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Abstract

Using daily data of Nikkei 225 index, call option prices, and call money

rates in Japanese financial market, we compare the pricing performances of

stock option pricing models under several stochastic interest rate processes

proposed by existing term structure literature. The results show that (1)

any option pricing model under a specific stochastic interest rate does

not dominantly outperform another option pricing model under alternative

stochastic interest rate, and (2) incorporating stochastic interest rates into

stock option pricing does not contribute to the performance improvement

of the original Black-Scholes pricing formula.
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1 Introduction

There have been many attempts to fill the gap between the celebrated Black-

Scholes (1973) model and market data. It has been argued that stock option

pricing model under stochastic volatility has provided the improvement in pric-

ing performance. Some researchers have suggested that option pricing model

capturing the jump behavior of stock return also could contribute to its pric-

ing performance. Incorporating stochastic interest rate into stock option pricing

model is another line of extension. At the earliest Merton (1973) has discussed

option pricing under stochastic interest rate.

However the empirical analysis for option pricing under stochastic interest

rate has received little attention. To the author’s knowledge, Rindell (1995) is the

first one who has paid attention to this strand of research. Rindell examined the

explanatory power of the stock option pricing model of Amin and Jarrow (1992)

which is the closed form stock option pricing formula under Merton type interest

rate based on Heath, Jarrow and Morton (1992) framework. Using Swedish option

market data during 1992, Rindell concluded that stock option pricing model of

Amin and Jarrow (1992) performs better than the original Black-Scholes model

in the sense that the pricing error of the former is significantly small. It is noted

that Rindell has used panel data of options with maturities of up to two years.

Bakshi, Cao, and Chen (hereafter, BCC) (1997) observed that, compared

with Black-Scholes model, incorporating square-root interest rate process gives

only marginal improvement in pricing performance of S&P 500 options which

have up to one year to expiration (See footnote 6 in BCC (1997)). In addition,

using LEAPS (Long-term Equity Anticipation Securities in S&P 500 options)

options data which usually expire two to three years from the date of listing,

BCC (2000) also concluded that once the model has accounted for stochastically

varying volatility, allowing interest rates to be stochastic does not improve pricing

performance, even for long-term options. We note that BCC (2000) have not

compared option model under stochastic interest rate with Black-Scholes model
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which we will use as a benchmark in this study. However BCC (2000) reported

that for long-term options, incorporating stochastic interest rates can nonetheless

enhance hedging performance in certain cases.

The above empirical findings allow us to infer that stochastic interest rates

may not be important for pricing of short-term options, at least. Since the short

term interest rate (equivalently, short rate or instantaneous spot rate) is the

endogenously determined fundamental variable in economy, the stock option value

might be less affected by the change of interest rate within a relatively short time

to expiration.

This paper re-examine these empirical observations by using Japanese Nikkei

225 options data. Nikkei 225 options have maturities up to four months and

long-term options such as LEAPS options are not available in Japanese market.

This market structure may allow the agents participating in Japanese security

market to perceive the duration of time to maturities differently, comparing with

the participants in other countries market. In particular, this study will also

investigate the explanatory power of option pricing models under some alternative

stochastic interest rate processes proposed by existing studies associated with

term structure models. The model comparison is new feature in this empirical

field. We will estimate the parameters of option pricing models for each trade

day by adopting rolling estimation procedure and compare their pricing errors

over test period.

When the short rate is assumed to be stochastic, the closed form expression

of stock option value is hardly obtained, except for the case of Gaussian interest

rate process. Kim and Kunitomo (1999) developed a simple stock option pricing

model in an approximate sense when the short rate follows Ito process. We shall

adopt this approach in evaluating option value under non-Gaussian short rates.

1

1Although some researches including Bakshi and Chen (1997) have derived closed form ex-

pressions of stock option value under square-root process of interest rate and volatility, including

jump behavior of stock price, those models need to evaluate Fourier inversion formula for the
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The organization of this paper is as follows. In section 2, we examine option

pricing models under diverse stochastic interest rates. Section 3 discusses test

methodology. Section 4 explains data set. Section 5 provides empirical results

and finally, section 6 concludes.

2 Stock Option Values under Stochastic Inter-

est Rates

Let us consider Black-Scholes economy when the short term interest rate changes

randomly. The stock price process, St, is given by

dSt = µSt dt+ σ St dW1,t, (1)

where µ and σ are constants and {W1,t} is the standard Brownian motion. The
short rate rt, is assumed to follow

drt = (α + β rt) dt+ δ rγ
t dW2,t, (2)

where α, β, δ, and γ are constants and {W2,t} is the standard Brownian motion.
The equation (2) defines a broad class of interest rate processes which nests

many well-known instantaneous spot interest rate models. In this study, we are

concerned with the case of γ ∈ {0, 0.5, 1}. The instantaneous correlation between
the stock price process and short rate process, ρ, is assumed to be given.

The today’s value of European stock call option with time to expiration T

under stochastic interest rate (2), denoted V0, is determined by

V0 = EQ
0

[
exp

(
−
∫ T

0
rt dt

)
max(ST −K, 0)

]
,

where the expectation is taken with respect to the equivalent martingale measure

Q, and K is the exercise price of option.

In this section we shall give the expressions for V0 under four representative

stochastic interest rate models. It is useful that we classify (2) into Gaussian and

probability distribution functions, numerically.
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non-Gaussian process because the exact expression of V0 can be obtained in the

former case.

2.1 Option Pricing under Gaussian Interest Rate Process

The Gaussian short rate process subsumes Vasicek type interest rate which in

itself nests Merton-Ho-Lee (hereafter, MHL) type interest rate. The closed form

option pricing formulae under Gaussian interest rate was suggested by Merton

(1973), Rabinovitch (1989), and Amin and Jarrow (1992). 2 These results can

be recovered by adopting relatively simple algebra as shown below.

2.1.1 Option Pricing under Vasicek Type Interest Rate

Vasicek (1977) derived the term structure of interest rate when the short rate is

given by (2) with γ = 0:

drt = κ(θ − rt) dt+ δ dW2,t, (3)

where κ, δ, and θ are positive constants under the original (or observed) proba-

bility. If we assume that the market price of risk, i.e. the increase in the expected

instantaneous rate of return on a bond per an additional unit of risk, λ(rt, t) is a

constant λ, the standard no-arbitrage argument states that (3) is now expressed

as

drt = κ(θ∗ − rt) dt+ δ dW̃2,t, (4)

where θ∗ = θ − δ
κ
λ under the equivalent martingale measure Q.

If we set α = κ θ∗ and β = −κ, the option value V0 can be obtained as a

special case of (A.7) in Appendix. That is, assuming σs = σ, αs = α, βs = β,

and δs = δ in (A.1) and (A.2) gives the option value under Vasicek type interest

2Goldstein and Zapatero (1996) also derived an endogenous Vasicek type interest rate, and

obtained stock option pricing formula under the above interest rate as a simple exchange econ-

omy equilibrium.
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rate, denoted V0(Vas), as follows:

V0(Vas) = S0Φ(d1)−K P (0, T )Φ(d2). (5)

In valuation equation (5), the current price of pure discount bond with time to

maturity T , P (0, T ), is given by

P (0, T ) = exp
(
1

2
ΣT

22 −B(T )
)
,

where

ΣT
22 =

δ2

κ2

[
T − 3 + e−κT (e−κT − 4)

2 κ

]

and

B(T ) = −1
κ

[(
r0 − κ θ − δλ

κ

)(
e−κT − 1

)
− (κ θ − δ λ)T

]
.

In addition, d1 in (5) is represented by d1 = (ΣT
11 + Σ

T
12 − C(T ))/

√
D, where

C(T ) = ΣT
11/2− B(T ) + log(K/S0), D = ΣT

11 + 2Σ
T
12 + Σ

T
22, Σ

T
11 = σ2T , and

ΣT
12 =

σ δ ρ

κ

[
e−κT − 1

κ
+ T

]
.

Finally, d2 = d1 −
√
D.

The equation (5) is equivalent to equation (8) in Rabinovitch (1989) which he

derived by using the equation (38) of Merton (1973).

2.1.2 Option Pricing under MHL Type Interest Rate

Merton (1973) had already considered the stock option pricing model when the

short rate is given by (2) with γ = 0 and β = 0, i.e.,

drt = α dt+ δ dW2,t, (6)

where α is a constant and δ is positive constant. This equation is also the con-

tinuous time equivalent of Ho and Lee (1986) model with constant drift. If we

assume that λ(rt, t) is λ, a constant, (6) can be written as

drt = α∗dt+ δ dW̃2,t, (7)
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where α∗ = α − δλ. By assuming σs = σ, αs = α∗, βs = 0, and δs = δ in (A.1)

and (A.2), we obtain the option value, denoted V0(MHL), as,

V0(MHL) = S0Φ(d1)−K P (0, T )Φ(d2), (8)

where P (0, T ), d1, d2, and C(T ) are defined in the same way as in (5), replaced

by ΣT
11 = σ2T , ΣT

22 = δ2 T 3/3, ΣT
12 = σ δ ρ T 2/2, and B(T ) = r0 T +(α− δλ)T 2/2.

The above formula (8) corresponds to the equation (3.22) in Amin and Jarrow

(1992) model which starts from the assumed forward interest rate process.

2.2 Option Pricing under Level-dependent Volatility In-

terest Rate Process

Let us assume that the volatility of the short rate is the function of the short rate

itself. In this case we can utilize Kim and Kunitomo (1999) and Kunitomo and

Kim (2000) to obtain option values in some asymptotic sense. We deal with the

stock option pricing formula under CIR type (γ = 0.5) and Brennan-Schwartz

type (γ = 1.0) short rate.

2.2.1 Option Pricing under CIR Type Interest Rate

Cox, Ingersoll and Ross (1985) presented a logarithmic utility general equilibrium

model in which the endogenous equilibrium interest rate dynamics is expressed

as

drt = κ(θ − rt) dt+ δ
√
rt dW2,t, (9)

where κ, θ, and δ are positive constants. Note that the risk neutral version of the

short rate process (9) is described as

drt = (κ(θ − rt)− δ λ rt)dt+ δ
√
rtdW̃2,t

= κ∗(θ∗ − rt) dt+ δ
√
rt dW̃2,t, (10)

where κ∗ = κ+ δλ and θ∗ = (θ κ)/(κ+ δλ) for a constant λ. 3

3It should be noted that the endogenous general equilibrium interest rate of CIR (1985)

economy follows the mean reverting square-root process and the associated risk neutral version
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The value of stock option under CIR type interest rate, denoted V0(CIR), can

be represented by

V0(CIR) =

[
S0Φ(d1)−K exp

(
−
∫ T

0
r∗t dt

)
Φ(d2)

]

+ δ C0

[
S0 φ(d1)−K exp

(
−
∫ T

0
r∗t dt

)
(φ(d2)− σ

√
T Φ(d2))

]

+ δ C1

[
d2 S0 φ(d1)− d1 K exp

(
−
∫ T

0
r∗t dt

)
φ(d2)

]
+ o(δ), (11)

where Φ(·) is the cumulative probability distribution for a standard normal vari-
able, φ(·) is its density function. r∗t is the deterministic version of the short rate
and given by

r∗t = r0 e
−κ t + θ (1− e−κ t),

and the deterministic version of discount factor, therefore, is described by

exp

(
−
∫ T

0
r∗t dt

)
= exp

(
−r0 − θ

κ

(
1− e−κ T

)
− θ T

)
.

d1 is given by

d1 =
1

σ
√
T

[
log

S0

K
+

r0 − θ

κ

(
1− e−κ T

)
+ θ T +

σ2

2
T

]
,

of the interest rate process also has the same form of the former, although with different drift

coefficients. Following the exposition of chapter 10 in Duffie (1996), we have θ = b(h − ε2)/κ

and δ = k
√

h − ε2, where h and ε are the constant parameters of capital-stock process and b,

κ, and k are the constant parameters of a shock process. Utilizing the relation between the

state-price deflator and the equivalent martingale measure allows the short rate process to be

represented under the equivalent martingale measure Q as follows:

drt = [(b(h − ε2)− κrt − k ε rt]dt+ δ
√

rt dW̃2,t

= [(b(h − ε2)− κrt − k
√

h − ε2 ε rt/
√

h − ε2]dt+ δ
√

rt dW̃2,t

= (κθ − κrt − δλrt)dt+ δ
√

rt dW̃2,t,

where λ is denoted by ε/
√

h − ε2. Thus CIR type short rate process keeps the form of square-

root process after the change of measure has occurred. In this sense the characterization of risk

premium (or drift adjustment) as above is compatible with CIR economy.
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and d2 = d1 − σ
√
T . C0 is represented by

C0 =
1

σ
√
T

[
λ(r0 − θ)

κ

(
1− e−κT

κ
− T e−κ T

)
+

λ θ T

κ

(
1− 1− e−κ T

κ

)]
.

Finally, C1 is given as follows:

C1 = − ρ

σ T
· C11,

where

C11 =
2
√
θ
(
(1 + 2eκ T )

√
r0 − 3 eκ T

2

√
r0 − θ (1− eκ T )

)
+
(
θ(1 + 2eκ T )− r0

)
ψ

2eκ Tκ2
√
θ

and

ψ = log


θ(2eκ T − 1) + r0 + 2 e

κ T
2

√
θ2(eκ T − 1) + θ r0

(
√
r0 +

√
θ)2


 .

2.2.2 Option Pricing under Brennan-Schwartz Type Interest Rate

Brennan and Schwartz (1980) suggested the short rate process,

drt = κ(θ − rt) dt+ δ rt dW2,t, (12)

where κ, δ, and θ are positive constants in deriving model for convertible bond

prices. We assume that the risk premium for varying interest rate, λ(rt, t) is λ, a

constant. The standard no-arbitrage argument states that under the equivalent

martingale measure Q, (12) is written by

drt = (κ(θ − rt)− δλ rt) dt+ δ rt dW̃2,t

= κ∗(θ∗ − rt) dt+ δ rt dW̃2,t, (13)

where κ∗ = κ+ δ λ and θ∗ = (θ κ)/(κ+ δλ).

The option value when the short rate is given by (13), denoted V0(BrS ), is

the same as V0(CIR) in (11) except that C1 is now replaced as follows:

C1 = − ρ

σ T
· C11

where

C11 =
(1− eκ T )(2θ − r0) + κ θ T (1 + eκ T )− κ r0 T

eκ Tκ2
.
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3 Methodology

We estimate the parameters for each trade day using time series data and compare

pricing errors of option pricing models by utilizing the estimates of parameters,

over test period.

3.1 Estimation of Parameters

For notational convenience, let us denote t also by each trade day and � by time

interval of data observation. Since the daily data will be used in this study and

the market is opened about 247 days per year, we set � to be 1/247.

Which time span do the investors take into account in estimating the parame-

ters of stock option pricing models? In this study, we set the estimation period to

be 494 trade days ( two calendar years) up to today and estimate the parameters

by adopting rolling estimation procedure. For the so called stochastic volatility

model in financial econometrics, the parameters have been estimated by using

relatively long period (at least several years) stock returns data. On the other

hand, the estimation time span of historical volatility in Black-Scholes model

usually ranges from 20 to 180 trading days in practice and there is no established

rule. For the stochastic short rate process, several decades data has been used

to estimate parameters in general. However from the practical viewpoint, if the

investors utilize the rolling procedure to estimate the parameters of option value,

we expect that the parameter estimation period might not be long since the time

to expiration of our options data is relatively short. In this respect 494 trade

days (2 years in calendar day) as the estimation period might be a reasonable

compromise.

Let us consider a discrete version of (1) as follows.

log
St+�
St

= µ∗�+ ε1,t+�, (14)

where µ∗ = µ − σ2

2
and ε1,t+� is normally distributed with conditional mean

Et = 0 and variance Vt = σ2�.
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Then the so called historical volatility of stock return, σ can be estimated

simply by ordinary least squares regression of (14). 4

For the estimation of parameters of short rate process, we adopt the New

Local Linearization Method (hereafter NLLM) of Shoji and Ozaki (1997). They

investigated the finite sample performances of several estimation methods for a

continuous time stochastic process from discrete observations and advocated the

NLLM by Monte Carlo experiments. The NLLM linearizes the drift of stochastic

differential equation and obtains the discrete version of original SDE by solving

Langevine equation. Following Shoji and Ozaki (1997), we discretize short rate

models as follows. 5

• MHL model
The discretization scheme collapses to the Euler approximation in this case,

i.e.,

rt+� = rt + α�+ ε2,t+�, (15)

where ε2,t+� follows normal distribution with conditional mean Et = 0 and

variance Vt = δ2 �.

• Vasicek model
Let f(rt) = α + β rt and Lt = β. Then we have

rt+� = rt +
f(rt)

Lt
(exp(Lt�)− 1) + ε2,t+�, (16)

where ε2,t+� follows normal distribution with Et = 0 and Vt = δ2 exp(2Lt�)−1
2Lt

.

• CIR model
Transform rt by yt =

√
rt. Let f(yt) =

4α−δ2

8yt
− βyt

2
, Lt =

β
2
− 4α−δ2

8y2
t
, and

4Of course the estimate of µ∗ will not be used in this study. It is well known that using

implied volatility rather than historical volatility shows better pricing performances. However

since the primary purpose of this study is to investigate the effects of stochastic interest rates

on option pricing and it is needed to estimate correlation coefficients between stock returns and

interest rates, we will use historical volatility.
5It is noted that for Vasicek, CIR, and Brennan-Schwartz model, α = κ θ and β = −κ.
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Mt =
δ2(4α−δ2)

4y3
t

. Then we have

yt+� = yt +
f(yt)

Lt

(exp(Lt�)− 1) + Mt

L2
t

[(exp(Lt�)− 1)− Lt�] + ε2,t+�,

(17)

where ε2,t+� follows normal distribution with Et = 0 and Vt = δ2 exp(2Lt�)−1
2Lt

.

• Brennan-Schwartz model
Transform rt by yt = log rt. Let f(yt) = − δ2

2
+ α exp(−yt) + β, Lt =

−α exp(−yt), Mt =
αδ2

2
exp(−yt). Then we have

yt+� = yt +
f(yt)

Lt
(exp(Lt�)− 1) + Mt

L2
t

[(exp(Lt�)− 1)− Lt�] + ε2,t+�,

(18)

where ε2,t+� follows normal distribution with Et = 0 and Vt = δ2 exp(2Lt�)−1
2Lt

.

We estimate α, κ, θ, and δ by maximizing the log-likelihood function of (15)-

(18). It should be noted that the log-likelihood functions of CIR and Brennan-

Schwartz model should incorporate the Jacobian terms since data transformation

has occurred. Each correlation coefficient ρ can be estimated from pair residuals

of (14) and (15)-(18). 6

The only remaining parameter λ can be estimated by utilizing the obtained

estimates of short rate parameters. Let us consider the discount bond price at

time t with remaining time to maturity τ , P (t, τ), where τ is longer than that

of the discount bond associated with the ‘proxy’ short rate rt. Then from the

relation Y (rt, t) = − 1
τ
logP (t, τ) + ηt, where Y (rt, t) is the yield at day t and ηt

is simply assumed to be i.i.d. pricing error, λ can be estimated by minimizing

sum of squared error. In the case of MHL and Vasicek model, each P (t, τ) is

given in the previous section and also well known for CIR case. However for

Brennan-Schwartz model, some approximate values of term structure model are

6It is easily verified that the discretized process (14) is identical to one obtained by the

NLLM if we apply Ito’s lemma to yt = logSt.
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needed. In this study, by applying proposition 3 of Chapman, Long and Pearson

(1999), we approximate the discount bond price of Brennan-Schwartz model by

P (t, τ) =
N∑

n=0

1

n!
gn(rt)τ

n,

for N ≥ 2, where

gn+1(rt) = ((α + β rt)− δλrt)
dgn(rt)

drt
+
1

2
δ2r2

t

d2gn(rt)

d2rt
− rtgn(rt),

for n ≥ 0 and g0(rt) = 1. We calculate P (t, τ) when N = 3.

3.2 Performance Measure

Let Θ̂t be the estimates of parameters in stock option pricing model for each day

t. If we set V i
t (term : Θ̂t) to be the theoretical value of stock option and P i

t the

observed option price, the pricing error εit(term : Θ̂t) for each day t, is defined as

εit(term : Θ̂t) = P i
t − V i

t (term : Θ̂t),

where the superscript i ∈ {1, · · · , Nt} denotes the kind of option, which represents
different exercise price and time to expiration, and term represents each short rate

model.

For each option pricing model, we calculate the mean of absolute pricing

error for each day and obtain daily-average over the sample period (we call it

DAPE). We compare DAPEs of option pricing models under alternative short

rate processes.

4 Data

As options data, we use daily closing prices of Nikkei 225 index call option which

is the most traded European style stock option in Japan. The Nikkei 225 index

option market was introduced as the market of near American style option on

June 12, 1989 and has completely shifted to European style option market on
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June 12, 1992. Therefore options data before June 12, 1992 are excluded from

samples. The short rate level in Japanese financial market has gone down since

March 1991. And as of January 2001, it has kept below 1 percent in annual

base from midyear of 1995. Because this study focuses primarily on the effects

of interest rate on option pricing, we also cut out samples after June 30, 1995.

Our options data covers from June 12, 1992 to June 30, 1995. The sample size is

16518. 7

We need to adjust dividend flow of the Nikkei 225 index as no dividends are

assumed in the previous sections. For each option contract with remaining time

to expiration, T , from current time t, We obtain the present value of the daily

dividends PV Dt as follows:

PVDt = dt · So
t−1 ·

T

365
,

where dt is the predicted average dividend yield (Yoso-kijun Heikin Rimawari,

which is announced by Nihon Keizai Shimbun on every trading day t) and So
t−1

is the observed closing index level of previous day. The dividend-adjusted stock

price, St, is obtained by

St = So
t − PVDt.

In addition to options data, we use 1248 daily closing level of Nikkei 225

index. 8 As the proxy for the unobservable short rate, we use overnight call

money rate ( hereafter, O/N call rate). O/N call rate keeps the literal sense

of an instantaneous spot rate and is the short rate with the shortest time to

maturity available in Japanese financial market. Although there might be some

microstructure effects associated with overnight rates, we shall use O/N call rate

because O/N call money market is the most traded interbank market in Japan.

7The option data are kindly provided by the Osaka Securities Exchange.
8The index levels are adjusted simply by

St = So
t − dt · So

t−1.

14



Furthermore O/N call rate is the interest rate of pure discount bond. During the

sample period, O/N call rate shows two spikes on the last trade day of March

and September each year, which reflects the bank’s deposit sales competition for

the fiscal-year-ended firms. We replace the rates of the last trade day on March

and September by the average of previous two trade days rates, each year. To

estimate λ, we add one month call rate to our data set. 9

The data of dividend-adjusted Nikkei 225 index and call rates has 1248 time

series from June 12, 1990 through June 30, 1995. The standard deviation of the

dividend adjusted Nikkei 225 index return is 24.991%. The standard deviation

of O/N call rate difference is 1.188%. The correlation coefficient between index

returns and call rate change is -0.036. See also the Figure 1.

[Figure 1]

We divide options data into several categories according to either moneyness

and/or time to expiration. At-the-money sample is assumed to satisfy 0.97 <

S/K < 1.03. Out-of-the-money (resp. in-the-money ) sample is set to satisfy

S/K ≤ 0.97 (resp. S/K ≥ 1.03). The longest time to maturity of Nikkei 225

index option is four months in calendar day. It is relatively short in comparison

with those of US and other European countries. Hence we divide the entire

samples into short and medium term options according to time to expiration.

The short term option has maturity time less or equal to 60 days. The medium

term option takes 60 days to four months to mature. The sample statistics of

options data are given in Table 1.

[Table 1]

9One month call rate was selected mainly because of liquidity. Nevertheless, from June 12,

1992 to June 30, 1995, there are 22 missing values of one month call rate due to non-trade. We

replace missing observations by the previous day’s quoted rates.
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5 Results

The estimates of parameters are given in Table 2. These estimates are the daily

average of each day estimates over the test period (from June 12, 1992 through

June 30, 1995, 755 time series). First, the daily average of historical volatility

of stock returns is 24.38% and is close to its time series counterpart. Secondly,

the correlations between the stock return and the short rate change are very

small as it might be expected in time series counterpart. Thirdly, the estimates

of volatility parameter of short rate process are very small except the case of

Brennan-Schwartz model. Finally, the estimates of risk premiums have the nega-

tive values as it might be expected. ¿From Figure 2 to Figure 6, we also observe

that some estimates of short rate model parameters change abruptly.

[Table 2]

[Figure 2] to [Figure 6]

Table 3 provides the daily average of mean absolute pricing errors over the test

period. For the total 16518 sample case, test period covers 755 trading days and

the number of Nikkei 225 index call prices which are available on a given trade

day, ranges from 11 to 39, with the mean 21.878 and the standard deviation 4.181.

¿From Table 3, it is seen that any option pricing model under a specific

stochastic interest rate does not unilaterally outperform another option pricing

model under alternative stochastic interest rates and the original Black-Scholes

model as well, overall. For the total sample, DAPE of option pricing model

under Brennan-Schwartz (res. CIR) type short rate is 113.078 yen (res. 113.714

yen), which is slightly smaller than that of original Black-Scholes, 113.751 yen.

On the other hand, DAPEs for Vasicek and MHL model are 114.114 yen and

113.815 yen. They are slightly bigger than that of the original Black-Scholes.

Nevertheless, the differences among them are negligible. In addition, although

the option pricing models incorporating non-Gaussian interest rate process such

as CIR and Brennan-Schwartz model outperform those of Gaussian interest rates,
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they also show only marginal improvement. 10

[Table 3]

The empirical results show that an option pricing model under a specific

stochastic interest rate does not dominantly outperform another option pric-

ing model under alternative stochastic interest rate process. Also, incorporat-

ing stochastic interest rates into stock option pricing does not contribute to the

performance improvement of the original Black-Scholes pricing formula. This

outcome coincides with the observations of BCC (1997), where they assumed the

CIR type short rate and concluded that incorporating stochastic interest into

stock option pricing is not important for pricing performance. As mentioned be-

fore, Rindell (1995) showed that the option pricing model incorporating the MHL

type short rate process performs better than the original BS model. However,

since Rindell’s data included long-term options we could not conclude that our

results contradict Rindell’s observations.

Finally, the investigation based on other moderate estimation time spans and

other interest rate quotes such as one week call rate and one month CD rate

provides also no drastic changes of our results, although we did not report them.

6 Concluding Remarks

Based on Japanese market data on stock returns, option prices, and short rates,

we have compared the pricing performances of option models under alternative

stochastic interest rate processes as well as Black-Scholes model. Our findings

show that incorporating stochastic interest rates into option pricing models has

little impact on pricing performances in Japanese market where long term dated

options are not available.

However, our conclusions should be understood with some cautions. Some

10However it is worth noting that for medium term samples, the option pricing model un-

der Brennan-Schwartz type interest rate shows the good pricing performance relative to other

models.
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judiciously selected interest rate models which we did not adopt, in particular

multi-factor models may contribute to improving pricing performances of op-

tions. Option pricing model incorporating stochastic interest rates and stochastic

volatility, for example, may outperform option pricing under stochastic volatility.

Comparing hedging performances of alternative stochastic interest rate models

may provide another story. These considerations remain to be examined.

A Appendix

We recover the stock option pricing formula under Gaussian type short rate pro-

cess by simple algebra. Let us consider the Black-Scholes economy under the

equivalent martingale measure Q. The stock price is described by

St = S0 +
∫ t

0
rsSsds+

∫ t

0
σsSsdW̃1,s (A.1)

and the short rate is given by

rt = r0 +
∫ t

0
(αs + βsrs)ds+

∫ t

0
δsdW̃2,s, (A.2)

where σs, αs, and βs are the deterministic functions of time. Assume that the

covariation between two Brownian motions is captured by ρ, constant.

The solutions of (A.1) and (A.2) are represented by

St = S0 exp

(∫ t

0
(rs − σ2

s

2
)ds+

∫ t

0
σsdW̃1,s

)
(A.3)

and

rt = exp
(∫ t

0
βsds

) [
r0 +

∫ t

0
exp

(
−
∫ s

0
βudu

)(
αsds+ δsdW̃2,s

)]
. (A.4)

Define exp (−∫ T
0 rsds)[ST−K] by ZT and exp (

∫ t
0 βsds) by β(t). Then inserting

(A.3) and (A.4) into ZT , gives the following expression for ZT .

ZT = S0 exp
(
−1
2

∫ t

0
σ2

sds+X1T

)
−K exp (−B(T )−X2T ) , (A.5)

where

B(T ) =
∫ T

0
β(t)

[
r0 +

∫ t

0
β(s)−1αsds

]
dt,
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X1T =
∫ T

0
σsdW̃1,s,

and

X2T =
∫ T

0

(∫ T

s
β(t)dt

)
β(s)−1δsdW̃2,s.

Using the notations such as

ΣT
11 ≡

∫ T

0
σ2

sds,

ΣT
22 ≡

∫ T

0

(∫ T

s
β(t)dt

)2

β(s)−2δ2
sds,

and

ΣT
12 ≡

∫ T

0

(∫ T

s
β(t)dt

)
β(s)−1δsσsρ ds,

we can also express (A.5) as

ZT = S0 exp
(
−1
2
ΣT

11 +X1T

)
−K exp (−B(T )−X2T ) ,

where 
 X1T

X2T


 ∼ N2




 0

0


 ,


 ΣT

11 ΣT
12

ΣT
12 ΣT

22




 .

If it is noted that ZT ≥ 0 is equivalent to X1T +X2T ≥ C(T ), where C(T ) =

1
2
ΣT

11 − B(T ) + log K
S0
, the time T maturing European call option value at the

initial time, V0, can be expressed by

V0 = EQ
0 [max(ZT , 0)]

= EQ
0

[
S0 exp (X1T − ΣT

11

2
)I(X1T +X2T ≥ C(T ))

]
−EQ

0

[
K exp (−X2T −B(T )) I(X1T +X2T ≥ C(T ))

]
, (A.6)

where I(·) is 1 if (·) is true and 0, otherwise.
We set up the following lemma.

Lemma 1 (Kunitomo and Takahashi (1992)) Let x ∼ N2(µ,Σ), where N2

is the 2-dimensional Gaussian distribution function. For arbitrary 2-dimensional

vector a and scalar b and c, the following relationship exists.

∫∫
(1,−b)x≥c

exp(a′x)n2(x|µ,Σ) dx = exp
(
a′µ+

1

2
a′Σa

)
Φ


(1,−b)(µ+Σa)− c√

(1,−b)′Σ (1,−b)


 ,
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where n2 is the 2-dimensional Gaussian density function and Φ is the standard

Gaussian distribution function.

By applying for b = −1 and a = (1, 0)′ in the first term and a = (0,−1)′ in
the second term of (A.6) to the above lemma, we have the expression of V0,

V0 = S0Φ(d1)−K P (0, T ) Φ(d2), (A.7)

where P (0, T ) = exp
(
ΣT

22/2− B(T )
)
is the price of pure discount bond with time

to maturity T , d1 = (ΣT
11 + Σ

T
12 − C(T ))/

√
D, in which D = ΣT

11 + 2Σ
T
12 + Σ

T
22,

and d2 = d1 −
√
D.
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Table 1: Summary Statistics of Option Data

P , K and T are the prices of Nikkei 225 call option, exercise price and the remaining time-

to-maturity, respectively. S is the dividend-adjusted value of Nikkei 225 stock index and r is

overnight call money rate. Total is the entire sample covering from June 12, 1992 through June

30, 1995. Short is the options with time to expiration less or equal to 60 days and Medium is

the options with time to expiration from 60 days through four months. ATM is at-the-money

sample which satisfies 0.97 < S/K < 1.03. OTM is out-of-the-money sample which satisfies

S/K ≤ 0.97. ITM is in-the-money sample which satisfies S/K ≥ 1.03. All is the sum of ATM,

OTM, and ITM. The numbers are the mean values and those in parentheses are the standard

deviations.

Obs. S/K P T r(%)

Total ALL 16518 0.989(0.079) 771.090(819.183) 46.073(30.702) 2.816(0.882)

ATM 4966 0.998(0.017) 665.314(300.764) 49.638(32.132) 2.759(0.819)

OTM 7281 0.924(0.036) 213.690(210.311) 50.987(30.570) 2.814(0.933)

ITM 4271 1.092(0.059) 1844.308(848.713) 33.551(25.289) 2.886(0.857)

Short ALL 11757 0.997(0.085) 796.201(903.706) 29.793(17.029) 2.824(0.890)

ATM 3286 0.999(0.017) 572.850(272.988) 30.344(17.619) 2.757(0.839)

OTM 4780 0.921(0.038) 131.390(144.800) 32.403(16.498) 2.825(0.951)

ITM 3691 1.094(0.060) 1856.002(876.326) 25.922(16.458) 2.881(0.848)

Medium ALL 4761 0.970(0.057) 709.080(553.306) 86.276(16.833) 2.797(0.860)

ATM 1680 0.995(0.016) 846.170(268.760) 87.375(17.099) 2.764(0.778)

OTM 2501 0.929(0.032) 370.984(225.871) 86.505(16.690) 2.792(0.898)

ITM 580 1.074(0.045) 1769.888(641.534) 82.103(16.055) 2.915(0.908)
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Table 2: The Estimates of Parameters

The values are the daily averages of each day estimates over test period (755 trade days, from

June 12, 1992 through June 30, 1995) . For each day t, we used the time series data of 494

trade days up to t to estimate these parameters. The numbers in parentheses are the standard

deviations of the estimates. Vas (res. MHL,CIR,BrS) is concerned with the option pricing

model under Vasicek (res. MHL, CIR, and Brennan-Schwartz) type interest rate process.

Parameter Vas MHL CIR BrS

σ 0.2438 0.2438 0.2438 0.2438

(0.0305) (0.0305) (0.0305) (0.0305)

κ 1.1903 1.2188 1.2212

(0.7208) (0.7291) (0.7638)

θ 0.0177 0.0183 0.0191

(0.0104) (0.0100) (0.0101)

α -0.0159

(0.0061)

δ 0.0119 0.0119 0.0289 0.2950

(0.0029) (0.0029) (0.0028) (0.0313)

ρ 0.0057 0.0050 0.00789 0.0111

(0.0492) (0.0491) (0.0454) (0.0415)

λ -1.8476 -1.8389 -0.5726 -1.8834

(0.3490) (0.3184) (0.1463) (0.3645)
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Table 3: Daily average Absolute Pricing Error of Nikkei 225 Index Call

Option

The values are the daily averages of mean absolute pricing errors for each day over test period

(DAPE). The numbers in parentheses are the standard deviations of DAPE. Total is the entire

option samples. Short (res. Medium) is the options with short (res. medium) time to expiration.

The sample is the number of observed call option prices and the numbers in square brackets

are the valid number of day which we average over. BS is the original Black-Scholes option

pricing model. Vas (res. MHL,CIR,BrS) is the option pricing model under Vasicek (res. MHL,

CIR, and Brennan-Schwartz) type interest rate process. ALL is the entire sample and OTM

(res. ATM, ITM) is out-of-the-money (res. at-the-money, in-the-money) sample.

sample BS Vas MHL CIR BrS

ALL 16518 113.751 114.114 113.815 113.714 113.078

[755] (53.663) (53.489) (53.599) (53.801) (54.518)

ATM 4966 126.563 127.110 126.622 126.456 124.466

[755] (78.662) (78.062) (78.439) (78.884) (81.148)

Total OTM 7281 82.615 83.269 82.768 82.462 79.634

[749] (49.734) (50.030) (49.824) (49.790) (48.963)

ITM 4271 167.464 166.913 167.289 167.703 173.029

[714] (94.183) (93.826) (94.038) (94.328) (95.269)

ALL 11757 104.439 104.353 104.411 104.507 105.716

[755] (55.002) (54.863) (54.963) (55.073) (55.985)

ATM 3286 112.462 112.449 112.437 112.500 112.696

[755] (80.025) (79.715) (79.908) (80.133) (81.858)

Short OTM 4780 58.229 58.364 58.267 58.192 57.056

[748] (39.695) (39.706) (39.703) (39.730) (39.746)

ITM 3691 170.311 169.760 170.138 170.544 176.158

[713] (95.369) (95.242) (95.323) (95.431) (95.844)

ALL 4761 133.746 135.222 134.031 133.441 128.050

[730] (78.283) (78.909) (78.393) (78.381) (76.720)

ATM 1680 150.251 151.936 150.500 149.884 143.269

[669] (98.769) (98.620) (98.581) (99.016) (99.975)

Medium OTM 2501 126.434 128.025 126.813 126.076 120.219

[702] (78.204) (79.060) (78.457) (78.191) (75.964)

ITM 580 151.147 150.522 150.906 151.464 154.403

[320] (124.599) 123.736 (124.063) (125.152) (126.574)
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Figure 1: Dividend-Adjusted Nikkei 225 Stock Index and Overnight Call Money

Rate

The sample data covers from June 12, 1990 to June 30, 1995 and has 1248 time series. (a)

Dividend-Adjusted Nikkei 225 Stock Index; (b) Overnight Call Money Rate; (c)Spikes-Adjusted

Overnight Call Money Rate; (d) One Month Call Money Rate.
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Figure 2: Historical Volatility

The estimates are the values of 755 trade days covering from June 12, 1992 to June 30, 1995.

The estimation period for each volatility is 494 trade days.
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Figure 3: The Estimates of Vasicek Type Interest Rate

The estimates are the values of 755 trade days covering from June 12, 1992 to June 30, 1995.

The estimation period for each parameter is 494 trade days. (a) κ; (b) θ; (c) δ; (d) ρ; (e) λ.
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Figure 4: The Estimates of MHL Type Interest Rate

The estimates are the values of 755 trade days covering from June 12, 1992 to June 30, 1995.

The estimation period for each parameter is 494 trade days. (a)α; (b)δ; (c)ρ; (d)λ.
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Figure 5: The Estimates of CIR Type Interest Rate

The estimates are the values of 755 trade days covering from June 12, 1992 to June 30, 1995.

The estimation period for each parameter is 494 trade days. (a)κ; (b)θ; (c)δ; (d)ρ; (e)λ.
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Figure 6: The Estimates of Brennan-Schwartz Type Interest Rate

The estimates are the values of 755 trade days covering from June 12, 1992 to June 30, 1995.

The estimation period for each parameter is 494 trade days. (a)κ; (b)θ; (c)δ; (d)ρ; (e)λ.
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