y))Θ) = det(I2−2(e2as−1)B−2C) = b0 +b1e2as +b2e4as,

and straightforward integration. Likewise, one can also derive a closed form expression for n= 4,6, . . .
using Gradshteyn and Ryzhik (2007, 2.18(4)).

Consequently, one faces a tradeoff at this point. One possibility is to retain the flexibility of different
mean reversion speeds ai by evaluating the remaining integral using numerical integration. Alternat-
ively, one can restrict attention to identical mean reversion speeds in order to have a closed-form
expression of the moment generating function at hand. The impact of this decision on the calibration
performance is discussed in Section 4.2 below.

Single-asset option pricing For pricing single-asset options, one only needs the transforms of
the marginal models, such that the above expressions simplify considerably. For example, the moment
generating function of Y 1 is given by

E[ey1Y 1
t ] = exp

{
y1µ

1t +
e2a1t −1

4a1
(y2

1− y1)Σ
11
0 +

1
4a1

(
1

2a1
(e2a1t −1)− t

)
(y2

1− y1)γ
11
L

+
λ

2a1b0
ln
(

b0 +b1

b0 + e2a1tb1

)
+

λ t
b0
−λ t

}
,

where b0 and b1 simplify to

b0 = 1+
(

1
2a1

(y2
1− y1)−2ρ1y1

)
Θ11−2ρ12y1Θ12,

b1 =−
1

2a1
(y2

1− y1)Θ11.
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4. Calibration of the OU-Wishart model

Note that one can use the recursion formula stated in Gradshteyn and Ryzhik (2007, 2.155) to obtain a
closed form expression for W2(n,Θ)-jumps with n ∈ 2N, too. In the special case where the operator ρ

is diagonal, i.e., if ρ12 = ρ21 = 0, the margins are (in distribution) Γ-OU BNS models, whose moment
generating function has been derived in Nicolato and Venardos (2003, Table 2.1).

Remark 4.2 (High Dimensionality). The above model can also be defined for d > 2, but of course,
the Fourier formula (3.1) becomes numerically infeasible in high dimensions. Nevertheless, if ρ is
diagonal, the calibration of a high dimensional OU-Wishart model is still possible by only evaluating
options on two underlyings. Using zero strike spread options and provided the characteristic function
is known explicitly, this means that one only has to evaluate single integrals numerically, as in the
univariate case. Indeed, combining Barndorff-Nielsen and Stelzer (2011, Proposition 4.5) and the
fact that every symmetric sub-matrix of a Wishart distributed matrix is again Wishart distributed, cf.
Gupta and Nagar (2000, Theorem 3.3.10), it follows that the joint dynamics of each pair of assets
follows a 2-dimensional OU-Wishart model as above. Hence, we can calibrate the model using only
two-asset options (e.g. spread options). The price to pay is that the resulting model only incorporates
pairwise dependencies, since the respective covariances completely determine the underlying Wishart
distribution.

Remark 4.3. If ρ is diagonal, we have equivalence in distribution of the margins of our model to a
Γ-BNS model. This implies immediately that we need to use prices on multi-asset options in order to
infer all parameters from observed option prices. If ρ is non-diagonal, we have a Γ-BNS model with
an additional (correlated) jump term. Due to this additional term it might be possible to infer θ12 from
single-asset options. However, one cannot obtain the parameter Σ12

0 in this way because it does not
appear in the marginal moment generating function.

In many multi-factor univariate models one can in general similarly not be sure whether one can
uniquely determine all parameters from observed option prices. In many papers the parameters are
calibrated and the procedure seems to work, but we are not aware of any reasonably complex multi-
factor model where the identifiability of the parameters based on option prices has been established .
The reason is clearly the highly nontrivial relation between the parameters and the option prices.

4.2. Empirical illustration

The aim of this subsection is to show that a calibration of the OU-Wishart model to market prices is
feasible. Since multi-asset options are mostly traded over-the-counter, it is difficult to obtain real price
quotes. To circumvent this problem, we proceed as in Taylor and Wang (2010) and consider foreign
exchange rates instead, where a call option on some exchange rate can be seen as a spread option
between two others. Let us emphasise that our calibration routine should not be seen as a finished
product, but much rather as a first test and proof of principle. A more detailed investigation as well as
an extension to numerically more involved models with non-diagonal A is left to future research.

We consider a 2-dimensional OU-Wishart model as above where our first asset is the EUR/USD
exchange rate S$/e = S$/e

0 eY 1
, that is, the price of 1 e in $, and our second asset is the GBP/USD

exchange rate S$/£ = S$/£
0 eY 2

, i.e., the price of 1 £ in $. We model directly under a martingale measure.
Therefore we have, by Theorem 2.10, that

µ1 = r$− re−
∫
S+d
(eρ1X11+ρ12X12−1)κL(dX).
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4. Calibration of the OU-Wishart model

Since κL is the intensity λ times a Wishart distribution with parameters n = 2 and Θ, this simplifies to

µ1 =r$− re−λ

(
det
(
I2−2(ρ1 ρ12

0 0 )Θ
)−1−1

)
=r$− re−λ

2ρ1Θ11 +2ρ12Θ12

1−2ρ1Θ11−2ρ12Θ12
.

Likewise we have

µ2 = r$− r£−λ
2ρ2Θ22 +2ρ21Θ12

1−2ρ2Θ22−2ρ21Θ12
.

Thus, for ρ12 = 0 or ρ21 = 0, we recover the martingale conditions of the Γ-OU BNS model. By Hull
(2003, 13.4), it follows that the price in $ of a plain vanilla call option on S$/e or S$/£ is given by
e−r$T E((S$/e

T −K)+) or e−r$T E((S$/£
T −K)+), respectively. Now observe that the $-payoff of a call

option on the EUR/GBP exchange rate S£/e is given by S$/£
T (S£/e

T −K)+ = (S$/e
T −KS$/£

T )+, hence it
can be regarded as a spread option on S$/e−S$/£ where the initial value of the second asset is replaced
by KS$/£

0 . Since it is a zero-strike spread option, we can use Proposition 3.2 to valuate it.
We obtained the option price data from EUWAX on April 29, 2010, at the end of the business

day. The EUR/USD exchange rate at that time was S$/e
0 = 1.3249$, the GBP/USD exchange rate

was S$/£
0 = 1.5333$ and the EUR/GBP exchange rate was 0.8641£. As a proxy for the instantaneous

riskless interest rate we took the 3-month LIBOR for each currency, viz. re = 0.604%, r£ = 0.344%
and r$ = 0.676%. All call options here are plain vanilla call options of European style. We used 148
call options on the EUR/USD exchange rate, 67 call options on the GBP/USD exchange rate, and 105
call options on the EUR/GBP exchange rate, all of them for different strikes and different maturities,
for a total of 320 option prices. We always used the mid-value between bid and ask price. A spread
sheet containing all data used for the calibration can be found on the second author’s website.

The calibration was performed by choosing the model parameters so as to minimise the root mean
squared error (RMSE) between the Black-Scholes volatilities implied by market resp. model prices.
Note that the RMSE is the square root of the sum of the squared distances divided by the number
of options. All computations were carried out in MATLAB and performed on a standard desktop PC
with a 2.4GHz processor.

In Step A, we impose a := a1 = a2 and ρ12 = 0 = ρ21, i.e., we make the assumption that the mean
reversion parameters of both assets are equal, and that ρ is diagonal. This is the most tractable case,
since there is a closed form expression for the moment generating function of (Y 1,Y 2) and the number
of model parameters is reduced to 12. The starting and calibrated parameters can be found in Table 4.1.
The overall RMSE is 0.0082, and the run time was 48 minutes, i.e., calibration of the model is feasible
even on a standard PC. If one considers only the marginal models for EUR/USD and GBP/USD one
has a RMSE of 0.0106 and 0.0048 respectively. For visualisation, we provide Figure 1 and 2, where
market and model prices are compared in terms of Black-Scholes implied volatility for a few selected
maturities. These results illustrate that even this simple model is able to fit the observed smiles rather
well. For comparison, we calibrated two independent univariate Γ-OU BNS models to the margins
separately (see Table 4.1) and obtained a lower RMSE of 0.0071 and 0.0020 respectively. This stems
from the fact that the additional dependence parameters do not enter the pricing formulae for single
asset options in the diagonal case, whereas the intensity of the compound Poisson process is the same
for all assets in our multivariate framework, unlike when using two univariate models. This means that
we are not overfitting the marginal distributions with an excessive amount of additional parameters,
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4. Calibration of the OU-Wishart model
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Figure 1: Comparison of the Black-Scholes implied volatility of market prices (dot) and model prices
(solid line). The plots only show the results for the 12-parameter OU Wishart model (Step
A), since they do not change visually for the more complex models from Step B to D.
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4. Calibration of the OU-Wishart model
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Figure 2: Comparison of the Black-Scholes implied volatility of market prices (dot) and model prices
(solid line). The plots only show the results for the 12-parameter OU Wishart model (Step
A), since they do not change visually for the more complex models from Step B to D.

but much rather using a simplified version of a standard model. Nevertheless, the calibration still
performs quite well even when using this simplification.

As a further cross-check, Figure 3 depicts sample paths of the EUR/USD and The GBP/USD spot
rate and its volatility, simulated with our calibrated parameters, which show reasonable path proper-
ties.

In Step B, we allow for a non-diagonal leverage operator ρ . Although this introduces two additional
parameters, ρ12 and ρ21, a closed form expression for the moment generating function is still available.
As initial values, we take the parameters obtained in Step A and set ρ12 and ρ21 to zero. After 80
minutes, the optimizer finds a minimum with a RMSE of 0.0079. At the margins, we have RMSEs
of 0.0104 and 0.0037, respectively. Hence, calibration is still feasible without resorting to higher-
powered computers, but the gains in fitting accuracy appear to be only moderate for the option price
surface at hand.

Next, we drop the assumption of an equal mean reversion parameter and allow for a1 6= a2. Since
the moment generating function of (Y 1,Y 2) is then not known in closed form anymore, good starting
values are particularly important in order to reduce computational time to an acceptable value. We
distinguish the two cases where ρ is diagonal (Step C) and ρ is non-diagonal (Step D), and take as
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4. Calibration of the OU-Wishart model

Step λ a1 ρ1 ρ12 Θ11 Σ11
0 γ1 a2 ρ2 ρ21 Θ22 Σ22

0 γ2 Θ12 Σ12
0

A 0.774 -2.392 -3.741 / 0.011 0.019 0.027 / -0.494 / 0.063 0.017 0.000 0.022 0.013
B 0.901 -3.008 -5.364 0.679 0.011 0.019 0.034 / -0.661 0.896 0.067 0.018 0.000 0.023 0.013
C 0.774 -2.392 -3.741 / 0.011 0.019 0.027 -2.392 -0.494 / 0.063 0.017 0.000 0.022 0.013
D 1.231 -7.562 -6.806 0.948 0.010 0.024 0.097 -6.553 -0.535 1.188 0.102 0.021 0.000 0.030 0.016

univ. 1 0.781 -32.177 -5.995 / 0.007 0.034 0.619 / / / / / / / /
univ. 2 0.864 / / / / / / -2.482 -0.471 / 0.050 0.017 0.012 / /
initial 0.800 -2.500 -3.000 / 0.010 0.020 0.020 / -0.500 / 0.030 0.015 0.011 0.010 0.010

Table 4.1: Calibrated parameters for different models. In decreasing order: models from step A to D;
univariate BNS model for EUR/USD and GBP/USD; initial parameters.

starting values, the parameters obtained from Step A or Step B, respectively. Interestingly, in Step C
the optimizer finds, after a run time of 23 minutes, the minimum at the same parameters as in step A,
thus the additional freedom of different mean reversion parameters does not yield a better fit in this
case.

Finally, in Step D, we calibrate the full model with non-diagonal ρ and different mean reversion
speeds a1,a2. Due to the lack of a closed-form expression for the moment generating function and the
high number of parameters (15), the run time increases to an unsatisfactory 10 hours on our standard
PC, suggesting that higher-powered computing facilities and an optimized numerical implementation
in a compiled instead of an interpreted language should be employed here. In contrast to Step C, we
find an improvement by allowing for different mean reversion speeds: The overall RMSE is 0.0076.
Then again, for the data set at hand, the improvement is again only slight compared to the simplest
model considered in Step A.

Comparison with other bivariate models We now compare our bivariate Wishart-OU model
to some benchmarks from the literature. The canonical candidate would be the bivariate Wishart
model, which also exhibits stochastic correlations between the assets and has very recently been
calibrated to market prices by Da Fonseca and Grasselli (2010). However, the involved parameter
restrictions necessary for the existence of the Wishart process are not satisfied in the results of the cal-
ibration. This suggests that this issue needs a detailed investigation and special tailor-made calibration
procedures need to be developed, which is beyond our scope here. However, we emphasize that we
would expect the Wishart model to have a comparable performance once these implementation issues
have been resolved in a satisfactory manner.

Instead, we use the multivariate Variance Gamma (henceforth VG) model of Luciano and Schoutens
(2006), and a generalization with stochastic volatility suggested therein for our comparison. In the
mutivariate VG model with parameters (θi,σi,ν), i = 1,2, the log-price processes Y 1,Y 2 are given by
two independent Brownian motions with drift which are subordinated by a common Gamma process.
The joint moment generating function of the log-price processes under a risk neutral measure is shown
to be given by

E[exp(y1Y 1
t + y2Y 2

t )] = e(y1(r$−re+w1)+y2(r$−r£+w2))t

(
1−ν

2

∑
i=1

(
yiθi +

1
2

y2
i σ

2
i

))−t/ν

,

with wi = ν−1 log
(
1−θiν− 1

2 σ2
i ν
)
. The parameters obtained from a calibration of this model to

our option data set can be found in Table 4.2. The corresponding overall RMSE is 0.0134, which is
roughly 63% higher than the RMSE obtained from the calibration of our 12-parameter OU-Wishart
model from Step A. At the EUR/USD and GBP/USD margin the multivariate VG model has a RMSE
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Figure 3: Simulated sample path of the EUR/USD and the GBP/USD spot rate and its volatility in the
12-parameter OU-Wishart model (Step A).

of 0.0161 and 0.0107. Consequently, the performance of this model is much worse than for the OU-
Wishart model, which is not surprising since it only involves 5 parameters.

To alleviate this issue, our second benchmark allows for stochastic activity driven by an OU type
process. More specifically, the log-price processes of the EUR/USD and GBP/USD spot rate are given
by Y 1

t = X1
Zt

and Y 2
t = X2

Zt
, where X1 and X2 are two independent Variance Gamma processes with

parameters (θi,σi,νi), i = 1,2, and Zt =
∫ t

0 zsds is an integrated Ornstein-Uhlenbeck process. The
Ornstein-Uhlenbeck process (zs)s∈R+ is given by dzs = 2αzsds+dN−2αt ,z0 = 1, α < 0, where N is a
compound Poisson process with intensity ϑ and EXP(ξ ) distributed jumps. It can be shown that the
moment generating function of Zt , see e.g. (Schoutens; 2003, 7.2.2), is given by

ΦZt (y) = exp
(

y
2α

(exp(2αt)−1)+
2αϑ(ty−ξ log[−2αξ ]+ξ log[(exp(2αt)−1)y−2αξ ])

y+2αξ

)
.

For the moment generating function of Yt = (Y 1
t ,Y

2
t ), conditioning on the stochastic activity process

Z yields

ΦYt (y1,y2) = ΦZt

(
logΦX1

1
(y1)+ logΦX2

1
(y2)

)
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Figure 4: Comparison of the Black-Scholes implied volatility of market prices (dot) and model prices
(solid line). The headers state the underlying and the days to maturity. The plots are for
the benchmark model where the log-price processes are modelled by two independent VG
processes with a common time change which is given by an integrated Γ-OU process. The
plots for the multivariate VG model from Luciano and Schoutens (2006) look visually the
same.

with ΦX i
1
(yi) =

(
1− yiθiνi− 1

2 σ2
i y2

i νi
)−1/νi , i = 1,2. Thus, the joint moment generating function of

the log-price processes Y 1
t ,Y

2
t under a risk neutral measure is given by

ΦYt (1,0)
−y1ΦYt (0,1)

−y2ΦYt (y1,y2).

A calibration of this model to our dataset leads to the parameters provided in Table 4.2; a plot depict-
ing some of the respective implied volatilities can be found in Figure 4. The corresponding RMSE
is 0.0129. Somewhat surprisingly, this is only around 4% lower than for the model of Luciano and
Schoutens (2006), despite increasing the number of parameters from 5 to 9. At the margins, we have
0.0143 and 0.0095, which corresponds to improvements of around 11%. Hence, there is quite some
improvement in fitting the margins, but the fit for the multivariate options is actually slightly worse.
Moreover, further numerical experiments suggest that, to recapture our spread option prices, one needs
quite extreme parameter values, which do not match well with the univariate option prices. This sug-
gests that stochastic correlations indeed seem necessary to recapture the features of our empirical
dataset. However, let us emphasize again that this only applies to one specific dataset in the foreign
exchange market. A more detailed empirical study is a challenging topic for future research.
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5. Covariance swaps

θ1 θ2 σ1 σ2 ν1 ν2 ϑ α ξ

-0.360 -0.327 0.090 0.093 0.106 0.106 / / /
-1.470 -2.190 0.001 0.050 0.022 0.001 0.468 -42.140 1.747

Table 4.2: The first row shows the calibrated parameters for the multivariate VG model of Luciano and
Schoutens (2006). The second row contains the calibrated parameters for two independent
VG processes with a common integrated Γ-OU time change.

5. Covariance swaps

In this final section, we show that it is possible to price swaps on the covariance between different
assets in closed form. This serves two purposes. On the one hand, options written on the realised cov-
ariance represent a family of payoffs that only make sense in models where covariances are modelled
as stochastic processes rather than constants. On the other hand, the ensuing calculations exemplify
once more the analytical tractability of the present framework.

We consider again our multivariate stochastic volatility model of OU type under an EMM Q. In ad-
dition, we suppose that the matrix subordinator L is square integrable, i.e.

∫
{||X ||>1} ||X ||2κL(dX)< ∞.

The pricing of options written on the realised variance resp. the quadratic variation as its continuous-
time limit have been studied extensively in the literature, cf., e.g., Carr and Lee (2008) and the ref-
erences therein. Since we have a nontrivial correlation structure in our model, one can also consider
covariance swaps on two assets i, j ∈ {1, . . . ,d}, i.e., contracts with payoff [Y i,Y j]T −K with covari-
ance swap rate K = E([Y i,Y j]T ) (see, e.g., Carr and Madan (1999a), Da Fonseca, Grasselli and Ielpo
(2008), or Swischuk (2005) for more background on these products). Now, we show how to compute
the covariance swap rate. We have

[Y i,Y j]T = [Y i,Y j]cT + ∑
s≤T

∆Y i
s ∆Y j

s = (Σ+
T )

i j +ρ
i(X)ρ j(X)∗µ

L
T (dX).

Since κL(dX)dt is the compensator of µL, this yields

E([Y i,Y j]T ) = (E(Σ+
T ))

i j +T
∫
S+d

ρ
i(X)ρ j(X)κL(dX), (5.1)

where Σ
+
T was defined in Equation (2.4). Note that by Pigorsch and Stelzer (2009, Proposition 2.4)

and since |ρ i(X)ρ j(X)| ≤ ||ρ||2||X ||2, our integrability assumption on L implies that the expectation
is finite. The first summand can be calculated as follows. By setting y = 0 in Theorem 2.5 we obtain
the characteristic function of Σt . Differentiation yields

E(ΣT ) = eAT
Σ0eATT + eAT A−1(E(L1))eATT −A−1(E(L1)),

where E(L1) = γL +
∫
S+d

X κL(dX). Using Equation (2.4) we obtain

E(Σ+
T ) = A−1(E(ΣT )−T E(L1)−Σ0),

so we only need to know E(L1). The second summand in (5.1) can analogously be computed by
differentiating the characteristic function of the matrix subordinator L.

In our OU-Wishart model, where L is a compound Poisson matrix subordinator plus drift with
Wd(n,Θ)-distributed jumps, we have by Gupta and Nagar (2000, Theorem 3.3.15) that

E(L1) = γL +λnΘ.
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5. Covariance swaps

If ρ is diagonal, the second term in (5.1) simplifies to

T ρiρ j

∫
S+d

XiiX j j ν(dX) = T ρiρ jλn
(
2Θ

2
i j +nΘiiΘ j j

)
,

again by Gupta and Nagar (2000, Theorem 3.3.15). Thus we have a closed form expression for the
covariance swap rate:

K =
(

A−1
[
eAT (Σ0 +A−1(γL +λnΘ))eATT −A−1(γL +λnΘ)−T (γL +λnΘ)−Σ0

])i j

+T ρiρ jλn
(
2Θ

2
i j +nΘiiΘ j j

)
.

For example, in the 2-dimensional OU-Wishart model from Section 4.1 we have for i = 1 and j = 2

K =
1

a1 +a2

[(
e(a1+a2)T −1

)(
Σ

12
0 +

λnΘ12

a1 +a2

)
−T λnΘ12

]
+T ρ1ρ2λn

(
2Θ

2
12 +nΘ11Θ22

)
.

As an illustration we provide, in Figure 5, a plot of the normalized covariance swap rate measured in

volaility points, i.e., T 7→
√

1
T E([Y 1,Y 2]T ), for our calibrated 12-parameter OU-Wishart model from

Section 4.2 (Step A).

0 50 100 150 200 250 300
0.12

0.125

0.13

0.135

0.14
Covariance swap rate normalized by maturity in volatility points

Time to maturity in trading days

Figure 5: Normalized covariance swap rate for the calibrated 12-parameter OU-Wishart model.

Finally, we remark that similarly as in Carr and Lee (2008), pricing of options on the covariance
can be dealt with using the Fourier methods from Section 3, since the joint characteristic function of
(Σ+,ρ i(X)ρ j(X)∗µL(dX)) can be calculated similarly as in the proof of Theorem 2.5.
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A. Appendix

The following result on multidimensional analytic functions is needed in the proof of Lemma 2.7.

Lemma A.1. Let Dε = {z ∈ Cn : ||Re(z)|| < ε} for some ε > 0. Suppose f : Dε → C is an analytic
function of the form f = eF , where F : Dε → C is continuous. Then F is analytic in Dε .

Proof. Let z = (z1,z2, . . . ,zn) ∈ Dε and define z−1 = (z2, . . . ,zn). Then fz−1 : w 7→ f (w,z−1) defines
an analytic function without zeros on the open convex set Dε,z−1 := {w ∈ C : (w,z−1) ∈ Dε}. By
e.g. Fischer and Lieb (1994, Satz V.1.4), there exists an analytic function g1

z−1
: Dε,z−1 → C such that

exp(g1
z−1

) = fz−1 . Hence F(w,z−1)− g1
z−1

(w) ∈ 2πiZ on Dε,z−1 . Since both F and g are continuous,
their difference is constant and it follows that w 7→ F(w,z−1) is analytic on Dε,z−1 . Analogously, one
shows analyticity of F in all other components. The assertion then follows from Hartog’s Theorem
(cf. e.g. Hörmander (1967, Theorem 2.2.8)).
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