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Abstract

This paper investigates a non-parametric modular neural network (MNN) model to price the
S&P-500 European call options. The modules are based on time to maturity and moneyness
of the options. The option price function of interest is homogenous of degree one with respect
to the underlying index price and the strike price. When compared to an array of parametric
and non-parametric models, the MNN method consistently exerts superior out-of-sample pricing
performance. We conclude that modularity improves the generalization properties of standard
feedforward neural network option pricing models (with and without the homogeneity hint).
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1. Introduction

Since the seminal work by Black and Scholes (1973), option pricing has become the focus of scholarly

attention. Most of the research efforts have attempted to relax some of the restrictive assumptions

underlying the Black-Scholes model such as the normality of the log-returns or constant volatility,

as there is strong empirical evidence suggesting that these assumptions are not appropriate (e.g.,

Bakshi et al. (1997)). One such example of the misspecifications of the Black-Scholes model is its

substantial inaccuracy related to the pricing of the deep out-of-the-money options (Gençay and

Altay-Salih (2003)). For these options, it was found that the Black-Scholes prices overestimate

market prices while feedforward neural network (NN) models provide a superior pricing perfor-

mance. The success of NN option pricing models was also documented in Hutchinson et al. (1994),

Qi and Maddala (1996), Liu (1996), Garcia and Gençay (2000), and Gençay and Qi (2001).

A number of alternative approaches to account for the misspecifications of the Black-Scholes

model have been proposed.1 Models specified within the framework of non-constant (or stochastic)

volatility were suggested by Hull and White (1987), Scott (1997), Duffie et al. (2000), Bakshi et al.

(1997), Bates (2000), Pan (2002), Das and Sundaram (1999), Eraker (2004) and Chernov and

Ghysels (2000). Although stochastic volatility and stochastic interest rate models are inherently

misspecified, in practice they improve upon the Black-Scholes model in out-of-sample pricing and

hedging exercises (Bakshi et al. (1997)). However, the pricing improvements are not robust and

exhibit biases for the deepest out-of-the-money call options. Deterministic volatility models have

also been considered (Dupire (1994), Rubinstein (1994)), but Dumas et al. (1998) reported that

the same performance could be achieved by applying an implied volatility smoothing procedure

on the Black-Scholes model. Augmenting the underlying price process can produce many different

variants of the Black-Scholes model. For example, one of the most popular variants involves fitting

a Poisson jump process to the stock price data (e.g., Bates (2000), Pan (2002)).

Relaxing the normality assumption of the Black-Scholes model led to parametric (Melick and

Thomas (1997), Lim et al. (1998)) and semi-parametric (Aı̈t-Sahalia and Lo (1998)) option pric-

ing models. Despite the theoretical appeal of parametric models stemming from their stringent

parametric assumptions that allow for simpler functional forms, non-parametric models are more

flexible in relaxing the distributional assumptions of the Black-Scholes model with a potential for

improved out-of-sample pricing performance. Apart from the above mentioned NN models, some

notable recent research contributions that follow this approach include a non-parametric Ameri-

can option pricing model by Broadie et al. (2000b) and Broadie et al. (2000a), NN model for the

FTSE 100 Index options by Bennell and Sutcliffe (2004), Gottschling et al. (2000), non-parametric

locally polynomial estimator of Aı̈t-Sahalia and Duarte (2003), positive convolution estimation of

1See Garcia et al. (2004) for a recent review.
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Bondarenko (2003), and non-parametric least squares method by Yatchew and Härdle (2006).

This paper builds on the option pricing models from Hutchinson et al. (1994) and Garcia and

Gençay (2000). Instead of relying on the method of hints from Garcia and Gençay (2000), we

estimate a non-parametric model called modular neural network (MNN) model. A priori, training

a single NN model on heterogeneous data (options of different moneyness and time to maturity)

can be problematic for several reasons. The NN could become trapped in local minima or may

generalize poorly (Ronco and Gawthrop (1995)). Moreover, the NN model could be susceptible to

the “recency effect”: the NN parameters adapted unduly in favor of the most recent training data.

Feldkamp and Puskorius (1998) approach the recency effect through multistream learning, a concept

related to MNNs. During multistream learning, the data set is split into multiple files (streams) and,

in each training cycle, the NN parameters in streams are updated independently. This procedure

improves the generalization properties of the recurrent NN and is an increasing function of the

number of streams. Noteworthy, multistream learning is based on training a single NN whereas

an MNN contains many NNs defined across sub-sets of the data, i.e., modules. Therefore, we find

room for improvements upon simple NN option pricing models that fail to account for the recency

effect. We use MNN to decompose the data into modules organized with regard to moneyness

and maturity and estimate each module independently. In fact, when a priori knowledge about

the model is unknown, advanced MNNs utilize learning algorithms to find the optimal modular

architecture (Cofino et al. (2004)). We show that by dividing the data into modules and estimating

each module locally it is possible to obtain a more accurate global option pricing function.

To assess the potential gains in pricing accuracy, we work within the framework of Garcia and

Gençay (2000). Consequently, for the S&P-500 index European call options data, we estimate the

option price to strike price ratio (Ct/K) as a function of two arguments: the stock price to strike

price ratio (St/K) and the time to maturity (τ). Our estimation results show that MNNs are

superior in capturing both cross-sectional and time-series aspects of the fluctuations in the option

prices. Compared to the Black-Scholes model, for all years, except 1987, the average out-of-sample

accuracy gains are statistically significant and range from 68% to 91% (three modules defined by

moneyness) and from 44% to 85% (three modules defined by time to maturity). For the period

1987-1994, the average improvements of the MNN model (modules defined by moneyness) relative

to the feedforward NN model with the hint lie between 1.5% in 1989 and 68% in 1987. However,

the pricing accuracy of the MNN model based on the time to maturity module selection criterion

is in most cases inferior to the NN model with the hint. When both of the criteria are applied

simultaneously (i.e., nine modules are constructed) the MNN model provides even smaller average

out-of-sample pricing errors that are consistently below the ones for the rival models. Therefore,

our main empirical result is that we are able to achieve generalization improvements of the option

pricing function beyond those provided by the technique of hints. We hope that our results will
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foster future research on the applications of MNNs in other areas of finance and economics.

The remainder of the paper is organized as follows. Section 2 introduces the MNN model and

explains its advantages over a single feedforward NN model. In section 3 we describe the data. The

results of our out-of-sample pricing exercises are presented in section 4. Section 5 concludes.

2. Modular neural network design

2.1 Modular neural network estimator

This paper relies on modularity as a basic model design principle to estimate the option pric-

ing function non-parametrically. Among many other authors, Happel and Murre (1994), Ronco

and Gawthrop (1995), and Cofino et al. (2004) find that complex problems can be tackled by

decomposing them into a number of sub-tasks. One can understand modularity as the notion of

local computation on a specific task domain (or module). Each module is represented by a sin-

gle feedforward NN model. Generalization is achieved through further interaction (cooperation or

competition) with other modules. This concept, also called the “divide-and-conquer” method, can

be very useful for function approximation in the presence of heterogeneous data.2 For instance, an

extremely volatile region of data may be followed by a relatively stable data sequence. It can be

very difficult for a single NN to extract both processes together and generalize the whole function.

Sometimes referred to as “spatial crosstalk”, this problem results in a slow convergence or learning

failure (Jacobs et al. (1991)).

The modular structure of an MNN reduces the complexity of a single NN and enhances its

functional approximation capabilities. Due to their considerable flexibility and robustness to spec-

ification errors, MNNs can surpass the limitations of single NN models, or, more specifically, be

able to control for the spatial crosstalk and recency effects.

To explain the concept of an MNN in the option pricing context, we will assume that a function

of two variables ct (ct = φ(x1t, x2t)+εt) is driven by different functions defined over known domains

of x1t and x2t, where t denotes the time index. Namely, function φ(x1t, x2t) can be written as a

linear combination of functions c1t, c1t, . . . , cMt as follows (Jang et al. (1997)):

φ(x1t, x2t) = ω1c1t(x1t, x2t) + . . .+ ωM cMt(x1t, x2t) =

M∑

k=1

ωkckt(x1t, x2t). (1)

This function can be approximated by an MNN (Figure 1). A meaningful decomposition of the

function φ(x1t, x2t) would be to approximate it locally by M modules c1t, c1t, . . . , cMt and then

2In an innovative and related paper Keber and Schuster (2003) show that the divide-and-conquer-like methods
can also be applied to derive the implied volatility from American put options.
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to sum the output of each module, while applying the appropriate weights ω1, ω2, . . . , ωM . The

combination weights ωk (k = 1, . . . ,M) can be estimated using a “softmax” method or Gaussian

mixture models. McCullagh and Nelder (1989) and Bridle (1989) propose a “softmax” activation

function of each weight ωk as given by:

ωk =
exp (ckt)

∑M
j=1 exp (cjt)

;

M∑

k=1

ωk = 1 (2)

Gaussian mixture models view each module as a parametric (Gaussian) distribution for local

approximation of non-linear mappings (Haykin (1999)). The entire data set is then modeled as a

mixture of these distributions. Put differently, the mixture density of the data is represented by a

probability-weighted sum of the densities for the modules.

It is worthwhile to note that the above two approaches to selecting weights are not explored

in this paper. Instead, we specify modules and weights using the moneyness (St/K) and time to

maturity (τ) criteria. As will be explained later in this section, our approach represents a special

case of redistributing weights to only one module at the time.

The modules are feedforward (backpropagation) NNs and are in general estimated as:

ckt = gk

(

βk0 +

qk∑

j=1

βkjψk

(

αkj0 +

s∑

i=1

αkijxit

)
)

, k = 1, . . . ,M. (3)

In our case, s=2 (i=1,2) and qk is the number of hidden nodes for the kth module. The single hidden

and the output layers of the modules are characterized by two flexible classes of non-linearities:

ψk and gk, respectively. The backpropagation learning algorithm requires continuous differentiable

non-linearities. The types used in this paper are the sigmoid logistic or hyperbolic tangent functions

in the hidden layer, and the linear function in the output layer. αkij and βkj denote appropriate

connection weights between the adjacent layers for the modules. Subscripts 0 for α and β stand

for NN biases.

[Insert Figure 1 about here]

We define our option pricing formula as in Hutchinson et al. (1994) and Garcia and Gençay

(2000):

Ct = φ(St, K, τ) (4)

where Ct is the call option price, St is the price of the underlying asset, K is the strike price and

τ is the time to maturity. Assuming the homogeneity of degree one of the pricing function φ with

respect to St and K, one can write the option pricing function as follows:
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Ct

K
︸︷︷︸

ct

= φ(
St

K
︸︷︷︸

x1

, 1, τ
︸︷︷︸

x2

) = φ(x1, x2). (5)

In general, options are often referred to as plain vanilla derivatives because their payoff (or price)

is determined by the so-called underlying, which is in our case the S&P-500 stock market index.

Call options are more profitable for the buyer when, ceteris paribus, the price of the underlying

(St) increases or the strike price (K) decreases. Therefore, intuitively, these two variables must

be integral parts of the option pricing formula. Further, when time to maturity (τ) increases, call

options become more valuable. This is explained by the fact that it is more likely that the option

will be in the money (St − K > 0) and, thus, worthwhile exercising at maturity. The preceding

explanatory variables can be extended with volatility (standard deviation of the underlying), risk-

free interest rate, and dividends paid on the underlying.3

The pricing function φ is first approximated by an MNN with three modules determined by the

time to maturity cutoff points as follows: τ < 0.1 (short term), 0.1 ≤ τ ≤ 0.2 (medium term) and

τ > 0.2 (long term).4 Thus, the pricing function is decomposed into three separate non-linearities.

To keep the out-of-sample prediction as simple as possible, we do not rely on any inter-module

interaction. More precisely, the modules are trained independently on the data for the three option

types and during prediction, based on the value of x2, only one is active (i.e., when ωi = 1, all

ωk = 0; k 6= i, k = 1, 2, 3).

This empirical exercise is followed by selecting modules according to the moneyness criterion as

follows: (St/K) < 0.97 (out-of-the-money), 0.97 ≤ (St/K) ≤ 1.05 (near-the-money) and (St/K) >

1.05 (in-the-money). Now, x1’s from the prediction part of the sample determine which of the three

modules is used to estimate ct. Finally, both criteria are applied at the same time and out-of-sample

predictions are estimated from an MNN with nine modules. Specifically, ωi’s for all nine modules

are specified in the following fashion: when ωi = 1 (i = 1, . . . , 9), ωk = 0 (k 6= i, k = 1, . . . , 9).

Table 1 describes these modules specified over different ranges of τ and (St/K) that are used to

estimate functions ckt (k = 1, . . . , 9).

[Insert Table 1 about here]

Our primary goal is to improve upon the Garcia and Gençay (2000)’s model with the hint5

3As suggested by a referee, we extend the model with the former two variables in Section 4.2.
4The units for τ are the number of days to maturity divided by the number of days in a year (365 or 366).
5The “hint” involves utilizing additional prior information about the properties of an unknown (pricing) function

that is used to guide the learning process. In the context of Garcia and Gençay (2000), this means breaking up
the pricing function into two parts, one controlled by St/K and the other one by a function of time to maturity.
Each part contains a cumulative distribution function which is estimated nonparametrically through neural network
models.
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and also show that MNNs offer significant advantages over simple feedforward neural network

models. The choice of the number of modules, first, follows the logic of categorizing options based

on maturity (short term, medium term, long term), then, moneyness (out-of-the-money, near-the-

money, in-the-money), and, finally, using both criteria. The breakpoints of the categories are from

Table 4 of Garcia and Gençay (2000). Therefore, we use a “rule of thumb” approach to choosing

both the number of modules and the cut-off points. In section 4, we discuss possible methods for

selecting the optimal number of modules and breakpoints.

2.2 Alternative non/semi-parametric estimators

In contrast to parametric models such as the Black-Scholes that assume cumulative normal shapes,

non-parametric models such as MNNs make minimal assumptions about the shape or the properties

of the underlying price process. In addition, non-parametric pricing functions are convenient for

estimating state price densities (SPDs) and the “Greeks.” For instance, the MNN estimator can

be directly differentiated numerically (or analytically) to extract the SPD or option delta.6. This

section will describe in fairly general terms the relationship between artificial neural networks (NNs)

that are building blocks for MNNs and some alternative non- and semi-parametric estimators.

Similar to linear regression models, NNs map a set of explanatory variables (xit, for example, i =

1, 2) into a dependent variable (ct). The major difference between NNs and other non-parametric

estimators is that NNs are based on a layered structure where each layer transforms xit’s using

special functions known as sigmoid logistic or hyperbolic tangent functions (see equation 3). The

number of layers and the structure of each layer have to be determined before estimation, like

the bandwidth in kernel regression methodologies. In the case of NNs, this is typically performed

through a cross-validation method on the validation part of the data (Garcia and Gençay (2000)).

Then, the parameters of an NN are estimated by minimizing the loss function defined as the sum

of squared differences between the observed ct and the one predicted by an NN. The goal of this

paper is to estimate the parameters for each NN of the MNN option pricing function.

A popular non-parametric alternative to NNs to estimate the pricing function is kernel regres-

sion (Aı̈t-Sahalia and Lo (1998)). In contrast to NNs, where observational errors are reduced by

averaging the data based on a recursive error minimization procedure, for kernel regression this

is achieved by local averaging (smoothing). The kernel method estimates the price based on the

weighted sum of the information from the in-sample data. More specifically, given some vector

(x1t; x2t), to estimate the price, more weight is assigned to the observations at locations that are

closer to the vector. As our option pricing model has two regressors, the appropriate kernel pricing

function would be constructed as a product of two univariate kernels. The usual trade-off between

6We formally define the SPD and the delta in the results section.
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smoothness and goodness-of-fit is achieved by the choice of the bandwidth of the kernel function.

As previously suggested, in an NN, this trade-off is controlled by the structure and the number of

the layers, or, more generally, by the number of modules in an MNN. Aı̈t-Sahalia and Lo (1998)

show that the kernel estimation errors for the SPD and option delta lie within one per cent of the

theoretical values. The out-of-sample pricing performance of their model is also impressive and

superior over the NN model. It is noteworthy that the kernel pricing function from Aı̈t-Sahalia and

Lo (1998) that is used for forecasting is semi-parametric. It is informed by dividend yield, τ , K,

St, risk-free interest rate, and non-parametrically estimated volatility. In contrast, the variables in

the MNN model are the ratio of the asset price to the strike price and the time to maturity.7

Other estimators that can be employed for option pricing include nearest-neighbour estimators,

splines, average derivative estimators, local polynomial regression, and orthogonal series expansion.

For example, the nearest-neighbours method is based on an assumption that geometric patterns

in the past of the time series, similar by some measure (e.g., Euclidean distance) to the currently

observed variables, can be used for forecasting (see, e.g., Yakowitz (1987)). This set of “related”

observations of independent variables is called the nearest neighbours. The smoothing constant

analogous to the kernel bandwidth determines the number of nearest neighbours to be considered

in the estimation. In general, all of the above methods are concerned with averaging or smoothing

the data in a more or less sophisticated fashion while controlling for the trade-off between bias and

variance.

3. The data and assessment of prediction performance

The data are daily S&P-500 index European call option prices taken from the Chicago Board

Options Exchange. For each available complete year, over the period from January 1987 to October

1994, options across different strike prices and maturities are considered. Being one of the deepest

and the most liquid option markets in the United States, the S&P-500 index option market is

sufficiently close to the theoretical setting of the Black-Scholes model. This also makes our study

directly comparable to Garcia and Gençay (2000).

Options with zero volume are not used in the estimation. As in Garcia and Gençay (2000), for

the NN estimation purposes, the data for each year are divided into three parts: first two quarters

(training set), third quarter (validation set) and fourth quarter (out-of-sample, testing set). This

produced the following non-overlapping sub-samples:

• 1987: Training sample: 3610, Validation sample: 2010, Testing sample: 2239

7We also compared the forecast performance of the semi-parametric model to the MNN model. The results can
be found in section 4 (Table 3).
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• 1988: Training sample: 3434, Validation sample: 1642, Testing sample: 1479

• 1989: Training sample: 3052, Validation sample: 1565, Testing sample: 1515

• 1990: Training sample: 3605, Validation sample: 2075, Testing sample: 2166

• 1991: Training sample: 4481, Validation sample: 1922, Testing sample: 2061

• 1992: Training sample: 4374, Validation sample: 1922, Testing sample: 1848

• 1993: Training sample: 4214, Validation sample: 1973, Testing sample: 2030

The optimal NN architecture for each module is determined from the out-of-sample performance

on the validation set with respect to the mean-squared prediction error (MSPE). To keep the

complexity of the NNs close to Garcia and Gençay (2000), the modules are single hidden layer

NNs with either sigmoid logistic or hyperbolic tangent activation functions. Hence, the search for

an optimal NN architecture involves specifying the number of hidden nodes (we choose from 1-15

hidden nodes) and their activation functions. The parameters are estimated using the standard

Levenberg-Marquardt algorithm. Overfitting is prevented by early stopping, i.e., stopping the

training process when the validation set error starts to increase. To control for possible sensitivity

of the NNs to the initial parameter values, the training is performed from ten different random

seeds and the average MSPE values are reported. The predictive performance on the testing part

of the sample is finally assessed with the MSPE criterion.

The out-of-sample pricing performance of an MNN model is compared to the Black-Scholes

model.8 The Black-Scholes call prices (Ct) are computed using the standard formula:

Ct = StN (d)−Ke−rτN (d− σ
√
τ) where d =

ln(St/K) + (r+ 0.5σ2)τ

σ
√
τ

(6)

where N is the cumulative normal distribution, St is the price of the underlying asset, K is the

strike price, τ is the time to maturity, r is the risk-free interest rate, and σ is the volatility of the

underlying assets continuously-compounded returns estimated from the last sixty days preceding

the first day of the last quarter. The risk-free rate is approximated by the monthly yield of the

U.S. Treasury bills.

The statistical significance of the prediction performance is assessed with the Diebold-Mariano

statistic (Diebold and Mariano (1995)) that is distributed as standard normal in large samples.9

8This will also shed more light on the magnitude of our model’s forecasting improvements, relative to the model
with the hint from Garcia and Gençay (2000).

9West (1996) argued that this statistic is potentially unreliable. More precisely, forecast errors can be both serially
and contemporaneously correlated. We compute the test statistic as the average of the forecast error differences for
the ten estimations of the optimal NN architectures.
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When the calculated values of the Diebold-Mariano statistic are large and positive, the MNN model

is viewed as being able to significantly improve upon the Black-Scholes model.

4. Results

4.1 Basic model

Table 2 compares the out-of-sample pricing performance of the NN model with the hint, the MNN

model with three modules and the Black-Scholes model in terms of the MSPE performance measure.

The MNN model is estimated ten times from ten different sets of starting values and the average

MSPEs are reported along with the average number of hidden layer units in modules. The third

column in Table 2 reveals that when the modules are selected based on the moneyness criterion,

the MNN model outperforms the NN model with the hint for all years. Furthermore, the same

architecture of the MNN model consistently outperforms the Black-Scholes model, except in 1987.

The pricing improvements are statistically significant according to the Diebold-Mariano statistic.

Garcia and Gençay (2000) also find 1987 to be problematic, but show that when the third quarter

(validation) data are included in the training set, the performance of the NN model with the hint

becomes superior to the Black-Scholes model. We will show later that by increasing the complexity

of the MNN model we can outperform the Black-Scholes model without using the validation data

for training.

[Insert Table 2 about here]

The fourth column in Table 2 reveals that when the modules are selected based on time to

maturity, the MNN model does not perform well. In almost all of the years, the MSPEs are greater

than the ones for the model with the hint, but still below the ones for the Black-Scholes model at

the 5% significance level. Again, this is not the case with 1987. We conjecture that the complexity

of the option pricing function is such that it requires more (or different) modules.

[Insert Table 3 about here]

To give more flexibility to the MNN model we employ both module selection criteria over

nine modules. Table 3 shows that this model is more accurate than both the Black-Scholes and

the NN with the hint models. This holds for all years and the improvements in the MSPE are

statistically significant. The performance of the MNN model is impressive for 1987 as well. Recall

that the volatility in the Black-Scholes model is calculated from the information contained in the

third quarter. As opposed to the NN model with the hint, for 1987, the MNN model does not

9



require any additional training data to ensure superior pricing performance.10 To illustrate the

accuracy of the MNN model we plot out-of-sample predictions of Ct/K and the actual data across

the moneyness dimension for 1990 and 1993 (Figure 2: Panels A and B). As can be seen in the

panels, the estimates follow the actual prices very closely, especially in 1993, when the average

MSPE is much smaller than the one in 1990.

[Insert Figure 2 about here]

We also compare the MNN model with other alternative approaches such as the kernel regression

(Aı̈t-Sahalia and Lo (1998)) and the parametric mixture model (Melick and Thomas (1997)). The

third column of Table 3 indicates that, for various choices of bandwidth, the kernel model could

not improve upon the MNN model in any of the years, except in 1987.11 To implement the mixture

method, we find the European option price as the discounted value of the probability distribution

above the strike price. Following Melick and Thomas (1997), we use the mixtures of two and three

lognormal distributions over option series consisting of call options with different strike prices but

same maturity. We find that the out-of-sample forecast performance of the mixture model over the

years is either inferior to the kernel model or similar to the Black-Scholes model.12 Aı̈t-Sahalia and

Duarte (2003) show that by constraining the pricing function the pricing error can be reduced by

about 25-50% for lower bandwidths (and much smaller sample sizes). However, a 50% reduction

in the pricing error of the kernel pricing function would not be sufficient to outperform the MNN

model. Furthermore, Daglish (2003) demonstrates that the shape-constrained kernel produces very

modest pricing accuracy gains for large data sets such as ours. Consequently, we do not include

this enhancement of the nonparametric kernel into our set of rival models.

Based on these results, we conclude that the modularity feature of the MNN model plays

a vital role in outperforming the rival models. This also accords with some other studies that

10Nevertheless, the pricing error in 1987 is unusually large (we thank the referee for pointing this out). By plotting
the pricing error against maturity and moneyness, we observe that the inaccuracy in 1987 originates in (mis)pricing
out-of-the-money calls, which is not the case in any of the “normal” years. Bates (1991) finds that out-of-the-money
put options on S&P-500 Index futures were unusually expensive relative to out-of-the-money calls before the October
1987 crash (can be understood as an expectation of a downward movement). We do not find that call options in
the first two quarters (training data) of 1987 were “cheap”, but we find that the average call option price in the last
quarter (testing data) of 1987 is the lowest of all years. This potentially “confused” the model and deteriorated its
out-of-sample performance.

11We followed a semi-parametric kernel approach from Aı̈t-Sahalia and Lo (1998) and, first, estimated implied
volatilities based on futures price, the exercise price and time to maturity using the Nadaraya-Watson kernel estimator.
Then, call option prices were computed from the estimated volatility function via the Black-Scholes formula. The
differences between our estimation and the original approach are that we do not use the dividend yield and the rolling
estimation procedure. Nonetheless, the kernel model depends on more variables than the MNN model which gives it
significant informational advantage.

12For brevity, these results have not been reported in Table 3, but can be available from the authors upon request.
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focused on pricing of certain types of options (i.e., deep out-of-the-money options) and found

that such partitioning of the data increases the pricing accuracy of the NN models (Gençay and

Altay-Salih (2003), Bennell and Sutcliffe (2004)). However, as shown for the time to maturity-

constructed modules, one has to be cautious when using available domain knowledge to identify

modules. Finally, we find the performance improvements closely linked to the number of modules

in an MNN.

Increasing the number of modules, however, adds to the complexity of the estimated pricing

function. As previously explained, our choice for the number of modules and the breakpoints for

the modules is arbitrary, but sensible. Nevertheless, at this global level, we do not control for the

usual trade-off between smoothness and goodness-of-fit in calibration of non-parametric methods,

but only optimize the performance of individual modules. Clearly, moving from three to nine

modules improves the accuracy of the MNN model. By observing the average pricing errors of the

individual modules of the three- and nine-module MNNs, we first attempt to pin down the cause

for these improvements. Tables 4 and 5 contain average pricing errors for the modules for 1993

that are representative for all other years.

[Insert Table 4 about here]

[Insert Table 5 about here]

Table 4 suggests that when the modules are selected by time to maturity, the pricing perfor-

mance is poor for two modules (short term and long term options). The alternative three-module

MNN has problems pricing in-the-money options (i.e., only one module performs poorly) and this

seems to be the major reason for its superior performance over the first MNN variant. The nine-

module MNN confirms that in-the-money options are relatively difficult to price for all maturities

(Table 5). Also, it appears that the information that comes from the moneyness criteria compen-

sates for the time horizon effects. In other words, the modules perform roughly equally well for

different time to maturity ranges.

As recommended by a referee,13 next, we investigate in more detail the biases of the approxi-

mations for all the competing models. We plot the out-of-sample (ct − ĉt)
2 (Y-axis) against either

moneyness or maturity (X-axis) for 1993 (t = 1, . . . , 2030). In Panel A of Figure 3, we do not

observe any systematic biases produced by the MNN model. In contrast, the NN model with the

hint (Panel B) exhibits certain biases with respect to both maturity and moneyness. This model

substantially misprices some in-the-money and long-term options. The magnitude of such mispric-

ing pattern substantially increases for the Aı̈t-Sahalia and Lo (1998)’s model (Panel C) as well as

13We thank the referee for this and other useful suggestions.
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for the Black-Scholes (Panel D). The models show similar out-of-sample pricing biases in all other

years and they are consistent with the findings in Bakshi et al. (1997).

[Insert Figure 3 about here]

We further increase the number of modules from nine to sixteen, i.e., add one more range along

each dimension. This is carried out by dividing the middle moneyness range (0.97-1.05) into two

ranges around 1 (0.97-1, 1-1.05) and the middle maturity range (0.1-0.2) into [0.1-0.15] and (0.15-

0.2]. The average MSPE for 1993 as a result of this exercise slightly increases from 0.0546e-04 to

0.0656e-04. For all other years the average error for the sixteen-module MNN is about 10-25%

larger. This indicates that the optimal number of modules is greater or equal to nine and less than

sixteen. As searching for an optimal MNN architecture is beyond the scope of this paper, for future

research purposes, we recommend that the optimal number of modules and the cut-off points could

be determined either by observing the performance on the validation data (third quarter of each

year) or by utilizing some techniques from the statistical learning theory, as suggested in the last

section. More precisely, one could select the optimal number of modules (M) by using a cross-

validation approach on the validation part of the data. Yet, this procedure does not identify the

module boundaries and we will offer a possible iteration method for finding them. Starting from

some initial boundaries for a given M , in each iteration the “goodness” of current partition can be

determined using the Davies - Bouldin (DB) index (Davies and Bouldin (1979)):

DB =
1

M

M∑

i=1

Ri, Ri = max(Rij), j = 1, . . . ,M ; j 6= i (7)

where Rij = (Si + Sj)/Dij is a similarity measure between modules i and j, Si is a dispersion

measure of the ith module calculated as the average Euclidean distance of the data points in

module i to its center, and Dij is a module dissimilarity measure (distance between the centers

of the module pairs). Finally, the partition that produces the minimum DB is considered to be

optimal.

Our data set is such that on any given day there are about 25 to 50 options of different strike

price and maturity. Hence, the sample size required for training the MNN model is not large,

unlike the sample size for the kernel methodology. Aı̈t-Sahalia and Duarte (2003) note that their

semi-parametric kernel model requires a relatively large data set to be empirically effective. This

feature of our model makes it very suitable for practical applications.

One of the relevant practical uses of non-parametric option pricing is the estimation of the

SPDs, which allows practitioners to price OTC derivatives consistently with the prices of exchange

traded options. To obtain the SPD and the options delta, we find analytical derivatives of equation

(4) in a standard way:
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∆̂t =
∂Ĉ(St, K, τ)

∂St
(8)

f̂∗t = ert,ττ
[∂2Ĉ(St, K, τ)

∂K2

]

|K=ST

(9)

Even though our pricing function is very accurate out-of-sample, an unconstrained estimator

such as the MNN could produce large errors for the derivatives. Initially, we observed a wiggly

and sometimes negative SPD surface. This violates general properties of a density function and, in

turn, violates the no-arbitrage principle (Aı̈t-Sahalia and Duarte (2003)). In addition, the impact

of the violations could be more acute and, for instance, lead to trading on false arbitrage signals.

This is also explained in Garcia et al. (2004) and Garcia and Gençay (2000) who observed similar

deficiencies in terms of derivatives of a nonparametric pricing function.

To alleviate for this problem we followed Dugas et al. (2001) and imposed the softplus activation

function in the hidden layer of each NN:

ψ(Z) = log(1 + eZ); ψ′(Z) =
eZ

1 + eZ
; ψ′′(Z) =

eZ

(1 + eZ)2
. (10)

This function and its first two derivatives are always positive. Moreover, its first derivative is the

sigmoid logistic function that is constrained between 0 and 1, like a probability distribution function.

The second derivative has the following properties: limZ→−∞ ψ′′(Z) = 0 and limZ→+∞ ψ′′(Z) = 0.

Therefore, it behaves like a probability density function. Dugas et al. (2001) show that the softplus

function satisfies the universal approximator property and, thus, can replace the sigmoid logistic

function in a backpropagation NN.

In panels A and B of Figure 4 we plot the average values for deltas and SPDs for 1993 estimated

by a constrained MNN model.14 The averages are received for the sample time to maturity that

ranges from 1 to 360 days. The other variables that enter the estimation of deltas and SPDs

are set to their average values for 1993. Despite some limitations in terms of smoothness, the

non-parametric SPD surface still exhibits excess skewness and kurtosis and which is also found

by Aı̈t-Sahalia and Lo (1998). More importantly, it is bell-shaped and always positive. With

regard to the estimated delta, minor discrepancies from the theoretical values are observed in panel

B of Figure 4, but the shape is reasonable and the values lie between 0 and 1. Note that the

wiggliness can be observed mostly near the cutoff points between the modules and could be a

direct consequence of the modular complexity of the MNN. For a single NN model, Hutchinson

et al. (1994) also find that deltas estimated by the NN model from do not significantly deviate from

their theoretical counterparts.

14This did not deteriorate the MSPE of the model that remained roughly 0.05e-04.
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[Insert Figure 4 about here]

One way to deal with unconstrained non-parametric estimators is to impose monotonicity and

convexity (Yatchew and Härdle (2006)) by employing well-behaved functional forms for the NNs in

the modules. In general, the term “well-behaved” refers to a non-negative function that integrates to

unity and we showed that imposing such shape constraints is a potentially promising future research

avenue. To specify a valid density function, Gottschling et al. (2000) propose an alternative method

based on an NN approximation and the logarithm of the inverse Box - Cox transformation. The

simplest algorithm for imposing constraints on non-parametric techniques is used in Aı̈t-Sahalia

and Duarte (2003): before any estimation is performed, the data are repeatedly transformed until

they are monotonic.

4.2 Extended model

To further understand the pricing properties of the MNN model, we extend it with the risk-free

interest rate (r) and the implied volatility (σI) as follows:15

Ct

K
= φ(

St

K
, τ, r, σI) (11)

An alternative error measure is introduced to gauge the out-of-sample pricing performance -

mean absolute percentage error (MAPE): MAPE = 1/n
∑T

t=1 |ct − ĉt/ct|. Both the basic (two

explanatory variables) and the extended (four explanatory variables) MNN models are statistically

compared (Diebold-Mariano) to the NN model with the hint. As it can be argued that historical

volatility used in the Black-Scholes model puts it at an unfair disadvantage, we also estimate an

improvement of the Black-Scholes model by Hanke (1999). This model utilizes the Black-Scholes

optimal ex post interest rate and volatility to price options. More precisely, on each out-of-sample

day, first, the sum of the squared errors between the Black-Scholes price and the actual price is

minimized (for all available options) to determine the optimal rt and σt. Then, r
BSopt
t and σ

BSopt
t

are supplied to the Black-Scholes formula. During the optimization process, we have noticed that

the model’s pricing performance is very sensitive to the choice of the initial parameter values (rt0
and σt0). This is particularly pronounced for σt0 where larger starting values tend to deteriorate

both the MSPE and the MAPE. To deal with this problem, we initiate the minimization process

from ten different random values σt0 within the (0,1] interval and report the average values for the

MSPE and the MAPE. As the average pricing errors are also reported for the MNN model, we do

not consider this to give advantage to any of the models. However, it is worthwhile to note that the

Black-Scholes model is still at an informational advantage by the very construction of the Hanke

(1999) model.

15We thank the referees for this extension.
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[Insert Table 6 about here]

Table 6 reports the pricing results for all years. We will first analyze the MAPE figures. Both

MNN model versions consistently outperform the NN model with the hint whereas the extended

MNN model is the most accurate overall. With regard to the MSPE measure, the basic MNN

model produces statistically significant forecast improvements over the NN model with the hint,

except in 1989 and 1991. With the help of the additional two explanatory variables, the extended

MNN model consistently outperforms the NN model with the hint in all years. The improvement

of the Black-Scholes model reduces the MSPE of the original model, but, except in 1987, is not

sufficient to improve upon any of the NN models. Noteworthy, with respect to the MAPE, the

Black-Scholes improvement outperforms the NN model with the hint.

5. Conclusions

The goal of this paper is to investigate whether a non-linear MNN model can be a successful option

pricing tool. To assess the performance of the MNN model, we study S&P-500 European call

options over the 1987-1993 period. Rather than relying on the method of hints, we estimate pricing

functions using the modularity feature of the MNNs. This approach yields advantages not only over

the Black-Scholes model, but also over the NN model with the hint. When the MNN model utilized

three modules selected with regard to the moneyness criterion, the performance of the MNN model

is consistently superior to the model with the hint in all years. However, an alternative variant of

the MNN model based on the time to maturity criterion performs poorly. Moreover, both three-

module MNN models are inferior to the Black-Scholes model in 1987. Extending the MNN model

to nine modules reduced the pricing error and significantly improved upon the Black-Scholes model

and the model with the hint for the whole sample. We contribute the success of the MNN model

to its modularity feature that allows MNNs to “specialize” in pricing certain types of options by

dividing the search space.

We conclude that the MNN option pricing model, or more generally, the notion of modularity

is a promising future research direction in option pricing. Moreover, selection of modules and data

partitioning based on more advanced methodologies from the statistical learning theory such as

fuzzy clustering (Jang et al. (1997)) or genetic algorithms (Cofino et al. (2004)) can complement

the current model. This can be of assistance, for instance, in improving the time to maturity

criterion in the MNN model and also in gaining better insight into its potential pitfalls. More

importantly, the success of our approach suggests that MNNs may be used to capture and explain

highly volatile and elusive data-generating processes.
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(St/K) < 0.97 0.97 ≤ (St/K) ≤ 1.05 (St/K) > 1.05

τ < 0.1 c1t (module 1) c2t (module 2) c3t (module 3)
0.1 ≤ τ ≤ 0.2 c4t (module 4) c5t (module 5) c6t (module 6)

τ > 0.2 c7t (module 7) c8t (module 8) c9t (module 9)

Table 1: Module selection criteria for the MNN option pricing model with nine
modules.

Notes: The options are categorized based on maturity (short term, medium term, long term) and moneyness (out-of-the-money,

near-the-money, in-the-money). When both criteria are applied at the same time, the out-of-sample predictions are estimated

from an MNN with nine modules. Specifically, ωi’s for all nine modules are specified in the following fashion: when ωi = 1

(i = 1, . . . , 9), ωk = 0 (k 6= i, k = 1, . . . , 9).
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Year Statistic ANN with hint MNN model (St/K) MNN model (τ) BS model

1987 MSPE 16.7 5.44 [9] 6.8 [10] 4.38

σ 9.51 2.30 4.02
DM -4.23 -7.75

1988 MSPE 0.7114 0.6681 [5] 1.1592 [6] 2.07

σ 0.0429 0.0134 0.4304
DM 8.36 3.30

1989 MSPE 0.4138 0.4076 [5] 0.5093 [6] 1.42
σ 0.0068 0.0014 0.1152
DM 9.61 4.65

1990 MSPE 0.6761 0.5759 [9] 0.6639 [6] 2.62
σ 0.0763 0.0597 0.1742

DM 17.23 14.06

1991 MSPE 0.3498 0.3401 [5] 0.3727 [6] 1.73
σ 0.0148 0.0226 0.0244

DM 7.17 6.38

1992 MSPE 0.1511 0.1326 [8] 0.2044 [10] 1.36
σ 0.0115 0.0123 0.0534

DM 6.60 3.97

1993 MSPE 0.1054 0.0665 [10] 0.1442 [11] 0.74
σ 0.0222 0.0068 0.0637

DM 10.01 2.65

Table 2: Prediction performance of the MNN option pricing model with three mod-
ules.
Notes: The first row of this table contains the out-of-sample average mean-squared prediction errors (MSPE) of the following

option pricing models: Garcia and Gençay (2000)’s feedforward neural network model with the hint (ANN with hint), modular

neural network (MNN) model with the moneyness (St/K) module selection criterion, MNN model with the time to maturity

(τ ) module selection criterion and the Black-Scholes model (BS model). The average number of hidden layer nodes in MNN

modules is reported in the square brackets. The average MSPEs for the MNN models have been obtained as averages across

ten different random training seeds. σ is the standard deviation of the ten MSPEs estimated from ten different random seeds.

DM denotes the Diebold and Mariano (1995) test statistic. This test is used to assess the statistical significance of the MNN

model’s forecast gains relative to the BS model. All MSPE and σ figures have been multiplied by 104.
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ANN with hint MNN model AL BS model DM σ

MSPE
1987 16.7 4.1204 [4] 3.3665 4.38 3.04 1.0376

1988 0.7114 0.6107 [5] 2.3784 2.07 10.88 0.0372
1989 0.4138 0.4008 [5] 1.5854 1.42 9.99 0.0038

1990 0.6761 0.5579 [5] 1.3428 2.62 26.89 0.0334
1991 0.3498 0.3293 [4] 0.8351 1.73 8.30 0.0023

1992 0.1511 0.1285 [4] 0.2756 1.36 6.85 0.0073
1993 0.1054 0.0546 [3] 0.4263 0.74 11.42 0.0062

Table 3: Prediction performance of the MNN option pricing model with nine mod-

ules.
Notes: This table reports the out-of-sample average mean-squared prediction errors (MSPE) of the following option pricing

models: Garcia and Gençay (2000)’s feedforward neural network model with the hint (ANN with hint), modular neural network

(MNN) model with nine modules, Äıt-Sahalia and Lo (1998)’s semi-parametric estimator (AL), and the Black-Scholes model

(BS model). The average number of hidden layer nodes in MNN modules is reported in the square brackets. The average

MSPEs for the MNN models have been obtained as averages across ten different random training seeds. σ is the standard

deviation of the ten MSPEs estimated from ten different random seeds. DM denotes the Diebold and Mariano (1995) test

statistic. This test is used to assess the statistical significance of the MNN models forecast gains relative to the BS model. All

MSPE and σ figures have been multiplied by 104.
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(St/K) < 0.97
or

τ < 0.1

0.97 ≤ (St/K) ≤ 1.05
or

0.1 ≤ τ ≤ 0.2

(St/K) > 1.05
or

τ > 0.2

MNN model (St/K) 0.0407 0.0620 0.1884

MNN model (τ) 0.2490 0.0731 0.1672

Table 4: Average MSPEs for individual modules (1993, three modules).

Notes: This table reports the out-of-sample average mean-squared prediction errors (MSPE) for each module of a three-module

MNN model. The figures for both versions of the model are reported: modules selected by the moneyness criterion (first row)

and modules selected by the time to maturity criterion (second row). The average MSPEs for the models have been obtained

as averages across ten different random training seeds. All MSPE figures have been multiplied by 104.
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(St/K) < 0.97 0.97 ≤ (St/K) ≤ 1.05 (St/K) > 1.05

τ < 0.1 0.0018 0.0407 0.12
0.1 ≤ τ ≤ 0.2 0.0179 0.0457 0.2094

τ > 0.2 0.0313 0.0595 0.2161

Table 5: Average MSPEs for individual modules (1993, nine modules).

Notes: This table reports the out-of-sample average mean-squared prediction errors (MSPE) for each module of a nine-module

MNN model. The options are categorized based on two criteria that are applied simultaneously: maturity (short term, medium

term, long term) and moneyness (out-of-the-money, near-the-money, in-the-money). The average MSPEs for the models have

been obtained as averages across ten different random training seeds. All MSPE figures have been multiplied by 104.
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Year ANN with hint MNN-basic MNN-extended BSH model

MAPE MSPE MAPE MSPE DM MAPE MSPE DM MAPE MSPE

1987 36.20 16.7 0.5392 4.12 16.95 0.2767 3.18 15.90 1.08 3.05

1988 3.94 0.7114 0.2338 0.6107 3.18 0.0876 0.5386 2.25 0.7793 1.26
1989 1.02 0.4138 0.2194 0.4008 0.1004 0.1085 0.1912 3.15 0.7985 1.06

1990 1.84 0.6761 0.2904 0.5579 2.00 0.0408 0.2781 7.80 1.07 2.52
1991 1.83 0.3498 0.0932 0.3293 0.7351 0.0254 0.0961 9.32 0.7176 0.7001

1992 1.34 0.1511 0.0810 0.1285 1.73 0.0631 0.0748 6.79 0.6358 0.7268
1993 2.06 0.1054 0.0437 0.0546 3.73 0.0301 0.0215 9.43 0.7930 0.5415

Table 6: Prediction performance of the competing models.

Notes: This table reports the average mean-squared prediction errors (MSPE) and the average mean-absolute percentage error

(MAPE) of the following option pricing models: Garcia and Gençay (2000)’s feedforward neural network model with the hint

(ANN with hint), modular neural network model with nine modules and two explanatory variables (MNN-basic), and modular

neural network model with nine modules and four explanatory variables (MNN-extended). The last two columns are the MAPE

and the MSPE of the improvement of the Black-Scholes model by Hanke (1999) (BSH model). The average MAPEs and MSPEs

for the fist three models have been obtained as averages across ten different random training seeds. For the last model, the

average MAPEs and MSPEs involve ten different random starting values for estimating rBSopt
t and σBSopt

t . DM denotes the

Diebold and Mariano (1995) test statistic. This test is used to assess the statistical significance of the MNN models forecast

gains relative to the ANN with hint model. All MSPE figures have been multiplied by 104.
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Figure 1: Modular neural network architecture.

Notes: The pricing function is decomposed into M separate non-linearities (NN1, . . . , NNM) called modules. The modules are

trained independently on the data for the M option types and during prediction, based on the values of τ and St/K, only one

NN is active (i.e., when ωi = 1, all ωk = 0; k 6= i, k = 1, . . . ,M ). More specifically, the out-of-sample predictions (Ct/K) are

generated from nine different NN models that span the whole testing set.
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Figure 2: Data and option prices estimated by the nine-module MNN model.

Notes: Out-of-sample predictions of Ct/K (solid line) and the actual data (dashed line) are plotted against St/K in Panels

A (1990) and B (1993). First, the MNN model is trained using the data from the first two quarters of each year and, then,

2239 (for 1990) and 2030 (for 1993) out-of-sample estimates of Ct/K are generated. The average MSPEs for 1990 and 1993 are

0.5579e-04 and 0.0546e-04, respectively.
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Figure 3: Error plots of the competing option pricing models.

Notes: Out-of-sample squared errors (SPEt = (ct − ĉt)2, t = 1, . . . , 2030) for 1993 are plotted against moneyness (St/K) and maturity (τ ) for the

following option pricing models: modular neural network (MNN) model with nine modules (Panel A), Garcia and Gençay (2000)’s feedforward

neural network model with the hint (Panel B), Äıt-Sahalia and Lo (1998)’s semi-parametric estimator (Panel C), and the Black-Scholes model

(Panel D).
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Figure 4: The SPDs and deltas of the constrained nine-module MNN estimator for 1993.

Notes: Panel A depicts SPD estimates from the constrained nine-module MNN model (solid line) and the Black-Scholes SPDs

(dashed line). To obtain the SPDs, the second derivative of the MNN estimator is evaluated analytically at K = ST . Panel B

depicts estimates of an option delta from the constrained nine-module MNN model (solid line) along with the ones from the

Black-Scholes model (dashed line). The deltas are estimated as the analytical first derivatives of the MNN pricing function

with respect to St . All other relevant variables are fixed at their sample means for 1993. The estimates of SPDs and deltas are

averaged across the sample time to maturity values that range from 1 to 360 days.
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Gençay, R. and Altay-Salih, A. (2003). Degree of mispricing with the black-scholes model and nonparametric
cures. Annals of Economics and Finance, 4, 73–101.
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