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Abstract

The Financial Crisis 2007-2009 is considered as the worst one since the Great Depression of

the 1930s. During this financial crisis, most regulatory authorities around the world imposed

restrictions or bans on short selling to reduce the volatility of financial market and limit the

negative impacts of a downturn market (Beber & Pagano 2013). Such interventions were

implemented to restore the orderly functioning of financial markets and limit drops in stock

price. However, these regulations also resulted in some new problems, one of which is how to

price options in a market with short selling restrictions or bans being imposed. The motivation

of this Ph.D thesis is to study the effects of short selling restrictions or bans on option pricing.

The thesis is divided into two parts, the first one of which is consist of Chapter 3 and

Chapter 4, where option pricing is explored under a new hard-to-borrow stock model. Such a

model was proposed by Avellaneda & Lipkin (2009) to characterize the price-evolution of stocks

subject to short selling restrictions. Although an approximate semi-explicit pricing formula has

been produced for European call option, its derivation requires an independence assumption,

which has limited its application to more general cases. In Chapter 3, we propose a new partial

differential equation (PDE) approach to price European call options under the hard-to-borrow

stock model and then an alternative direction implicit (ADI) scheme is applied to solve it

numerically. This new PDE approach has also laid a solid foundation for the study on option

pricing of American-style options. In Chapter 4, we extend the PDE approach to the American

case and reformulate it as a linear complementarity problem, which is numerically solved with

the Lagrange multiplier approach. A significantly important conclusion is that it may be

optimal to exercise an American call option before expiration even though the underlying stock

pays no dividends. Such a conclusion supports the recent work by Jensen & Pedersen (2016)

and overturns a classic result by Merton (1973).

The second part of this thesis is about option pricing with short selling bans being imposed.

Recently, Guo & Zhu (2017) proposed a new equal-risk pricing approach to study the effects



2

of short selling bans on option pricing. Their analysis method appears to be but not the

same as the existing utility indifference pricing methods. Only when the payoff function is

monotonic, can an analytical pricing formula be produced. However, it is still difficult to apply

equal-risk pricing approach to the case where the payoff function is non-monotonic. We intend

to expand its application by establishing a PDE framework. Since Hamilton-Jacobi-Bellman

(HJB) equation would be involved, we first explore different solution approaches to the HJB

equation in Chapter 5, Chapter 6 and Chapter 7 as preliminaries before taking on the tough

challenge of establishing the PDE framework for equal-risk pricing approach.

In Chapter 5, we successfully apply the homotpy analysis method to decompose the highly

nonlinear HJB equation into an infinite series of linear PDEs and finally derive an exact and

explicit solution for the HJB equation subject to general utility functions for the first time. In

Chapter 6, a closed-form analytical solution for the Merton problem defined on a finite horizon

with exponential utility function is obtained through two different methods without any one of

the following assumptions: (1) the utility function belongs to the constant relative risk aversion

(CRRA) class; (2) the utility function is defined over terminal wealth only and consumption is

not allowed; (3) the investment horizon is infinite. In Chapter 7, a monotone numerical scheme

method is presented to solve the HJB equation with general utility functions. Such a scheme

is proved to be convergent through demonstrating its stability, consistency and monotonicity.

After proposing these three solution approaches to the HJB equation, we finally establish

a PDE framework for equal-risk pricing approach in Chapter 8 and successfully solve the HJB

equation analytically and numerically. When the payoff function is monotonic, analytical pric-

ing formula is derived from our PDE framework, which matches perfectly with the pricing

formula derived by Guo & Zhu (2017). When the payoff function is non-monotonic, such as

a butterfly spread option, equal-risk price is also produced through solving the PDE system

numerically, which is absent in Guo & Zhu (2017). Consequently, our PDE framework has

really expanded the range of application of equal-risk pricing approach so that effects of short

selling bans are discussed in more general cases.
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Chapter 1

Introduction

1.1 Short selling and financial crisis

Short selling is the practice of selling financial securities that are not currently held and sub-

sequently repurchasing them to deliver. In financial practice, it is achieved as follows: (a) the

seller informs his broker that he wishes to sell a stock that he does not own; (b) the broker ar-

ranges for a buyer; (c) the trade takes place; (d) the seller delivers the stock within a stipulated

amount of time.

Naked short selling is a kind of short selling that does not require borrowing or arranging

to borrow the stock in advance. Through naked short selling, investors could sell any amount

of stocks that they do not own without any other cost. Obviously, it perfectly satisfies the

assumption in the Black-Scholes model. However, if the stock is in short supply or finding a

lender is very difficult in practice, the seller may fail to deliver the stock within the settlement

period, which leads to “fail-to-deliver” risk. Therefore, some regulators would impose some

constraints on short selling. In this thesis, all the impediments that makes short selling still

available, but naked short selling unavailable, are collectively referred to as restrictions on short

selling. Covered short selling is one kind of short selling with restrictions. The short seller is

required to borrow or arrange to borrow shares in advance at the time of sale and he needs to

pay some borrowing fees when the stock is hard to borrow. Such restrictions make the covered

1
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short selling costly, which does not satisfy the perfect assumption in the Black-Scholes model

any more.

In fact, short selling has a long history and it still plays an important role in modern

financial markets. The first records of actual short selling date back to 1609 when a group of

Dutch businessmen formed a secret association to short the shares in the East India Company

in anticipation of the incorporation of a rival French-chartered trading firm. They sold shares

that they did not own and promised future delivery in one or two years. Over the next year,

the group profited a lot as the stock of East India Company dropped by 12%, which angered

the shareholders who inevitably learned of their plan. Laws that prohibited short selling were

first enacted in 1610 following such a well coordinated and highly profitable “bear raid” (Bris

et al. 2007).

Over the last 400 years, short sellers have always been blamed for stock market declines,

leading market participants to call for regulation against short selling. Recently, it again caught

the public eyes for its notoriety during the Global Financial Crisis 2007-2009, which is considered

as the worst one since the Great Depression of the 1930s. According to the Statement of Richard

S. Fuld Jr., the final Chairman and CEO of Lehman Brothers, before the United States House

of Representatives Committee on Oversight and Government Reform on October 6, 20081, the

collapse of the investment bank is partly due to short selling, which allegedly depressed the

stock price during this financial crisis.

During the Financial Crisis 2007-2009, most regulators around the world imposed restric-

tions or bans on short selling to reduce the volatility of financial market and limit the negative

impacts of a downturn market. For example, the U.S. Securities and Exchange Commission

(SEC) temporarily banned most short selling in nearly 1,000 financial stocks in September

20082. In a coordinated approach with the SEC, the UK Financial Services Authority (FSA),

also introduced a temporary and total ban on all short selling (both naked and covered) in the

shares of 32 financial sector companies3. The Australian Securities and Investment Commission

1See website: http://online.wsj.com/public/resources/documents/fuldtestimony20081006.pdf
2See website: https://www.sec.gov/news/press/2008/2008-211.htm
3See website: http://www.klgates.com/files/upload/FSA ShortSelling No2.pdf
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(ASIC) announced a package of interim measures that naked short selling is not permitted and

covered short selling is still permitted but needs to be disclosed4. Other markets also followed

and announced their own restrictions or bans on short selling (Beber & Pagano 2013).

These corresponding regulations on short selling were implemented to restore the orderly

functioning of financial markets and limit drops in stock price. However, they would also bring

in some new problems to the financial markets. For example, option pricing now becomes a

difficult problem because short selling is restricted or banned, which leads the market to be

incomplete. The classical option pricing model proposed by Black & Scholes (1973) becomes

invalid because the important assumption about short selling has been violated either in the

case where covered short selling is still permitted or in the case where both naked and covered

short selling are banned. The motivation of this thesis is to study how these restrictions or

bans imposed on short selling by the regulatory authorities during the financial crisis 2007-2009

affect the option pricing in financial market. Before starting our research, we first present some

literature review about the classical option pricing theory in the next section.

1.2 Literature review on option pricing

In finance, an option is a contract that entitles its holder the right, but not the obligation, to

buy or sell an underlying asset on a specified date (expiration date) at a specific price (strike

price), irrespective of the market price of the underlying on that date. Options can be classified

in many ways. An option that gives to its owner the right to buy (sell) at a specific price is

referred to as a call (put) option. An option that can only be exercised on expiration date is

called a European one; while an option that may be exercised on any trading day before the

expiration date is called an American one.

For any kind of option, the first and foremost topic both in academic and in practical

finance is pricing problem. The history of option pricing theory dates back to 1900 when the

French mathematician Louis Bachelier derived an option pricing formula on the assumption

4See website: http://asic.gov.au/about-asic/media-centre/find-a-media-release/2008-releases/08-204-naked-
short-selling-not-permitted-and-covered-short-selling-to-be-disclosed
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that stock prices follow a Brownian motion with zero drift (Bachelier 1900). The milestone

of contemporary option pricing theory is the famous and classical model proposed by Black &

Scholes (1973), which provided an analytical and quantitative formula for European options for

the first time. In their landmark paper, the market is assumed to be consist of at least one risky

asset, usually called the stock, and one riskless asset, usually called the bond or cash. Many

assumptions are imposed both on the assets and on the market to derive the elegant pricing

formula. Here we list all the assumptions in the following.

Assumption 1. (Assumptions in the Black-Scholes model)

1. The rate of return on the riskless asset is constant and thus called risk-free interest rate.

2. The underlying stock price follows a geometric Brownian motion and both its drift and

volatility are constant.

3. The underlying stock does not pay a dividend.

4. There is no arbitrage opportunity in the market, i.e. the market is complete.

5. It is possible to borrow and lend any amount of cash at risk-free interest rate.

6. It is possible to buy and sell any amount of stocks. In other words, short selling is

permitted without any cost.

7. The above transactions do not incur any fees or costs, i.e. it is a frictionless market.

Under these assumptions, Black & Scholes (1973) managed to replicate a European call

option with a portfolio that is constructed by the underlying stocks and risk-free bond. After

complicated mathematical calculations, they succeeded in deriving an analytical pricing formula

for European call options, which also laid the solid foundation for the development of the

modern option pricing theory. Since then, considerable research interests have been drawn to

the option pricing problems. Klemkosky & Resnick (1979) furthermore derived an analytical

pricing formula for European put options via the put-call parity.
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Compared with European options, American options are much more valuable for they can

be exercised on any trading day before the expiration date. The possibility of early exercise also

makes American options more difficult to price than its European counterpart. The valuation

of American options is considered as an optimal stopping time problem because the holder of

American options needs to choose an optimal time to exercise the option in order to profit as

much as possible. Such an optimal stopping time problem is then reformulated as a variational

inequality problem (Merton et al. 1977). Since an unknown optimal exercise boundary is also

part of the solution, the variational inequality problem becomes a free boundary problem, which

is highly nonlinear. Unlike the European case where the well-known Black-Scholes equation is

linear and can be solved analytically, the nonlinearity has hindered the search for an analytical

pricing formula for American options.

Some numerical methods are first applied to solve the nonlinear free boundary problem.

Schwartz (1977) first applied the finite difference method to solve the option pricing problem

for American options. Then Cox et al. (1979) proposed a binomial tree method to approximate

the valuation of American option, which is actually considered as a special case of the explicit

finite difference method. To reformulate the free boundary problem as a fixed boundary one,

Wu & Kwok (1997) applied a front-fixing transformation, which was first suggested by Landau

(1950), and then developed an efficient finite difference method to produce the optimal exercise

boundary and option value at once. Later the radial basis function method and the finite

element method were also introduce to solve the valuation of American options by Hon & Mao

(1999) and Allegretto et al. (2001), respectively. Moreover, Monte Carlo simulation method was

also proposed to price American options. Longstaff & Schwartz (2001) proposed a simple and

powerful least-squares approach for approximating the value of American options by simulation.

In addition to these numerical methods, some quasi-analytical solutions are also introduced

to solve the pricing problem of American options. Carr & Faguet (1996) proposed a novel

approach, referred to as analytical method of lines, Huang et al. (1996) presented a new method

of recursive implementation of analytical formulae, referred to as integral equation approach,

Broadie & Detemple (1996) developed lower and upper bounds on the prices of American
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call and put options, referred to as capped option approximation and Carr (1998) adopted

a technique, referred to as randomization to obtain a new semi-explicit approximation for

American options. Later, Zhu (2006) applied the homotopy analysis method to decompose the

nonlinear PDE system arising from the free-boundary problem into an infinite series of linear

PDEs which can be solved analytically and derived an exact and explicit solution for the first

time.

So far, the option pricing problems for European and American options under the Black-

Scholes model have been studied very extensively. However, as the research on option pricing

develops, more and more empirical evidences suggest that the Black-Scholes model, which was

ever a breakthrough in the option pricing theory, is inadequate to describe asset return and

the behavior of the option market in modern financial practice. The real markets are never as

ideal as the assumptions imposed in the Black-Scholes model. Some of these assumptions are

demonstrated to be inconsistent with the financial practice, especially in periods of turmoil,

including the market crash in 1987, the burst of the internet bubble in early 2000s and the

financial crisis 2007-2009. More and more models are proposed as the extension of the classical

Black-Scholes model and some new problems are arising at the same time.

The constant volatility assumption in the Black-Scholes model is the first one that is crit-

icized by investors. From empirical studies (Rubinstein 1985), a well-known discrepancy be-

tween the Black-Scholes price and the market price was observed and the implied volatility

varied with strike price and time to expiration, which is also referred to as volatility smile or

volatility skew. To remedy the drawback of the constant volatility assumption, Dupire (1997)

proposed a local volatility model in which the volatility is treated as a deterministic function

of both the underlying and the time. The advantage of local volatility model is that there is no

additional source of uncertainty introduced to the model and theoretically the market is still

complete. Some other modified models are proposed to explain the volatility smile. Instead of a

deterministic function, the volatility is also assumed to follow a stochastic process. In order to

capture stochastic volatility and the leverage effect, Cox (1975) proposed a constant elasticity

of variance (CEV) model, which is widely used by practitioners in the financial industry. Stein
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& Stein (1991) assumed the volatility was driven by an arithmetic Ornstein-Uhlenbeck process

and applied analytic techniques to derive an explicit closed-form solution for option pricing

problem. Heston (1993) also proposed a stochastic volatility model in which the randomness of

the variance process varies as the square root of variance. Such a model stands out from other

stochastic volatility models because there exists an analytical solution for European options and

thus has been subsequently developed by various researchers (Dragulescu & Yakovenko 2002,

Zhu & Chen 2011). Since these extended models have introduced a new source of uncertainty,

the market is incomplete and the corresponding option pricing problems have also been studied

extensively (Bates 1996, Zvan et al. 1998, Fouque et al. 2000, Sepp 2003, Ito & Toivanen 2009).

As demonstrated above, a large number of extended models are proposed to remedy the

constant volatility assumption in the Black-Scholes model. For the similar reasons, a large

number of new models would also be proposed when some other assumptions are criticized

by investors in the financial practice. In practice, the risk-free interest rate is not always a

constant, which has violated the assumption in the Black-Scholes model. Vasicek (1977) first

proposed an Ornstein-Uhlenbeck process to describe the evolution of interest rate and such a

model is the first one to capture mean reversion, an essential characteristic of the interest rate

that sets it apart from other financial prices. To overcome a disadvantage of the Vasicek model

that the interest rate may be negative, Cox et al. (1985) introduced a new CIR model, in which

the interest rate is guaranteed to be non-negative. Hull & White (1990) further demonstrated

that the one-state-variable interest rate models of Vasicek (1977) and Cox et al. (1985) can

be extended so that they were consistent with both the current-term structure of spot interest

rate and the current-term structure of interest-rate volatility. As these stochastic interest rate

models were introduced in the literature, option pricing problems with these extended models

were also studied. Heath et al. (1992) first presented a unifying theory of option pricing under a

stochastic term structure of interest rates. Closed-form formulae for certain types of European

options were also derived in a stochastic interest rate economy (Amin & Jarrow 1992).

From the literature review above, we have learnt some basic ideas of research on option

pricing. When one of the assumptions in the Black-Scholes model does not match with the
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financial practice, some extended models would be first proposed to characterize the real world

precisely and then option pricing problems under these new modified models would be studied

again to demonstrate how option pricing is affected by the modification of the model. In this

thesis, we would follow such an idea to study how short selling restrictions affect option pricing.

As the first step of our study, we review the literature about short selling restrictions.

There is an extensive literature about short selling restrictions. Early studies mainly focus

on how these short selling restrictions affect stock prices. Miller (1977) first pointed out that

restrictions on short selling would lead to artificially inflated prices by restricting short sellers

to express their opinions. Harrison & Kreps (1978) confirmed that implementing short selling

restrictions would result in overvalued stock price because pessimists are shut out of the market

and optimists do not take into account the absence of pessimists in setting prices. Figlewski

(1981) also provided some empirical evidences that restrictions on short selling would overprice

the underlying stock by demonstrating the connection between the level of short interest and

subsequent stock returns. Diamond & Verrecchia (1987) concluded that restrictions on short

selling would influence the rate at which private information is revealed to the public through

observable trading because short sellers are the “good people” to discover the “true” price.

All the literature suggests that short selling restrictions would hinder the market efficiency of

searching for the “correct price” and result in the market price being overvalued.

Restrictions on short selling would also make some stocks hard to borrow when they are in

short supply. There is also a considerable amount of previous work on hard-to-borrow stocks.

Jones & Lamont (2002) found that hard-to-borrow stocks would have a high return rate because

they may enter the borrowing market to earn an additional lending fees when shorting demand

is high. Duffie et al. (2002) had ever studied how to price the lending fees when short selling

required locating stock lender and bargaining over the lending fees. Evans et al. (2009) mainly

focused on how options market and short selling interact with each other. Recently, Avellaneda

& Lipkin (2009) proposed a new dynamic model to study the price-evolution of stocks that are

subject to restrictions on short selling. They introduced a new stochastic process to describe the

asset price based on the intensity of buy-ins, special phenomena associated with hard-to-borrow
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stocks according to the regulations.

Up to date, a lot of studies have been conducted to explore the relation between short

selling restrictions and asset prices. However, few of them mentioned how to price option

when short selling restrictions are imposed. As the first part of this thesis, we mainly focus on

option pricing under a new hard-to-borrow stock model. This part makes a contribution to the

literature that we demonstrate how short selling restrictions affect option pricing for the first

time.

In additional to restrictions, complete bans are also imposed on short selling by some regu-

lators in the financial crisis 2007-2009. Compared with restrictions which can be characterized

with new mathematical model, complete bans are much more difficult to deal with. Even in

the classic Black-Scholes model, short selling bans make the market incomplete. Consequently,

option pricing with short selling bans is a special case of option pricing in an incomplete mar-

ket, which has been studied extensively in the literature and is grouped into two categories in

general.

Papers in the first category share a common feature that an equivalent martingale measure

is chosen according to some optimal criterion. Since there are many equivalent martingale

measures in incomplete markets, an investor has many choices when he intends to price options.

Follmer & Schweizer (1991) proposed a criterion to choose the minimal martingale measure.

Frittelli (2000) provided another criterion to define the minimal entropy martingale measure.

Later, similar concepts, such as the minimal distance martingale measure and minimax measure

were also proposed by Goll & Rüschendorf (2001) and Bellini & Frittelli (2002), respectively.

Each measure will lead to a different price, which is “fair” according to the criteria they chose

the measure. It is hard to justify which choice of these equivalent martingale measures is

“correct”. Calibration has to be implemented to demonstrate that their choice of equivalent

martingale measures is consistent with the market data.

Papers in the second category include Karatzas & Kou (1996), Davis (1997), Rouge &

El Karoui (2000), Musiela & Zariphopoulou (2004) and Hugonnier et al. (2005) . The key

idea of these papers is utility indifference pricing. An investor chooses a utility function first
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according to his risk preference. The utility indifference buying price pb is the price at which the

utility of the investor is indifferent between (1) paying nothing and not having the claim and

(2) paying pb now to receive the contingent claim at expire time (Henderson and Hobson, 2004).

The utility indifference selling price is defined similarly. In finance literature, utility indifference

price is also referred to as “private valuation”, which emphasizes the proposed price is for an

individual with particular risk preference and not a transactional price (Detemple & Sundaresan

1999, Tepla 2000).

Recently, Guo & Zhu (2017) proposed a completely new approach, referred to as the equal-

risk pricing approach, which determines the derivative price by simultaneously analyzing the

risk exposure of both parties involved in the contract. They aimed to find out an equal-

risk price which distributes expected loss evenly between the two involved parties. Such an

equal-risk price is interpreted as a fair price that both parties are happy to accept during the

negotiation if they intend to enter into the derivative contract. However, they only produced a

simple pricing formula when the payoff function is monotonic, such as European call and put

options. It is difficult to extend the analysis method to general case when the payoff function

is non-monotonic, such as a butterfly spread option.

1.3 Structure of thesis

The theme of this thesis is option pricing with short selling restrictions or bans being imposed.

Accordingly, the thesis is organized as two parts: (1) the first part deals with option pricing

problem under a new hard-to-borrow stock model where short selling is restricted; (2) the

second part is to explore how short selling bans affect option pricing. Each part is also consist

of several chapters that discuss one particular topic relevant to that part.

In Part 1, some restrictions have been imposed on short selling according to the Securities

and Exchange Commission’s regulation SHO. The short seller is required to borrow or arrange

to borrow the stock that he intends to short in advance and he may also be required to buy back

the stock they have shorted if there is too much risk in the market. These restrictions would
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make some stocks hard to borrow and also result in a new phenomenon, i.e. buy-in. Avellaneda

& Lipkin (2009) proposed a new dynamic model to describe the hard-to-borrow stocks with

short selling restrictions being imposed. Under this new stock model, option pricing is first

explored in Chapter 3 and Chapter 4.

Although an approximate semi-explicit pricing formula actually has been obtained for Eu-

ropean call options, its derivation depends on an independence assumption, which has limited

its application to general cases. In Chapter 3, we propose a new PDE approach to the Eu-

ropean option pricing problem whether or not the assumption is valid. Through comparing

the numerical results from our PDE system and the semi-explicit pricing formula, it is verified

that their semi-explicit pricing formula is a good approximate solution when the independence

assumption is reasonable. However, in the event that this is not the case, the full model needs

to be solved with the PDE approach as demonstrated in Chapter 3.

In Chapter 4, we extend our PDE approach to American option pricing problem, which is

reformulated as a linear complimentary problem (LCP). Then Lagrange multiplier approach

(LMA)is applied to solve the resulting LCPs numerically. According to the numerical results,

early exercise of American call option may be optimal when the option is deep in-the-money,

although the underlying stock pays no dividends. Such a conclusion is significantly different

from the classic result by Merton (1973). In other words, the underlying stock follows the

hard-to-borrow stock model can be considered as a stock that is paying “equivalent” dividends

because the owner could collect some lending fees. Our numerical results reassure the conclusion

of Jensen & Pedersen (2016) under the hard-to-borrow stock model. In addition, we quantify

why the early exercise would occur both from the view of financial and mathematical points.

How the parameters in the hard-to-borrow stock model affect the optimal exercise price is also

provided numerically.

In Part 2, short selling is completely banned in the market. Even we adopt the Black-

Scholes model to describe the underlying stock price, the market is still incomplete because the

assumption about short selling has been violated. Considering short selling bans as an example

of convex trading constraints, Guo & Zhu (2017) proposed an equal-risk pricing approach to
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option pricing problems in markets with trading constraints. They produced an elegant pricing

formula when the payoff function is monotonic, such European call and put options. However,

their analysis method cannot be applied to general cases where the payoff function is not

monotonic, such the butterfly spread option. In this part, the we intend to establish a PDE

framework for equal-srisk pricing approach so that it not only recovers analytical pricing formula

for European call and put options, but also produces equal-risk price for general contingent

claims. It is pointed that the HJB equation would be involved in the process of establishing

PDE system. As a result, we first explore different solution approaches to the HJB equation in

Chapter 5, Chapter 6 and Chapter 7 as preliminaries.

In Chapter 5, we derive an exact and explicit solution for the well-known HJB equation aris-

ing from the Merton problems subject to some general utility functions. The solution presented

in Chapter 5 is written in the form of a Taylor’s series expansion and constructed through the

homotopy analysis method (HAM). The fully nonlinear HJB equation is decomposed into an

infinite series of linear PDEs which can be solved analytically. To convincingly demonstrate

the success of applying the HAM to solve the fully nonlinear HJB equation, which has many

application even beyond mathematical finance, four examples are presented with the first two

cases showing the accuracy of the HAM; while the last two demonstrating the versatility of this

solution approach.

In Chapter 6, we manage to produce a closed-form analytical solution for the Merton prob-

lem defined on a finite horizon with exponential utility function. Our new solution is obtained

through two distinct approaches: an indirect method and a direct method. In the former, the

Merton problem with a family of parameterized utility functions is solved first and then an

analytical solution is obtained as we take the limit with respect to a parameter. In the latter,

the HJB equation is decomposed into two nonlinear ordinary differential equations (ODEs),

which can be explicitly solved with some nonlinear transforms. We also demonstrate that these

two solution are equivalent although they appear to be of different forms. A great advantage of

having these two solution, particular the one obtained through the direct method, is that the

optimal strategies can now be scrutinized and discussed from both mathematical and economic
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viewpoint.

In Chapter 7, we propose a monotone numerical scheme to solve the HJB equation arising

from the Merton problem with general utility functions. After demonstrating the stability,

consistency, and monotonicity of the numerical scheme, we ensure that it really converges to

the solution of the HJB equation. Some proper boundary conditions are provided for the first

time when we implement the numerical scheme to solve the utility maximization problem.

To demonstrate the performance of our numerical scheme, three examples are provided with

different utility functions. Economic discussions are also presented based on our numerical

results.

Finally, in Chapter 8, we successfully establish and implement a PDE framework for equal-

risk pricing approach. Such a PDE framework can be apply to deal with option pricing problem

whether or not the payoff function is monotonic. When the payoff function is monotonic,

analytical pricing formula is derived, which is consistent with the results from Guo & Zhu

(2017). When the payoff function is not monotonic, such as a butterfly spread option, equal-

risk price is still provided through solving the HJB equation numerically, which is absent in Guo

& Zhu (2017). Therefore, our PDE framework has indeed extended the range of application of

equal-risk pricing approach. The effect of short selling bans are demonstrated via comparisons

with the Black-Scholes price. Generally, short selling bans would decrease the price of European

call option; while it has an opposite effect on European put options. As for the butterfly spread

option, the effects of short selling would varies with current underlying stock price.



Chapter 2

Background

In this chapter, we review some mathematical knowledge that is employed as a useful tool

for the studies on option pricing. Since they are preliminary work for our research, we provide

these concepts and theorem directly without proofs. For more detailed information, the readers

can refer to the reference book we provide in each section.

2.1 Stochastic calculus

In this section, some basic concepts and theorems in stochastic calculus are provided first. All

of them play important roles in the theory of option pricing. More detailed information about

the proofs can be found in Øksendal (2003), Shreve (2004).

The first concept is martingale, which can be considered as a mathematical model of fair

games because it can exclude the possibility of winning strategies based on game history.

Definition 2.1.1. On a filtered probability space (Ω,F ,Ft,Q), a stochastic processMt is called

a martingale with respect to the filtration Ft if

1. Mt is Ft-measurable for all t,

2. EQ[|Mt|] <∞, for all t,

3. E[Ms|Ft] =Mt for all s > t.

14
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It is remarked that both Brownian motion and Ito integral are martingale. Inversely, we

also have the following theorem

Theorem 2.1.1. (Martingale representation theorem) Suppose Wt is a Brownian motion on

a probability space (Ω,F ,Q), Ft is the filtration generated by the Brownian motion Wt, and

Mt is a martingale with respect to the filtration Ft. Then there exists a predictable process ϕt,

such that

Mt = EM0 +

∫ t

0

gudWu. (2.1.1)

The martingale representation theorem states that a martingale with respect to the filtration

generated by Brownian motion can be expressed as an initial value plus an Ito integral with

respect to the Brownian. Such a theorem only asserts the existence of the representation and

does not held to find it explicitly. It is possible in some cases to determine the form of the

representation using Malliavin calculus (Nualart 2009).

In financial mathematics, stock price is always assumed to follow some special stochastic

processes. Here we introduce the concept of Ito process.

Definition 2.1.2. An Ito process is defined to be an adopted stochastic process that can be

expressed as the sum of an integral with respect to Brownian motion and an integral with

respect to time,

Xt = X0 +

∫ t

0

σsdWs +

∫ t

0

µsds, (2.1.2)

where Wt is a Brownian motion, σ is a predictable W -integral process and µ is predictable and

Lebesgue integral.

The classical and famous Ito formula, which serves as the stochastic calculus counterpart

of the chain rule, is provided in the next theorem.

Theorem 2.1.2. (Ito formula) Assume Xt be an Ito process given by Equation (2.1.2) and

f(t, x) ∈ C1,2([0,∞)×R), then we have

df(t,Xt) = (
∂f

∂t
+ µt

∂f

∂x
+
σ2
t

2

∂2f

∂x2
)dt+ σt

∂f

∂x
dWt. (2.1.3)
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The following theorem is also very important in the theory of financial mathematics as it

describes how to convert from the physical measure to the risk-neutral measure.

Theorem 2.1.3. (Girsanov theorem) Let Wt be a Brownian motion on a probability space

(Ω,F ,Q), Ft be a filtration for this Brownian motion and θt be an adapted process. Define





Zt = exp{−
∫ t
0
θudWu − 1

2

∫ t
0
θ2udu},

W̄t = Wt +
∫ t
0
θudu.

(2.1.4)

and assume that

EQ

∫ T

0

θ2uZ
2
udu <∞. (2.1.5)

The new measure P is defined as

dP

dQ

∣∣∣∣
t

= Zt, (2.1.6)

which is also referred to as Radon-Nikodym derivative. Then the new process W̄t is a Brownian

motion under the new probability measure P.

The following one is Feynman-Kac theorem that establishes an important relation between

the conditional expectation under martingale measure Q and a parabolic PDE system.

Theorem 2.1.4. (Feynman-Kac theorem) Assume that Xt be an Ito process described as

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (2.1.7)

where b(t, x) and σ(t, x) are continuous, and they satisfy the Lipschitz condition:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y| (2.1.8)

with C being constant. If f(x) ∈ C2
0(R) and r(x) ∈ C(R), define a function as

v(t, x) = E[e−
∫ T
t
r(Xs)dsg(XT )|Xt = x]. (2.1.9)
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Then it be expressed as a solution to the following PDE system





∂v

∂t
+
σ(t, x)2

2

∂2v

∂x2
+ b(t, x)

∂v

∂x
− r(x)v = 0,

v(T, x) = g(x).
(2.1.10)

Feynman-Kac formula implies that a problem of calculating the condition expectation can

be connected to problem of solving PDE. On the other direction, for some special PDE system,

the solution may have an stochastic representation. It offers a method of solving certain PDE

by simulating random paths of an Ito process.

Theorem 2.1.5. Consider the partial differential equation

∂u

∂t
(t, x) + b(t, x)

∂u

∂x
+
σ(t, x)2

2

∂2u

∂x2
(t, x)− r(x)u(t, x) + f(t, x) = 0, (2.1.11)

subject to the terminal condition

u(x, T ) = g(x), (2.1.12)

where b(t, x), σ(t, x), r(x) and f(x) are known functions, T is a parameter and u : [0, T ]×R → R

is the unknown function. Then its solution can be expressed in a conditional expectation as

u(t, x) = EQ{
∫ T

t

e−
∫ s
t
r(Xτ )dτf(s,Xr)ds+ e−

∫ T
t
r(Xτ )dτg(XT )|Xt = x}, (2.1.13)

under the probability measure Q such that Xt is an Ito process driven by the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dW
Q
t (2.1.14)

where WQ
t is a Winner process under Q and the initial condition for X(t) is X(t) = x.

2.2 Fundamental theorems of asset pricing

In this section, we review the very important theorems of asset pricing, which provide necessary

and sufficient conditions for a market to be arbitrage free and a market to be complete. Before
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stating these theorems, some concepts are introduced first. Consider a financial model on a

complete probability space (Ω,F ,Q). A risk-neutral measure is defined as follows.

Definition 2.2.1. (Risk-neutral measure) A probability measure P is said to be risk-neutral if

1. probability measures P and Q are equivalent, i.e., for every A ∈ F ,Q(A) = 0 if and only

if P(A) = 0,

2. under the probability measure P, the discounted stock price e−rtSt is a martingale.

An arbitrage is a way of trading so that one starts with zero capital and at some later time

T is sure not to have lost money and furthermore has a positive probability of making profits.

Such a financial concept can also be defined mathematically.

Definition 2.2.2. (Arbitrage) An arbitrage is a portfolio value process Xt satisfying X0 = 0

and also satisfying for some time T > 0,

Q(XT ≥ 0) = 1, Q(XT > 0) > 0. (2.2.1)

With risk-neutral measure and arbitrage being introduced, the first fundamental theorem

of asset pricing is briefly stated in the following.

Theorem 2.2.1. (First fundamental theorem of asset pricing) There exists a risk-neutral

measure Q if and only if there is no arbitrage opportunity in the market.

In the theory of pricing assets, investors would never offer prices derived form a model that

admits arbitrage. Such a theorem provides us a simple mathematical condition so that we can

easily check whether or not the model has such a fatal flaw. In addition to arbitrage, another

important concept arising from the option pricing theory is market completeness

Definition 2.2.3. A market is said to be complete if any financial derivative can be perfectly

replicated. In other word, for any contingent claim Z, there exists a self-financing strategy

(ϕ0
t , ϕt) such that

Z = V0 +

∫ T

0

ϕtdSt +

∫ T

0

ϕ0
tdS

0
t , (2.2.2)
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where St and S
0
t are the prices of stock and bond at time t, respectively.

Now we propose another theorem to provide an equivalent mathematical description on

market completeness.

Theorem 2.2.2. (Second fundamental theorem of asset pricing) Consider a market

model that has risk-neutral measures. The market is complete if and only if there exists a

unique risk-neutral measure Q.

The proofs of these two fundamental theorems of asset pricing can be found in Harrison &

Kreps (1979), Harrison & Pliska (1981), Delbaen & Schachermayer (1994).

Generally, option pricing problem in a complete market is easy to deal with for there is a

unique pricing measure. In next section, we would take the Black-Scholes model an example

to demonstrate how to price options in a complete market.

2.3 The Black Scholes model

The classic Black-Scholes model is a complete model because there is a unique risk-neutral

measure (Shreve 2004). In such a complete market, any option can be duplicated perfectly by

some self-financing dynamic portfolio strategies. The option price corresponds to the cost of

constructing such a replicating portfolio.

In the Black-Scholes model, the stock price is assumed to follow a geometric Brownian

motion:

dSt = µStdt+ σStdWt, (2.3.1)

where µ is the drift, σ is the volatility and Wt is a standard Brownian motion. The price of

risk-free bond follows

dPt = rPtdt, (2.3.2)

where r is the risk-free interest rate. With all assumptions in the Black-Scholes model being

satisfied, we construct a portfolio consisting of ϕt shares of stocks and ψt shares of bonds at
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time t such that it replicates the option, i.e.,

V (t, St) = ϕtSt + ψtPt. (2.3.3)

Differentiating Equation (2.3.3) and applying self-financing property on the right side and Ito

formula on the left side, we obtain

(
∂V

∂t
+ µSt

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
)dt+ σSt

∂V

∂S
dWt = (µϕtSt + rψtPt)dt+ σϕtStdWt. (2.3.4)

Equating the coefficients of the dWt terms leads to

ϕt =
∂V

∂S
. (2.3.5)

Then substituting ψtPt = V − ϕtSt into Equation (2.3.4), we come to the Black-Scholes PDE

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.3.6)

The terminal conditions for such a PDE system is

V (T, S) = Z(S), (2.3.7)

where Z(S) is the payoff function of the European options. Black & Scholes (1973) first derived

a closed-form analytical solution, which is also known as the Black-Scholes formula, for the price

of a European call option. The pricing formula reads:

V (t, S) = SN(d1)−Ke−r(T−t)N(d2), (2.3.8)

where 



d1 =
ln(S/K)+(r+σ2/2)

σ
√
T−t ,

d2 = d1 − σ
√
T − t,

(2.3.9)
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and N(d) is the standard normal distribution function defined as

N(d) =
1√
2π

∫ d

−∞
e−

x2

2 dx. (2.3.10)

2.4 Utility indifference pricing

When the market is incomplete, portfolio replication method becomes invalid for option pricing

problems. Instead, utility indifference pricing is a popular and powerful method of option

pricing in incomplete markets (Hodges 1989, Henderson & Hobson 2004). Utility indifference

price is the price at which an agent would have the same expected utility level by exercising a

financial transaction as by not doing so. A formal definition is presented as follows.

Definition 2.4.1. Given a utility function U and a contingent claim ZT with known payoff

functions at expire date T . If we let the function V : R× R → R be defined by

V (x, k) = max
XT∈A(x)

E[U(XT + kZT )], (2.4.1)

where x is the initial endowment, A(x) is the set of all self-financing portfolios at time T with

endowment x, and k is the number of the claims to be purchased or sold, then the utility

indifference purchase price vp(k) for k units of ZT is the solution of

V (x− vp(k), k) = V (x, 0), (2.4.2)

and the utility indifference selling price vs(k) is the solution of

V (x+ vs(k),−k) = V (x, 0), (2.4.3)

Utility indifference prices have a number of appealing properties. First of all, in contrast

to the Black-Scholes price and many other alternative pricing method in incomplete markets,

utility indifference prices are nonlinear in the number of options k due to the concavity of utility
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function. Secondly, utility indifference prices are equivalent to the Black-Scholes prices when

the market is complete. Thirdly, utility indifference prices are monotonic and concave.

From Definition 2.4.1, two stochastic control problems are involved. The first one is the

optimal investment problem when the investor has bought or sold the contingent claim; while

the second one is the optimal investment problem when the investor has a zero position in the

claim. These optimal investment problems date back to Merton (1969, 1971), which would be

presented in the next section.

2.5 Optimal investment problem

Optimal investment problem was first reformulated by Merton (1969) and thus was also referred

to as the Merton problem. In this section, such a classical problem was reviewed briefly.

Consider a financial market with two assets being traded continuously on a finite horizon

[0, T ]. One asset is a risk-free bond, whose price P (t) evolves as

dP (t) = rP (t)dt, t ∈ [0, T ], (2.5.1)

with r being the risk-free interest rate. The other one is a risky asset with its price following a

geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t), t ∈ [0, T ], (2.5.2)

where µ is the drift rate, σ is the volatility, and W (t) is a standard Brownian motion.

An investor starts with a known initial wealth x0 and the wealth at time t is denoted as

X(t). At any time t, prior to T , the investor needs to make a decision on how much to consume

and, in the mean time, how much to invest in stock markets, in order to maximize his expected

utility from intermediate consumption and terminal wealth. The consumption rate per unit

time at time t is denoted as c(t) and the investment proportion u(t) represents the fraction of

total wealth that is invested in the risky asset at time t. The remaining fraction 1−u(t) is thus
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left in form of the risk-free bond within the framework of this two-asset model. The investment

proportion on the underlying stock u(t) may be negative, which is to be interpreted as short

selling. The remaining proportion 1 − u(t) may also become negative and this corresponds to

borrowing at the interest rate r. As a result, the total wealth X(t) is governed by the following

SDE:

dX(t) = {[r + u(t)(µ− r)]X(t)− c(t)}dt+X(t)u(t)σdW (t). (2.5.3)

The objective of the Merton problem is to obtain the optimal investment and consumption

policies, i.e. to determine u(t) and c(t), such that the expected utility from accumulated con-

sumption and the terminal wealth is maximized. Mathematically, such an objective functional

is stated as

max
(u(·),c(·))

E[

∫ T

0

e−ρsU(c(s))ds+ e−ρTB(XT )], (2.5.4)

where E is the expectation operator; ρ is the subjective discount rate; U is a function measuring

the utility from intermediate consumption c(t) and B is also a function measuring the utility

from terminal wealth XT . In addition, the fact that the consumption and wealth process can

not be negative in practice leads to two constraints being imposed on the optimization

c(t) ≥ 0, X(t) ≥ 0, t ∈ [0, T ]. (2.5.5)

As a result, the Merton problem has been reformulated as a stochastic optimal control problem

with the objective functional (2.5.4), driven by the dynamics of the wealth (2.5.3), and subject

to the constraints (2.5.5).

2.6 Stochastic control problem and the HJB equation

It is observed that stochastic control problems arise both in the utility indifference pricing

problem and the Merton problem. To solve these expected utility maximization problems, the

Hamilton-Jacobi-Bellman (HJB) equation, a powerful mathematical tool to deal with stochastic

control problem, is introduced in this section.
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Let (Ω,F ,Q) be a completed probability space satisfying the usual condition, on which is de-

fined an m-dimensional standard Brownian motion W (t). We consider the following stochastic

controlled system: 



dxt = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dWt,

x0 = x.
(2.6.1)

with the cost functional

J(u(·)) = E

∫ T

0

f(t, x(t), u(t))dt+ h(x(T )). (2.6.2)

Define admissible control set as

U [0, T ] := {u : [0, T ]× Ω → U |u is measurable and {Ft}t≥0-adopted}, (2.6.3)

where U is a Borel set. The optimal stochastic control problem can be stated as follows:

Problem 1. Minimize (2.6.2) subject to the state equation (2.6.1) over the admissible control

set U [0, T ].

To guarantee the existence and uniqueness of the solution, some assumptions on the coeffi-

cients as follows:

Assumption 2. The maps b : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn × U → Rn×m, f :

[0, T ] ×Rn × U → R, and h : Rn → R are uniformly continuous, and there exists a constant

L > 0 such that for ϕ(t, x, u) = b(t, x, u), σ(t, x, u), f(t, x, u), h(x)





|ϕ(t, x, u)− ϕ(t, x̄, u)| ≤ L|x− x̄|, ∀t ∈ [0, T ], x, x̄ ∈ Rn, u ∈ U

|ϕ(t, 0, u)| ≤ L, ∀(t, u) ∈ [0, T ]× U.
(2.6.4)

According to the dynamic programming method (Yong & Zhou 1999), we introduce a se-
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quence of similar problems. For any (s, y) ∈ [0, T )×Rn, consider the state equation:





dxt = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dWt,

xs = y.
(2.6.5)

along with the cost functional

J(u(·); s, y) = E

∫ T

s

f(t, x(t), u(t))dt+ h(x(T )). (2.6.6)

The value function is defined as

V (s, y) = min
u(·)∈U [s,T ]

J(u(·); s, y). (2.6.7)

Based on Bellman’s principle of optimality, we have the following theorem

Theorem 2.6.1. When Assumption 2 hold, for any (s, y) ∈ [0, T )×Rn, we have

V (s, y) = min
u(·)∈U [s,T ]

E{
∫ ŝ

s

f(t, x(t; s, y, u(·)), u(t))dt+ V ((̂s), x(ŝ; s, y, u(·)))}, ∀0 ≤ s ≤ ŝ ≤ T.

(2.6.8)

Following the Bellman’s principle of optimality, we provide the HJB equation governing the

value function V (s, y).

Theorem 2.6.2. When Assumption 2 holds and the value function V (s, y) ∈ C1,2([0, T ]×Rn).

Then V (s, y) is a solution of the following terminal value problem of a second-order partial

differential equation: 



−vt +max
u∈U

G(t, x, u,−vx,−vxx) = 0,

v(T, x) = h(x),
(2.6.9)

where G(t, x, u, p, P ) = 1
2
tr(Pσ(t, x, u)σ(t, x, u)T ) + ⟨p, b(t, x, u)⟩ − f(t, x, u), ∀(t, x, u, p, P ) ∈

[0, T ]×Rn × U ×Rn × Sn and Sn is the set of all n× n symmetric matrices.

The proofs of these theorems in this section can be found in Yong & Zhou (1999).
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Part I: Option pricing with short selling restrictions

In this part, short selling is still allowed but restriction has been imposed. According to the U.S.

Securities and Exchange Commission’s Regulation SHO, the short seller is required to borrow

or arrange to borrow the stock that he intends to short in advance. The availability of the

stock for borrowing depends on the market conditions. While many stocks are easily borrowed;

others may be in short supply. In the latter case, short selling may be costly because the

stock is hard to borrow and the short seller has to pay additional borrowing fees. Sometimes,

the short seller fails to deliver the stock that he has shorted, which is called “fail-to-deliver”

risk. When there is too much risk, the clearing firm would forcibly require the short seller

to repurchase (buy in) the stock that has been shorted following the Securities and Exchange

Commission’s Regulations SHO. To describe the price-evolution for hard-to-borrow stocks,

Avellaneda & Lipkin (2009) proposed a new dynamic model, in which a new stochastic process

was introduced to characterize the intensity of buy-ins.

The main contribution of this part is that, for the first time, we explore option pricing prob-

lems under a hard-borrow stock model by establishing a PDE system. Although an approximate

semi-explicit pricing formula for European call options has been obtained, its derivation de-

pends on an independence assumption, which has limited its application to general cases. In

Chapter 3, we propose a PDE approach to European call option pricing and an ADI numerical

scheme is also provided to solve the PDE system. Numerical results calculated from both our

PDE system and the semi-explicit pricing formula are compared to demonstrated that our PDE

approach is a broader way than the semi-explicit pricing formula. Then such a PDE approach

is extended to deal with American call option pricing problem in Chapter 4. It is furthermore

reformulated as a linear complementarity problem, which is solved numerical with the Lagrange

multiplier approach. Numerical results are produced to demonstrate how the parameters in this

hard-to-borrow stock model affect option prices and optimal exercise price.



Chapter 3

Pricing European call options under a

hard-to-borrow stock model

3.1 Introduction

Option pricing is one of the most important topics in quantitative finance ever since Black &

Scholes (1973) proposed an analytical and quantitative formula for pricing European options,

which has laid the solid foundation for pricing financial derivatives. One of the most important

assumptions in their celebrated model is that short selling is permitted without any cost,

while the market regulations suggest otherwise. In most stock markets, naked short selling is

forbidden for it may result in too much fail-to-deliver risk. However, short selling with some

restrictions is usually allowed. If an investor wants to short a stock, he has to borrow from

others in advance. The availability of stocks for borrowing depends on market conditions.

While some are easily borrowed, others may be in short supply. In the latter, they are referred

to as hard-to-borrow stocks (Avellaneda & Lipkin 2009).

In general, buy-ins are associated with hard-to-borrow stocks according to the Securities

and Exchange Commission’s Regulation SHO1. Following the rules, in order to cover shortfalls

in delivery of such stocks, the short seller may be “forced” to repurchase the stock when the

1The reader can visit the website: www.sec.gov to learn more about Regulation SHO.

27
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risk of short selling goes up to a certain level. Such an event is called a buy-in. To measure

the risk, the short interest is defined as the ratio of tradable shares being shorted to shares

in the market (Asquith et al. 2005). As the short interest increases, the fail-to-deliver risk

accumulates more and more in the market. When the risk is almost beyond the control, a

buy-in would be triggered. Once a buy-in occurs, the fail-to-deliver risk would be reduced as

the short interest of the stock falls down. Then, the risk accumulates gradually with time going

on and the short interest goes up again. When it comes to a certain level again, another buy-in

follows. The investors have to take the possible buy-ins into consideration. These buy-ins are

always considered as stochastic dividend yields or convenience yields, because the holders of

hard-to-borrow stocks can obtain lending fees by lending their stocks to the investors who wish

to maintain short positions and not risk buy-ins (Avellaneda & Lipkin 2009). The harder it is

to borrow the stock, the more the lending fees will be.

In the literature, there is a considerable amount of research about short selling. Diamond &

Verrecchia (1987) considered constraints on short selling and asset price adjustment to private

information. Duffie et al. (2002) presented a model of asset valuation in which short selling is

achieved by searching for security lenders and bargaining over the terms of lending fee. Jones

& Lamont (2002) pointed out that, from market data, stocks are overpriced when short-sale

constraints are imposed. Evans et al. (2009) mainly focused on how options market and short

selling interact with each other.

In 2009, Avellaneda and Lipkin (A&L) observed various phenomena associated with hard-

to-borrow stocks from market data. All these phenomena were related to buy-ins. To describe

these phenomena better, they presented a new dynamic model for hard-to-borrow stocks by

introducing a stochastic buy-in rate, an additional factor absent in standard models. The

buy-in rate represents the frequency at which buy-ins take place. It has been manifested by

Avellaneda & Lipkin (2009) that the features such a new model shows are in good agreement

with empirical (market) observations. Since then, it has attracted much attention from both

theoretical and empirical aspects (Avellaneda & Zhang 2010, Li et al. 2014, Jensen & Pedersen

2016).
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The A&L model is a fully coupled system with the stock price and the buy-in rate de-

pending on each other. After making an assumption that the buy-in rate is independent of

the Brownian motion that drives the stock price, which is referred to as the independence as-

sumption hereafter, they obtained a formula to price European options. The pricing formula

is semi-explicit because a series of unknown weight functions are still involved. Monte Carlo

simulations are necessary to estimate the weight functions when we try to obtain the numerical

results from semi-explicit formula. However, they did not mention how to implement the Monte

Carlo simulations when the intensity of Poisson process is also a stochastic process, instead of

a constant or a deterministic function.

It is remarked that the independence assumption is significantly important because it makes

the fully coupled system become semi-coupled, which has facilitated the derivation of their semi-

explicit pricing formula for European call options. However, it has also limited its application

to general cases. Provided that the independence assumption is indeed reasonable, the semi-

explicit formula is a good approximate solution. While, in the event that this is not the case, it

is the full model that needs to be solved with a PDE approach as demonstrated in this chapter.

Not only the stock price but also the buy-in rate is considered as a variable of option value

when the PDE system is established. To obtain the numerical results, two schemes are carefully

chosen based on different approaches to the jump term. Both of them have adopted the ADI

scheme to improve the computational efficiency.

The contribution of this chapter is to present a PDE approach to pricing European call

options, which enlarges the application of this new dynamic model for hard-to-borrow stocks. In

other words, our PDE approach would not only recover the special case where the independence

assumption is valid, but also deal with the case where the independence assumption is no longer

valid. In the latter, the semi-explicit pricing formula does not work any more.

The chapter is organized as follows. In Section 3.2, the A&L model is reviewed first,

including the risk-neutral measure and the semi-explicit pricing formula for European call

options. In Section 3.3, the PDE system is established with a set of appropriate boundary

conditions. In Section 3.4, two numerical methods are presented to solve the PDE system
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based on the different treatments for the jump term and then Monte Carlo simulations are also

provided to estimate the unknown weight functions in order to implement the semi-explicit

pricing formula. In Section 3.5, the numerical results are provided and some discussions are

presented. Conclusions are given in the last section.

3.2 The A&L model for hard-to-borrow stocks

Avellaneda and Lipkin (A&L) presented a model by introducing a Poisson process Nλt(t) to

describe buy-ins associated with hard-to-borrow stocks. The buy-in rate λt represents the

frequency at which buy-ins take place. The stock price St and the buy-in rate λt satisfy the

following stochastic differential equations (SDEs) under the physical measure P:





dSt
St

= σdWt + γλtdt− γdNλt(t)

dxt = κdZt + α(x− xt)dt+ β
dSt
St
, xt = ln(λt),

(3.2.1)

where dNλt denotes the increment of a standard Poisson process with intensity λ over the

interval (t, t+dt). The parameters σ and γ are respectively the volatility and the price elasticity

of demand due to buy-ins; Wt and Zt are two independent standard Brownian motions which

drive the stock price and the buy-in rate respectively. For convenience, xt, the logarithm of the

buy-in rate λt, is also called buy-in rate hereafter. The second equation describes the evolution

of the buy-in rate with κ being the volatility of the rate, x the long-time equilibrium value for

buy-in rate xt, α the speed of mean-reversion and β the coupling parameter that couples the

change in price with the buy-in rate.

In order to introduce a positive feedback between increase in buy-in rate and increase in

stock price, β was required to be positive in Avellaneda & Lipkin (2009). When a buy-in

occurs, the stock price drops down and the buy-in rate also falls to a low level simultaneously

because of the coupling term β
dSt
St

. Another buy-in is unlikely to occur immediately following

the previous one because the previous one has released some fail-to-deliver risk. With the time

moving on, the risk accumulates gradually and the buy-in rate goes up again. Another buy-in
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occurs in the future once the risk goes up again and reaches a certain level. This demonstrates

how the stock price and the buy-in rate interact with each other.

3.2.1 The risk-neutral measure

It should be pointed out that the A&L model operates in an incomplete market since an

additional source of uncertainty has been introduced through the buy-in rate, which is not

a tradable quantity (Tankov 2003). Therefore, it is impossible to perfectly hedge a portfolio

composed of hard-to-borrow stocks and there does not exist a unique risk-neutral measure. For

pricing a derivative, a risk-neutral measure needs to be defined for the processes St and xt first.

What Avellaneda and Lipkin did was to introduce an arbitrage-free pricing measure, which is

equivalent to changing the drift of the Brownian motion associated with the underlying stock.

Mathematically, to conduct measure transform, two new processes are defined as

W̃t = Wt +

∫ t

0

γλl − r

σ
dl, (3.2.2)

and

Z̃t = Zt +

∫ t

0

αz(l, xl, Sl)

κ
dl, (3.2.3)

where z(t, x, S) is an arbitrary function. By Girsanov’s theorem, W̃ and Z̃ are two independent

Brownian motions under the risk-neutral measure Q defined by

dQ

dP

∣∣∣∣
t

= exp
{
−
∫ t

0

[γλl − r

σ
+
αz(l, xl, Sl)

κ

]
dWl−

1

2

∫ t

0

[(γλl − r)2

σ2
+
α2z2(l, xl, Sl)

κ2
]
dl
}
, (3.2.4)

which is the so-called Radon-Nikodym derivative that facilitates the change of measure. Under

this risk-neutral measure, the dynamics of the A&L model become





dSt
St

= σdW̃t + rdt− γdNλt(t),

dxt = κdZ̃t + [α(x∗ − xt)]dt+ β
dSt
St
,

(3.2.5)

where x∗ = x− z.
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Financially, any source of uncertainty needs to be compensated by the associated market

price of risk or risk premium. In the classic Black-Scholes model, the market price of risk for

the underlying is
µ− r

σ
(Wilmott et al. 1995). On the other hand, in the Heston model, an

additional source uncertainty is introduced by the stochastic volatility and an additional market

price of volatility risk is defined through an arbitrary function, i.e., λ(t, S, v) in Heston (1993),

which may appear in a more general form for other stochastic volatility models discussed in

Fouque et al. (2000). In the A&L model, the new buy-in process also brings in an additional

source of uncertainty and the corresponding market price of buy-in risk is represented by the

function z(t, x, S) in Equation (3.2.3). Furthermore, it should be remarked that the market

price of risk for the stock in the A&L model becomes
γλ− r

σ
, which is different from its

counterpart
µ− r

σ
in the Black-Scholes model.

When a market is complete, the market price of risk for the underlying is unique, such as

the term
µ− r

σ
in the Black-Scholes model. When a market is incomplete, the market price

of risk is specified after a risk-neutral measure is chosen, or in a vice versa way in financial

practice that a market price of risk is extracted from market data first, which then implicitly

dictates the risk-neutral measure to be used in pricing a derivative. Therefore, the market price

of buy-in risk in the A&L model should be determined by market data, just as the market price

of volatility risk in the Heston model needs to be calibrated from market data (Bollerslev et al.

2011). For simplicity, Avellaneda & Lipkin (2009) effectively set z(t, x, S) to be zero, which is

a standard treatment in the Heston model as well (Rouah 2013).

3.2.2 An approximate semi-explicit pricing formula

Under the risk-neutral measure they chose, we have

dxt = [α(x− xt) + βr]dt+ κdZ̃t + βσdW̃t − βγdNλt(t). (3.2.6)

To obtain a semi-explicit pricing formula, Avellaneda & Lipkin (2009) made an independence

assumption that the buy-in rate is independent of Brownian motion that drives the stock price.
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This key assumption about independence has really facilitated the derivation of their pricing

formula for a European call option. As a result, Equation (3.2.6) becomes

dxt = [α(x̄− xt) + βr]dt+ κdZ̃t − βγdNλt . (3.2.7)

An approximate semi-explicit pricing formula for a European call can be expressed as

C(S,K, T ) =
∞∑

0

Π(n, T )CBS(S(1− γ)n, K, T, r, σ), (3.2.8)

where CBS(S,K, T, r, σ) is the value of a European call option calculated from the Black-Scholes

formula with being S the price of underlying stock, T the time to maturity, and K strike price;

the weight functions are defined as:

Π(n, T ) = P (

∫ T

0

dNλt = n). (3.2.9)

However, the pricing formula (3.2.8) actually involves a series of unknown functions Π(n, T )

which are unnecessary for computing option price from a completely explicit formula, such as

the famous Black-Scholes formula. It is for this reason that pricing formula (3.2.8) is called a

semi-explicit one. If the intensity of Poisson process is a constant or a deterministic function,

the expression (3.2.9) will be so easily computed that the form (3.2.8) becomes a completely

explicit formula according to Merton (1976). When the intensity is driven by a stochastic

process, the computation of the weight functions requires simulations for the intensity process.

In addition, the original model (3.2.1) represents a fully coupled system with the stock

price and the buy-in rate depending on each other; while the independence assumption makes

the fully coupled SDEs become semi-coupled, as the buy-in rate xt no longer depends on the

stock price St. This independence assumption has facilitated the derivation of the semi-explicit

pricing formula for European call options under the A&L model. However, it has limited

the application to more general cases. In this chapter, we present a PDE approach to price

European call options. Given that the intensity of Poisson process is described by a stochastic
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process xt instead of a constant or a deterministic function, the buy-in rate x is also considered

as a variable of option value in addition to stock price S. The PDE approach can also be

extended to the American case in the next chapter, while the semi-explicit pricing formula

proposed by Avellaneda & Lipkin (2009) is not easily extended. In other words, our PDE

approach has a wide range of application.

3.3 The PDE system for European call options

In this section, the PDE system governing the value of European call options is derived first

for the case where the independence assumption is removed. To obtain a properly-closed PDE

system, some boundary conditions, especially those in the buy-in rate direction, are presented

from mathematical and financial aspects. A simplified PDE system is also provided when the

independence assumption is taken into consideration.

The PDE system governing the option value is demonstrated in following proposition.

Proposition 3.3.1. If the underlying asset follows the dynamic processes (3.2.5) under the

risk-neutral measure Q and the value of a European call option written on the underlying asset

at time t is defined as

u(x, S, t) = E[e−r(T−t)h(ST )|St = S, xt = x],

where the payoff function is h(S) = (S −K)+ and the expectation E is under the risk-neutral

measure Q, then u(x, S, t) is governed by the following PDE system





−∂u
∂t

= (L1 + L2)u,

u(x, S, T ) = (S −K)+, (x, S, t) ∈ R× [0,∞)× [0, T ],
(3.3.1)
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where the diffusion operator L1 and the jump operator L2 are defined as





L1u =
κ2 + β2σ2

2

∂2u

∂x2
+

1

2
σ2S2 ∂

2u

∂S2
+ βσ2S

∂2u

∂x∂S
+ [α(x− x) + βr]

∂u

∂x
+ rS

∂u

∂S
− ru,

L2u = ex[u(x− βγ, S(1− γ), t)− u(x, S, t)].

(3.3.2)

The details of the proof are left in Appendix A.1.

Remark 3.3.1. It should be pointed out that the operator L2 would be in a form of integration

if the jump size γ was a random variable. In that case, Equation (3.3.1) would become an

integro-PDE. However, in the A&L model, γ is a deterministic constant and Equation (3.3.1)

is still a PDE, instead of an integro-PDE.

The boundary conditions along the stock price direction are very easy to impose. They are

similar to those in the standard Black-Scholes model. The stock price stays at zero once it

hits zero. In this case, the call option becomes worthless even if there is a long time to expiry.

Hence we have u(x, 0, t) = 0.

On the other hand, as the stock price becomes large, it is more likely that the call option

will be exercised at the expiry. The corresponding boundary condition is imposed as:

lim
S→∞

u(x, S, t)

S
= 1.

Then we turn to the boundary conditions along the buy-in rate direction. When x tends to

−∞ (i.e.λ → 0), there is no jump in the stock price. In this case, the model is equivalent to

the Black-Scholes model. Therefore, we set the value of the call option as the counterpart in

the Black-Scholes model, i.e.

lim
x→−∞

u(x, S, t) = lim
λ→0

u(S, λ, t) = CBS(S,K, T − t, r, σ).

Finally, we come to the boundary condition on x → ∞. One needs to understand how the

buy-in rate affects the option price first. Roughly speaking, the buy-in rate is a measure of the

frequency of buy-ins. When the buy-in rate increases, the buy-ins occur more often, resulting
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in higher lending fees. On the other hand, the holder of a European call option needs to hedge

the risk by shorting stocks. If the lending fees are very large, hedging the call options would

become very expensive. Fewer and fewer investors would buy the European call options as the

buy-in rate increases. When the buy-in rate x = ln(λ) becomes large enough, it has few effect

on the option value. In other words, the option value would be expected to be insensitive to

the buy-in rate change when x has been very large, which is similar to the boundary condition

imposed by Clarke & Parrott (1999). Accordingly, a Neumann boundary condition can be given

as

lim
x→∞

∂u

∂x
(x, S, t) = 0.

In a brief summary, the properly-closed PDE system governing the value of European call

options under the A&L model can be written as:





−∂u
∂t

= (L1 + L2)u,

u(x, S, T ) = (S −K)+,

u(x, 0, t) = 0,

lim
S→∞

u(x, S, t)

S
= 1,

lim
x→−∞

u(x, S, t) = CBS(S,K, T − t, r, σ),

lim
x→∞

∂u

∂x
(x, S, t) = 0,

(3.3.3)

for (x, S, t) ∈ R× [0,∞)× [0, T ], where the operator L1 and L2 are defined as (3.3.2).

It should be noted that the above PDE system is established without the independence

assumption. Therefore, the results obtained from the PDE system (3.3.3) cannot be directly

compared with those calculated from the semi-explicit pricing formula where the independence

assumption has been made. Actually, our PDE approach can also recover the case where the

independence assumption is taken into consideration. Similar to Proposition 3.3.1, a simplified

PDE system can be obtained as

− ∂u

∂t
= (L̃1 + L2)u, (3.3.4)



37 3.4. NUMERICAL SCHEMES

where

L̃1u =
1

2
σ2S2 ∂

2u

∂S2
+
κ2

2

∂2u

∂x2
+ [α(x− x) + βr]

∂u

∂x
+ rS

∂u

∂S
− ru, (3.3.5)

with all boundary conditions remaining the same as those in the PDE system (3.3.3). The

results calculated from the PDE (3.3.4) now can be used to verify those computed from the

pricing formula for the independence assumption has also been taken into account.

It should also be noted that in our PDE approach, the only difference, with or without

this independence assumption, lies in the coefficients of the term ∂2u
∂x2

and the term ∂2u
∂x∂S

. The

coefficient of term ∂2u
∂x2

changes from κ2+β2σ2

2
to κ2

2
and the coefficient of term ∂2u

∂x∂x
changes from

βσ2S to 0 when the assumption of is taken into consideration. Obviously, it makes perfect sense

to make such an assumption when β is small, which indicates that the buy-in rate is not strongly

affected by the change of stock price. However, when the coupling parameter β is sufficiently

large, the independence assumption is unacceptable and the PDE system (3.3.3) needs to be

solved directly instead of the semi-explicit pricing formula. Unlike the semi-explicit pricing

formula (3.2.8), which depends heavily on the independence assumption, our PDE approach

can deal with option pricing problem successfully whether the independence assumption is made

or not. In addition, our PDE approach can also be extended to the American case while it is

difficult to extend the semi-explicit pricing formula.

3.4 Numerical schemes

In this section, two numerical schemes are presented to solve the PDE system (3.3.3). The

PDE system (3.3.4), which is actually is a special case of the PDE system (3.3.3), can also be

solved with these two numerical schemes.

Upon establishing the properly-closed PDE system (3.3.3), it is observed that the operator

in the PDE is split into two terms, a diffusion term and a jump term. To solve the PDE system

numerically, two approaches to the jump term are presented. One is to approximate the jump

term with bilinear interpolation and the other is to adopt a second-order Taylor expansion to

estimate it. Based on the different approaches to the jump term, two numerical methods for the
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PDE system are presented, Method 1 and Method 2. In order to implement the semi-explicit

pricing formula, the weight functions need to be estimated through Monte Carlo simulations.

The scheme of Monte Carlo simulation is also provided in this section.

3.4.1 Numerical scheme for the PDE system

For the convenience of numerical implementation, by introducing transforms τ = T − t, y =

ln(S), u(x, y, τ) = u(x, S, t), we obtain the PDE system expressed as :





∂u

∂τ
= L1u+ L2u,

u(x, y, 0) = (ey −K)+,

lim
y→−∞

u(x, y, τ) = 0,

lim
y→∞

u(x, y, τ)

ey
= 1,

lim
x→−∞

u(x, y, τ) = CBS(ey, K, τ, r, σ),

lim
x→∞

∂u

∂x
(x, y, τ) = 0,

(3.4.1)

for (x, y, τ) ∈ R×R× [0, T ], where

L1u =
κ2 + β2σ2

2

∂2u

∂x2
+

1

2
σ2∂

2u

∂y2
+ βσ2 ∂

2u

∂x∂y
+ [α(x− x) + βr]

∂u

∂x
+ (r − 1

2
σ2)

∂u

∂y
− ru,

L2u = ex[u(x− βγ, y + ln(1− γ), τ)− u].

The domain is truncated as

(x, y, τ) ∈ [Xmin, Xmax]× [Ymin, Ymax]× [0, T ]. (3.4.2)

Theoretically, to eliminate the boundary effect, Xmax(Ymax) should be sufficiently large and

Xmin(Ymin) should be sufficiently small. However, truncation is necessary if we want to adopt

the finite difference method. According to Wilmott et al. (1995), the upper bound of stock price

is always three or four times the strike price. Therefore we set Ymax = ln(5K) and Ymin = −Ymax
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so that Smin = 1
5K

≈ 0. As for the buy-in rate, we set λmax = 252, which means that buy-ins

occur every day at most. Therefore, Xmin = −Xmax = −ln(252) so that λmin = 1
252

≈ 0. The

space (x, y, τ) is divided into a uniform grid with

xi = Xmin + (i− 1) ·∆x, i = 1, · · · , Nx;

yj = Ymin + (j − 1) ·∆y, j = 1, · · · , Ny;

τl = (l − 1) ·∆τ, l = 1, · · · , NT ;

where Nx, Ny, NT are the number of grid points in the x direction x, y, τ , respectively. The

option values at the grid points thus are uli,j = u(xi, yj, τl).

After meshing the computational domain, we provide two different approaches to the jump

term L2u in PDE (3.4.1). They are marked as Method 1 and Method 2, respectively.

Method 1

Upon discretizing the computational domain, the discretization associated with the jump term

requires values of the unknown functions being evaluated off grid points. In Method 1, we

apply a bilinear interpolation to approximate u(x − βγ, y + ln (1− γ), τ). For convenience of

notation, the value on point P is denoted as uP (x, y), while the grid points around point P

are denoted as Q1,1 = (x1, y1), Q1,2 = (x1, y2), Q2,1 = (x2, y1), Q2,2 = (x2, y2) as shown in Figure

3.1.

Figure 3.1: Bilinear interpolation



40 3.4. NUMERICAL SCHEMES

According to the bilinear interpolation method, the value on point P can be approximated

as

uP (x, y) ≈
1

(x2 − x1)(y2 − y1)
(x2 − x, x− x1)




uQ1,1 uQ1,2

uQ2,1 uQ2,2







y2 − y

y − y1


 , (3.4.3)

where uQi,j
are the values on the grid points Qi,j, i, j = 1, 2. The jump term in the n-th time

step is approximated as:

L2u
n ≈ ex[unP (x− βγ, y + ln (1− γ))− un]. (3.4.4)

The Alternative Direction Implicit (ADI) scheme is applied to the operator L1 and an explicit

scheme to the operator L2. When discretizing the operator L1 in first step, only the derivatives

with respect to x are evaluated in terms of the unknown values of u2n+1, while the other

derivatives are replaced in terms of known values of u2n. The difference equation obtained

in first step is implicit in the x-direction and explicit in y-direction. This procedure is then

repeated at next step with the difference equation implicit in the y-direction and explicit in

the x-direction. As for the operator L2 and the cross-derivative
∂u2

∂x∂y
, both steps are explicit.

Thus, we obtain two difference equations :

u2n+1
i,j − u2ni,j

∆τ
= a

u2n+1
i+1,j − 2u2n+1

i,j + u2n+1
i−1,j

∆x2
+ ci

u2n+1
i+1,j − u2n+1

i−1,j

2∆x
− r

2
u2n+1
i,j (3.4.5)

+b
u2ni,j+1 − 2u2ni,j + v2ni,j−1

∆y2
+ d

u2ni,j+1 − u2ni,j−1

2∆y
− r

2
u2ni,j

+ρ
u2ni+1,j+1 − u2ni−1,j+1 − u2ni+1,j−1 + u2ni−1,j−1

4∆x∆y
+ L2u

2n
i,j ,

u2n+2
i,j − u2n+1

i,j

∆τ
= b

u2n+2
i,j+1 − 2u2n+2

i,j + u2n+2
i,j−1

∆y2
+ d

u2n+2
i,j+1 − u2n+2

i,j−1

2∆y
− r

2
u2n+2
i,j

+a
u2n+1
i+1,j − 2u2n+1

i,j + u2n+1
i−1,j

∆x2
+ ci

u2n+1
i+1,j − u2n+1

i−1,j

2∆x
− r

2
u2n+1
i,j

+ρ
u2n+1
i+1,j+1 − u2n+1

i−1,j+1 − u2n+1
i+1,j−1 + u2n+1

i−1,j−1

4∆x∆y
+ L2u

2n+1
i,j ,

(3.4.6)
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where a = κ2+β2σ2

2
, b = σ2

2
, ci = α(x− xi) + βr, d = r − σ2

2
, ρ = βσ2. The corresponding matrix

form for the above equations can be simply written as

H1u
2n+1
j = P 2n

j + xBnd1
j , (3.4.7)

H2u
2n+2
i = Q2n+1

i + yBnd1
i , (3.4.8)

with the details of H1, H1, Pj, Qi, xBnd1 and yBnd1 being defined in Appendix A.3. Note

that the matrix H1 and H1 are both tridiagonal, so the Thomas algorithm can be adopted to

accelerate the computational speed (Strikwerda 2004).

Method 2

The other method to deal with the jump term L2u is a second-order Taylor expansion. After

applying Taylor expansion, we have

L2u = ex[u(x− βγ, y + ln(1− γ), t)− u(x, y, t)]

= ex[−βγ∂u
∂x

+ ln(1− γ)
∂u

∂y
+
β2γ2

2

∂2u

∂x2
+

ln2(1− γ)

2

∂2u

∂y2
− βγln(1− γ)

∂2u

∂x∂y
]

+O(β2γ2 + ln2(1− γ)).

With the high-order terms being dropped out, the PDE becomes

∂u

∂τ
= a

∂2u

∂x2
+ b

∂2u

∂y2
+ c

∂u

∂x
+ d

∂u

∂y
+ ρ

∂2u

∂x∂y
− ru, (3.4.9)

with new coefficients:

a =
κ2 + β2σ2 + β2γ2ex

2
, b =

σ2 + ln2(1− γ)ex

2
,

c = α(x− x) + βr − exβγ, d = r − σ2

2
+ exln(1− γ), ρ = βσ2 − ln(1− γ)βγex.
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Since the PDE (3.4.9) does not include the jump term any longer, the ADI scheme can be

directly applied. The finite difference equation for PDE system (3.4.9) is of the form :

(I − θA1)(I − θA2)u
n+1 = [I + A0 + (1− θ)A1 + (1− θ)A2 + θ2A1A2]u

n. (3.4.10)

The definition of these operators A0, A1, A2 and the details of the derivation for Equation

(3.4.10) are left in Appendix A.2.

The simplest ADI scheme, Douglas-Rachford (DR) method (Douglas & Rachford 1956), is

applied to solve the finite difference equation (3.4.10). The DR method involves two steps, in

which the original operator in (3.4.10) is split into two that are applied in two spatial directions,

respectively. First, we calculate an intermediate variable Z from

(I − θA1)Z = [I + A0 + (1− θ)A1 + A2]u
n, (3.4.11)

with values in the y direction fixed. After obtaining the intermediate variable Z, the second

step is to calculate un+1 from

(I − θA2)u
n+1 = Z − θA2u

n, (3.4.12)

by fixing the value in x direction. The finite difference equation (3.4.10) in two directions now

is decomposed into two separate one, Equation (3.4.11) and (3.4.12). The former is calculated

implicitly only in x direction; while the latter is computed implicitly in y direction only. As

a result, (3.4.11) and (3.4.12) form a classic ADI scheme. The corresponding matrix form for

(3.4.11) and (3.4.12) are simply represented as :

AZj = Pj + xBnd2
j , (3.4.13)

Bui = Qi + yBnd2
i , (3.4.14)

the A,Pj, B,Qi,xBnd2 and yBnd2
i are defined in Appendix A.3.
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The von Neumann stability analysis is restricted to the PDE with constant coefficients in

general. It is extended to the PDE with variable coefficients with the frozen coefficient technique

(Zhu & Chen 2011). By fixing the coefficients at their values attained at each gird point in

the computational domain, the variable coefficients problem becomes constant coefficient ones.

If each frozen coefficient problem is stable, then the variable coefficient problem is also stable

(Strikwerda 2004). The next proposition demonstrate the stability of Method 2.

Proposition 3.4.1. When θ ≥ 1
2
, the DR scheme (3.4.11) and (3.4.12) for the PDE (3.4.9) is

unconditionally stable in von Neumann sense.

The proof is left in Appendix A.4.

3.4.2 The Monte Carlo simulation

Although A&L obtained an approximate semi-explicit pricing formula with the independence

assumption, their formula still involves the calculation of a series of weight functions. In fact,

it is for this reason that the pricing formula is called a semi-explicit one. In this subsection, we

demonstrate how to implement a Monte Carlo scheme to approximate the weight functions.

Recall the definition of the weight functions,

Π(n, T ) = P (

∫ T

0

dNλt = n) = E
{
e−

∫ T
0 λ(t,ω)dt [

∫ T
0
λ(t, ω)dt]n

n!

}
. (3.4.15)

If the intensity λt of Poisson process is a constant or a deterministic function, the weight

functions can be calculated through the above formula directly. When the intensity is described

by a stochastic process, we have to approximate the probability by frequency over a large

number of paths. Here, we present a scheme of Monte Carlo simulation for the Poisson process

whose intensity is driven by the stochastic process:

dxt = [α(x̄− xt) + βr]dt+ κdZ̃t − βγdNλt xt = ln(λt). (3.4.16)

In our scheme, the time axis in the domain [0,T] is first discretized into a set of discrete
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nodal points, 0 = t0 < t1 < · · · < tL = T , with ∆t = ti+1 − ti =
T
L

and L being the total

number of the nodes. All the values of λt or xt on the nodes {ti}Li=1 need to be obtained via

Monte Carlo simulations. Let us take the calculation of λt1 or xt1 as an example to illustrate

the simulation process. The pseudocode is presented in Algorithm 1. Once obtaining the value

of xt1 , we can move on to next node xt2 and repeat Algorithm 1. Similarly, we can simulate a

path for xt and obtain the total number of jumps for each path.

Algorithm 1 Monte Carlo simulation for SDE (3.4.16)

1: Set λ0 = ex0 , k = 0;
2: Generate a random number τ from exponential distribution with parameter λ0;
3: k = k + 1 and τ1 = τ ;
4: if τ1 > t1 then
5: Generate a random number Z̃ from normal distribution N (0, t1);
6: Set xt1 = xt0 + [α(x− xt0) + βr](t1 − t0) + κZ̃;
7: else if τ1 < t1 then
8: repeat
9: Generate a random number τ from exponential distribution with parameter λk−1;
10: τk = ττk−1

+ τ and k = k + 1;

11: Generate a random number Z̃ from normal distribution N (0, τ);
12: xτk = xτk−1

+ [α(x− xτk−1
) + βr](τk − τk−1) + κZ̃ − βγ;

13: until for some k, τk > t1
14: Generate a random number Z̃ from normal distribution N (0, t1 − τk−1);
15: Set xt1 = xtτk−1

+ [α(x− xτk−1
) + βr](t1 − τk−1) + κZ̃;

16: end if

Upon simulating paths, we have a summary of the number of jumps for each path. Using

these data, we can approximate the weight functions as follows:

Π(n, T ) ≈ Number of paths with n jumps

Number of total paths
. (3.4.17)

The remaining calculation is simple and straightforward by substituting the estimated

weight functions (3.4.17) into the formula (3.2.8) to obtain the option price. When Monte

Carlo simulations are implemented, the standard deviation and confidence interval of the op-

tion value can also been calculated. The numerical results are reported in next section.
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3.5 Numerical results and some discussions

This section consists of three subsections. In first subsection, the Monte Carlo scheme is imple-

mented to estimate the weight functions which are involved in the semi-explicit pricing formula.

In the second subsection, we first demonstrate the convergence of the two different numerical

schemes for the PDE approach. Then comparisons are made between the numerical results

obtained from the semi-explicit pricing formula and those from our PDE method. Some discus-

sions are presented in the last subsection when the independence assumption is unacceptable.

3.5.1 The implementation of the semi-explicit pricing formula

In order to produce numerical results from the semi-explicit formula, a series of weight functions

{Π(n, T )}n≥0 need to be computed first. This is achieved through Monte Carlo simulations. A

simulated path for λt is shown in Figure 3.2. When a buy-in occurs, the intensity or buy-in rate

drops down to a low level. With time moving forward, it accumulates gradually to an average

level.
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Figure 3.2: A simulated path for λt with T = 0.5, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), γ =
0.01, β = 1.

The intensity xt or λt is simulated Q times consecutively starting with a lower Q = 100 until

the convergency has been achieved when Q reaches 1, 000, 000. To demonstrate the convergency
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of the calculated Π(n, T ), the variation of values as a function of the number of Monte Carlo

simulation paths is tabulated in Table 3.1 for n = 6, 7, 8, 9, 10. Clearly, for all these five

functions, an accuracy at the 3rd decimal place has been achieved when the number of Monte

Carlo simulations has reached 1, 000, 000. Therefore, the results obtained when Q = 1, 000, 000

are adopted to carry out the subsequent calculations of the option price using the semi-explicit

pricing formula. These weight functions listed in Table 3.1 are just some examples of the series

of weight functions. All of them can be computed with the approximation (3.4.17).

Q Π(6, T ) Π(7, T ) Π(8, T ) Π(9, T ) Π(10, T )
100 0.16 0.11 0.09 0.07 0.05
1,000 0.162 0.114 0.081 0.045 0.032
10,000 0.1609 0.1277 0.083 0.043 0.0306
100,000 0.1598 0.1241 0.0829 0.0497 0.0268
1,000,000 0.1593 0.1228 0.0825 0.0490 0.0262

Table 3.1: Convergence of the weight functions. Model parameters are T = 0.5, σ = 0.45, α =
2, κ = 0.2, x = ln(10), x0 = ln(12), γ = 0.01, β = 1.

The subsequently calculated option values from the semi-explicit pricing formula and the

standard derivations for our Monte Carlo Simulations are both tabulated in Table 3.2. The

confidence interval of option values can also be reported. For example, a 95% confidence interval

of the option value at S0 = 10 is (1.07647, 1.07693). In other words, we are 95% confident that

the option value at S0 = 10 lies between 1.07647 and 1.07693.

stock price S0 = 8 S0 = 9 S0 = 10 S0 = 11 S0 = 12
option value 0.3299 0.6405 1.0767 1.6302 2.2842

standard deviation 0.00045 0.00079 0.00117 0.00157 0.00197

Table 3.2: The value calculated from pricing formula. Model parameters are K = 10, r =
0.05, T = 0.5, σ = 0.45, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), γ = 0.01, β = 1.

3.5.2 Numerical results for the PDE approach

Option values from the semi-explicit pricing formula have been obtained through Monte Carlo

simulations. In this subsection, we reported the numerical results for the PDE system (3.3.4)

where the independence assumption has been adopted so that they can be compared with those

from the semi-explicit pricing formula.
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Both Method 1 and Method 2 are implemented to solve the PDE system (3.3.4) on different

girds so that in order to observe the convergence of the computed results as grid space becomes

fine. To measure the convergence, the l2 error between the value on a fine grid and the coarse

grid at the previous level is also listed in Table 3.3. As shown in Table 3.3, the l2 error decreases

both in Method 1 and Method 2 as the size of grid spacing diminishes, indicating a significant

convergence of both methods.

Method (Nx, Ny, NT ) S0 = 8 S0 = 9 S0 = 10 S0 = 11 S0 = 12 l2 error
(20,80,100) 0.3642 0.6829 1.1256 1.6864 2.3471

Method 1 (40,160,200) 0.3425 0.6560 1.0967 1.6518 2.3040 0.0712
(80,320,300) 0.3342 0.6456 1.0834 1.6372 2.2913 0.0270
(160,640,400) 0.3304 0.6408 1.0770 1.6303 2.2840 0.0134
(320,1280,500) 0.3299 0.6403 1.0762 1.6294 2.2831 0.0017
(20,40,40) 0.3127 0.6490 1.0144 1.6409 2.2583

Method 2 (40,80,50) 0.3384 0.6488 1.0846 1.6401 2.2965 0.0840
θ = 0.5 (80,160,60) 0.3313 0.6409 1.0781 1.6311 2.2824 0.0208

(160,320,70) 0.3301 0.6401 1.0766 1.6298 2.2834 0.0027
(320,640,80) 0.3298 0.6400 1.0761 1.6293 2.2830 0.0001

Table 3.3: Comparison of values calculated with different grids. Model parameters are K =
10, r = 0.05, T = 0.5, σ = 0.45, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), γ = 0.01, β = 1.

To demonstrate the convergence rate of our numerical methods, the ratio of consecutive l2

error is listed in Table 3.4 as the grid is refined by a factor of two in x and y directions. The

ratio of Method 2 is obviously higher than that of Method 1, which implies that the explicit

treatment of the jump term in Method 1 really slows down the convergence.

Methods (Nx, Ny, NT ) l2 error ratio
(40,160,200) 0.0712

Method 1 (80,320,300) 0.0270 2.7
(160,640,400) 0.0134 2.0
(20,40,40) 0.0840

Method 2 (40,80,50) 0.0208 4.1
θ = 0.5 (80,160,60) 0.0027 7.7

Table 3.4: Ratio of convergence

On the other hand, Method 1 requires much finer grid than Method 2 and thus more time

in order to reach almost the same level of convergence. As far as the total computational time

associated with each method is concerned, the total consumed CPU time for a particular run is
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adopted to measure computational efficiency, which is complemented by a measure of relative

error defined as

Relative Error =
∥ VPDE − VA&L ∥2

∥ VA&L ∥2
,

where VPDE is the option value obtained from the PDE system (3.3.4) with Method 1 or Method

2 and VA&L is the value calculated from the semi-explicit formula. Recorded in Table 3.5 are

the CPU time and the relative error.

Methods (Nx, Ny, NT ) CPU times (s) Relative Error(%)
(20,80,100) 0.229 3.87

Method 1 (40,160,200) 1.386 1.56
(80,320,300) 9.102 0.69
(160,640,400) 101.7 0.26
(320,1280,500) 1130 0.20
(20,40,40) 0.239 2.18

Method 2 (40,80,50) 0.461 0.93
θ = 0.5 (80,160,60) 1.53 0.27

(160,320,70) 8.17 0.22
(320,640,80) 84.9 0.19

A&L Q = 1, 000, 000 250.1

Table 3.5: Comparison of CPU time and relative error. Model parameters are K = 10, r =
0.05, T = 0.5, σ = 0.45, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), γ = 0.01, β = 1.

From Table 3.5, we clearly observe that the relative error decreases close to zero as the size

of grid is diminished, which indicates that the numerical results from the PDE system (3.3.4)

are consistent with those from the semi-explicit pricing formula. Furthermore, Method 1 is

more time-consuming than Method 2, in order to reach almost the same level of accuracy. This

is associated with the adopted numerical scheme. Method 1 is a modified version of implicit-

explicit (IMEX) scheme for the PDE, which applies an ADI scheme to the operator L1 and an

explicit scheme for the operator L2 and cross derivative term ∂2u
∂x∂y

. Such a scheme with hybrid

feature is more efficient than a fully explicit scheme because the ADI scheme can speed up the

process of convergence. However, the explicit treatment of jump term slows down the total

speed of convergence. The efficiency of Method 1 may be improved a bit by implementing an

iterative scheme as suggested in d’Halluin et al. (2005). While the computational efficiency is

not our focus in this chapter, one can refer to that paper if interested. As for the Method 2, an
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ADI scheme is applied after adopting the second-order Taylor expansion. It has been proved

that the ADI scheme is unconditionally stable when θ ≥ 1
2
. Therefore, the results of Method

2 exhibit faster convergence than those of Method 1.

However, in Method 2, a second-order Taylor expansion is used to approximate the jump

term. Actually, this indicates that we have implicitly assumed that γ is of a small value, so

that the high-order terms can be dropped out. This implicit assumption directly affects the

accuracy of Method 2. The numerical error of Method 2 includes not only the truncation error

led by the finite difference scheme but also the approximation error introduced by adopting

the second-order Taylor expansion. The truncation error can be eliminated gradually when the

size of girds become small, while the approximation error cannot. Therefore, its accuracy will

be significantly affected by the value of γ with large relative error for great γ. As for Method

1, the error source is the truncation error and interpolation error which do not heavily depend

on the value of γ.
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Figure 3.3: The relative error between Method 1 and Method 2. Model parameters are K =
10, r = 0.05, T = 0.5, σ = 0.45, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), β = 1.

Figure 3.3 demonstrates the relationship between relative error and the value of γ. From this

figure, it can be observed that the relative error for the Method 2 increases more rapidly than

that of Method 1 as the value of γ becomes large. Although Method 2 shows good convergence

rate in Table 3.4 and more efficiency in Table 3.5, Figure 3.3 shows us that Method 1 is more
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accurate when the value of γ is large.

3.5.3 When the independence assumption is unacceptable

In the subsection above, we have demonstrated that the results from PDE system (3.3.4) and

those from the semi-explicit formula are consistent with each, which implies that our PDE

approach recovers the special case in which the independence assumption is valid. However,

when the coupling parameter β is sufficiently large, which means the buy-in rate depends heavily

on the change of stock price, it is unreasonable to make such an independence assumption. The

PDE system (3.3.3) without the independence assumption should be solved numerically.

In order to illustrate the difference between the results with the assumption of independence

and those without the assumption, the option values obtained from the PDE systems (3.3.3),

(3.3.4) and the semi-explicit pricing formula with different values of β are presented in Figure

3.4(a). The relative error between the numerical results calculated from PDE systems (3.3.3)

and (3.3.4) is plotted in Figure 3.4(b).

It is observed from Figure 3.4(a) that the option value calculated from the PDE system

(3.3.3) varies as the coupling parameter β changes. However, both the results obtained from

the PDE (3.3.4) and those from the semi-explicit formula are hardly affected by the coupling

parameter β. This indicates that the key independence assumption has almost ignored the role

of the coupling parameter β in the A&L model. For this set of parameters, the relative error is

acceptable when β is a small number. As the value of β increases gradually, the relative error

grows sharply. The relative error has reached 20% when β is around five, which is really a

significant error. In fact, an example with β = 30 was included in Avellaneda & Lipkin (2009).

It is obvious that the independence assumption has become unacceptable in that case. Our

PDE approach without the independent assumption is more reasonable than the semi-explicit

formula for the case where β is of a great value.
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Figure 3.4: The option values calculated from PDE (3.3.3), PDE (3.3.4) and semi-explicit
formula. Model parameters are S = 9, K = 10, r = 0.05, T = 0.5, σ = 0.45, α = 2, κ = 0.2, x =
ln(10), x0 = ln(12), γ = 0.01.
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3.6 Conclusions

In this chapter, we have applied a PDE approach to price European call options under the

A&L model. Two numerical methods are proposed to solve the PDE system based on different

approaches to the jump term. We have also numerically realized the semi-explicit pricing

formula via Monte Carlo simulations for the buy-in rate.

Our PDE approach is a broader way than the approximate semi-explicit pricing formula. We

demonstrate that the results from PDE system (3.3.4) are consistent with those from the semi-

explicit formula, which implies that our PDE approach really can recover the special case in

which the independence assumption is valid. We also demonstrate that our PDE approach can

deal with option pricing problem successfully without the independence assumption; while the

semi-explicit pricing formula cannot because its derivation depends heavily on the independence

assumption. In addition, the PDE approach presented in this chapter has laid a solid foundation

for the study on option pricing of American-style option under the A&L model.



Chapter 4

Pricing American call options under a

hard-to-borrow stock model

4.1 Introduction

Option pricing is one of the most important topics in quantitative finance ever since Black &

Scholes (1973) proposed an analytical and quantitative formula for pricing European options;

their seminal work has laid the foundation of the modern theory of pricing financial derivatives.

In the past few decades, a great number of papers have been devoted to the development

of methods for pricing options. Along an amazing development of new models as well as

research methodology, the Black-Scholes model is now considered to be inadequate to capture

the dynamics of stocks traded in open exchanges. One of the most important assumptions in

the celebrated Black-Scholes model is that short selling is permitted without any cost, while

the market conditions suggest otherwise.

In most developed stock markets, naked short selling is forbidden for it may lead to signif-

icant systematic risk. Generally, when an investor wants to short a stock, he has to borrow it

from others in advance. The availability of the stock for borrowing depends on market condi-

tions. Some stocks can be easily borrowed without lending fees, a case where the particular

assumption about short selling in the Black-Scholes model holds. Others may be in short sup-

53



54 4.1. INTRODUCTION

ply and the investor has to pay some lending fees to borrow them. In the latter, the stock is

called a hard-to-borrow one (Avellaneda & Lipkin 2009). The assumption that short selling is

permitted without any cost does not hold any more for hard-to-borrow stocks.

Another key concept about short selling is short interest defined as the percentage of the

float currently held short in the market. As the short interest increases, the risk of fail-to-deliver

accumulates in market. Too much fail-to-deliver risk may lead to high systematic risk, which is

a disaster for stock markets. To avoid or at least reduce the possible systematic risk, investors

in short positions may be “forced”, in some extreme events, by the clearing firm to buy back

the stock, which is called a buy-in. When a buy-in occurs, it introduces an excess demand on

the stock which is unmatched by supply at the current price, resulting in a temporary upward

impact on the price. Upon finishing such a buy-in, the excess demand disappears quickly,

causing the stock price to jump back to the original level. More details about buy-in can be

found at the Securities and Exchange Commission’s Regulation SHO1.

In the literature, there is a considerable amount of research about short selling. Diamond &

Verrecchia (1987) considered constraints on short selling and asset price adjustment to private

information. Nielsen (1989) studied the asset market equilibrium with short selling. Duffie et al.

(2002) presented a model of asset valuation in which short selling is achieved by searching for

security lenders and bargaining over the terms of lending fee. Jones & Lamont (2002) pointed

out that, from market data, stocks are overpriced when short-sale constraints are imposed.

Evans et al. (2009) mainly focused on how options market and short selling interact with each

other.

Following the previous work, Avellaneda & Lipkin (2009) proposed a new model for hard-

to-borrow stocks by introducing a Poisson process to characterize buy-ins. For convenience, the

model they proposed is referred to as the A&L model hereafter in this chapter. The A&L model

provides a feedback mechanism that couples the dynamics of stock price with the frequency

at which buy-ins take place. The frequency is also called the buy-in rate. Using their model,

Avellaneda and Lipkin also obtained a semi-explicit pricing formula for European call options

1The reader can visit the website: www.sec.gov to learn more about Regulation SHO.
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with a series of weight functions. Although they did not work out the American case either

theoretically or empirically in their paper, they instinctively “forecast” that it is optimal for

an American call option to exercise early when the underlying stock is hard-to-borrow. They

have also pointed out that pricing American call options under their model could entail a

high-dimensional numerical calculation and have left this rather complicated task for others to

pursue in the future.

Recently, Jensen & Pedersen (2016) studied how market frictions, such as transaction costs

and short-sale costs, result in early exercise of an American call option. Although their empirical

study may be motivated by Avellaneda & Lipkin (2009), Jensen and Pedersen still adopted the

classic Black-Scholes model with short-sale costs in their paper, instead of the new A&L model

for hard-to-borrow stocks. After analyzing the data collected from OptionMetrics database

on U.S. option prices and the data of actual exercise behavior from the Options Clearing

Corporation, they concluded that early exercise can be optimal for an American call option

written on a stock that pays no dividends, taking the market frictions into account. They

have actually used a very eye-catching title “never say never” to overturn the classic conclusion

from Merton (1973) that, except just before expiration or dividend payments, one should never

exercise an American call option.

These pioneer works have highly motivated us to adopt a much more comprehensive model

such as the A&L model to examine whether or not it is optimal to exercise an American call

option early when the underlying stock is hard-to-borrow. Such a theoretical study under

the A&L model would complement the Jensen and Pedersen’s study where the Black-Scholes

model with short-sale costs was considered. As a preparation for this paper, Ma et al. (2016)

first established the PDE system to price European call options under the A&L model. By

comparing the results obtained from the PDE system with those from the semi-explicit pricing

formula obtained by Avellaneda and Lipkin, the correctness of the PDE system has been

demonstrated. We now extend the PDE method, in this chapter, from the European case to

the American case.

To price American call options under the A&L model, the properly-closed PDE system with
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a free boundary is established first.Then it is reformulated as a linear complementarity problem

(LCP), which is numerically solved with the Lagrange multiplier approach (LMA). Through

our numerical results, we figure out that there is an early exercise premium of an American

call option when the underlying stock follows the A&L model. In other words, early exercise

is optimal for an American call option than holding to expiration. We point out that it is the

lending fee that leads to the early exercise of American call options under the A&L model.

In addition, we also numerically analyze how and to what extent the lending fees affect the

optimal exercise price.

The rest of this chapter is organized as follows. In Section 4.2, we review the A&L model

and its risk-neutral measure. Then the PDE governing the value of American call options is

established with a free boundary. Furthermore, it is reformulated as a linear complementar-

ity problem (LCP). In Section 4.3, the finite difference method is adopted to discretize the

PDE system, which leads to a sequence of LCPs. These LCPs are solved numerically with the

Lagrange multiplier approach (LMA). In Section 4.4, numerical results are provided to demon-

strate the convergence of our schemes first. Then some discussions about the early exercise of

an American call option are presented. Conclusions are given in the last section.

4.2 Pricing American call options under the A&L model

For the completeness of the paper and the convenience to the readers, we first briefly review

the A&L model, including its corresponding risk-neutral measure. Then the PDE system is

established with free boundary. Furthermore, it is reformulated as a linear complimentary

problem (LCP), which is numerically solved later.

4.2.1 The A&L model for hard-to-borrow stocks

In most stock markets, an investor has to borrow a stock in advance if he wants to short a stock

since naked short selling is generally forbidden. The availability of the stock depends on the

market condition: some can be easily borrowed, while others may be in short supply. In the
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latter, they are referred to as hard-to-borrow stocks. Usually, a significantly intensified short

interest indicates that a large amount of fail-to-deliver risk has accumulated for the particular

stock in the market. On the other hand, too much fail-to-deliver risk may even result in high

systematic risks for the entire market. To avoid the systematic risk, at some extreme occasions,

short sellers are demanded by the clearing firm to buy back the stock they have shorten within

a given time according to the Securities and Exchange Commission’s Regulation SHO. In order

to meet the buy-in requirement, short sellers would borrow stocks in market by paying lending

fees.

Avellaneda & Lipkin (2009) proposed a dynamic model to describe the price of hard-to-

borrow stocks, in which St and λt denote respectively the price and the buy-in rate at time t.

In their model, market dynamics are described by the following stochastic differential equations

under the physical measure P:





dSt
St

= σdWt + γλtdt− γdNλt(t)

dxt = κdZt + α(x− xt)dt+ β
dSt
St
, xt = ln(λt),

(4.2.1)

where dNλ(t) denotes the increment of a standard Poisson process with intensity λ over the

interval (t, t+dt). The parameters σ and γ are respectively the volatility and the price elasticity

of demand due to buy-ins; Wt and Zt are two independent standard Brownian motions which

drive the stock price and the buy-in rate respectively. The logarithm of λt is modeled as a

mean-reversion process with κ being the volatility, x the long-time equilibrium value, α the

speed of mean-reversion and β the coupling parameter that couples the change in price and the

logarithm of buy-in rate. For convenience, xt, the logarithm of buy-rate λt, is still referred to

as buy-in rate hereafter.

It should be pointed out that the A&L model operates in an incomplete market since an

additional source of uncertainty has been introduced through the buy-in rate, which is not

a tradable quantity (Tankov 2003). Therefore, it is impossible to perfectly hedge a portfolio

composed of hard-to-borrow stocks and there does not exist a unique risk-neutral measure. For

pricing a derivative, a risk-neutral measure needs to be defined for the processes St and xt first.



58 4.2. PRICING AMERICAN CALL OPTIONS UNDER THE A&L MODEL

What Avellaneda and Lipkin did was to introduce an arbitrage-free pricing measure, which is

equivalent to changing the drift of the Brownian motion associated with the underlying stock.

Mathematically, to conduct measure transform, two new processes are defined as

W̃t = Wt +

∫ t

0

γλl − r

σ
dl, (4.2.2)

and

Z̃t = Zt +

∫ t

0

αz(l, xl, Sl)

κ
dl, (4.2.3)

where z(t, x, S) is an arbitrary function. By Girsanov’s theorem, W̃ and Z̃ are two independent

Brownian motions under the risk-neutral measure Q defined by

dQ

dP

∣∣∣∣
t

= exp
{
−
∫ t

0

[γλl − r

σ
+
αz(l, xl, Sl)

κ

]
dWl−

1

2

∫ t

0

[(γλl − r)2

σ2
+
α2z2(l, xl, Sl)

κ2
]
dl
}
, (4.2.4)

which is the so-called Radon-Nikodym derivative that facilitates the change of measure. Under

this risk-neutral measure, the dynamics of the A&L model become





dSt
St

= σdW̃t + rdt− γdNλt(t),

dxt = κdZ̃t + [α(x∗ − xt)]dt+ β
dSt
St
,

(4.2.5)

where x∗ = x− z.

Financially, any source of uncertainty needs to be compensated by the associated market

price of risk or risk premium. In the classic Black-Scholes model, the market price of risk for

the underlying is
µ− r

σ
(Wilmott et al. 1995). On the other hand, in the Heston model, an

additional source uncertainty is introduced by the stochastic volatility and an additional market

price of volatility risk is defined through an arbitrary function, i.e., λ(t, S, v) in Heston (1993),

which may appear in a more general form for other stochastic volatility models discussed in

Fouque et al. (2000). In the A&L model, the new buy-in process also brings in an additional

source of uncertainty and the corresponding market price of buy-in risk is represented by the

function z(t, x, S) in Equation (4.2.3). Furthermore, it should be remarked that the market
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price of risk for the stock in the A&L model becomes
γλ− r

σ
, which is different from its

counterpart
µ− r

σ
in the Black-Scholes model.

When a market is complete, the market price of risk for the underlying is unique, such as

the term
µ− r

σ
in the Black-Scholes model. When a market is incomplete, the market price

of risk is specified after a risk-neutral measure is chosen, or in a vice versa way in financial

practice that a market price of risk is extracted from market data first, which then implicitly

dictates the risk-neutral measure to be used in pricing a derivative. Therefore, the market price

of buy-in risk in the A&L model should be determined by market data, just as the market price

of volatility risk in the Heston model needs to be calibrated from market data (Bollerslev et al.

2011). For simplicity, Avellaneda & Lipkin (2009) effectively set z(t, x, S) to be zero, which is

a standard treatment in the Heston model as well (Rouah 2013).

In addition to the A&L model, there are other ways to study how lending fees or short-sale

costs affect option price. Recently, Jensen & Pedersen (2016) have explored how market fric-

tions, including transaction costs and short-sale costs, affect the American call option pricing.

The model in their paper was still the classic Black-Scholes one with short-sale costs. After

analyzing the empirical data collected from OptionMetrics database on U.S. option prices and

the data of actual exercise behavior from the Options Clearing Corporation, they have come to

a conclusion that market frictions can lead to early exercise of American call options although

the underlying stock pays no dividends.

In this chapter, the A&L model, which specially describes the dynamics of hard-to-borrow

stocks, is adopted to replace the classic Black-Scholes model in Jensen and Pedersen’s paper.

We would like to explore whether or not Jensen and Pedersen’s conclusion still holds under the

A&L model.

4.2.2 The PDE system with boundary conditions

Let u(t, x, S) denote the value of an American call option with S being the price of underlying

stock, x being the buy-in rate and t being the time. After changing measure, the dynamics

under the risk-neutral measure are shown in Equation (4.2.5). By Feynman-Kac theorem, the
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value of a call option u(t, x, S) satisfies the following bivariate PDE

Lu :=
∂u

∂t
+ L1u+ L2u = 0, (4.2.6)

where





L1u =
κ2 + β2σ2

2

∂2u

∂x2
+

1

2
σ2S2 ∂

2u

∂S2
+ βσ2S

∂2u

∂x∂S
+ [α(x− x) + βr]

∂u

∂x
+ rS

∂u

∂S
− ru,

L2u = ex[u(t, x− βγ, S − Sγ)− u(t, x, S)].

(4.2.7)

The operator L1 corresponds to the continuous part of stock price, while L2 corresponds to

the jump part in the A&L model. The terminal condition for the PDE (4.2.6) is given by the

payoff function g(S) = (S −K)+ with K being the strike price.

Remark 4.2.1. It should be pointed out that the operator L2 would be in a form of integration

if the jump size γ was a random variable. In that case, Equation (4.2.6) would become an

integro-PDE. However, in the A&L model, γ is a deterministic constant and Equation (4.2.6)

is still a PDE, instead of an integro-PDE.

The boundary conditions along the S direction are similar with those in the Black-Scholes

model. Once the stock price reaches zero, it will stay at zero forever. Consequently, the

American call option would become worthless, i.e. u(t, x, 0) = 0, even though there is still a

long time to expiration.

On the other hand, just as in the Black-Scholes model, there is an optimal exercise price

Sf (t, x), above or equal to which it is optimal to exercise the call option. Conditions along the

optimal exercise price Sf are also needed. We assume that option price and its first derivative are

continuous across the optimal exercise price because of the so-called smooth pasting condition

(Wilmott 2013) 



u(t, x, Sf ) = Sf −K,

∂u

∂S
(t, x, Sf ) = 1.

(4.2.8)

It should be noted that the above two conditions are similar to those in the Black-Scholes

model. The main difference is that the optimal exercise price Sf in the A&L model depends
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not only on time but also on buy-in rate. In other words, the optimal exercise price is a two

dimensional function of both t and x .

The boundary conditions in the x direction are similar to those in the European case pro-

vided by Ma et al. (2016). When x approaches −∞, it indicates that buy-in never occurs and

thus there are no jumps in the stock price. In this case, the A&L model degenerates to the

Black-Scholes model. Consequently, we set the value of an American call option as its counter-

part in the Black-Scholes model. In addition, under the Black-Scholes model, the value of an

American call option is the same as that of a corresponding European one when there are no

dividends. Consequently, the boundary condition in this direction can be prescribed as

lim
x→−∞

u(t, x, S) = CBS(S,K, T − t, r, σ), (4.2.9)

where CBS(S,K, τ, r, σ) is the value of a European call option calculated from the Black-Scholes

formula.

On the other hand, the value of an American call option would be insensitive to the change

of the buy-in rate when the buy-in rate tends toward infinity, which is similar to the bound-

ary condition imposed by Clarke & Parrott (1999). Consequently, an asymptotic boundary

condition is imposed as follows:

lim
x→∞

∂u

∂x
(t, x, S) = 0. (4.2.10)

As a brief summary, the properly-closed PDE system governing the value of an American
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call option can be written as:





Lu = 0,

u(T, x, S) = (S −K)+,

u(t, x, 0) = 0,

lim
x→−∞

u(t, x, S) = CBS(S, T − t,K, r, σ),

lim
x→∞

∂u

∂x
(t, x, S) = 0,

u(t, x, Sf ) = Sf −K,

∂u

∂S
(t, x, Sf ) = 1, (t, x, S) ∈ [0, T ]×R× [0, Sf (t, x)].

(4.2.11)

The PDE system (4.2.11) is nonlinear because there is an unknown function Sf (t, x) implied

by free boundary conditions (4.2.8). Instead of solving such a nonlinear PDE system directly,

we would reformulate it as a linear complementarity problem first.

4.2.3 Pricing an American call option as a LCP

The PDE system (4.2.11) with a free boundary Sf can be solved with many methods. One of

them is to reformulate it as a linear complementarity problem (LCP), which was first presented

by Merton et al. (1977).

In this approach, the pricing domain Ω := {(t, x, S)|(t, x, S) ∈ [0, T ]×R× [0,∞)} is divided

into two subregions by the free boundary Sf : the continuation region ΩC and the exercise region

ΩE. Financially, such a free boundary is also called optimal exercise price. In the continuation

region ΩC , the PDE (4.2.6) holds and the value of holding the option is greater than that of

exercising it right away. As a result, the continuation region can be expressed exactly as

ΩC = {(t, x, S)|Lu = 0, u(t, x, S) ≥ g(S)}.

On the other hand, in the exercise region ΩE, the call option should be exercised at the current
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price. As a result, the exercise region is mathematically defined as

ΩE = {(t, x, S)|u(t, x, S) = g(S)}.

After we combine these two regions together, the value of an American call option satisfies the

following linear complementarity problem





Lu(t, x, S) ≤ 0,

u(t, x, S) ≥ g(S),

[u(t, x, S)− g(S)]Lu(t, x, S) = 0,

(4.2.12)

where (t, x, S) ∈ Ω = ΩC ∪ ΩE.

It is obvious that the free boundary Sf is no longer explicitly involved in the LCP (4.2.12).

When solving the LCP (4.2.12) in the pricing domain Ω, we just need the boundary conditions

(4.2.13). 



u(T, x, S) = (S −K)+,

u(t, x, 0) = 0,

lim
S→∞

u(t, x, S)

S
= lim

S→∞

S −K

S
= 1,

lim
x→−∞

u(t, x, S) = CBS(S, T − t,K, r, σ),

lim
x→∞

∂u

∂x
(t, x, S) = 0.

(4.2.13)

We solve the LCP numerically to obtain the option values u(t, x, S). Then as a part of solution,

the free boundary Sf (t, x) can be implicitly recovered from the option values through the free

boundary conditions (4.2.8).

4.3 Numerical schemes

In this section, we present the numerical scheme to solve the LCP (4.2.12) obtained above.

First of all, space discretization is performed using finite difference method, which leads to a

family of LCPs. Then the Lagrange multiplier approach (LMA) proposed by Ito & Kunisch
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(2006) is adopted to treat the resulting LCPs numerically.

4.3.1 Spacial discretization

For the convenience of our numerical implementation, we introduce the following transforms

τ = T − t, y = ln(S). As a result, functions u(t, x, S) and Sf (t, x) now become u(τ, x, y) and

Sf (τ, x), respectively and the LCP (4.2.12) becomes:





∂u

∂τ
≥ L1u+ L2u,

u(τ, x, y) ≥ g(y), (τ, x, y) ∈ Ω̄ := [0, T ]×R×R,

[u(τ, x, y)− g(y)](
∂u

∂τ
− L1u− L2u) = 0,

(4.3.1)

where





L1u = κ2+β2σ2

2
∂2u
∂x2

+ 1
2
σ2 ∂2u

∂y2
+ βσ2 ∂2u

∂x∂y
+ [α(x− x) + βr]∂u

∂x
+ (r − 1

2
σ2)∂u

∂y
− ru,

L2u = ex[u(τ, x− βγ, y + ln(1− γ))− u(τ, x, y)].
(4.3.2)

The boundary conditions (4.2.13) become:





u(0, x, y) = (ey −K)+,

lim
y→−∞

u(τ, x, y) = 0,

lim
y→∞

u(τ, x, y)

ey
= 1,

lim
x→−∞

u(τ, x, y) = CBS(ey, τ,K, r, σ),

lim
x→∞

∂u

∂x
(τ, x, y) = 0.

(4.3.3)

A second-order Taylor expansion is adopted to approximate the jump term L2u as follows:

L2u = ex[u(τ, x− βγ, y + ln(1− γ))− u(τ, x, y)]

= ex[−βγ∂u
∂x

+ ln(1− γ)
∂u

∂y
+
β2γ2

2

∂2u

∂x2
+

ln2(1− γ)

2

∂2u

∂y2
− βγ ln(1− γ)

∂2u

∂x∂y
]

+O(β2γ2 + ln2(1− γ)).
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With the high order terms being dropped out, the variational inequality becomes

∂u

∂τ
≥ a(x)

∂2u

∂x2
+ b(x)

∂2u

∂y2
+ c(x)

∂u

∂x
+ d(x)

∂u

∂y
+ ρ(x)

∂2u

∂x∂y
− ru, (4.3.4)

where

a(x) =
κ2 + β2σ2 + β2γ2ex

2
, b(x) =

σ2 + ln2(1− γ)ex

2
,

c(x) = α(x− x) + β(r − γex), d(x) = r − σ2

2
+ ex ln(1− γ), ρ(x) = βσ2 − ln(1− γ)βγex.

The LCP (4.3.1) is defined on an unbounded domain :

Ω̄ := [0, T ]×R×R. (4.3.5)

In order to use finite difference approximation for spacial variables, we need to truncate the

infinite domain into a finite domain:

{(τ, x, y) ∈ [0, T ]× [−Xmax, Xmax]× [−Ymax, Ymax]}. (4.3.6)

Theoretically, to eliminate the boundary effect, Xmax and Ymax should be sufficiently large.

However, truncation is necessary if we want to adopt the finite difference method. Wilmott

et al. (1995) pointed out that the upper bound of stock price should be three or four times the

strike price. Therefore it is reasonable to set Ymax = ln(5K). As for the buy-in rate, x, we set

Xmax = ln(252), which implies that buy-in occurs every day at most. The space Ω is divided

into a uniform grid with

xi = −Xmax + (i− 1) ·∆x, i = 1, · · · ,M,

yj = −Ymax + (j − 1) ·∆y, j = 1, · · · , N,

τl = (l − 1) ·∆τ, l = 1, · · · , L,
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where M,N,L are the number of grid points in the x, y, τ directions, respectively. The value

of a call option at each grid point thus is denoted as uli,j = u(xi, yj, τl).

In the interior of pricing domain, the central differences are applied to approximate the first

and second derivatives in the variational inequality (4.3.4). Thus we have

∂u
∂x

=
ui+1,j−ui−1,j

2∆x
, ∂2u

∂x2
=

ui+1,j−2ui,j+ui−1,j

∆x2

∂u
∂y

=
ui,j+1−ui,j−1

2∆y
, ∂2u

∂y2
=

ui,j+1−2ui,j+ui,j−1

∆y2

Following Zhu & Chen (2011), the cross-derivative term is discretized as

∂2u

∂x∂y
=
ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1

4∆x∆y
. (4.3.7)

According to Equation (4.2.13), the boundary conditions on the truncated domain are





u(τ, x, y1) = CBS(ey, τ,K, r, σ),

u(τ, x, yN) = ey −K,

u(τ, x1, y) = 0,

u(τ, xN , y) = u(xN−1, y, τ).

(4.3.8)

The spatial discretization leads to a semi-discrete equation which has the matrix form

∂U

∂τ
≥ AU, (4.3.9)

where the vector U is the value on mesh points and A is a sparse coefficient matrix that arises

from the finite difference equations. The size of U and A is MN and MN ×MN , respectively.

A general θ-scheme is applied to discretize the semi-discrete problem (4.3.9) as

(I− θ∆τA)U l+1 ≥ [I+ (1− θ)∆τA]U l, l = 1, · · · , L, (4.3.10)

where L is the number of time steps and I is the identity matrix. It becomes a fully explicit

scheme when θ becomes zero; while a fully implicit one when θ is one. When θ = 1
2
, it
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corresponds to the famous Crank-Nicolson scheme.

The LCP (4.3.1) now has become a sequence of LCPs,





BU l+1 ≥ CU l,

U l+1 ≥ g,

(BU l+1 −CU l)(U l+1 − g) = 0,

(4.3.11)

for l = 0, · · · , L − 1. The matrix B and C are defined by the left hand and right hand of

Equation (4.3.10).

When we implement this numerical scheme presented above. The Crank-Nicolson scheme

is adopted for most loops. However, to avoid the oscillations with Crank-Nicolson scheme, the

fully implicit scheme is adopted for the first three loops and then switch to the Crank-Nicolson

scheme. In next section, we present how to solve these LCPs (4.3.11) numerically.

4.3.2 The Lagrange multiplier approach (LMA)

In this section, in order to solve these LCPs (4.3.11) numerically, we adopt the Lagrange

multiplier approach (LMA) which was first proposed by Hintermüller et al. (2002) and further

considered to treat the complementarity conditions by Ito & Kunisch (2006) and Ito & Toivanen

(2009).

To demonstrate the algorithm for the LCPs (4.3.11) conveniently, we denote z = U l+1 and

f = CU l. The initial point z0 is chosen to be U l. The standard form of these problems (4.3.11)

becomes: 



Bz ≥ f,

z ≥ g,

(Bz − f)(z − g) = 0,

(4.3.12)

with initial guess z0.

The LCPs (4.3.12) are approximated by a nonlinear equation with Lagrange multipliers ϵ

and ν as follows:

Bz = f +max{ν + ϵ(g − z), 0}, (4.3.13)
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where ϵ is a prescribed positive constant and ν is a given vector with nonnegative components.

The penalty term ϵ(g − z) is to force the approximate solution to approach the feasible one.

The main purpose to introduce the vector ν is that it leads to a feasible solution g when it is

chosen as

ν = max{Bg − f, 0}. (4.3.14)

Since Equation (4.3.13) is nonlinear and non-smooth, a semi-smooth Newton method is

applied to solve this nonlinear equation by Zvan et al. (1998). The iteration method is adopted

to solve the nonlinear equations (4.3.13) with the iteration form as follows:

zk+1 = zk + dk, (4.3.15)

where the vector dk is the solution of the following linear equation

J(zk)dk = f +max{ν + ϵ(g − zk), 0} −Bzk , rk. (4.3.16)

The matrix J(zk) in Equation (4.3.16) belongs to the generalized Jacobian at zk and it is chosen

to be

[J(zk)]i,j = Bi,j +





ϵ if i = j and νi + ϵ(gi − zki ) > 0,

0 otherwise.

Here we come to the accuracy of the approximation (4.3.13) to the original LCP (4.3.12).

Ito & Toivanen (2009) pointed out that the parameter ϵ controlled the accuracy of the approx-

imation (4.3.13) as follows:

|zϵ − z|L∞(Ω) ≤
C

ϵ
, (4.3.17)

where C is a constant and zϵ is the solution to Equation (4.3.13) with a given ν defined in

Equation (4.3.14). It indicates that accuracy of the Lagrange multiplier approach is at most

the order of
1

ϵ
. As the Lagrange multiplier ϵ approaches infinity, the approximate solution

converges to the true solution. In this chapter, we choose ϵ as 103 when we implement our

numerical scheme.
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Finally, we briefly summarize the Lagrange multiplier approach as follows:

Algorithm 2 Lagrange multiplier approach

Require:
Set x0 = g; k = 0;J = B;

Ensure:
1: while iteration error is not satisfied do
2: k = k + 1;
3: for i = 1, · · · ,m do
4: if i = j and νi + ϵ(gi − zi) > 0 then
5: Ji,i = Bi,i + ϵ;
6: end if
7: end for
8: rk = f+max{ν + ϵ(g − zk, 0)} −Bzk;
9: solve linear equation Jdk = rk;
10: zk+1 = zk + dk;
11: end while

4.4 Numerical results and discussions

In this section, we report the results of numerical experiments with the Lagrange multiplier

approach (LMA). First of all, it is verified that the A&L model degenerates to the Black-Scholes

model when γ becomes zero. Then the convergence on different girds is demonstrated when γ

is non-zero. By observing the early exercise premium, it is demonstrated that early exercise is

optimal for an American call option when γ is non-zero. The reason of early exercise is also

demonstrated from both financial and mathematical views. To what extent the early exercise

decision would be affected and how the optimal exercise price would be affected by lending fees

are also provided.

All the computations reported in this chapter were performed on a machine with 64-bit

Intel Xeon 3.50 GHz system and 16GB of RAM. We iteratively solve the LCPs (4.3.11) with

the iteration error being set to be 10−4.
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4.4.1 Convergence

We begin this section by discussing the implementation for the degenerate case (γ = 0) of

the A&L model. It indicates that there is no jump in the stock price and the A&L model

degenerates to the Black-Scholes model. In this degenerate case, it is optimal to hold an

American call option to the expiration, which is consistent with the conclusion obtained by

Merton (1973). Since the option is exercised at the expiration, the value of an American

call option should be the same with that of the corresponding European one. Consequently,

the values obtained from Black-Scholes formula for European options can be regarded as the

benchmark solution.

To implement our numerical scheme, the other parameters are set as follows:

K = 10, r = 0.05, σ = 0.45, T = 0.5, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), β = 1. (4.4.1)

The values of an American call option under the degenerate A&L model on different grids are

listed in Table 4.1. The values calculated from the Black-Scholes formula are considered as the

benchmark to verify the numerical scheme.

Grid Asset price l2
(M,N,L) 8 9 10 11 12 error
(40,100,20) 0.4595 0.8553 1.3869 2.0332 2.7792 0.0171
(50,150,30) 0.4553 0.8503 1.3806 2.0299 2.7804 0.0082
(60,200,40) 0.4548 0.8471 1.3745 2.0287 2.7783 0.0031
(70,250,50) 0.4547 0.8474 1.3766 2.0277 2.7786 0.0029

Black-Scholes 0.4537 0.8460 1.3758 2.0269 2.7767

Table 4.1: Convergence of values of an American call option with γ = 0.

To measure the convergence of the numerical results, the l2 errors between our numerical

results and the benchmark results are provided in the last column of the table. From Table

4.1, it is observed that the l2 error decreases gradually as the size of girds diminishes, which

demonstrates that the degenerate A&L model is really equivalent to the Black-Scholes model.

In this sense, the A&L model can be considered as a generalized Black-Scholes model.

When the A&L model is not degenerate, the numerical results for an American call option

are provided in Table 4.2 with γ = 0.03. The other parameters are kept the same with those
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shown in Equation (4.4.1). In this case, a reference solution is needed to demonstrate that the

numerical results we obtained are converged. Since there are still no analytic solutions under

the non-degenerate A&L model in the literature, the reference solution is constructed on fine

grids defined as (M,N,L) = (60, 400, 50). Again, the l2 error between our numerical results

and the reference solution are listed in the last column of Table 4.2. From Table 4.2, it is

Grid Asset price l2
(M,N,L) 8 9 10 11 12 error
(20,50,10) 0.2028 0.4350 0.7602 1.3744 2.0327 0.0618

LMA (30,100,20) 0.1965 0.4285 0.8000 1.3318 2.0554 0.0071
(40,150,30) 0.1965 0.4290 0.7998 1.3354 2.0652 0.0059
(50,200,40) 0.1984 0.4285 0.7945 1.3359 2.0646 0.0047

reference (60,400,50) 0.1977 0.4276 0.7964 1.3340 2.0609

Table 4.2: Convergence of values of an American call option with γ = 0.03.

observed that the decreasing l2 error has indicated that our numerical scheme also converges

when γ = 0.03.

The convergence of our numerical schemes under both the degenerate and non-degenerate

A&L model has been shown in Table 4.1 and Table 4.2. Next, we would focus on some discus-

sions about the these numerical results calculated from our reliable numerical scheme, especially

whether or not it is optimal to exercise an American call option under the A&L model.

4.4.2 Discussions on early exercise of an American call option

The significant difference between American and European options relates to when the option

can be exercised: investors have no choices but to hold European options to the expiration;

while they can exercise American options at any time before the expiration. At any time t,

prior to expiration, the investor holding an American call option would consider to exercise it

right away or continue to hold it. Here, we define the early exercise premium as the difference

between the price of an American call option and the price of the corresponding European one.

The possibility of early exercise for an American call option indicates that the early exercise

premium may be positive. In other words, the positive premium really exists if the American

one is supposed to be exercised early; while the premium would disappear if it is held to

expiration, as is the same to the European one. Instead of obtaining the optimal exercise price
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explicitly, we could also infer whether or not an American call option should be exercised early

through exploring the early exercise premium.

In this chapter, we would first consider the early exercise premium to determine whether or

not an American call option should be exercised early and then produce the optimal exercise

price to make it clear when it should be exercised. The values of an American call option

written on the hard-to-borrow stock can be calculated as we presented in the previous section;

while the values for a European call option have been obtained by Ma et al. (2016). These

values are shown and compared in Figure 4.1.
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Figure 4.1: The price of American and European call options with γ = 0.03. The other
parameters are K = 10, r = 0.05, σ = 0.45, T = 0.5, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), β =
1.

From Figure 4.1, it is obvious to note that the American call option really has premium

with respect to the corresponding European one, which indicates that an American call option

under the A&L model with γ = 0.03 may be exercised early if the option is deep in-the-money

although the underlying hard-to-borrow stock does not pay dividends in practice.

This observation is obviously not consistent with the conclusion from Merton (1973) that

one should never exercise a call option before the expiration or dividend payment. In fact,
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Jensen & Pedersen (2016) have argued that “never say never” and demonstrated that early

exercise of an American call option can be optimal and rational in light of financial frictions,

such as short-sale costs and transaction costs, although the underlying stock does not pay

dividends. Jensen and Pedersen obtained their conclusion by considering the Black-Scholes

model with frictions and enough empirical data. In this chapter, we adopt the A&L model, a

new one that especially describes the hard-to-borrow stocks, to verify and complement Jensen

and Pedersen’s work.

Furthermore, to explore how the A&L model would lead to early exercise for an American

call option, we would analyze from both financial and mathematical views.

From financial perspective, the motivation to exercise an American call option early is to

avoid the possible buy-in risk and lending costs. In the market, a trader who longs a call

option needs to short the underlying stock to hedge the risk. However, when the stock is hard-

to-borrow following the A&L model, the trader could possibly suffer repeated buy-ins, which

implies that the clearing firm may require him to buy back the stock he had shorten. To meet

the requirement of buy-in, the investor has to borrow stock in the market by paying extra

lending fees. Early exercise becomes a good choice for the holder of an American call option to

avoid the risk associated with the possible buy-ins in the future. In other words, it is possible

lending fee that drives the investor to exercise the option early.

From the mathematical view, we focus on the operator in Equation (4.2.7). Once applying

the Taylor expansion to the jump operator L2, we obtain a term S(r − λγ)
∂u

∂S
in the PDE.

While in the Black-Scholes model where the stock pays dividends continuously, the dividend

payment is reflected by a term S(r − q)
∂u

∂S
in the PDE with q being the rate of continuous

dividends. While λγ is viewed by Avellaneda & Lipkin (2009) as the cost-of-carry for borrowing

the stock or the lending fees for the hard-to-borrow stock, mathematically, it is considered as

the “equivalent” dividend rate q in the classic Black-Scholes model, which also explains the

early exercise of call option perfectly from mathematical point. In other words, the lending fees

paid by the borrower to cover the possible buy-in can be understood as equivalent dividends for

the lender of hard-to-borrow stock. For the Black-Scholes model with continuous dividends, the
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rate of dividends q would affect the option price, which can be analyzed via the Black-Scholes

formula. Now we would like to explore to what extent the option price would be affected by

the lending fees under the A&L model. To demonstrate these relations more clearly, we present

some more numerical results in Figure 4.2 with different values of γ.
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Figure 4.2: The price of an American call option with different values of γ. The other parameters
are K = 10, r = 0.05, σ = 0.45, T = 0.5, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), β = 1.

It is observed that the value of an American call option decreases gradually as the value of

γ increases, which is consistent with the fact that the option price decreases with dividend rate

q increasing. In order to demonstrate how the parameter γ in the A&L model affect the early

exercise premium, more curves are plotted with different values of γ in Figure 4.3.

From Figures 4.3(a), 4.3(b) and 4.3(c), it is observed that the early exercise premium always

exists when γ is non-zero. In addition, the variation of the early exercise premium with different

values of γ is also presented in Figure 4.3(d), from which it is clear that the premium becomes

larger and larger as the value of γ increases. It implies that the investor is more likely to

exercise the call option early with a larger value of γ .

It has been demonstrated that an American call option may be optimally exercised early

when γ is non-zero. The early exercise decision is made based on whether the spot price of
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(a) γ = 0.01
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(b) γ = 0.02
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(c) γ = 0.03
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(d) Early exercise premium

Figure 4.3: The price of European and American call options with different values of γ and
the corresponding early exercise premium. The other parameters are K = 10, r = 0.05, σ =
0.45, T = 0.5, α = 2, κ = 0.2, x = ln(10), x0 = ln(12), β = 1.
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the underlying has exceeded the optimal exercise price Sf (τ, x) or not. So, a critical piece

of information needed by traders is optimal exercise price, which mathematically is a free

boundary to be determined as part of the solution. Under the LCP, this part of the solution

is indirectly recovered from the option price u(τ, x, S) which is obtained through solving the

LCP (4.3.11) directly. The process of recovering the free boundary Sf (τ, x) from option price is

quite standard (Wilmott et al. 1995). In the continuation region ΩC , the American call option

should not be exercised and we have

u(τ, x, S) > S −K, S < Sf (τ, x). (4.4.2)

On the other hand, in the exercise region ΩE, the option should be exercised right away.

Mathematically, it is written as

u(τ, x, S) = S −K, S ≥ Sf (τ, x). (4.4.3)

The recovery of the free boundary, which divides these two regions, can thus be simply realized

through a root-finding problem of finding the minimum root S that satisfies the equation

u(τ, x, S) = S − K. With the option price u(τ, x, S) obtained through the LCP on a set of

discrete grids, such a minimum root can be numerically settled on the nearest point to the free

boundary in continuation region ΩC , i.e.,

Sf (τl, xi) = max
j

{Sj, j = 1, · · · , n|u(τl, xi, Sj) > Sj −K}. (4.4.4)

Remark 4.4.1. It should be pointed out that non-smoothness is usually associated with the

recovered free boundary, which is part of “cons” of the LCP among many “pros” of the approach

(Ikonen & Toivanen 2007, 2008). The standard algorithm stated above is of no exception.

To produce a smooth free boundary, some smoothing techniques need to be applied. In the

following figures, we have adopted the moving average function2 in the MATLAB to plot these

2Detailed information can be found at the website: http://au.mathworks.com/help/curvefit/smooth.html.
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smooth curves.
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Figure 4.4: Optimal exercise price with different values of x0. The other parameters are K =
10, r = 0.05, σ = 0.45, T = 0.5, α = 2, κ = 0.2, x = ln(10), γ = 0.01, β = 1.

Depicted in Figure 4.4 is the optimal exercise price Sf (τ, x) as a function of time to expi-

ration τ and buy-in rate x. As expected, the optimal exercise price Sf (τ, x) is a monotonically

increasing function with time to expiration τ ; while it is a decreasing function of buy-in rate x.

As the value of buy-in rate x increases, there are more possible buy-ins and larger lending costs

in the future. Consequently, the holder of an American call option would choose to exercise it

early to avoid the possible buy-in risk instead of holding them to the expiration. It is reflected

in Figure 4.4 that the optimal exercise price drops down as the buy-in rate x goes up.

To demonstrate how the other parameter γ affects the early exercise decision, the optimal

exercise price with different values of γ are plotted in Figure 4.5.

It is observed from Figure 4.5 that the optimal exercise price decreases simultaneously as

the parameter of jump size γ increases. Financially, the larger the jump size is, the higher

buy-in risk is. To avoid the more possible buy-in risk, the investor would exercise the option

early at a lower price, when the jump size γ is larger.

Both a large current buy-in rate x and a large jump size γ would lead to possible early

exercise of an American call option because either of them indicates that the possible risk
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Figure 4.5: Optimal exercise price with different values of γ. The other parameters are K =
10, r = 0.05, σ = 0.45, T = 0.5, α = 2, κ = 0.2, x = ln(10), x = ln(12), β = 1.

associated with buy-ins in the future has been in a high level. Once these signals are observed

in the market, early exercise of American call options may be a good choice if they are deep

in-the-money.

4.5 Conclusions

In this chapter, we present how to price an American call option under the A&L model. The

PDE system with free boundary is established first and then it is reformulated as a linear

complementarity problem, which is numerically solved with Lagrange multiplier approach.

According to our numerical results, early exercise of American call options may be optimal

when the options are deep in-the-money, although the underlying stock pays no dividends.

Our results reassure the conclusion of Jensen & Pedersen (2016) under the A&L model. In

addition, we quantify why the early exercise would occur both from the view of financial and

mathematical points. How the parameters in A&L model affect the optimal exercise price is

also provided numerically.
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Part II: Option pricing with short selling bans

In Part 2, short selling is completely banned in the financial market, which makes the market

become incomplete. Option pricing with short selling bans is considered as a special case

of option pricing in incomplete market. Recently, Guo & Zhu (2017) proposed a new equal-

risk pricing approach to price options with convex trading constraints. Only when the payoff

function is monotonic, can they obtain the analytical pricing formula; while it does not work

when the payoff function is non-monotonic. In this part, we intend to establish the PDE

framework for equal-risk pricing approach so that the range of its application is expanded.

Since the HJB equation is involved in the process of establishing the PDE framework,

we first explore different solution approaches to the HJB equations as preliminaries. Series

solution approach, analytical solution approach and numerical solution approach are presented

accordingly in Chapter 5, Chapter 6 and Chapter 7. In Chapter 5, we present an exact and

explicit solution for the HJB equation with general utility functions. The solution is written in

the form of a Taylor’s series expansion and constructed through the homotopy analysis method.

The fully nonlinear HJB equation is decomposed into an infinite series of linear PDEs that can

be solved analytically. In Chapter 6, a closed-form analytical solution for the Merton problem

defined on a finite horizon with exponential utility function. The solution is obtained through

two different methods: an indirect one and direct one. Two solutions are demonstrated to

be equivalent although they appear to be of different forms. Some discussions are provided

based on our analytical solutions. In Chapter 7, a monotone numerical scheme is presented to

solve the HJB equation. The stability, consistency, and monotonicity of the numerical scheme

are also demonstrated to guarantee the convergence of the scheme. Finally, in Chapter 8, we

establish a PDE framework for equal-risk pricing approach. Our PDE framework not only

recovers the analytical pricing formula when the payoff function is monotonic, but also produce

numerical results when the payoff function is non-monotonic. As a result, our PDE framework

has indeed expanded the range of application of equal-risk pricing approach.



Chapter 5

An analytical solution to the HJB

equation arising from the Merton

problem

5.1 Introduction

Optimal investment and consumption problem (also referred to as the Merton problem) is a

well-known and classical topic in mathematical finance. Consider a financial market consisting

of only two kinds of assets. One is risk-free asset (such as bond), the price of which grows at

a fixed rate and the other is risky asset (such as stock), the price of which follows a geometric

Brownian motion. An investor has two choices to allocate his wealth: consumption (such as

buying foods and clothes) and investment to accumulate wealth. In order to maximize his

expected utility from intermediate consumption and terminal wealth, he needs to choose how

much to consume and how to allocate his wealth between the risky asset and risk-free one. This

problem has attracted very high attention in academia as well as of financial practitioners and

there has been an exponential growth of literature since the seminal papers (Merton 1969, 1971)

were published. So far, the problem has only been completely solved with the utility function

being some special forms and there is still no consensus in terms of a convincing approach to

80
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solve the cases with general utility functions.

In the landmark paper (Merton 1969), Merton formulated the optimal investment and con-

sumption problem as a stochastic optimal control problem which could be solved with the dy-

namic programming method. As a result, it leads to the well-known Hamilton-Jacobi-Bellman

(HJB) equation, a fully nonlinear partial differential equation (PDE). The main difficulty of

the Merton problem is the nonlinearity of the HJB equation, which makes it tough to solve

analytically.

The utility function, which describes the investor’s risk aversion, is playing an important

role in the Merton problem. In expected utility theory, there are many utility functions, such

as power utility, logarithmic utility, exponential utility, quadratic utility and so on (Ingersoll

1987). Up to date, only when utility function is of a couple of specific forms, can an analytical

solution be obtained. For examples, when the utility function belongs to the constant relative

risk aversion (CRRA) class, including power utility function and logarithmic utility function,

Merton (1969) produced the analytical solution for the HJB equation on a finite horizon. When

utility function is of exponential form, there are some special cases, such as the terminal wealth

problem without consumption (Henderson 2005) and the infinite horizon problem (Merton

1969), that do admit a closed-form analytical solution. However, for the general case where

both consumption and terminal wealth are taken into account and the horizon is finite, there

is still no analytical solution (Wachter 2002).

In reality, the relative risk aversion of an investor may vary with wealth instead of being

constant, which gives us motivations to consider some utility functions beyond the CRRA

class in the classic Merton problem. Brunnermeier & Nagel (2008) and Liu et al. (2014) have

discussed how the relative risk aversion varies with wealth from empirical data. Recently,

Fouque et al. (2015) provided a mixed power utility function, of which the relative risk aversion

varies with wealth. Under this new utility function, it is still hard to obtain the explicit solution

even though consumption is not taken into consideration and we only maximize the utility from

terminal wealth, which actually is a degenerate Merton problem. In other words, the existing

literature did not provide a convincing approach to solve the HJB equation with general utility
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functions, such as this new mixed power utility function.

Up to date, some numerical solutions have also been provided for the HJB equation that

arises from the stochastic optimal control problem. These numerical methods may solve the

nonlinear HJB equation when utility function is of general forms. Kushner (1990) developed the

Markov chain approximation method, of which an extensive overview can be found in Fleming

& Soner (2006) and Kushner & Dupuis (2013). Krylov (2000, 2005) presented some finite

difference approximations for the HJB equations and estimated the rate of convergence. Barles

& Souganidis (1991) also proposed some monotone approximation schemes for the HJB equation

in the theory of viscosity solutions, which has been developed further in Barles (1997) and Barles

& Jakobsen (2002, 2007). Fahim et al. (2011) recently provided a probabilistic numerical

scheme for the fully nonlinear HJB equation and demonstrated that their scheme could be

explained naturally as a combination of Monte Carlo and finite difference schemes without

appealing to the theory of backward stochastic differential equation (BSDE) (Cheridito et al.

2007). However, most of the numerical methods still require discretizations and truncations,

which lead to numerical errors. In addition, intensive computation is also unavoidable before

a solution of reasonable accuracy can be obtained and sometimes the method may not even

converge, such as the explicit finite difference scheme.

The main contribution of this paper is that we present an analytical solution to the highly

nonlinear HJB equation subject to general utility functions for the first time. It is written

in the form of a Taylor’s series expansion and constructed through the homotopy analysis

method (HAM), which was initially suggested by Ortega & Rheinboldt (1970) and was further

developed by Liao (2003a). Such a method has been successfully applied to solve a growing

number of nonlinear ODEs and PDEs in science and engineering. Zhu (2006) first applied

this method to the valuation of American put options and managed to produce a completely

analytical and exact solution for the optimal exercise boundary and the option price. Then

Zhao &Wong (2012) extended the method to investigate American option pricing under general

diffusion process and obtained an exact and explicit solution. The essential step of the homotopy

analysis method (HAM) is to construct a continuous homotopic deformation through a series
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expansion of the unknown function. The series solution of the unknown function is of infinite

terms, but is nevertheless of exact and explicit. The fully nonlinear PDE is decomposed into

an infinite series of linear PDEs, which can be solved analytically.

As pointed out by Zhu (2006), the series solution constructed through the homotopy analysis

method (HAM) is exact and explicit according to the definition given by Gukhal (2001). By

‘exact’ it means that no approximation is made whatsoever; the partial differential equations

and the initial conditions can all be satisfied. By ‘explicit’ it means that the solution for the

unknown functions can be determined explicitly in terms of all the inputs to the problem.

The rest of the chapter is organized as follows. In Section 5.2, the Merton problem is

briefly reviewed, to give a complete background reference to the financial context of the HJB

equation. In Section 5.3, we apply the homotopy analysis method to solve the fully nonlinear

HJB equation arising from the Merton problem subject to general utility functions. In Section

5.4, four examples are presented to demonstrate the accuracy and versatility of the homotopy

analysis method. Some conclusions are provided in the last section.

5.2 The Merton problem and the HJB equation

5.2.1 The Merton problem

Consider a financial market with two assets being traded continuously on a finite horizon [0, T ].

One asset is a risk-free bond, whose price {P (t), t ≥ 0} evolves according to the ordinary

differential equation (ODE)

dP (t) = rP (t)dt, t ∈ [0, T ], (5.2.1)

with r being the risk-free interest rate. The other one is a risky asset with its price following a

geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t), t ∈ [0, T ], (5.2.2)
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where µ is the drift rate, σ is the volatility, and W (t) is a standard Brownian motion.

An investor starts with a known initial wealth x0 and the wealth at time t is denoted as

X(t). At any time t, prior to T , the investor needs to make a decision on how much to consume

and, in the mean time, how much to invest in stock markets, in order to maximize his expected

utility from intermediate consumption and terminal wealth. The consumption rate per unit

time at time t is denoted as c(t) and the investment proportion u(t) represents the fraction of

total wealth that is invested in the risky asset at time t. The remaining fraction 1−u(t) is thus

left in form of the risk-free bond within the framework of this two-asset model. The investment

proportion on the underlying stock u(t) may be negative, which is to be interpreted as short

selling. The remaining proportion 1 − u(t) may also become negative and this corresponds to

borrowing at the interest rate r.As a result, the total wealth X(t) is governed by the following

SDE:

dX(t) = {[r + u(t)(µ− r)]X(t)− c(t)}dt+X(t)u(t)σdW (t). (5.2.3)

The objective of the Merton problem is to obtain the optimal investment and consumption

policies, i.e. to determine u(t) and c(t), such that the expected utility from accumulated con-

sumption and the terminal wealth is maximized. Mathematically, such an objective functional

is stated as

max
(u(·),c(·))

E[

∫ T

0

e−ρsU(c(s))ds+ e−ρTB(XT )], (5.2.4)

where E is the expectation operator; ρ is the subjective discount rate; U is a function measuring

the utility from intermediate consumption c(t) and B is also a function measuring the utility

from terminal wealth XT . In addition, some constraints may be imposed on the wealth process

and consumption process to make sure the objective functional well defined. When the utility

function is defined on R+, such as power and logarithmic function adopted by Merton (1969),

we need the following constraint

c(t) ≥ 0, X(t) ≥ 0 t ∈ [0, T ]. (5.2.5)

If the domain of utility function is R, such as exponential utility, the above constraint is not
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necessary.

In a brief summary, the Merton problem has been reformulated as a stochastic optimal

control problem with the objective functional (5.2.4), driven by the dynamics of the wealth

(5.2.3), and subject to the constraints (5.2.5).

5.2.2 The HJB equation

We apply the dynamic programming method to find out a solution of the stochastic optimal

control problem in previous subsection, for the wealth process X(t) is obviously Markovian.

The basic idea of the dynamic programming is to consider a family of stochastic optimal control

problems with different initial times and states, to establish relationships among these problems

and finally to solve all of them.

Let (t, x) ∈ [0, T )×R+ and consider the following control system over [t, T ]





dX(s) = {[r + u(s)(µ− r)]X(s)− c(s)}ds+X(s)u(s)σdW (s),

X(t) = x,
(5.2.6)

with the same constraints (5.2.5). The cost functional is

J(c(·), u(·); t, x) = E[

∫ T

t

e−ρsU(c(s))ds+ e−ρTB(X(T ))]. (5.2.7)

Define the value function as

V (t, x) = max
(u(·),c(·))

J(c(·), u(·); t, x). (5.2.8)

According to the dynamic programming method (Yong & Zhou 1999), the value function V (t, x)

satisfies the so-called HJB equation:





max
(u,c)

ϕ(u, c; t, x) = 0,

V (T, x) = e−ρTB(x), ∀(t, x) ∈ [0, T ]× [0,∞),

(5.2.9)
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where

ϕ(u, c; t, x) =
∂V

∂t
+ {[u(µ− r) + r]x− c}∂V

∂x
+

1

2
x2σ2u2

∂2V

∂x2
+ e−ρtU(c). (5.2.10)

The first-order optimal conditions for a regular interior maximum to (5.2.9) are





∂ϕ

∂c
= −∂V

∂x
+ e−ρt

∂U

∂c
= 0,

∂ϕ

∂u
= (µ− r)x

∂V

∂x
+ ux2σ2∂

2V

∂x2
= 0.

(5.2.11)

The optimal pair (u∗, c∗) can be obtained in terms of the value function V (t, x)





u∗ = −µ− r

xσ2

Vx
Vxx

,

c∗ = (
∂U

∂c
)−1(eρtVx),

(5.2.12)

where Vxx :=
∂2V
∂x2

, Vx :=
∂V
∂x
, and f(x)−1 denotes the inverse function of f(x)1. After substituting

the optimal pair (u∗, c∗) into the HJB equation (5.2.9), we have another nonlinear PDE system





Vt + rxVx − (
∂U

∂c
)−1(eρtVx)Vx −

λ2

2

V 2
x

Vxx
+ e−ρtU(c∗) = 0,

V (T, x) = e−ρTB(x), ∀(t, x) ∈ [0, T ]× [0,∞),

(5.2.13)

where Vt :=
∂V

∂t
and λ =

µ− r

σ
is the market price of risk of the underlying stock. This

PDE system (5.2.13) was also obtained by Merton when the utility function was of power

or logarithm form (Merton 1969). Although the maximization operator in the HJB equation

(5.2.9) has disappeared, the new PDE system (5.2.13) is still nonlinear. In the following section,

we will demonstrate how to solve this nonlinear PDE system (5.2.13) based on the homotopy

analysis method (HAM).

1We assume utility function U is smooth. Since utility function is concave, ∂
2
U

∂c2
< 0 always holds. As a

result, ∂U

∂c
is always a monotonic function and its inverse function always exists.
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5.3 Solution for the HJB equation based on the HAM

Obviously, the PDE system (5.2.13) consists of a nonlinear parabolic PDE with a given termi-

nal condition. Generally, there is no standard procedure to obtain the analytical solution to

such a nonlinear PDE system unless utility function is of some special forms. Various numer-

ical schemes have also been developed in the literature (Kushner 1990, Barles & Souganidis

1991, Krylov 2000, Fahim et al. 2011). However, when numerical schemes are adopted, the dis-

cretization errors are unavoidable and the intensive computations are needed. In this section,

we apply the homotopy analysis method (HAM) to solve the nonlinear PDE system (5.2.13).

An explicit series solution is obtained in terms of a Taylor’s expansion.

By introducing τ = T − t, the PDE system (5.2.13) can be rewritten as :





LV (τ, x) = AV (τ, x),

V (0, x) = g(x), ∀(τ, x) ∈ [0, T )× [0,∞),
(5.3.1)

where L is a linear differential operator defined as

L =
∂

∂τ
− rx

∂

∂x
, (5.3.2)

and A is a nonlinear operator defined as

AV (τ, x) = −(
∂U

∂c
)−1(eρ(T−τ)Vx)Vx −

λ2

2

V 2
x

Vxx
+ e−ρ(T−τ)U(c∗), (5.3.3)

with g(x) = e−ρTB(x). The nonlinearity of the PDE system (5.3.1) is focused on the operator

A. Let us now construct a new unknown function V̄ (τ, x, p) which is governed by the following

deformation equation





(1− p)L[V̄ (τ, x, p)− V0(τ, x)] = −p(L −A)V̄ (τ, x, p),

V̄ (0, x, p) = (1− p)V0(0, x) + pg(x),
(5.3.4)

where V0(τ, x) is the initial guess for the true solution to the PDE system (5.3.1) and the
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parameter p ∈ [0, 1]. Actually, we are introducing a continuous map such that the solution

V (τ, x) becomes the result of the continuous deformation from the initial and known function

V0(τ, x). When p = 0, it is straightforward that





L[V̄ (τ, x, 0)− V0(τ, x)] = 0,

V̄ (0, x, 0) = V0(0, x).
(5.3.5)

Clearly, by the uniqueness of the linear PDE, we have V̄ (τ, x, 0) = V0(τ, x). On the other hand,

if p = 1, the deformation equation becomes





LV̄ (τ, x, 1) = AV̄ (τ, x, 1),

V̄ (0, x, 1) = g(x).
(5.3.6)

Obviously, it follows that V̄ (τ, x, 1) = V (τ, x). In other words, as p increases from 0 to 1,

V̄ (τ, x, p) varies from the initial guess V0(τ, x) to the true solution V (τ, x) of the PDE system

(5.3.1).

Here we make an assumption that the unknown function V̄ (τ, x, p) is analytic with respect

to p, which implies that it is smooth enough and thus can be expanded in a Taylor’s series

expansion of p as follows:

V̄ (τ, x, p) = V0(τ, x) +
+∞∑

n=1

Vn(τ, x)

n!
pn, (5.3.7)

where

Vn(τ, x) =
∂n

∂pn
V̄ (τ, x, p)|p=0. (5.3.8)

To obtain the coefficients in the expression (5.3.7), we need to derive a set of PDEs governing

the unknown function Vn(τ, x) and some appropriate initial conditions for them. They can be

achieved by differentiating the PDE equation (5.3.4) with respect to embedding parameter p n

times and then setting p to zero.

First of all, by differentiating the PDE equation (5.3.4) only once and setting p = 0, we
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have 



LV1(τ, x) = −LV0(τ, x) +AV0(τ, x),

V1(0, x) = g(x)− V0(0, x).
(5.3.9)

Obviously, the right hand of Equation (5.3.9) is known to us, which indicates it is a linear PDE.

Therefore, V1(τ, x) can be obtained by solving such a linear PDE.

Then we differentiate the PDE equation (5.3.4) twice and set p = 0, leading to





LV2(τ, x) = 2
∂

∂p
(AV̄ (τ, x, p))|p=0,

V2(0, x) = 0.

(5.3.10)

Although the right hand of equation is in terms of the unknown function V̄ (τ, x, p) and appears

to be very complicated, it is actually a known function. To demonstrate this fact briefly, we

choose ρ = 0 and utility function U(c) = 2
√
c without loss the generality. Then the nonlinear

operator becomes

AV (τ, x) = −(
∂U

∂c
)−1(Vx)Vx −

λ2

2

V 2
x

Vxx
+ U(c∗) =

1

Vx
− λ2

2

V 2
x

Vxx
. (5.3.11)

It follows from chain rules that

∂

∂p
(AV̄ )|p=0 =

∂

∂p
[
1

V̄x
− λ2

2

V̄ 2
x

V̄xx
]|p=0

= [− ∂2V̄

∂x∂p

1

V̄ 2
x

− λ2

2
(
∂V̄ 2

x

∂p
V̄xx −

∂V̄xx
∂p

V̄ 2
x )

1

V̄ 2
xx

]|p=0

= −∂V1
∂x

1

(∂V0
∂x

)2
− λ2

2
[2
∂V0
∂x

∂V1
∂x

∂2V0
∂x2

− ∂2V1
∂x2

(
∂V0
∂x

)2]
1

(∂
2V0
∂x2

)2
.

The last equality holds because V̄ (τ, x, p) is assumed to be analytic with respect to p and

expressed in Equation (5.3.7). Since V0 and V1 are both known functions, the PDE system

(5.3.10) now becomes linear. When ρ is non-zero and the utility function takes another form,

the calculations above may become more complicated but it can also be demonstrated similarly

that the PDE system (5.3.10) is linear.
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Generally, after differentiating the PDE system (5.3.4) n times and setting p = 0, we have





LVn(τ, x) = n
∂n−1

∂pn−1
(AV̄ (τ, x, p))|p=0,

Vn(0, x) = 0.

(5.3.12)

Accordingly, the right hand of Equation (5.3.12) only depends on the previous known functions,

{V0(τ, x), V1(τ, x), · · · , Vn−1(τ, x)}, which implies that Vn(τ, x) is governed by a linear PDE.

In a brief summary, for any fixed n, Vn(τ, x) satisfies the linear PDE





LVn(τ, x) = fn(τ, x),

Vn(0, x) = ψn(x), n ≥ 1,
(5.3.13)

where

fn(τ, x) =





−LV0(τ, x) +AV0(τ, x), if n = 1,

n ∂n−1

∂pn−1 (AV̄ (τ, x, p))|p=0, if n > 1,

and

ψn(x) =





g(x)− V0(0, x), if n = 1,

0, if n > 1.

Remark 5.3.1. The crux of the homotopy analysis method (HAM) is to decompose the nonlin-

ear PDE into an infinite series of linear PDEs. Although function fn(τ, x) appears to be written

in terms of an unknown function V̄ (τ, x, p), it should be remarked that fn(τ, x) is actually a

known function because the process of taking n−1 times partial derivative with respect to p and

then setting p = 0 has made all the unknown terms {Vn(τ, x), Vn+1(τ, x), Vn+2(τ, x), · · · } disap-

pear. In other words, fn(τ, x) only depends on the known functions {V0(τ, x), V1(τ, x), · · · , Vn−1(τ, x)}

when it is calculated! Of course, such a computation of fn(τ, x) would not have been possible

without the aid of symbolic calculation software such as the Maple 17 that we adopted to carry

out all the cumbersome calculations presented in this chapter.

Now, we apply the method of characteristics to solve these linear PDEs. The characteristics
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equations associated with the PDE system (5.3.13) are as follows:





dτ
ds

= 1,

dx
ds

= −rx,
dVn
ds

= fn(τ(s), x(s)),

(5.3.14)

with initial conditions 



τ(0) = 0,

x(0) = x0,

Vn(0, x0) = ψn(x0).

(5.3.15)

After some simple calculations, the solution for the PDE system (5.3.13) is obtained as follows:

Vn(τ, x) = ψn(xe
rτ ) +

∫ τ

0

fn(s, xe
r(τ−s))ds. (5.3.16)

Both functions ψn and fn are known for each fixed n, the expression (5.3.16) is explicit and

analytical, which can also be implemented in Maple 17.

In the theory of the homotopy analysis method, the initial guess, V0(τ, x), can be virtually

any continuous function, which provides us great freedom to choose an initial point. In this

chapter, the initial guess V0(τ, x) is given by the following linear PDE system





LV0(τ, x) = 0,

V0(0, x) = g(x).
(5.3.17)

This PDE system can be solved analytically with the solution being V0(τ, x) = g(xerτ ). Such

an initial guess makes the initial condition ψn(x) vanish for any n, which simplifies the linear

PDE system (5.3.13) and the solution (5.3.16).

The following proposition shows that our series solution constructed through the HAM is

indeed an exact and explicit solution to the HJB equation once it converges.
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Proposition 5.3.1. If the series

V̄ (τ, x, 1) = V0(τ, x) +
+∞∑

n=1

Vn(τ, x)

n!
(5.3.18)

is convergent, where Vn(τ, x) is defined by Equation (5.3.16), it is indeed an exact solution of

the PDE system (5.3.1).

Proof. For brevity, we define the vector

Vn = {V0(τ, x), V1(τ, x), V2(τ, x), · · · , Vn(τ, x)}. (5.3.19)

Differentiating the deformation equations (5.3.4) n times with respect to the embedding pa-

rameters p and setting p = 0, we have the so-called nth-order deformation equation

L[Vn(τ, x)
n!

− 1n>1
Vn−1(τ, x)

(n− 1)!
] = − 1

(n− 1)!
Rn(Vn−1, τ, x), (5.3.20)

where

Rn(Vn−1, τ, x) =
∂n−1

∂pn−1
[(L −A)V̄ (τ, x, p)]|p=0. (5.3.21)

After summing up all the terms, we have

−
+∞∑

n=1

1

(n− 1)!
Rn(Vn−1, τ, x)

=
+∞∑

n=1

L[Vn(τ, x)
n!

− 1n>1
Vn−1(τ, x)

(n− 1)!
]

= L
+∞∑

n=1

[
Vn(τ, x)

n!
− 1n>1

Vn−1(τ, x)

(n− 1)!
]

= L( lim
n→+∞

Vn(τ, x)

n!
).

If the series (5.3.18) converges, we have

lim
n→+∞

Vn(τ, x)

n!
= 0.
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As a result, we obtain
+∞∑

n=1

1

(n− 1)!
Rn(Vn−1, τ, x) = 0. (5.3.22)

On the other hand, according to Equation (5.3.21), we have

+∞∑

n=1

1

(n− 1)!
Rn(Vn−1, τ, x)

=
+∞∑

n=1

1

(n− 1)!

∂n−1

∂pn−1
[(L −A)V̄ (τ, x, p)]|p=0

=
+∞∑

n=0

1

n!

∂n

∂pn
[(L −A)V̄ (τ, x, p)]|p=0. (5.3.23)

According to Equations (5.3.22) and (5.3.23), we have

+∞∑

n=0

1

n!

∂n

∂pn
[(L −A)V̄ (τ, x, p)]|p=0 = 0. (5.3.24)

For a general p, V̄ (τ, x, p) does not perfectly satisfy the nonlinear PDE (5.3.1). Let denote the

residual error of Equation (5.3.1) as

ε(τ, x, p) = (L −A)V̄ (τ, x, p). (5.3.25)

Obviously, when the residual error ε(τ, x, p) becomes zero for some p, it corresponds to an exact

solution of PDE system (5.3.1). The Taylor series of the residual error ε(τ, x, p) with respect

to the embedding parameter p is

ε(τ, x, p) =
+∞∑

n=0

pn

n!

∂n

∂pn
ε(τ, x, p)|p=0 =

+∞∑

n=0

pn

n!

∂n

∂pn
[(L −A)V̄ (τ, x, p)]|p=0. (5.3.26)

When p = 1, the above expression becomes, using (5.3.24),

ε(τ, x, 1) =
+∞∑

n=0

1

n!

∂n

∂pn
ε(τ, x, p)|p=0

+∞∑

n=0

1

n!

∂n

∂pn
[(L −A)V̄ (τ, x, p)]|p=0 = 0. (5.3.27)

It means that V̄ (τ, x, p) becomes an exact solution of the original PDE system (5.3.1) when p
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is set to be 1. Thus, if the series

V̄ (τ, x, 1) = V0(τ, x) +
+∞∑

n=1

Vn(τ, x)

n!
(5.3.28)

is convergent, it is indeed a solution of the original PDE system (5.3.1). This completes the

proof.

Remark 5.3.2. Proposition 5.3.1 ensures that the series solution (5.3.18) is indeed an exact

solution to the original PDE system (5.3.1) when it is convergent. It is still an open problem to

prove the convergence of such a series solution when we apply the homotopy analysis method to

solve nonlinear ODEs or PDEs. However, this method has been successfully and widely used to

solve a number of nonlinear ODEs and PDEs in physics, engineering and quantitative finance

(Ayub et al. 2003, Liao 2003b, Zhu 2006, Abbasbandy & Zakaria 2008, Zhao & Wong 2012),

with a rigorous proof of the convergence being left as a future mathematical challenge. Here,

we follow Zhu (2006) and Zhao & Wong (2012) to use numerical experiments to demonstrate

the convergence of the series.

The series solution is considered to be convergent if and only if the sequence of partial sums

{Sn}n≥0 is a Cauchy sequence. The partial sum with n terms is defined as

Sn =
n∑

i=0

Vi(t, x)

i!
. (5.3.29)

In this chapter, we try to demonstrate that the sequence of partial sums {Sn}n≥0 is convergent

through the numerical evidence in next section.

The series solution constructed through the homotopy analysis method (HAM) may be not

as elegant and simple as those produced by Merton. However, its significant contribution is that

it works for general utility functions, including, but not limited to the cases where Merton had

solved. In addition, the infinite series solution is exact and explicit because no discretization

errors are introduced. To verify our series solution, four examples with different utility functions

are demonstrated in the next section.
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5.4 Examples

In this section, four examples are presented to demonstrate the accuracy and versatility of

the homotopy analysis method (HAM) for the nonlinear HJB equation. The accuracy of our

solution approach is demonstrated through the first two examples, the classical Merton problem

subject to power utility function (Example 1) and logarithmic utility function (Example 2).

Our series solution is compared with Merton’s solution to serve the purpose of verifying the

homotopy analysis method (HAM). Then, two more utility functions are chosen to demonstrate

the versatility of the HAM in Examples 3 and 4. The main reason to select them is that, up

to date, there is still no analytic solution for the Merton problem presented in Examples 3

and 4. Using our explicit series solution, the corresponding optimal investment policies can be

easily derived, with which some interesting economic interpretations of the optimal investment

strategy can be articulated.

One thing we need to point out is that although the two utility functions U and B can be

of different forms as stated in Equation (5.2.4), it is reasonable from an economic point of view

that they are taken the same form as the risk aversion associated with one particular investor

must be consistent. In all these following examples, utility function B is assumed to take the

same form with the utility function U .

It is also pointed out that all the computations reported in this chapter were performed

with Maple 17 on 64-bit quad-core Intel 2.83GHz system with 16GB of RAM.

5.4.1 Example 1: power utility

In the first example, we consider the power utility function which is defined as:

U(x) =
xγ

γ
, (5.4.1)

where γ < 1 and γ ̸= 0. The Arrow-Pratt measure of relative risk aversion of such a utility is

defined as

δ[U(·)] = −U
′′
(x)

U ′(x)
x = 1− γ. (5.4.2)



96 5.4. EXAMPLES

The power utility function (5.4.1) belongs to the CRRA class as its Arrow-Pratt measure is

constant. The smaller the value of γ is, the more risk-aversion the investor shows. The HJB

equation arising from the Merton problem subject to such a utility function is





Vt + rxVx −
λ2

2

V 2
x

Vxx
+

1− γ

γ
(
∂V

∂x
)

γ
γ−1 e

ρt
γ−1 = 0,

V (T, x) = e−ρT
xγ

γ
, ∀(t, x) ∈ [0, T ]× [0,∞).

(5.4.3)

It is well known that there is a closed-form solution derived by Merton (1969) with the value

function being of the simple form

V (t, x) = e−ρt
xγ

γ
b(t), (5.4.4)

where 



b(t) = [
1 + (ν − 1)e−ν(T−t)

ν
]1−γ,

ν =
1

1− γ
{ρ− γ[r +

(µ− r)2

2σ2
(1− γ)]}.

(5.4.5)

Such a simple solution will be adopted as a benchmark to compare with our series solution in

order to demonstrate the accuracy of the latter. Without loss of generality, we have taken ρ to

be zero. The other parameters are set as

µ = 0.1, r = 0.05, σ = 0.5, T = 1, γ = 0.5. (5.4.6)

Figure 5.1(a) displays the values obtained from the partial sums of the explicit series solution

and those calculated from the analytical solution (5.4.4) at time t = 0. These curves are

indistinguishable in Figure 5.1(a), which shows that the explicit series solution converges to the

analytical solution exactly. To demonstrate the convergence more clearly, the absolute error

between our series solution and the analytical solution (5.4.4) is shown in Figure 5.1(b). The

absolute error diminishes gradually with the number of terms n increasing. In this example,

we carried out the summation up to 18 terms, when a converged value function is obtained,

inclusion of more terms in the solution resulted in a contribution in the order of 10−4.
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Through our symbolic calculation, the optimal investment proportion is produced as

u∗ = −µ− r

xσ2

V̄x(t, x, 1)

V̄xx(t, x, 1)
=

µ− r

(1− γ)σ2
, (5.4.7)

which is perfectly consistent with that calculated based on the analytical solution (5.4.4).

Obviously, the optimal investment policy is independent of wealth and time for this case. It

implies that the investor does not need to change the proportion invested in the risky asset.

Such a constant proportion investment policy results from the fact that the investor guided

by such a power utility function shows constant relative risk aversion, which implies that his

attitude to the financial risk is independent of his wealth Merton (1969).

5.4.2 Example 2: logarithmic utility

In addition to power utility function, another classical one is logarithmic utility function defined

as

U(x) = ln x. (5.4.8)

The Arrow-Pratt measure of relative risk aversion of such a utility function is

δ[U(·)] = −U
′′
(x)

U ′(x)
x = 1, (5.4.9)

which implies that it also belongs to the CRRA class. The investor does not change his attitude

to the risk as his wealth varies from time to time.

The corresponding HJB equation in this example is written as





Vt + rxVx −
λ2

2

V 2
x

Vxx
− e−ρt(1 + ρt+ lnVx) = 0,

V (T, x) = e−ρT ln x, ∀(t, x) ∈ [0, T ]× [0,∞).

(5.4.10)

The analytical solution to such a HJB equation has been produced by different authors (Merton

1969, Karatzas & Shreve 1998). With ρ = 0, the solution to the PDE system (5.4.10) is
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expressed as

V (t, x) = (T − t+ 1) ln
x

T − t+ 1
+ [r +

λ2

2
][(T + 1)(T − t)− T 2 − t2

2
], (5.4.11)

which is chosen as the benchmark to verify our series solution. To calculate the values from

the expression (5.4.11), the other parameters are taken as

µ = 0.1, r = 0.05, σ = 0.5, T = 1. (5.4.12)

Figure 5.2(a) shows the results from the partial sums of our series solution and those from

the analytical solution (5.4.11) at time t = 0. The convergence is demonstrated again as the

number of terms n increases in Figure 5.2(b). In this case, the summation is carried out up to

29 terms so that the absolute error between our explicit series solution and the solution (5.4.11)

has reached the level of 10−4.

Again, through the complicated symbolic calculation, the optimal investment proportion is

produced as

u∗ = −µ− r

xσ2

V̄x(t, x, 1)

V̄xx(t, x, 1)
=
µ− r

σ2
, (5.4.13)

which matches very well with that calculated from the analytical solution (5.4.11). The loga-

rithmic utility function actually is considered as the limiting form of power utility function as γ

tends towards zero (Merton 1969). An investor with the logarithmic utility function also shows

constant relative risk-aversion and his attitude to the risk does not change with his wealth.

Consequently, the optimal investment policy for such an investor is also constant proportion

invested in the risky asset.

Both Example 1 and Example 2 are classical cases where many researchers have done some

great work. Some analytical solutions have been obtained by different authors with specific

methods (Merton 1969, Karatzas & Shreve 1998). In this chapter, such analytical solutions are

used as a verification of our series solution and a test to the number of reasonable terms needed

to produce numerical values with a desirable accuracy, such as 10−4. From the experiments
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above, one can clearly observe that the absolute error between our explicit series solution and

the analytical solution would decrease to 10−4 as n increases, although the number of terms

they need differs with different utility functions. While it only needs 18 terms for the series

solution in Example 1, it takes 29 terms to achieve almost the same accuracy in Example 2.

Clearly, the number of terms needed to achieve a particular level of accuracy depends on a

specific form of the utility function, as one would expect.

In addition, it is worthwhile to point out that the utility functions in Example 1 and Example

2 share a common feature that both of them belong to the CRRA class. A very important

character of an investor with such type of utility functions is that they do not change their

attitude towards the risk when their total wealth moves up and down. As a result, their

optimal investment policy is characterized by a constant proportion invested in the risky asset.

5.4.3 Example 3: exponential utility

In both of the previous two examples, the Arrow-Pratt measure of relative risk aversion for

the utility function is constant, which implies that both of the utility functions belong to the

CRRA class. In this example,we consider an exponential utility function defined as

U(x) = −e
−ηx

η
, η > 0, (5.4.14)

to demonstrate that our solution approach could deal with the cases with non-CRRA utility

function successfully. As shown in Merton (1969), the Arrow-Pratt measure of relative risk

aversion for this case is:

δ[U(·)] = −U
′′
(x)

U ′(x)
x = ηx, (5.4.15)

which implies that the investor shows more risk-aversion as his wealth x becomes larger. As a

result, we expect that this will lead to a different investment behavior when the investor tries

to maximize his expected utility.

Prior to our series solution presented in this chapter, an analytical solution can only be ob-

tained in some special cases. For examples, the time horizon is assumed to be infinite (Merton
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1969) or the utility function is only defined on the terminal wealth without consumption (Hen-

derson 2005). We apply our homotopy analysis method to solve the Merton problem defined

on the finite horizon and the consumption is still taken into account.The HJB equation can be

written as 



Vt + rxVx −
λ2

2

V 2
x

Vxx
− Vx

η
+

lnVx
η

Vx +
ρt

η
Vx = 0,

V (T, x) = −e−ρT e
−ηx

η
, ∀(t, x) ∈ [0, T ]× [0,∞).

(5.4.16)

Unlike the two previous examples where the analytical solutions have been obtained in liter-

ature, there is still no analytical solution which can be used as the benchmark. Without a

benchmark, we show the absolute error between different partial sums numerically in order to

demonstrate that our series solution is convergent. The parameters in this example are set as

µ = 0.1, r = 0.05, σ = 0.5, T = 1, η = 1. (5.4.17)

Figure 5.3(a) displays the numerical results from some partial sums Sn at time t = 0. It is

observed that these curves corresponding to different n values converge more and more into one

as n increases. The absolute error between different partial sums is presented in Figure 5.3(b).

When n reaches 14, the absolute error has arrived at the level of 10−3 already, which indicates

a good numerical convergence.

With the constructed series solution, the optimal investment policy can now be derived as

u∗(t, x) = −µ− r

xσ2

V̄x(t, x, 1)

V̄xx(t, x, 1)
, (5.4.18)

which depends on wealth and time, instead of being constant in both two previous examples.

Here we demonstrate how the optimal investment proportion changes with wealth and time in

Figure 5.4(a). It is very interesting to observe from Figure 5.4(a) that the optimal investment

proportion is a monotonically decreasing function of wealth; the wealthier an investor is, the

lower proportion of his wealth he wants to invest in the risky asset. The investor allocates

almost all his wealth on the risk-free asset when his wealth tends towards infinity. When

the wealth goes to the other extreme, i.e. approaching zero, another interesting phenomenon
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occurs. From Figure 5.4(a), one can clearly observe that the optimal investment proportion

has already reached 1 when his wealth is sufficiently small and the proportion even becomes

larger than 1, heading towards infinity when his wealth shrinks down to zero. In contrast to

the cases in previous examples with a CRRA utility function, the optimal investment policy in

this example is significantly different.

All these phenomena can be interpreted from an economic point of view. As shown in

(5.4.15), the investor’s relative risk aversion is a linear function of his wealth. On one hand,

when his wealth increases, his relative risk aversion goes up simultaneously. As a result, he

would allocate more money on the risk-free asset because he loathes risk more now. On the

other hand, his risk aversion almost vanishes when his wealth shrinks towards zero. In this case,

he prefers risky asset to risk-free asset. When his wealth is sufficiently small, the investment

proportion becomes greater than 1, which implies that he has allocated more money than his

net wealth on the risky asset by borrowing at the interest rate r. In other words, in order to

maximize his expected utility, the investor would borrow as much as possible to invest on risky

asset when his net wealth is zero. This rather weird behavior is permitted in Merton’s model

because both shorting the risky asset and unlimited borrowing from a bank at interest rate r

are allowed.

Another interesting observation is that, in Figure 5.4(b), the amount invested in the risky

asset ux is independent of the wealth but depends on time, unlike the cases presented in the

first two examples in which the proportion of wealth (not the amount) invested in the risky

asset is not only independent of the wealth itself but also independent of time. This observation

is consistent with what Merton had observed when he considered the infinite-horizon case with

the exponential utility function (Merton 1969). However, there are still some differences with

Merton’s infinite case. The significant one is that the amount invested in the risky asset changes

with time in our finite-horizon case, which is actually the time effect; while such an effect is

absent in Merton’s infinite case.
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5.4.4 Example 4: mixed power utility

All the utility functions presented in the previous examples can be labeled as the classical ones,

on which extensive research has been done. Recently, Fouque et al. (2015) presented a new

utility function of mixed form to characterize an investor whose relative risk aversion varies with

his wealth. We demonstrate that the homotopy analysis method can deal with the nonlinear

HJB equation with such a new utility function as well. Again, demonstrating the versatility of

our solution approach through another form of utility function is crucially important because

there should be no restrictions on the form of utility function in reality; investors with different

risk aversion may choose different utility functions when they try to maximize their expected

utility.

The utility function adopted in Example 4 is the mixture of two power utility functions

taking the form

U(x) = kU1 + (1− k)U2 = k
xγ1

γ1
+ (1− k)

xγ2

γ2
, k ∈ [0, 1], γ1 < γ2 < 1, γ1,2 ̸= 0. (5.4.19)

The Arrow-Pratt measure of the mixed power utility function can be expressed as:

δ[U(·)] = U
′′
(x)

U ′(x)
x =

k(1− γ1) + (1− k)(1− γ2)x
γ2−γ1

k + (1− k)xγ2−γ1
. (5.4.20)

It is interesting to note that although the new utility function (5.4.19) is just a simple sum

of two power utility functions studied in Example 1, such a linear combination of power utility

functions has led to a totally nonlinear result; the solution is by no means a simple sum of the

results obtained from Example 1. Of course, this is basically due to the fact that the system

we are dealing with is a fully nonlinear one. From the expression (5.4.20), the Arrow-Pratt

measure now becomes a function of wealth, instead of being a constant in the case of single

power utility function. On the other hand, the mixed power utility function degenerates to a

single power utility function U1 (or U2) when we set k = 1 (or k = 0). One can appreciate

more of the complexity associated with the mixture of two simple power utilities through their
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visualization shown in Figure 5.5(a) (a graphic display of U1, U2 and the mixture U) and

Figure 5.5(b) (the corresponding Arrow-Pratt measure of relative risk aversion) with a set of

parameters. Clearly, it can be observed in Figure 5.5(b) that both U1 and U2 are CRRA utility
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functions, whereas the mixture of them displays a wealth-varying nature of risk aversion.

For the utility function of such a mixed form, there is no explicit solution even when we

only consider to maximize the utility from the terminal wealth, which is actually a simplified

Merton problem (Fouque et al. 2015). However, our homotopy analysis method can still yield

an explicit series solution. In this case, the objective function can be mathematically stated as

max
u(·)

e−ρTU(XT ). (5.4.21)

The corresponding HJB equation in Example 4 becomes





Vt + rxVx − λ2

2
V 2
x

Vxx
= 0,

V (T, x) = e−ρT [k x
γ1

γ1
+ (1− k)x

γ2

γ2
], ∀(t, x) ∈ [0, T ]× [0,∞).

(5.4.22)

Without loss of generality, in the presentation of the following results, we have set ρ to zero.

The other parameters are defined as follows:

µ = 0.1, r = 0.05, σ = 0.5, T = 1. (5.4.23)

Numerical results are presented in following figures to demonstrate the convergence of the

partial sums Sn at time t = 0.

Amazingly, the results obtained after summing up two terms and those with three terms

are hardly distinguishable as shown in Figure 5.6(a). In other words, the series (5.3.18) is

numerically convergent through our numerical results. From Figure 5.6(b), it is clear that

the absolute difference |S3 − S2| and |S2 − S1| has already reached the level of 10−4, which

implies that a converged series solution accurate to the 4th decimal place has been obtained

with meagerly two terms. We owe such a surprisingly fast convergence to the simplicity of our

objective function (5.4.21) because only the utility from the terminal wealth XT is considered

in this example.

Unlike all the previous examples, our series solution exhibits an excellent convergence for

this example with merely two terms! Thus, the explicit form of the truncated solution in this
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example could be even used as an approximation formula for the solution being used in hedging

practice. The first two terms obtained in Maple 17 are

V0(τ, x) =
k

γ1
(xerτ )γ1 +

1− k

γ2
(xerτ )γ2 , (5.4.24)

V1(τ, x) =
Cτ [(1− k)(xerτ )γ2 + k(xerτ )γ1 ]2

k(1− γ1)(xerτ )γ1 + (1− k)(1− γ2)(xerτ )γ2
, (5.4.25)

where C = λ2

2
. As a result, S1(τ, x) = V0(τ, x) + V1(τ, x) can be regarded as a good approxi-

mation solution for the value function V (τ, x).

With the value function being approximated by S1(τ, x), the optimal investment policy can

be numerically calculated. The numerical results implies that the optimal investment policy also

depends on wealth and time, instead of being constant. Here we demonstrate how the optimal

investment policy changes with wealth and time in Figure 5.7. The variation of the optimal

investment proportions associated with two power utility functions U1, U2 and their mixture U

are displayed in Figure 5.7(a) with a fixed wealth. One can clearly observe that all of them are

kept constant no matter how time varies. The optimal investment proportion associated with

the mixed power utility function U is actually sandwiched between those associated with two

power utility functions U1 and U2. This can be easily explained from the Arrow-Pratt measure

for the mixed power utility function being actually bounded by those associated with the two

power utility functions as shown in Figure 5.5(b). The more risk-aversion the investor shows,

the less he invests in the risky asset. Therefore, the optimal investment proportion for U2 is on

the top; while that for U1 is in the bottom.

On the other hand, for a fixed time t, the variation of the optimal investment policy in wealth

x direction is plotted in Figure 5.7(b). As is pointed out in Example 1, the optimal investment

proportions for U1 and U2 are still constant. However, the optimal investment proportion for the

mixed utility function U is now a monotonically increasing function of wealth, instead of being

constant. In other words, the investor allocates higher proportion of his wealth in risky asset

as his wealth becomes larger, which is an absolutely different investment strategy with those in

all previous examples. The reason for such an increasing optimal investment proportion with
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wealth is that the relative risk aversion of an investor taking such a mixed utility is a decreasing

function of wealth, as shown in Figure 5.5(b).

5.5 Conclusions

In this chapter, the fully nonlinear HJB equation that arises from the Merton problem sub-

ject to some general utility functions is solved with the homotopy analysis method (HAM).

The nonlinear PDE is decomposed into an infinite series of linear PDEs, which can be solved

analytically, leading to an explicit series solution.

Four examples are presented to demonstrate the accuracy and versatility of our solution

approach. Through these examples, convergent solutions with a desirable accuracy can be

achieved with enough terms being included in the series. Of course, the exact number of terms

varies with the form of the utility function taken for each case. For some cases, it is amazingly

fast to achieve an accuracy to the 4th decimal place with meagerly two terms! Furthermore, the

fact that we have presented an analytic solution in series form for the cases where no analytic

solutions have been reported in the literature alone suffices to demonstrate the versatility of

our solution approach.



Chapter 6

A closed-form analytical solution to

the HJB equation for the Merton

problem defined on a finite horizon

with exponential utility function

6.1 Introduction

Optimal investment and consumption problem (also referred to as theMerton problem) is a well-

known and classic topic in mathematical finance. The key task of dynamic portfolio selection

problem is to obtain the optimal investment and consumption policy for an investor to maximize

his expected utility from intermediate consumption and terminal wealth. Merton (1969, 1971)

formulated it as a stochastic optimal control problem in his seminal papers and solved it for

the first time under the assumptions that the stock price follows a geometric Brownian motion

and the utility function is constant relative risk aversion (CRRA). The optimal investment

and consumption policies were both explicitly derived by Merton through solving the fully

nonlinear HJB equation on a finite horizon. Exponential utility function, which shows constant

absolute risk aversion (CARA), was also mentioned by Merton in the landmark papers and an

113



114 6.1. INTRODUCTION

analytical solution corresponding to such a utility function was only obtained on an infinite

horizon instead of a finite horizon. In fact, solving the Merton problem on a finite horizon is

more useful because the investment horizon can never be infinite in reality. However, when

exponential utility function is defined over both consumption and terminal wealth, finding

a closed-form analytical solution on a finite horizon becomes a much harder problem, which

remains unsolved in the past few decades.

The seminal work (Merton 1969, 1971) has established the framework for dynamic portfolio

selection problem, although Merton’s original model is a very simple one where both the return

rate and volatility of the stock price are assumed to be constant. Since then, there is abundant

literature on the extension of the classic Merton problem from different aspects which include,

but are not limited to, adding stochastic risk premium, stochastic volatility, transaction costs,

etc. While some authors focused on achieving closed-form analytical solutions, others resort to

numerical solutions (Kushner 1990, Barles & Souganidis 1991, Fleming & Soner 2006) if finding

a closed-form solution becomes formidably difficult. Since the focus of this chapter is to show

a newly discovered analytical closed-form solution, we mainly focus our literature review on

those papers in which closed-form solutions are presented.

With closed-form solutions as a common feature, the literature can be grouped into three

different categories.

Papers in the first category adopt a basic assumption that the utility function belongs to

the CRRA class. Zariphopoulou (1999) extended the Merton problem to the case in which

the coefficients in the underlying diffusion process are arbitrary nonlinear functions and utility

function is defined on both intermediate consumption and terminal wealth. Brennan & Xia

(2002) adopted a stochastic model to characterize the term structure, while Wachter (2002)

placed her focus on a model in which the risk premium follows an Ornstein-Uhlenbeck process.

Using Malliavin derivatives, Detemple et al. (2005) explicitly solved the case where stochastic

interest rate and investment constraints are taken into account. A further important extension

with a multi-dimensional model was presented in Liu (2007), in which the so-called “quadratic”

asset returns are introduced as a very general way to incorporate features such as stochastic
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interest rate, stochastic return rate as well as stochastic volatility all under one umbrella.

In order to preserve analytic tractability, an important assumption shared by the papers

in the second category is that consumption is not allowed and utility function is defined over

terminal wealth only. Typical examples in this category include Kim & Omberg (1996) in

which risk premium follows an Ornstein-Uhlenbeck process, Tehranchi (2004) where a random

factor is introduced into the utility function to allow the terminal wealth be subject to another

risk factor that is not necessarily correlated with the underlying, Henderson (2005) where an

imperfectly judgeable stochastic income is added to the classic Merton problem to demonstrate

how such an income affects the optimal allocation of wealth between the risky and risk-free

assets.

In the last category, the investment horizon in the Merton problem is assumed to be infinite,

which really has simplified the HJB equation to a nonlinear ordinary differential equation (ODE)

and considerably facilitated the solution process. Major contributions are Merton (1971) where

geometric Brownian motion hypothesis is replaced by an alternative price mechanism, Liu

(2004) where transaction costs are taken into consideration and Chacko & Viceira (2005) where

the investor has a recursive preference over intermediate consumption with unit elasticity of

infratemporal substitution.

It should be remarked that analytic tractability is a result of the corresponding assumption

made in each of these three categories. Consequently, removing all three assumptions listed

above and, in the mean time, still obtaining a closed-form solution constitute a substantially

difficult problem. Tackling such a difficulty is the objective and the key contribution of the

current chapter, in which we show a new closed-form solution for the Merton problem defined on

a finite horizon with consumption and terminal wealth both being included under a non-CRRA

utility function1.

1Exponential utility function, which is obviously non-CRRA, has been discussed many times in the literature.
However, closed-form solutions are only available in the case where the investment horizon is assumed to be
infinite (Merton 1969, Liu 2004) or where the utility function is only defined on the terminal wealth without
consumption (Henderson 2005, Zeng & Taksar 2013). The importance of studying portfolio selection problems
under exponential utility is further manifested by a very recently published paper (Xing 2017), in which some
stability issues associated with the portfolio maximization problem are examined, although Xing’s study still
restricts the utility function on the terminal wealth only.
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In order to achieve such an objective, we choose to focus on the classic Merton problem

first instead of the generalized Merton problem. The main contribution of this chapter is that

we present two different methods, with which closed-form analytical solutions are obtained for

the Merton problem with exponential utility function being defined over both consumption and

terminal wealth on a finite horizon. We also demonstrate that these two solutions obtained with

different methods are equivalent to each other although they appear to be of different form.

The solution approach adopted here to obtain the closed-form solution for such a problem may

shed some light to the solution of some similar problems based on more sophisticated models

in the future. In addition, we show a verification theorem that demonstrates the value function

is indeed the solution to the original optimal stochastic control problem. With the availability

of the newly derived closed-form solution, we are also able to carry out some economic and

mathematical discussions on the optimal investment and consumption policy associated with

this problem.

The rest of the chapter is organized as follows. In Section 6.2, the Merton problem and the

corresponding HJB equation are briefly reviewed for the convenience of the readers. In Section

6.3, two methods are presented to solve the corresponding HJB equation with exponential

utility function on a finite horizon. In Section 6.4, some economic interpretations of the optimal

investment and consumption policies are discussed, respectively, while concluding remarks are

provided in the last section.

6.2 The Merton problem and the HJB equation

Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space. P denotes the physical or real-

world measure and the filtration (Ft)t≥0 represents the history of the market. For simplicity,

throughout this chapter, we assume a frictionless market and no dividends.
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6.2.1 The Merton problem

We consider a financial market with two assets being traded continuously on a finite hori-

zon [0, T ]. One asset is a risk-free bond, whose price {P (t), t ≥ 0} evolves according to the

differential equation

dP (t) = rP (t)dt, t ∈ [0, T ], (6.2.1)

with r being the risk-free interest rate. The other one is a risky asset with its price being

modeled as a diffusion process S(t) satisfying the following stochastic differential equation

(SDE)

dS(t) = µS(t)dt+ σS(t)dW (t), t ∈ [0, T ], (6.2.2)

where µ is the drift rate, σ is the volatility coefficient andW (t) is a standard Brownian motion.

An investor starts with a known initial wealth x0 and the wealth at time t is denoted asX(t).

At any time t, prior to T , the investor needs to make a decision on how much to be consumed

and, in the mean time, how much to be invested in the risky asset, in order to maximize his

expected utility from the accumulated consumption and the terminal wealth. The consumption

rate per unit time at time t is denoted as c(t) and the investment proportion u(t) represents

the fraction of total wealth that is invested in the risky asset at time t. 1 − u(t) is thus the

remaining left in form of the risk-free bond within the framework of this two-asset model. While

the investment proportion on the risky asset u(t) is allowed to be negative, which is financially

interpreted as short selling, the remainder invested in the risk-free asset, 1 − u(t), may also

become negative, which corresponds to unconstrained borrowing at the interest rate r.

With all these being taken into consideration, wealth process X(t) follows the SDE:

dX(t) = u(t)X(t)
dS(t)

S(t)
+ r[1− u(t)]X(t)dt− c(t)dt, (6.2.3)

that is

dX(t) = {[r + u(t)(µ− r)]X(t)− c(t)}dt+X(t)u(t)σdW (t). (6.2.4)

The objective of the Merton problem is to obtain the optimal investment and consumption
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policies, i.e. to determine u(t) and c(t), such that the expected utility from intermediate

consumption and terminal wealth is maximized. Mathematically, such an objective functional

is stated as:

max
(u,c)∈A

E[

∫ T

0

e−ρsU(c(s))ds+ e−ρTB(XT )], (6.2.5)

where E is the expectation operator; U is a function measuring the utility from consumption

c(t) and B is also a function (also referred to as bequest function) measuring the utility from the

terminal wealth XT .
2 ρ is the subjective discount rate or the subjective rate of time preference.3

A is the class of all admissible investment and consumption strategy defined as follows:

Definition 6.2.1. An investment and consumption strategy pair (π, c) is admissible, if the

following conditions are satisfied:

1. The investment strategy π(t) is an R valued, Ft adapted process such that

E

∫ T

0

|u(t)X(t)|2dt <∞, (6.2.6)

where ∥ · ∥ is the Euclidean norm in Rm;

2. The consumption strategy c(t) is an R+ valued, Ft adapted process such that

E

∫ T

0

|c(t)|dt <∞, . (6.2.7)

3. The corresponding objective function is finite, i.e.

|E[
∫ T

0

e−ρsU(c(s))ds+ e−ρTU(X(T )]| <∞, (6.2.8)

In summary, the Merton problem has now been reformulated as an optimal stochastic control

problem with the objective functional (6.2.5), driven by the dynamics of the wealth (6.2.4). The

2In general, utility functions U and B are assumed to be of the same form.
3The fact that the subjective discount rate ρ is possibly different from the risk-free interest rate r results

from the concept of the time preference in economics. In other words, each individual investor may choose a
discount rate tailored for his own situation.
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solution of such an optimal stochastic control problem is discussed in the next subsection.

6.2.2 The HJB equation

To seek a solution of the optimal stochastic control problem formulated in the previous subsec-

tion, we can adopt the dynamic programming method since wealth process X(t) is obviously

Markovian. The fundamental idea of the dynamic programming is to consider a family of opti-

mal control problems with different initial times and states and establish relationships among

these problems in the family, so that they can be solved with the aid of the so-called HJB

equation.

Let (t, x) ∈ [0, T )×R+ and consider the following control system over [t, T ]





dX(s) = {[r + u(s)(µ− r)]X(s)− c(s)}ds+X(s)u(s)σdW (s),

X(t) = x,
(6.2.9)

with the cost functional being defined as

J(c(·), u(·); t, x) = E[

∫ T

t

e−ρsU(c(s))ds+ e−ρTB(X(T ))]. (6.2.10)

The value function is defined as

V (t, x) = max
(u,c)∈Π1[t,T ]×Π2[t,T ]

J(c(·), u(·); t, x). (6.2.11)

According to the dynamic programming method (Yong & Zhou 1999), the value function V (t, x)

satisfies the HJB equation:





max
(u,c)∈R2

ϕ(u, c; t, x) = 0,

V (T, x) = e−ρTB(x), (t, x) ∈ [0, T ]× [0,∞),

(6.2.12)
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where

ϕ(u, c; t, x) =
∂V

∂t
+ {[u(µ− r) + r]x− c}∂V

∂x
+

1

2
x2σ2u2

∂2V

∂x2
+ e−ρtU(c). (6.2.13)

The first-order necessary condition for a regular interior maximum of Equation (6.2.12) is





∂ϕ
∂c

= −∂V
∂x

+ e−ρt ∂U
∂c

= 0,

∂ϕ
∂u

= (µ− r)x∂V
∂x

+ ux2σ2 ∂2V
∂x2

= 0.
(6.2.14)

The optimal pair (u∗, c∗) can be obtained in terms of the value function V (t, x) as





u∗ = −µ−r
xσ2

Vx
Vxx
,

c∗ = (∂U
∂c
)−1(eρtVx),

(6.2.15)

where Vxx :=
∂2V
∂x2

, Vx :=
∂V
∂x

and (∂U
∂c
)−1 is the inverse function of ∂U

∂c
4.

On the other hand, the sufficient second-order condition for a regular interior maximum of

Equation (6.2.12) is 



ϕuu < 0, ϕcc < 0,

det




ϕuu ϕuc

ϕuc ϕcc


 > 0,

(6.2.16)

where ϕuu := ∂2ϕ
∂u2

, ϕcc :=
∂2ϕ
∂c2

, and ϕuc :=
∂2ϕ
∂u∂c

. It is easy to verify that the mixed-derivative

ϕuc is zero. The only thing we need to check is the sign of ϕcc and ϕuu in order to ensure the

obtained value function V (t, x) is indeed a solution to the original HJB equation (6.2.12).

Upon substituting the optimal policies (u∗, c∗) into the HJB equation (6.2.12), we obtain

another PDE system





Vt + rxVx − (µ−r)2
2σ2

V 2
x

Vxx
− (∂U

∂c
)−1(eρtVx)Vx + e−ρtU(c∗) = 0,

V (T, x) = e−ρTB(x), (t, x) ∈ [0, T ]× [0,∞),
(6.2.17)

4It is assumed that utility function U is smooth. Since utility function is concave, we have ∂
2
U

∂c2
< 0. As a

result, ∂U

∂c
is a monotonic function and its inverse function (∂U

∂c
)−1 exists.
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where Vt :=
∂V
∂t
. Although the maximization operator in the HJB equation (6.2.12) has been

eliminated, the new PDE system (6.2.17) still remains nonlinear, which poses fundamental

challenges for closed-form analytical solutions being discovered.

6.2.3 Utility function

Utility function, which is used to characterize an investor’s preference, plays a vital role in

economics. In expected utility theory, there exist various utility functions to describe different

kinds of investors with diversified preferences. Among these numerous utility functions, power

utility function U(x) = xγ

γ
(γ < 1, γ ̸= 0) and logarithmic utility function U(x) = ln x are

critically important, not only for their simplicity and convenience in mathematics, but also

for the perfect economic interpretations. To measure investors’ risk-aversion, Pratt (1964)

presented a functional measure for utility function. The Arrow-Pratt relative risk-aversion of

power utility function and logarithmic utility function are both constant as follows:

δ[U(·)] = −U
′′
(x)

U ′(x)
x =





1− γ, U(x) = xγ

γ
,

1, U(x) = ln x.

Consequently, both power utility function and logarithmic utility function belong to the con-

stant relative risk-aversion (CRRA) class. Due to the nice property of the CRRA class, the

Merton problem with such a utility function has been solved perfectly by Merton (1969) for

both the finite-horizon and the infinite-horizon cases.

In addition to the CRRA class, exponential utility function, defined as

U(x) = −e
−ηx

η
, (6.2.18)

also needs to be explored. The Arrow-Pratt measure of relative risk-aversion for exponential

utility function is

δ[U(·)] = −U
′′
(x)

U ′(x)
x = ηx, (6.2.19)
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which means the investor’s relative risk-aversion is a monotonically increasing function of his

wealth. The more wealth the investor has, the more risk-aversion he shows. Obviously, expo-

nential utility function is a non-CRRA one.

Merton (1969) managed to solve the HJB equation with exponential utility function with

an assumption that the investment horizon is infinite. However, the finite-horizon case remains

unsolved due to the high nonlinearity of the HJB equation. Recently, Zhu & Ma (2018) applied

the homotopy analysis method (HAM) to the finite-horizon case and obtained an explicit series

solution. By observing the numerical results calculated from their truncated series solution,

they found that the optimal investment amount is a monotonically function of time in the

finite-horizon case, instead of constant in the infinite-horizon case. However, their series solu-

tion is still inadequate to explain the monotonicity mathematically and a closed-form solution

with a sufficient degree of smoothness and thus differentiability is expected. After some failed

attempts, we have finally managed to obtain such a closed-form solution through two distinct

approaches: an indirect method and a direct method, which are demonstrated in next section

in details.

6.3 The closed-form analytical solutions

In this section, we present two distinct approaches to derive closed-form analytical solutions:

an indirect method and a direct method. Although the analytical solutions obtained with these

two different methods appear to be of different forms, they are proved to be equivalent with

each other finally.

6.3.1 Indirect method

In the indirect method, we first review another class of parameterized utility functions, the

hyperbolic absolute risk-aversion (HARA) class, which is mathematically defined as

U(x) =
1− γ

ηγ
(α +

η

1− γ
x)γ, η > 0, α +

η

1− γ
x > 0. (6.3.1)
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The corresponding Arrow-Pratt relative risk-aversion is shown as

δ[U(·)] = −U
′′
(x)

U ′(x)
x =

x
α
η
+ x

1−γ
. (6.3.2)

The HARA class has many famous members, including the CRRA class. Obviously, when

α = 0, it degenerates to the CRRA class. Another interesting thing is that exponential utility

function can be considered as a limiting-from of the HARA class given α = 1, i.e.

lim
γ→−∞

U(x) = lim
γ→−∞

1

η
(
1

γ
− 1)[1 +

1
(1−γ)
ηx

]
(1−γ)
ηx

γ ηx
(1−γ) = −1

η
e−ηx. (6.3.3)

Actually, Merton (1971) had ever considered the optimal investment and consumption prob-

lem with the HARA utility function on a finite horizon and derived an analytical solution when

the bequest function B was zero. In that case, the investor was just maximizing his utility

from intermediate consumption since the utility from terminal wealth was ignored. On the

other hand, when the bequest function is also taking the form as

B(x) =
1− γ

ηγ
(α +

η

1− γ
x)γ, (6.3.4)

the PDE system (6.2.17) becomes





Vt + rxVx − (µ−r)2
2σ2

V 2
x

Vxx
+ (1−γ)α

η
Vx + e−ρt (1−γ)

2

ηγ
(eρtVx)

γ
γ−1 = 0,

V (T, x) = e−ρT 1−γ
ηγ

(α + η
1−γx)

γ, (t, x) ∈ [0, T ]× [0,∞).
(6.3.5)

For this case where both the utility from the intermediate consumption and the utility from the

terminal wealth are taken into account, Merton only hinted, in one of the footnotes, that an

analytical solution could be also obtained with bequest function being of some special forms.

However, the details of how to derive such an analytical solution have not been presented in his

paper. Although Merton’s insight for the possibility of the existence of an analytical solution

for the case where the bequest function is non-zero is greatly appreciated, how such a solution

could be constructed remains a challenge. Our research starts with such an interesting question.
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Question 1. Can we derive an analytical solution to the Merton problem subject to the

HARA utility function with a non-zero bequest function, i.e. solving the PDE system (6.3.5)

analytically?5

As part of the contribution to the literature, we have proved the following theorem, which

also provides us an affirmative answer to Question 1.

Theorem 6.3.1. Given η > 0, γ < 0, the value function governed by the PDE system (6.3.5)

is expressed as

V (t, x) = −e−ρt[a1(t)x+ b1(t)]
γ, (6.3.6)

with 



a1(t) = e−A1(T−t) 1−γ
γ [ 1

η
(1− γ)(−γ) 1

γ−1 + B1

A1
(1− eA1(T−t))]

1−γ
γ ,

b1(t) = e−
∫ T
t
A2(s)ds[α(γ−1

ηγ
)

1
γ −

∫ T
t
B2(s)e

∫ T
s
A2(u)dudz],

(6.3.7)

where 



C = (µ−r)2
2σ2 ,

A1 =
ρ

1−γ −
rγ
1−γ −

γC
(1−γ)2 ,

B1 =
1−γ
ηγ

(−γ)
γ

1−γ ,

A2(t) =
ρ
γ
+ C

γ−1
+ 1

η
(1−γ

γ
)2[−a1(t)γ]

γ
γ−1 ,

B2(t) =
α(γ−1)

η
a1(t).

(6.3.8)

Furthermore, it is also the solution to the original HJB equation (6.2.12) when both the utility

function U and the bequest function B are of the HARA form (6.3.1).

Proof. We assume that a trial solution to the PDE system (6.3.5) is of the form as (6.3.6).

After substituting this trial solution into the PDE system, we have an ODE system





ȧ1 =
1
γ
(ρ+ γC

γ−1
− γr)a1 +

1
η
(1−γ

γ
)2(−γ)

γ
γ−1a

2γ−1
γ−1

1 ,

ḃ1 =
1
γ
[ρ+ γC

γ−1
+ (1−γ)2

ηγ
(−a1γ)

γ
γ−1 ]b1 +

α(γ−1)
η

a1,
(6.3.9)

with a1(T ) =
η

1−γ (
γ−1
ηγ

)
1
γ and b1(T ) = α(γ−1

ηγ
)

1
γ .

5Cox & Huang (1989) provided an answer to this question by applying the Harrison-Kreps-Pliska martingale
methodology and obtained an explicit solution (fc. Example 3.4 in their paper). However, their solution is too
complicated to analyze and it is also hard to extend their solution to the exponential case.
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Using a nonlinear transformation h(t) = a
γ

1−γ

1 , we can obtain

ḣ = A1h+B1, (6.3.10)

with h(T ) = 1
η
(γ−1

γ
)

1
1−γ ( 1

1−γ )
γ

1−γ and





A1 =
ρ

1−γ −
rγ
1−γ −

γC
(1−γ)2 ,

B1 =
1−γ
ηγ

(−γ) γ
1−γ .

(6.3.11)

The solution to the ODE system (6.3.10) can be easily shown as

h(t) = e−A1(T−t)[h(T ) +
B1

A1

(1− eA1(T−t))]. (6.3.12)

As a result, we obtain

a1(t) = h(t)
1−γ
γ = e−A1(T−t) 1−γ

γ [
1

η
(
γ − 1

γ
)

1
1−γ (

1

1− γ
)

γ
1−γ +

B1

A1

(1− eA1(T−t))]
1−γ
γ . (6.3.13)

Since the ODE system governing b2(t) is a linear one, it is also easy to obtain the solution as

b1(t) = e−
∫ T
t
A2(s)ds[b1(T )−

∫ T

t

B2(s)e
∫ T
s
A2(u)duds], (6.3.14)

where 



A2(t) =
ρ
γ
+ C

γ−1
+ 1

η
(1−γ

γ
)2[−a1(t)γ]

γ
γ−1 ,

B2(t) =
α(γ−1)

η
a1(t).

(6.3.15)

Consequently, we have obtained the analytical solution (6.3.6) to the PDE system (6.3.5).

Finally, in order to ensure that the value function (6.3.6) is also the solution to the orig-

inal HJB equation (6.2.12), it is necessary to verify the second-order condition (6.2.16), i.e.
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determining the sign of the ϕcc and ϕuu. Given γ < 0, η > 0, we have





ϕuu = −σ2x2e−ρt(γ − 1)γa21(a1x+ b1)
γ−2 < 0,

ϕcc = −e−ρtη(α + ηx
1−γ )

γ−2 < 0.
(6.3.16)

As a result, the value function (6.3.6) is indeed a solution to the HJB equation (6.2.12) when

both the utility function U and the bequest function B are of the HARA form. This completes

the proof.

This theorem gives us an affirmative answer to the first question. In addition, the link

between the HARA utility function and exponential utility function has already been demon-

strated in Equation (6.3.3) through a limit process. Naturally, one wonders whether or not the

solution of the Merton problem with exponential utility function can be obtained by taking the

limit with respect to the parameter γ in the solution of the Merton problem with the HARA

utility function.

Question 2. Can we solve the Merton problem with exponential utility function through taking

the limit with respect to the parameter γ in the case with the HARA utility function?

After some tedious calculations, we finally also provide an affirmative answer to Question

2. Despite some non-trivial procedures are involved when we take the complicated limit, such

a successful limit process would yield an analytical solution, which is summarized in the next

theorem.

Theorem 6.3.2. As the parameter γ tends towards −∞, the limiting-form of the solution

(6.3.6) to the PDE system (6.3.5) is

V (t, x) = −e−ρte ā1(t)x+b̄1(t)
α , (6.3.17)

with





ā1(t) = −ηg(t),

b̄1(t) = −e−h1(t){α[h2(t)H(t) + ln η] +
∫ T
t
eh1(s)[G(s)− αg(s)H(s)]ds},

(6.3.18)
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where 



g(t) = r
1+(r−1)e−r(T−t) ,

h1(t) =
∫ T
t
g(s)ds,

h2(t) = 1 +
∫ T
t
g(s)eh1(s)ds,

f(t) = r−ρ−C
r

g(t)[T − t− 1−e−r(T−t)

r
]− 1,

F (t) = (C + ρ− r)(T − t) + f(t) + ln ηg(t),

D(t) = ρ+ C − 2g(t) + g(t)[ln ηg(t)− F (t)],

H(t) =
∫ T
t
D(s)ds,

G(t) = αg(t)[1 + F (t)].

(6.3.19)

Furthermore, given α = 1, the value function (6.3.17) is indeed the solution to the HJB equation

(6.2.12) when utility function is of exponential form (6.3.3).

The proof is cumbersome and we leave the details in Appendix B.1. Although the solution

obtained in Theorem 6.3.2 is of complicated structure, it is indeed analytical and in a closed

form.

Of course, the completion of discovering a closed-form solution for the Merton problem

with exponential utility function through taking the limit of the solution to the same problem

but with the HARA utility function, which we refer to as an indirect method, has aroused

our curiosity of whether or not there exists a simple and direct method to solve the Merton

problem with exponential utility function on a finite horizon. Fortunately, such a simple and

direct method has also been discovered and is presented in the next subsection.

6.3.2 Direct method

In the above subsection, we have demonstrated an indirect method to solve the Merton problem

with exponential utility function on a finite horizon. However, the solution (6.3.17) obtained in

Theorem 6.3.2 is too complex to analyze although it is indeed analytical and in a closed form.

Another question comes to our mind naturally.

Question 3. Can we provide a simple and direct method to obtain a closed-form analytical

solution to the Merton problem with exponential utility function, instead of adopting the
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indirect method presented in the previous subsection?

As one of the main contributions of this chapter, such a simple and direct method which

leads to a closed-form analytical solution and thus answer to Question 3 are presented here.

Theorem 6.3.3. The value function

V (t, x) = −e−ρtb2(t)
ea2(t)x

η
, (6.3.20)

where 



a2(t) = −ηg(t),

b2(t) =
1
g(t)
e
− C+ρ−r

r−1+er(T−t)
[ e

r(T−t)−1
r

+(r−1)(T−t)]
,

(6.3.21)

is an exact solution of the PDE system





Vt + rxVx − C V 2
x

Vxx
− Vx

η
+ lnVx

η
Vx +

ρt
η
Vx = 0,

V (T, x) = −e−ρT e−ηx

η
, (t, x) ∈ [0, T ]× [0,∞).

(6.3.22)

Furthermore, it is also the solution to the original HJB equation (6.2.12) when both the utility

function U and the bequest function B are of exponential form as (6.3.3).

Proof. Define I(t, x) = eρtV (t, x). The PDE system (6.3.22) can then be rewritten as





It + rxIx − C I2x
Ixx

− Ix
η
+ ln Ix

η
Ix − ρI = 0,

I(T, x) = − e−ηx

η
, ∀(t, x) ∈ [0, T )× [0,∞),

(6.3.23)

where It :=
∂I
∂t
, Ix :=

∂I
∂x
, and Ixx :=

∂2I
∂x2

.

It is assumed that an ansate to the new PDE system (6.3.23) is taking the form as

I(t, x) = −b2(t)
ea2(t)x

η
. (6.3.24)

By substituting this trial solution into the PDE system (6.3.23), we obtain that functions a2(t)
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and b2(t) satisfy the nonlinear ODE system





ȧ2 = −ra2 − a22
η
,

ḃ2 = (C + a2
η
+ ρ)b2 − a2b2

η
ln −a2b2

η
,

(6.3.25)

with a2(T ) = −η and b2(T ) = 1. By introducing a transformation y(t) = 1
a2(t)

, we come to a

linear ODE system

ẏ = ry +
1

η
, (6.3.26)

with y(T ) = − 1
η
. The solution can be easily obtained as

y(t) = −1 + e−r(T−t)(r − 1)

ηr
. (6.3.27)

As a result, we obtain

a2(t) = −ηg(t), (6.3.28)

where g(t) = r
1+e−r(T−t)(r−1)

.

Having obtained function a2(t), we now turn to the other nonlinear ODE system

ḃ2 = (C − g + ρ)b2 + gb2 ln (gb2), (6.3.29)

with b2(T ) = 1. After a nonlinear transformation z(t) = ln(b2(t)) is introduced, the ODE

system becomes

ż = g(t)z + A3(t), (6.3.30)

with z(T ) = 0 and A3(t) = C + ρ− g(t) + g(t) ln g(t).

By applying the method of variation of parameters, we find the solution to the ODE system
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(6.3.30) as

z(t) = − r

r − 1 + er(T−t)

∫ T

t

A3(s)
r − 1 + er(T−s)

r
ds

= − ln g(t)− C + ρ− r

r − 1 + er(T−t)
[
er(T−t) − 1

r
+ (r − 1)(T − t)]. (6.3.31)

Consequently, a closed-form solution to the PDE system (6.3.22) has been finally obtained

through the back substitutions of functions a2(t) and b2(t) into the expression (6.3.20).

Furthermore, to make sure that the value function (6.3.20) is also a solution to the original

HJB equation (6.2.12), the second-order condition (6.2.16) needs to be checked. It is easy to

verify that 



ϕuu = −σ2x2e−ρta22b2
e−a2x

η
< 0,

ϕcc = −e−ρtηe−ρc < 0.
(6.3.32)

Therefore, the value function (6.3.20) is indeed a solution to the original HJB equation (6.2.12)

when both the utility function U and the bequest function B are of exponential form as (6.3.3).

This completes the proof.

It should be remarked that not only is this direct method simpler than the indirect one

presented in the previous subsection, the analytical solution (6.3.20) obtained through the direct

method is also of a much more elegant form than that obtained with the indirect method.

6.3.3 The equivalence theorem and verification theorem

In the previous subsections, we have provided two different analytical solutions to the original

HJB equation (6.2.12) with different methods when utility function is of exponential form. One

would come up with a question about the uniqueness of the solution.

Question 4. Are these two analytical solutions, which appear to be of different forms, be

equivalent with each other? If so, can we provide the rigorous mathematical proof?

According to the theory of stochastic control (Yong & Zhou 1999), the HJB equation (6.2.12)

admits a unique solution. As a result, these two obtained solutions, which are of vastly different
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forms, need to be proven equivalent; such an equivalence is summarized in the following theorem

with the rigorous and yet cumbersome mathematical proof being left in Appendix B.2.

Theorem 6.3.4. (Equivalence) Given α = 1, the solution (6.3.17) obtained with the indirect

method in Theorem 6.3.2 is equivalent to the solution (6.3.20) obtained with the direct method

in Theorem 6.3.3.

According to the analytical solution (6.3.20) obtained with the direct method, the optimal

consumption rate and investment proportion are obtained in the feedback form as





u∗ = −µ−r
xσ2

Vx
Vxx

= µ−r
xσ2ηg(t)

,

c∗ = (∂U
∂c
)−1(eρtVx) = g(t)x− 1

η
ln [g(t)b2(t)],

(6.3.33)

where functions g(t) and b2(t) have been defined before.

Remark 6.3.1. As Merton (1969) pointed out in his seminal paper, we need to verify the

feasibility of the optimal pairs. Since the consumption rate is non-negative, i.e. c∗ ≥ 0, for any

x > 0 and 0 ≤ t ≤ T , we must have

ln [g(t)b2(t)] ≤ 0. (6.3.34)

After some tedious calculations, the above condition is equivalent to a constraint on the pa-

rameters as C + ρ− r ≥ 0.

As shown in Equation (6.3.33), the optimal investment and consumption are obtained in

terms of the value function which is governed by the HJB equation. We also need to verify

such given controls are optimal for the original stochastic optimal control problem. Since the

equivalence between the analytical solutions (6.3.17) and (6.3.20) has been demonstrated in

Theorem 6.3.4, we only provide the verification theorem for the value function (6.3.20) obtained

in Theorem 6.3.3. Before demonstrating the verification theorem, we need a lemma about the

admissibility of the optimal pair.
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Lemma 6.3.1. When the parameters satisfy C + ρ − r ≥ 0, the optimal pair (6.3.33) is

admissible and we also have the family

{e−ηXu∗,c∗ (τ)}τ∈K (6.3.35)

is uniformly integrable, where K denotes the set of all stopping times.

Proof. Corresponding to the optimal pair (6.3.33), the optimal wealth X∗(t) satisfies

dX∗(t) = [A(t)X∗(t) + B(t)]dt+D(t)dW (t), (6.3.36)

where A(t) = r− g(t), B(t) = (µ−r)2
σ2ηg(t)

− 1
η
ln [g(t)b2(t)] and D(t) = µ−r

σ2ηg(t)
. Since g(t) is uniformly

bounded on [0, T ], it is easy to check that all functions A(t), B(t) and D(t) are uniformly

bounded, which guarantees that the SDE (6.3.36) admits a unique strong solution

X∗(t) = el(t)[X(0) +

∫ t

0

e−l(s)B(s)ds+

∫ t

0

e−l(s)D(s)dW (s)], (6.3.37)

where l(t) =
∫ t
0
A(s)ds < 0 and for any p ≥ 1, we also have an estimate

E max
0≤s≤T

|X∗(s)|p ≤ KT (1 + |X(0)|p), (6.3.38)

whereKT is a positive constant depends on T . As a result, the optimal pair (6.3.33) satisfies the

integrable condition (6.2.6) and (6.2.7). To demonstrate the corresponding objective functional

is finite, we have

Ee−ηc
∗(t) = Ee−ηg(t)X

u∗,c∗ (t)+ln g(t)b2(t) ≤ C1Ee
−ηg(t)Xu∗,c∗ (t) ≤ C1{Ee−ηX

u∗,c∗ (t)}g(t), (6.3.39)
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where the second inequality holds according to Jessen inequality. Furthermore, we have

|E[
∫ T

0

e−ρsU(c∗(s))ds+ e−ρTU(Xu∗,c∗(T )]|,

=
1

η
[

∫ T

0

e−ρsEe−ηc
∗
ds+ e−ρTEe−ηX

u∗,c∗ (T )]

≤ C2{
∫ T

0

Ee−ηc
∗
ds+ Ee−ηX

u∗,c∗ (T )}

≤ C3{
∫ T

0

[Ee−ηX
u∗,c∗ (s)]g(s)ds+ Ee−ηX

u∗,c∗ (T )}.

The last step of the proof is to demonstrate that the family {e−ηXu∗,c∗ (τ)}τ∈K is uniformly

integrable, i.e.

Ee−ηX
u∗,c∗ (τ) <∞. (6.3.40)

Generally, by setting M(t) = −η
∫ t
0
e−l(s)D(s)dW (s), we have the following conclusion that

Z(t) = exp(M(t)− 1

2
⟨M⟩t) (6.3.41)

is only a local martingale, where ⟨f⟩t is the quadratic variation process of process f(t). Since

D(t) is a deterministic function and uniformly bounded, the following Novikov condition can

be verified as follows:

E[e
1
2
⟨M⟩t ] = E[e

1
2
η2

∫ T
0 e−2l(s)D2(s)ds] <∞. (6.3.42)

Consequently, Z(t) is indeed a martingale. Therefore, we have

Ee−η
∫ t
0 e

−l(s)D(s)dW (s) = e
1
2
η2

∫ t
0 e

−2l(s)D2(s)ds. (6.3.43)
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To prove (6.3.40), we have

Ee−ηX
u∗,c∗ (τ)

≤ C1Ee
−η

∫ τ
0 el(τ)−l(s)D(s)dW (s)

≤ C1[Ee
−η

∫ τ
0 e−l(s)D(s)dW (s)]l(τ) (Jessen’s inequality)

≤ C1[e
−η

∫ τ
0 e−2l(s)D2(s)ds]l(τ) (Equation (6.3.43))

<∞.

As a result, the corresponding objective functional is finite, which demonstrates the admissi-

bility of the optimal pair (π∗, c∗) given by (6.3.33). This completes the proof.

After demonstrating that the optimal pair (π∗, c∗) given by (6.3.33) is admissible, we now

provide our verification theorem.

Theorem 6.3.5. (Verification) Suppose that the wealth processXt follows the dynamics (6.2.3)

and the value function V (t, x) is expressed in Equation (6.3.20) in Theorem 6.3.3. Then, for

any admissible control pair (u, c), we have

V (t, x) ≥ J(u, c; t, x). (6.3.44)

Furthermore, when the parameters satisfy C + ρ − r ≥ 0, the admissible pair (u∗, c∗) given in

the feedback form (6.3.33), is optimal, i.e.

V (t, x) = J(u∗, c∗; t, x). (6.3.45)

Proof. Since V (t, x) satisfies the HJB equation (7.2.9), the auxiliary function I(t, x) = eρtV (t, x)

is governed by 



max
(u,c)∈R2

{Lu,cI(t, x) + U(c)} = 0,

I(T, x) = − e−ηx

η
, ∀(t, x) ∈ [0, T )× [0,∞),

(6.3.46)

where Lu,cI(t, x) = ∂I
∂t
+{[u(µ− r)+ r]x− c} ∂I

∂x
+ 1

2
x2σ2u2 ∂

2I
∂x2

−ρI. Define a localizing sequence
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of stopping times as follows:

τN := T ∧ inf{t > 0| |X(t)| ≥ N}, N = 1, 2, · · · . (6.3.47)

After applying Ito’s formula to function e−ρsI(s,X(s)) on [t, τN ], we have

e−ρτ
N

I(τN , X(τN))) = e−ρtI(t, x) +

∫ τN

t

e−ρsLu,cI(s,X(s))ds+

∫ τN

t

{· · · }dW (s). (6.3.48)

Since function I(s,X(s)), and all the coefficients and derivatives in Lu,c[I(s,X)] are bounded

on s ∈ [0, τN ] because I(t, x) ∈ C1,2([0, T ]×R). After applying Dynkin’s formula to Equation

(6.3.48) and taking conditional expectation on both sides, we obtain

I(t, x) = E[e−ρ(τ
N−t)I(τN , X(τN))|X(t) = x]− E[

∫ τN

t

e−ρ(s−t)Lu,cI(s,X(s))ds]. (6.3.49)

Because I(t, x) solves the HJB equation (6.3.46), we have

Lu,cI(t, x) + U(c) ≤ 0. (6.3.50)

Consequently, Equation (6.3.49) becomes

I(t, x) ≥ E[

∫ τN

t

e−ρ(s−t)U(c(s))ds+ e−ρ(τ
N−t)I(τN , X(τN)))|Ft], (6.3.51)

i.e

V (t, x) ≥ E[

∫ τN

t

e−ρsU(c(s))ds+ e−ρτ
N

I(τN , X(τN)))|Ft] (6.3.52)

From Lemma 6.3.1, we have the family {e−ηXu,c(τ)}τ∈K is uniformly integrable. As a result, we

have

E[V (τ,X(τ))] ≤ C1E[e
−ηg(τ)X(τ)] ≤ C1E[e

−ηX(τ)] <∞. (6.3.53)
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By taking limit, we come to

lim
N→∞

E[e−ρτ
N

V (τN , X(τN)))|Ft] = E[e−ρTU(X(T ))|Ft] (6.3.54)

On the other hand, it is noted that

0 ≤
∫ τN

t

e−ρse−ηc(s)ds ↑
∫ T

t

e−
∫ s
t
ρ(u)due−ηc(s)ds. (6.3.55)

According to Condition (6.2.8), we apply monotone convergence theorem to produce

lim
N→∞

E[

∫ τN

t

e−
∫ s
t
ρ(u)duU(c(s))ds|Ft] = E

∫ T

t

[e−
∫ s
t
ρ(u)duU(c(s))ds|Ft]. (6.3.56)

Combining (6.3.52), (6.3.54) and (6.3.56), we come to

V (t, x) ≥ E

∫ T

t

[e−ρsU(c(s))ds+ e−ρTU(X(T ))|Ft] = J(u, c; t, x) (6.3.57)

In order to prove the equality (7.3.1), we replace (u(·), c(·)) by the optimal pair (u∗, c∗)

defined by Equation (6.3.33) in the above steps. Then all the inequalities become equalities,

which completes the proof.

Before leaving this section, we would re-emphasize the rareness of closed-form analytical

solutions for the Merton problem. As shown in the literature review, closed-form analytical

solutions are available with at least one of the following assumption: (1) the utility function

belongs to the constant relative risk aversion (CRRA) class; (2) the utility function is defined

over terminal wealth only and consumption is not allowed; (3) the investment horizon is infinite.

This chapter presents a closed-form analytical solution, for the first time, to the Merton problem

without any one of these assumptions listed above. With the new discovered analytical solution,

we can explicitly explore more economic insight about the optimal policies, which have not

been analyzed before. Some preliminary results of such an exploration are reported in the next

section.
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6.4 Discussions

In this section, some economic interpretations are presented with the help of our analytical

solution (6.3.20) obtained from the direct method. First of all, we show that the optimal poli-

cies obtained via our analytical solution on a finite horizon are consistent with those obtained

by Merton (1969) on an infinite horizon, with the latter being demonstrated as a special case

of the former in a limit process of allowing time horizon to become infinite. Then the opti-

mal investment proportion and optimal consumption are discussed from both economic and

mathematical aspects.

6.4.1 Consistency between the finite and infinite cases

In the literature, Merton (1969) managed to produce an analytical solution when utility function

is of exponential form with an assumption that investment horizon is infinite. The assumption

has simplified the HJB equation to be a nonlinear ODE and made it possible to obtain an

analytical solution in that case. However, this assumption is impractical in reality and only

holds in a perfect mathematic model. Here, our newly derived analytical solution would now

enable us to explore the economic insight associated with the Merton problem defined on a

finite horizon.

According to the first-order condition (6.2.15), the optimal investment proportion and con-

sumption rate are obtained in the feedback form as





u∗ = µ−r
xσ2ηg(t;T )

,

c∗ = g(t;T )x− 1

η
ln [g(t;T )b2(t;T )],

(6.4.1)

with the time horizon T being added as a parameter. By taking the limit of T approaching

infinity, we have





lim
T→∞

g(t;T ) = lim
T→∞

r
1+(r−1)e−r(T−t) = r,

lim
T→∞

b2(t;T ) = lim
T→∞

1
g(t;T )

e
− C+ρ−r

r−1+er(T−t)
[ e

r(T−t)−1
r

+(r−1)(T−t)]
= 1

r
e−

C+ρ−r
r .

(6.4.2)
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Accordingly, the optimal policies become





lim
T→∞

u∗(t;T ) = µ−r
xσ2ηr

,

lim
T→∞

c∗(t;T ) = rx+ C+ρ−r
ηr

,
(6.4.3)

which are in perfect agreement with the two formulae derived by Merton (1969) for the infinite-

horizon case. Clearly, the infinite-horizon case is indeed a degenerated case of the finite horizon

one.

However, what is really interesting would be the differences between the finite-horizon case

and the Merton’s infinite-horizon case. In the following, we would analyze the optimal policies

in the finite-horizon case and present some interesting economic interpretations and discussions,

according to the analytical solution (6.3.20).

6.4.2 Optimal investment proportion u∗

When utility function belongs to the CRRA class, Merton (1969) had come to a conclusion

that the optimal investment proportion u∗ is constant. Since exponential utility adopt in this

chapter is not a member of the CRRA class, the corresponding optimal polices are expected to

be different from those in Merton’s case with the CRRA utility function.

Instead of being constant, the optimal investment proportion u∗ now is inversely propor-

tional to current wealth x as shown in Equation (6.4.1). Mathematically, it implies that the

optimal investment proportion u∗ would be affected by the current wealth. From economical

aspects, that is because the risk aversion of the investor would also be affected by his wealth

as shown in Equation (6.2.19). The more wealth the investor has, the more risk aversion he

shows. As wealth becomes extremely large, the risk aversion of the investor also goes up to

a very high level. Accordingly, the optimal investment proportion u∗ approaches zero, which

implies that all his wealth is allocated on risk-free asset to avoid the risk.

From Equation (6.4.1), it is obvious that the sign of u∗ depends on the sign of risk premium

µ−r. Further discussions about the optimal investment proportion u∗ can be divided into three

cases based on the sign of the proportion u∗ on the risky asset and the sign of the proportion
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1− u∗ on the risk-free asset.

Case 1. u∗ > 1

In this case, the investment proportion on risk-free asset 1 − u∗ is negative. The investor

would borrow money at the interest rate r to realize a negative investment on risk-free asset

and invest all his wealth, including money collected by shorting the risk-free asset, on the

risky asset. This behavior appears to be weird but reasonable from both mathematical and

economic aspects. According to Equation (6.4.1), there exist two situations that would make

u∗ be greater than 1: a large enough risk premium µ− r and a small enough current wealth x

with a positive risk premium µ−r. For the situation where risk premium µ−r is large enough,

the investor would like to make profits by investing on the risky asset although they may take

the corresponding risk. Such a high risk premium gives the investor a great motivation to

overlook the risk. For the situation where risk premium µ− r is positive but not large enough,

a sufficiently small wealth x can also result in u∗ being greater than 1. We have to come back

to the risk aversion of the investor as shown in Equation (6.2.19), from which it is observed

that the risk aversion almost vanishes when x shrinks to zero. In other words, the investor

does not care the risk too much when his wealth x is very small. In this situation, the investor

would also like to borrow as much as possible and leave all his wealth on the risky asset to earn

a small but positive risk premium. As a result, either a sufficiently large risk premium µ− r or

a sufficiently small wealth x with a positive risk premium can result in u∗ being greater than

1, which implies that the investor would heavily invest on the risky asset instead of investing

on both the risky and risk-free assets in order to maximize his total utility.

Case 2. 0 ≤ u∗ ≤ 1

In this case, both the investment proportion on the risky asset u∗ and on the risk-free asset

1−u∗ are non-negative. In other words, the investor allocates his wealth on both the risky and

risk-free assets, respectively. A non-negative u∗ corresponds to a non-negative risk premium

µ − r, i.e. the expected return on the risky asset is not less than that on the risk-free asset.

Consequently, one should allocate some wealth on the risky asset in order to earn such a positive
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risk premium. However, risk premium µ − r is not large enough to result in u∗ being greater

than 1 just as in Case 1. Therefore, there is not enough incentive to motivate the investor to

allocate all his wealth on the risky asset. The investor would also like to make some investment

on the risk-free asset in order to manage the risk. Contrary to the case above, in which one

needs to even short the risk-free asset and invest all his wealth on the risky asset, it is optimal

in this case to invest on both the risky and risk-free assets in order to trade off between returns

and risk.

Case 3. u∗ < 0

In this case, a negative u∗ implies that the risk premium µ − r is also negative. In other

words, the expected return through an investment on the risk-free asset is expected to exceed

that through an investment on the risky asset. Furthermore, there is no risk associated with

the risk-free asset and thus the investor would naturally prefer the risk-free asset to the risky

one. Such a preference can be realized by shorting the risky asset and then allocating all his

wealth on the risk-free asset. In this case, the investor would put all his wealth on one side

again just as in Case 1. The difference is that the investor chooses the risk-free asset as the

optimal asset instead of the risky asset in Case 1.

The optimal investment proportion u∗ shown in Equation (6.4.1) has enabled us to not

only carry out the above discussions on the economic insight of the investment proportion

with different cases, but also explore the difference of the optimal investment policies between

the finite-horizon and the infinite-horizon cases. Although u∗ is inversely proportional to the

wealth x in both the finite-horizon and the infinite-horizon cases, there still exists a significant

difference: the coefficient of proportionality is constant in Merton’s infinite-horizon case, while it

is a time-dependent one in the finite-horizon case. Unlike the infinite-horizon case, in which the

optimal amount invested in the risky asset, u∗x, maintains a constant, the optimal investment

amount for the finite-horizon case now varies with time as Equation (6.4.1) can be rewritten as

u∗x =
µ− r

σ2ηg(t;T )
, where g(t;T ) is a monotonically increasing function of time t.

To further demonstrate how the optimal policies change with time t in the finite-horizon

case, the optimal investment proportion u∗ and the optimal investment amount u∗x are plotted,
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respectively, in Figure 6.1 with parameters being defined as follows:

µ = 0.1, r = 0.05, σ = 0.5, η = 1, T = 1, ρ = 0.

Since x = 0 is a singular point for the optimal investment proportion u∗, we only figure out the

curves on the domain [0.02, 1].

From Figure 6.1(a), although the optimal investment proportion u∗ is inversely proportional

to the wealth, the curvature of the curves are different at the different times because the

coefficient of proportionality is a function of time t. From Figure 6.1(b), one can also observe

that the optimal investment amount u∗x does not change with wealth x once time t is fixed.

However, the optimal investment amount u∗x changes with time t monotonically as shown in

Figure 6.1(b). In other words, the optimal amount invested in the risky asset is reduced as

time goes by; while it is a constant from Equation (6.4.3) in the Merton’s infinite-horizon case.

Actually some results of Figure 6.1 have been pointed out by Zhu & Ma (2018), who applied

the homotopy analysis method (HAM) to the Merton problem with exponential utility function

on a finite horizon and obtained a solution of an infinite series form. They also found that the

optimal investment amount u∗x is a decreasing function of time t based on the numerical

results from their truncated series solution. However, their series solution can not explain the

monotonicity mathematically. Here our closed-form analytical solution has a great advantage

over numerically-produced results. The monotonicity of the optimal investment amount u∗x

can be easily stated in the following proposition.

Proposition 6.4.1. For an investor with exponential utility function on a finite horizon, the

optimal investment amount u∗x is a decreasing function of time t when risk premium µ− r is

positive; while it becomes an increasing function of time t when risk premium is negative.

Proof. It is easy to obtain

∂

∂t
(u∗x) = − µ− r

σ2ηg2(t;T )

∂g(t;T )

∂t
= − µ− r

σ2ηg2(t;T )

r2(1− r)e−r(T−t)

[1 + (r − 1)e−r(T−t)]2
. (6.4.4)
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(a) Optimal investment proportion u∗.
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Figure 6.1: Optimal investment proportion and amount.
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Obviously, when risk premium µ − r is positive, ∂
∂t
(u∗x) is negative, which implies that the

optimal investment amount is a decreasing function of time. When µ − r is negative, ∂
∂t
(u∗x)

becomes positive and the optimal investment amount now becomes an increasing function of

time.

Remark 6.4.1. According to Proposition 6.4.1, the optimal investment amount is a function

of time t in the finite case; while it is constant in Merton’s infinite case from Equation (6.4.3).

This is a significant difference between the finite-horizon case and the infinite-horizon case with

the same exponential utility function.

Since the Merton problem in this chapter is defined on a finite horizon, we are interested in

the question how the time horizon T affects the optimal investment proportion u∗, i.e., the hori-

zon effect of the optimal investment proportion u∗. Such an examination of the horizon effect

is motivated by the classic work of Samuelson (1969) and Merton (1969). They concluded that

an investor with the CRRA utility should choose a constant investment proportion, regardless

of investment horizon. However, more and more later empirical evidences suggest that the

horizon does paly an important role in practice. For example, Brennan et al. (1997) compared

the optimal portfolio proportions of an investor with a long horizon and those of an investor

with a short horizon and found that they are significantly different. Barberis (2000) found

that there are enough empirical evidences to support that an investor with a longer horizon

would allocate more to stocks. Kim & Omberg (1996) and Wachter (2002) also theoretically

reached some similar conclusions from their models, respectively. In the following proposition,

we demonstrate the horizon effect of optimal investment proportion in our model.

Proposition 6.4.2. For an investor with exponential utility function on a finite horizon, the

optimal investment proportion u∗ is an increasing function of horizon T if risk premium µ−r is

positive; while it becomes a decreasing function of horizon T if risk premium µ− r is negative.

Proof. To analyze the horizon effect of the optimal investment proportion, we only need to
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explore the derivative of u∗ with respect to horizon T . Given µ− r > 0, we have

∂u∗

∂T
= − µ− r

xσ2ηg(t;T )2
∂g(t;T )

∂T
=

(µ− r)(1− r)e−r(T−t)

xσ2η
> 0. (6.4.5)

As a result, the optimal investment proportion u∗ is an increasing function of horizon T . Simi-

larly, when risk premium µ− r is negative, we have
∂u∗

∂T
< 0, which indicates that the optimal

investment proportion u∗ is a decreasing function of horizon T . This completes the proof.

Remark 6.4.2. A remarkably significant difference between our model and Merton (1969) lies

in the utility function. In Merton’s finite-horizon case where utility function is a member of the

CRRA class, he concluded that the optimal investment proportion is independent of horizon

time T , i.e. the horizon effect does not appear; while the time horizon effect does really exist

in our model where utility function is of exponential form.

6.4.3 Optimal consumption rate c∗

After discussing the optimal investment proportion u∗ above, we now come to the other key

component of the Merton problem, the optimal consumption rate c∗, which is in the feedback

form as shown in Equation (6.4.1). Obviously, it is an affine function of wealth x and is consist

of two components. The first part corresponds to the investor’s wealth; while the second part

is a constant, which represents the basic consumption.

First of all, at any given time t, we consider the sensitivity of the optimal consumption

rate c∗ with respect to wealth x, which is also called marginal propensity to consume (MP) in

economics. From Equation (6.4.1), the MP is defined as

∂c∗

∂x
= g(t) =

r

1 + (r − 1)e−r(T−t)
> 0. (6.4.6)

In other words, an increase in wealth x allows the investor to afford more consumption, which

is known as positive wealth effect economically. In addition, g(t) is also an increasing function

of time, which indicates that the MP increases as time t approaches horizon T .
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In addition to the MP, there is also another important economic concept, average propensity

to consume (ACP), which is measured by the consumption-wealth ratio
c∗

x
. Merton (1969)

observed that such a ratio is constant when utility function belongs to the CRRA class, which

means that the investor would consume a constant proportion of his wealth at any time t.

When utility function is of exponential form, the optimal consumption-wealth ratio in the

finite-horizon case becomes

c∗

x
=

r

1 + (r − 1)e−r(T−t)
+

1

xη

C + ρ− r

er(T−t) + r − 1
[
er(T−t) − 1

r
+ (r − 1)(T − t)]; (6.4.7)

while its counterpart in the Merton’s infinite-horizon case is

c∗

x
= r +

C + ρ− r

ηr

1

x
. (6.4.8)

Proposition 6.4.3. For the Merton problem defined on a finite horizon with exponential utility

function, at any given time t prior to T ,

1. when C + ρ − r > 0, the optimal consumption-wealth ratio is a decreasing function of

wealth x;

2. when C + ρ− r = 0, the optimal consumption-wealth ratio is independent of wealth x;

3. when C + ρ − r < 0, the optimal consumption-wealth ratio is an increasing function of

wealth x.

Furthermore, as wealth x tends toward infinity, we have

lim
x→∞

c∗

x
= g(t). (6.4.9)

Proof. According to the Taylor’s Theorem, we have

er(T−t) = 1 + r(T − t) +
r2(T − t)2

2
eξ, ξ ∈ [0, r(T − t)]. (6.4.10)
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Consequently, we obtain

er(T−t) − 1

r
+ (r − 1)(T − t) = r(T − t) +

r(T − t)2

2
eξ > 0, (6.4.11)

and

er(T−t) + r − 1 = r(T − t+ 1) +
r2(T − t)2

2
eξ > 0. (6.4.12)

According to Equations (6.4.11), (6.4.12) and (6.4.7), the monotonicity of consumption-wealth

ratio with respect to wealth x depends on the sign of C + ρ − r. Such a ratio is a decreasing

function of wealth x if C + ρ − r > 0; while it becomes an increasing function of wealth if

C + ρ − r < 0. Furthermore, it is easy to take the limit with respect to x to obtain Equation

(6.4.9). This completes the proof.

Remark 6.4.3. When utility function belongs to the CRRA class, the optimal consumption-

wealth ratio is constant, which implies that the MP is equal to the ACP (Merton,1969). From

Equation (6.4.7), the optimal consumption-wealth ratio for exponential utility function is no

longer constant. For any fixed time t, the monotonicity of the ratio with respect to wealth

depends on the sign of C + ρ − r mathematically. It is also interesting to note that the ACP

converges to the MP as wealth x approaches infinity from Equation (6.4.9) given fixed other

parameters.

Although there are three scenarios to discuss mathematically as shown in Proposition 6.4.3,

we only need to explain the first two scenarios, because the last one has been discarded by

Remark 6.3.1 for its corresponding consumption rate may be negative. Some figures are plotted

to show how the optimal consumption-wealth ratio changes with wealth x at the fixed time

t = 0.5, which demonstrates the results in Proposition 6.4.3 more clearly. In Figure 6.2, the

parameters are set as follows:

µ = 0.1, r = 0.05, σ = 0.5, η = 1, T = 1.

Again, we just show the behavior over [0.02, 1] for x = 0 is a singular point. In order to make
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Figure 6.2: Optimal consumption-wealth ratio
c∗

x
varies with wealth x with t = 0.5.
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comparisons, we also plot the optimal consumption-wealth ratio in the Merton’s infinite case.

From Figure 6.2, it is noted that the optimal consumption-wealth ratio may be negative when

C + ρ− r < 0 in both finite and infinite horizon cases, which implies that discarding the case

where C + ρ− r < 0 is reasonable. When C + ρ− r is non-negative, the optimal consumption-

wealth ratio is a non-increasing function of wealth in both finite-horizon and infinite-horizon

cases.

As shown in Equation (6.4.6), the MP is positive and the investor would consume more as

his wealth increases. In other words, there will be a positive ∆C for an increased wealth ∆X.

However, the increased wealth ∆X may not be consumed totally. He would allocate part of the

increased wealth on investment in order to accumulate more wealth so that he can consume in

the future. Economically, consumption and investment are actually considered as two substi-

tute goods for an investor. When the increased amount in wealth ∆X is fixed, there would be a

substitution effect on how to allocate this increased amount: the more is allocated for consump-

tion, the less would be left for investment. Actually, the consumption-wealth ratio provides

a mechanism to examine how an investor trades off between consumption and investment ac-

cording to his own preference (Wachter 2002). It has been clearly manifested in Proposition

6.4.3 how to trade off between consumption and investment along the wealth direction in our

model. For the first two scenarios where C + ρ− r is non-negative, mathematically, we have

c∗

x
= g(t) +

1

xη

C + ρ− r

er(T−t) + r − 1
[
er(T−t) − 1

r
+ (r − 1)(T − t)] ≥ g(t) =

∂c∗

∂x
, (6.4.13)

according to Equations (6.4.11) and (6.4.12). Such an inequality indicates that the MP is less

than the ACP, which implies that the former would drive the latter to move down. That is the

reason why the optimal consumption-wealth ratio, or the ACP, is a non-increasing function of

wealth x when C + ρ− r ≥ 0.

Clearly, for a fixed interest rate r and a fixed Sharped ratio
µ− r

σ
, there is a critical

subjective rate of time preference, ρc = r − C, beyond which the monotonicity of the optimal

consumption-wealth ratio has changed. There appears to be an interesting paradox in the first
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scenario of Proposition 6.4.3, where a sufficiently large subjective rate of time preference implies

that the more wealth an investor has, the “proportionally” less consumption he is willing to

commit6. This would appear to be at odds with the definition of the subjective rate of time

preference, as a larger subjective rate of time preference implies that one should consume more

now than in the future. After a short period of confusion, a perfect explanation to this appear-

to-be conflicting observation rests with the optimal process displayed in Equation (6.2.5). For

a large subjective rate of time preference ρ, one may indeed “proportionally” consume less

during the entire consumption process, leaving enough money to invest so that there would be

a sufficiently large terminal wealth to be added to the entire optimization process. Of course,

the balance between consumption and investment is nonlinearly governed by Equation (6.2.5).

Finally, let us now examine the behavior of the optimal consumption rate along the time

direction, which depends on the region of the parameter space that the given parameters lie in.

This is summarized in the following proposition.

Proposition 6.4.4. Given a set of parameters C, r, x, η, ρ, T and C + ρ− r ≥ 0, let p(t) be a

function defined as

p(t) = −er(t−T ) + r

1− r
(t− T ) +

r2xη

(1− r)(C + ρ− r)
+

1− 2r

(1− r)2
. (6.4.14)

1. If the “discriminant ” function p(t) satisfies that p(0) ≥ 0, the optimal consumption rate

is an increasing function of time for 0 ≤ t ≤ T .

2. If p(0) < 0 and p(T ) > 0, let t̄ be the root of the equation p(t) = 0. Then the optimal

consumption rate is a decreasing function of time for 0 < t < t̄; while it is an increasing

function of time for t̄ < t < T .

3. If p(T ) ≤ 0, the optimal consumption rate is a decreasing function of time for 0 ≤ t ≤ T .

Proof. To explore how the optimal consumption rate changes over time t, we take the first-order

6The reason we say “proportionally less” is because the absolute total consumption still increases as x

becomes larger. But, it is the ratio of c
∗

x
that is decreasing as x increases, or the amount spent on consumption

is proportionally less.
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derivative with respect to time t

∂c∗

∂t
=

(C + ρ− r)(1− r)2er(T−t)

η[r − 1 + er(T−t)]2
p(t), (6.4.15)

where p(t) is defined in Equation (6.4.14). Furthermore, we can easily show that

p′(t) = −rer(t−T ) + r

1− r
≥ p′(T ) =

r2

1− r
> 0.

Thus, p(t) is an increasing function of time t.

As a result of the monotonicity of function p(t), the parameter space is divided into three

regions according to the sign of p(0) and p(T ): 1) if p(0) ≤ 0, p(t) is non-negative for 0 ≤ t ≤ T ;

2) if p(0) < 0, p(T ) > 0, let t̄ be the root of the equation p(t) = 0. Then p(t) is negative for

0 < t < t̄ and positive for t̄ < t < T ; 3) if p(T ) ≥ 0, p(t) is non-positive for 0 ≤ t ≤ T . From

Equation (6.4.15), the sign of
∂c∗

∂t
is determined by the sign of function p(t), which completes

the proof.

To demonstrate the influence of parameters on the monotonicity of the optimal consumption

rate as summarized in Proposition 6.4.4, let’s take the horizon effect of the optimal consumption

rate as an example. That is, we explore how the investment horizon T affects the monotonicity

of the optimal consumption rate along the time direction when other parameters are fixed. In

Figure 6.3, we plot out how the optimal consumption rate changes with different values of T

where the other parameters are set as follows

µ = 0.1, r = 0.05, σ = 0.5, η = 1, ρ = 0.09, x = 1.

From Figure 6.3, it is obvious that the allocation of the optimal consumption rate along

the time direction is significantly different when the time horizon T takes different values,

which clearly demonstrates the horizon effect. In Figure 6.3(a) where T = 1, the optimal

consumption rate is an increasing function of time t, which implies that these parameters lie in

the first region stated in Proposition 6.4.4. On the other hand, in Figure 6.3(b) where T = 20,
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Figure 6.3: Optimal consumption rate c∗ varies with time t.
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the optimal consumption rate is a decreasing function for 0 < t < t̄ and an increasing function

for t̄ < t < T , which is obviously the second case stated in Proposition 6.4.4. The reason

for these different behaviors with different time horizon T is that for a long horizon T , the

investor would allocate more money on investment to accumulate wealth in his early life and

thus the optimal consumption rate would decrease in his early life. When he enters his late life

or approaches retirement, consumption would become more important than investment and the

optimal consumption rate starts increasing. For a short horizon T , the optimal consumption

rate would always increase with time because the horizon is so short that the investor does not

have enough time for the accumulation of his wealth; it is therefore more reasonable for him to

just keep increasing the optimal consumption rate from the very beginning.

While the first two cases stated in Proposition 6.4.4 have been indeed numerically realized,

it is interesting for us to notice that the third case is never observed with the given parameters

above, no matter how many different values of T we have tried on. Later on, we realized that

there is actually a nice mathematical explanation to this. According to Proposition 6.4.4, the

third case appears only when

p(T ) = −1 +
r2xη

(1− r)(C + ρ− r)
+

1− 2r

(1− r)2
=

r2xη

(1− r)(C + ρ− r)
− r2

(1− r)2
(6.4.16)

is non-positive. Obviously, the sign of Equation (6.4.16) is already independent of T . As

shown in Equation (6.4.16), when the value x is sufficiently small, p(T ) could be negative. To

numerically display the third case stated in Proposition 6.4.4, we chose a small value of wealth

x = 0.02 and took the remaining parameters as:

µ = 0.1, r = 0.05, σ = 0.475, η = 1, ρ = 0.09, T = 1.

The results are displayed in Figure 6.4, which clearly shows that the optimal consumption

rate is decreasing with time. Now it is even more interesting to note that the behaviors displayed

in Figure 6.4 and Figure 6.3(a) are totally different when only the value of wealth x is changed
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Figure 6.4: Optimal consumption-wealth ratio with x = 0.02.

from x = 1 to x = 0.02; while the other parameters, including time horizon, are the same.

An explanation for the behavior of the consumption rate in Figure 6.4 is that the investor has

so little wealth that there is not enough motivation to invest. As a result, he would prefer

consumption to investment. The choice of more consumption and less investment would lead

to a further decrease of the total wealth and the less available wealth would lead to a further

reduction of consumption. Therefore, such a spiral-down of consumption is manifested in Figure

6.4 in the form of a mathematically decreasing function.

6.5 Conclusions

In this chapter, a closed-form analytical solution to the Merton problem with exponential

utility function being defined over both intermediate consumption and terminal wealth on a

finite horizon is added to the literature for the first time. This is achieved through two different

approaches with one being an indirect method and the other one being a simple and direct

method. The solutions obtained with different methods appear to be of different forms but

finally have been demonstrated to be actually equivalent.
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Utilizing the newly obtained solution, we are able to provide some interesting economic

interpretations. On one hand, the obtained result for the finite-horizon case is consistent with

that of the infinite-horizon case, with the latter being demonstrated as a special case of the

former. On the other hand, there are some significant differences between the finite-horizon

case and the infinite-horizon case, which can be summarized as

• while the optimal investment amount u∗x in Merton’s infinite-horizon case is constant, it

varies monotonically with time t in the finite-horizon case and the monotonicity depends

on the sign of risk premium;

• while there is no horizon effect in Merton’s infinite-horizon case, the horizon effect of

optimal policies is clearly in presence in the finite-horizon case, which has been explained

both from mathematical and economic viewpoints.

Finally, comparing with the other closed-form solutions available in the literature for the

finite-horizon case, the optimal policies can also be quite different if utility functions are of

different forms. When utility function belongs to the CRRA class, the optimal investment

proportion u∗ and the optimal consumption-wealth ratio
c∗

x
are both constant, whereas they

are functions of wealth x and time t when utility function is of exponential form, as newly

presented in this chapter.



Chapter 7

A monotone numerical scheme for the

HJB equation arising from the Merton

problem

7.1 Introduction

One of the well-known topics in mathematical finance is the continuous-time portfolio opti-

mization problem (also referred to as the Merton problem). In a financial market consisting of

a bond that grows at a risk-free interest rate and a risky asset that is modelled as a geometric

Brownian motion with constant drift rate and volatility, an investor needs to make a decision on

how to allocate his wealth in order to maximize his utility from terminal wealth. Merton (1969)

formulated it as a stochastic optimal control problem, which could be solved by the dynamic

programming method with a fully nonlinear Hamilton-Jacobi-Bellman (HJB) equation.

In the literature, only when utility function is of some special forms, can an analytical

solution to the HJB equation be obtained. With utility function being of power or logarithm

form, Merton (1969) managed to produce an analytical solution for both of them belonging to

the constant relative risk aversion (CRRA) class. Merton (1971) also obtained an analytical

solution when utility function was a member of the hyperbolic absolute risk aversion (HARA)

155
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class. However, in addition to these special classes, varieties of utility functions have been

presented to characterize diversified investors in the expected utility theory. It is necessary to

explore how to solve the HJB equation with general utility functions which include but are not

limited to these special forms.

Economically, the investor characterized by a CRRA utility function would not change his

attitude to the risk because his relative risk aversion is constant no matter how much money

he has. However, more and more empirical evidences show that the investor’s attitude to the

risk may change with his wealth as Brunnermeier & Nagel (2008) and Liu et al. (2014) suggest.

A mixed utility function presented by Fouque et al. (2015) is obviously not a member of the

CRRA class for his relative risk aversion being not constant. Due to its complicated form, there

is still no analytical solution to the HJB equation with such a mixed utility function and the

optimal strategy is not obtained, either. It is natural to ask how to solve the HJB equation with

such a mixed power utility function and how to interpret its corresponding optimal strategy.

Of course, analytical solution is preferred when we try to solve the HJB equation. In the

literature, Merton (1969, 1971) successfully produced analytical solutions with utility function

being of a member of the CRRA and HARA class. Karatzas et al. (1987), Karatzas & Shreve

(1998) tried to solve the Merton problem with very general conditions on the utility function.

They successfully applied the Harrison-Kreps-Pliska martingale method to solve the Merton

problem with the HARA utility function. Unfortunately, when utility function is of mixed

power form presented by Fouque et al. (2015) , analytical solution is still unavailable so far.

Recently, Zhu & Ma (2018) adopted the homotopy analysis method (HAM) to produce an

explicit series solution to the Merton problem with the mixed power utility function. However,

their explicit series solution has to be truncated when numerical results are computed for it is

of series form.

As an alternative, an efficient, convergent and stable numerical scheme, which can deal

with the HJB equation with general utility functions, is presented in this chapter for these

cases where analytical solution is unavailable. Unlike numerical schemes designed for linear

PDE where the convergence and stability are easily analyzed, it is difficult to guarantee the
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convergence of a numerical scheme for the fully nonlinear PDE. In many cases, classical solution

to the fully nonlinear HJB equation does not exist and the solution that we are looking for is a

viscosity one (Crandall et al. 1992). In order to guarantee convergence to the viscosity solution,

the numerical scheme must be consistent, stable, and monotone (Barles & Souganidis 1991). A

positive coefficient method is usually adopted to construct a monotone scheme (Kushner 1990,

Forsyth & Labahn 2007, Barles & Jakobsen 2007). Typically, forward or backward difference

for the first-order derivative term is used to make sure that the positive coefficient condition

is satisfied. One disadvantage of such a truncation is that the truncation error is only first

order, which has been pointed out by Wang & Forsyth (2008). In the same paper, they also

presented a numerical scheme using central difference as much as possible to overcome such a

disadvantage.

The main contribution of this chapter is that a monotone numerical scheme, which is able

to solve the Merton problem with general utility functions, is presented with proper boundary

conditions. In our numerical scheme, the positive coefficient condition always holds, which

ensures that our scheme is monotone. In order to obtain a high convergence order, we follow

Wang & Forsyth (2008) and adopt central difference as much as possible when the positive

coefficient condition is satisfied. In the time direction, fully implicit method is applied, which

results in a series of nonlinear algebraic equations that are solved by an iterative method.

Based on the converged numerical results, more discussions about the optimal strategy can be

provided. Another contribution of this chapter is that our numerical results can be used to

verify the convergence of the explicit series solution which is obtained by Zhu & Ma (2018)

based on the homotopy analysis method (HAM).

The rest of this chapter is organized as follows. In Section 7.2, the Merton problem is

reviewed to give a complete background reference to the financial context of the HJB equation.

In Section 7.3, a monotone numerical scheme is presented. In Section 7.4, the convergence of

our numerical scheme is proved by demonstrating the stability, consistency, and monotonicity.

In Section 7.5, the convergence of our iteration method for the nonlinear algebraic equation

is demonstrated. In Section 7.6, three numerical examples are presented. In the first two
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examples, analytical solutions have been obtained in the literature, which can be used as a

benchmark to verify our numerical results. In the last example, a mixed power utility function

is taken into account. Our numerical results in the last example also verify an explicit series

solution obtained with the homotopy analysis method. Some conclusions are presented in the

last section.

7.2 Merton problem and the HJB equation

7.2.1 The Merton problem

Consider a financial market where two assets are traded continuously on a finite horizon [0, T ].

One asset is a risk-free bond, whose price {P (t), t ≥ 0} evolves according to the ordinary

differential equation (ODE)

dP (t) = rP (t)dt, t ∈ [0, T ], (7.2.1)

with r being the risk-free interest rate. The other one is a risky asset with its price being

modeled as a geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t), t ∈ [0, T ], (7.2.2)

where µ is the drift rate, σ is the volatility, and W (t) is a standard Brownian motion.

An investor starts with a known initial wealth x0 and his total wealth at time t is denoted

as X(t). At any time t, prior to T , the investor needs to make a decision on how to allocate his

wealth in order to maximize his expected utility from the terminal wealthX(T ). The proportion

of total wealth invested in the risky asset at time t is denoted as u(t) and the remaining fraction

1− u(t) is thus left in form of the risk-free bond. The investment proportion on the risky asset

u(t) may be negative, which corresponds to short selling. The remaining proportion 1 − u(t)

may also become negative, which can be realized by borrowing at the interest rate r. As a
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result, the total wealth X(t) is governed by the following SDE:

dX(t) = [r + u(t)(µ− r)]X(t)dt+X(t)u(t)σdW (t). (7.2.3)

The objective of the Merton problem is to find the optimal investment strategy, u∗(t) such

that the expected utility of the terminal wealth, X(T ), is maximized. Mathematically, such an

objective functional is stated as

max
u(·)

EU(X(T ; u(·))), (7.2.4)

where E is the expectation operator; U(x) is the utility function defined on the terminal wealth.

In addition, the fact that the wealth process can not be negative in practice leads to a constraint

being imposed on the optimization

X(t) ≥ 0, t ∈ [0, T ]. (7.2.5)

In a brief summary, the Merton problem has been reformulated as a stochastic optimal control

problem with an objective functional (7.2.4), driven by the dynamics (7.2.3), and the constraint

(7.2.5).

7.2.2 The HJB equation

It is noted that the total wealth X(t) is obviously a Markovian process, we can apply the dy-

namic programming method to solve such a stochastic optimal control problem presented in the

previous section. The basic idea of the dynamic programming is to consider a family of stochas-

tic optimal control problems with different initial times and states, to establish relationships

among these problems and finally to solve all of them.
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Let (t, x) ∈ [0, T )×R+ and consider the following control system over [t, T ]





dX(s) = [r + u(s)(µ− r)]X(s)ds+X(s)u(s)σdW (s),

X(t) = x,
(7.2.6)

with the same constraint (7.2.5). The cost functional is

J(u(·); t, x) = E[U(X t,x;u(·)(T ))]. (7.2.7)

where X t,x;u(·)(t) denotes the solution to the SDE system (7.2.6) with a given strategy u(·).

The value function is then defined as

V (t, x) = max
u(·)

J(u(·); t, x). (7.2.8)

According to the dynamic programming method (Yong & Zhou 1999), the value function V (t, x)

satisfies the HJB equation:





max
u∈R

ϕ(u; t, x) = 0,

V (T, x) = U(x), ∀(t, x) ∈ [0, T ]× [0,∞),
(7.2.9)

where

ϕ(u; t, x) =
∂V

∂t
+ [u(µ− r) + r]x

∂V

∂x
+

1

2
x2σ2u2

∂2V

∂x2
. (7.2.10)

Obviously, the PDE system (7.2.9) is highly nonlinear and it is difficult to obtain an analytical

solution for a general utility function U(x) unless it belongs to some special families, such as

the CRRA or HARA class. In the following, we would present a monotone numerical scheme

for the solution of such a nonlinear PDE system with U(x) being general utility functions.
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7.3 Numerical scheme for the HJB equation

In this section, a monotone numerical scheme for the nonlinear PDE system (7.2.9) with general

utility functions U(x) is presented. For convenience purposes, we introduce time reversal τ =

T − t and rearrange the PDE system (7.2.9) as





∂V

∂τ
= max

u∈R
{LuV },

V (0, x) = U(x),
(7.3.1)

where 



LuV = a(x, u)
∂2V

∂x2
+ b(x, u)

∂V

∂x
,

a(x, u) =
1

2
x2σ2u2,

b(x, u) = [r + u(µ− r)]x.

(7.3.2)

The domain of the PDE system (7.3.1) is Ω = {(τ, x) ∈ [0, T ] × [0,∞)} that is obviously

unbounded.

7.3.1 Boundary conditions

In fact, there is only a terminal condition for the original HJB equation (7.2.9). In order to

establish a properly-closed PDE system, boundary conditions are necessary. Here we provide

some proper boundary conditions for the HJB equation arising from the Merton problem for

the first time.

At the boundary x = 0, the PDE (7.3.1) degenerates to

∂V

∂τ
= 0. (7.3.3)

The appropriate boundary condition can be obtained with the degenerate equation above.

At x→ ∞, we normally use financial reasoning to impose an appropriate boundary condi-

tion. Since utility function is an increasing function of x, there are only two kinds of behaviors

as x tends toward infinity: converging to a constant or blowing up. For example, exponential
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utility function U(x) = −1

η
e−ηx with η > 0 and power utility function U(x) =

xγ

γ
with γ < 0

would tend towards zero as x approaches infinity. In this case, we assume the value function has

similar asymptotic behavior to the utility function and impose the Dirichlet boundary condition

at x→ ∞ as

lim
x→∞

V (τ, x) = lim
x→∞

U(x) = 0. (7.3.4)

There are also some utility functions that blow up when x tends to infinity. To better articulate

the establishment of the appropriate boundary condition for these utility functions, we need

more precise descriptions about the behavior of utility function at x → ∞. As a result, we

form and prove the following proposition.

Proposition 7.3.1. Assume that a smooth utility U(x) has a polynomial growth rate and its

growth order is α. In other words,

lim
x→∞

U(x)

xα
= C, (7.3.5)

where C is a positive constant. Then α must lie in [0, 1].

Proof. Since utility function is an increasing function of wealth, U ′(x) ≥ 0 always holds for any

x. According to L’Hospital rules, we have lim
x→∞

U ′(x)

αxα−1
= C > 0. Therefore, we obtain α ≥ 0.

In addition, the utility function is a concave function of x, which means that U
′′
(x) ≤ 0 for any

x. Again, according to L’Hospital rules, we have lim
x→∞

U
′′
(x)

α(α− 1)xα−2
= C > 0. Consequently,

we have α ≤ 1. This completes the proof.

In a brief summary, when utility function converges to constant as x→ ∞, such a constant

can be imposed as the Dirichlet boundary for the value function V (t, x) on x → ∞. When

utility function goes up to infinity at a polynomial growth rate α, it is natural to assume that

the value function V (τ, x) also has the same growth order as an asymptotic boundary condition,

i.e.

lim
x→∞

V (τ, x)

xα
= f(τ) > 0, τ ∈ [0, T ], (7.3.6)

which can also be written as

lim
x→∞

V (τ, x)

U(x)
= f(τ), (7.3.7)
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In order to avoid determining function f(τ), we impose a modified asymptotic boundary con-

dition as

lim
x→∞

∂

∂x
[
V (τ, x)

U(x)
] = lim

x→∞

VxU − V Ux
U2

= 0, (7.3.8)

which leads to a Robin boundary condition on x→ ∞

lim
x→∞

Vx(τ, x) =
Ux
U
V (τ, x). (7.3.9)

For computational purposes, the discretization should be imposed on a bounded domain.

The infinite domain in the wealth x direction is truncated as the localized finite domain

[0, Xmax]. As a result, the boundary condition at x → ∞ would be imposed on the boundary

x = Xmax, which would introduce some errors. However, as pointed out by Barles et al. (1995),

we can expect the errors incurred by imposing approximate boundary condition at x = Xmax to

be small in areas of interest if Xmax is selected sufficiently large. In other words, by extending

the computational domain, it is possible to make the near-field error arbitrarily small. In the

following, we assume that the original problem has been localized on a finite domain [0, Xmax].

Upon imposing the proper boundary conditions which guarantee the uniqueness of the solution

on the finite domain, our monotone numerical scheme could produce the converged numerical

results.

7.3.2 Discretization

We discretize the HJB equation (7.3.1) over a finite gird defined as

xi = (i− 1) ·∆x, i = 1, · · · ,M ;

τn = (n− 1) ·∆τ, n = 1, · · · , N ;

where M and N are the number of nodes in x and τ directions, ∆x = Xmax

M−1
, and ∆τ = T

N−1
.

The values at the grid points thus are denoted as V n
i = V (τn, xi). The operator LuV defined
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in Equation (7.3.1) can be discretized as:

(Lu∆xV n+1)i = αn+1
i V n+1

i−1 + βn+1
i V n+1

i+1 − (αn+1
i + βn+1

i )V n+1
i , 1 < i < M, (7.3.10)

where αn+1
i = αn+1

i (un+1) and βn+1
i = βn+1

i (un+1); that is, the coefficients of discretized equation

are functions of the optimal control un+1.

First of all, we apply central difference to the second-order derivative and forward or back-

ward difference to the first-order derivative to discretize the operator LuV . The choice of

forward or backward difference depends on the sign of function b(xi, u
n). Such a scheme is

referred to as forward/backward difference only. The coefficients in such a scheme are obtained

αni,forward/backward =
a(xi, u

n)

∆x2
+max{−b(xi, u

n)

∆x
, 0}, (7.3.11)

βni,forward/backward =
a(xi, u

n)

∆x2
+max{b(xi, u

n)

∆x
, 0}. (7.3.12)

Condition 7.3.1. (Positive coefficient condition)

αni ≥ 0, βni ≥ 0, i = 1, · · · ,M. (7.3.13)

It is obvious that the coefficients (7.3.11)-(7.3.12) satisfies the positive coefficient condition

(7.3.13), which is very important when we demonstrate the monotonicity of our numerical

scheme (Barles 1997, Forsyth & Labahn 2007).

Since the first-order derivative is discretized using forward or backward difference only, the

truncation error such a scheme is only first order. In order to improve the rate of convergence

and accuracy, we now provide a modified scheme. Central difference is first applied to all the

derivatives and the coefficients are as

αni,central =
a(xi, u

n)

∆x2
− b(xi, u

n)

2∆x
, (7.3.14)

βni,central =
a(xi, u

n)

∆x2
+
b(xi, u

n)

2∆x
. (7.3.15)
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According to Equation (7.3.2), function a(x, u) is positive while function b(x, u) is not always.

Consequently, the coefficients (7.3.14)-(7.3.15) generated by central difference do not always

satisfy the positive coefficient condition. When αi or βi is negative, oscillations may appear

in the numerical solution. To avoid the possible oscillation, we adopt forward or backward

difference for the first-order derivative on the nodes when central difference does not generate

positive coefficients.

The criteria of the difference method in the modified scheme has changed. On each node,

we first apply central difference to all the derivatives and check the sign of the coefficients. If

the positive coefficient condition is violated, we adopt forward or backward difference to first-

derivative instead to guarantee the new coefficient is positive on this node. In other words,

when αni,central < 0, we apply forward difference to ∂V
∂x

and obtain

αni,forward =
a(xi, u

n)

∆x2
, (7.3.16)

βni,forward =
a(xi, u

n)

∆x2
+
b(xi, u

n)

∆x
. (7.3.17)

When βni,central < 0, we adopt backward difference to the first order ∂V
∂x

and have

αni,backward =
a(xi, u

n)

∆x2
− b(xi, u

n)

∆x
, (7.3.18)

βni,backward =
a(xi, u

n)

∆x2
. (7.3.19)

Otherwise, the coefficients are obtained as (7.3.14)-(7.3.15). Such a modified scheme is referred

to as central difference as much as possible.

Now the PDE (7.3.1) can be discretized using fully implicit scheme as

V n+1
i − V n

i

∆τ
= max

un+1∈R
{(Lun+1

∆x V n+1)i} = max
un+1∈R

{αn+1
i V n+1

i−1 + βn+1
i V n+1

i+1 − (αn+1
i + βn+1

i )V n+1
i },

(7.3.20)

which is a highly nonlinear algebraic equation. This algebraic equation can be written in a

matrix form as follows:

[I −∆τAn+1(un+1)]V n+1 = V n + F n, (7.3.21)
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where un+1
i = arg max

un+1∈R
{(Lun+1

∆x V n+1)i}, An+1(un+1) is a tridiagonal matrix as follows:

An+1(un+1) =




−(αn+1
1 + βn+1

1 ) βn+1
1

αn+1
2 −(αn+1

2 + βn+1
2 ) βn+1

2

. . . . . . . . .

αn+1
M−2 −(αn+1

M−2 + βn+1
M−2) βn+1

M−2

αn+1
M−1 −(αn+1

M−1 + βn+1
M−1)




.

The boundary condition at x = 0 defined by Equation (7.3.3) is enforced by setting α1 = 0

and β1 = 0. We also modify the coefficients to deal with the boundary condition at x = Xmax.

When a Dirichlet condition is given at x = Xmax, the size of matrix A is (M − 1) × (M − 1)

and the vector F n is defined as

Fn = ∆τ




0

0

−βnM−1V
n
M



.

When a Robin condition defined by Equation (7.3.9) is given at x = Xmax, it is discretized and

the corresponding coefficients are added to the linear system (7.3.21) as the last row and in

that case, the vector F n could be removed.

For convenience, we rewrite Equation (7.3.20) as a nonlinear algebraic equation

Gn+1
i (∆τ,∆x, V n+1

i , V n+1
i−1 , V

n+1
i+1 , V

n
i ) = 0, (7.3.22)

where

Gn+1
i =

V n+1
i − V n

i

∆τ
− max

un+1∈R
{(Lun+1

∆x V n+1)i}. (7.3.23)

The solution obtained from the nonlinear algebraic equation (7.3.22) is approaching the solution

of the HJB equation (7.3.1).

Upon obtaining the value function V (τ, x) numerically, it is easy to produce the optimal
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investment proportion u∗ according to the first-order condition for a regular interior maximum

of Equation (7.2.10)

u∗ = −µ− r

σ2x

Vx
Vxx

, (7.3.24)

where Vx :=
∂

∂x
V (τ, x) and Vxx :=

∂2

∂x2
V (τ, x). Central finite difference is applied to approxi-

mate the optimal investment proportion u∗(xi, τn) as

u∗,ni = −µ− r

σ2xi

Vi+1 − Vi−1

Vi+1 − 2Vi + Vi−1

∆x

2
. (7.3.25)

7.4 Convergence to the viscosity solution

When we present a numerical scheme for a nonlinear PDE, it is critically important to ensure

that the numerical scheme really converges to the viscosity solution. Some examples have

been given by Pooley et al. (2003) that seemingly reasonable discretizations of nonlinear option

pricing PDE were unstable or converged to the incorrect solution. As pointed out by Barles &

Rouy (1998), a numerical scheme converges to the viscosity solution if it is stable, consistent,

and monotone. In the following, we follows this idea to demonstrate the convergence of our

numerical scheme.

Lemma 7.4.1. (l∞ stability) If the positive coefficient condition (7.3.13) holds, then the dis-

crete scheme (7.3.20) is stable., i.e.

∥ V n+1 ∥∞≤ max{∥ V 0 ∥∞, C2, C3}, (7.4.1)

where C2 = max
n

|V n
1 |, C3 = max

n
|V n
M | and V n

1 and V n
M are the given Dirichlet boundary

conditions.

Proof. It follows from Equation (7.3.20) that

[1 + ∆τ(αn+1
i + βn+1

i )]|V n+1
i | ≤ |V n

i |+∆ταn+1
i |V n+1

i−1 |+∆τβn+1
i |V n+1

i+1 |

≤ ∥V n∥∞ +∆ταn+1
i ||V n+1∥∞ +∆τβn+1

i ∥V n+1∥∞, (7.4.2)
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where αn+1
i = αn+1

i (un+1), βn+1
i = βn+1

i (un+1) and un+1 = arg max
un+1∈R

{(Lun+1

∆x V n+1)i}.

If ∥ V n+1 ∥∞= |V n+1
i |, 1 < i < M , then (7.4.2) becomes

[1 + ∆τ(αn+1
i + βn+1

i )]∥V n+1∥∞ ≤ ∥V n∥∞ +∆ταn+1
i ||V n+1∥∞ +∆τβn+1

i ∥V n+1∥∞, (7.4.3)

which leads to

∥V n+1∥∞ ≤ ∥V n∥∞. (7.4.4)

If i = 1 or i =M , then

∥V n+1∥∞ = |V n+1
1 | or ∥V n+1∥∞ = |V n+1

M |. (7.4.5)

Combining Equations (7.4.4) and (7.4.5), we have

∥ V n+1 ∥∞≤ max{∥ V n ∥∞, |V n+1
1 |, |V n+1

M |}. (7.4.6)

After iterative substitutions, we come to Equation (7.4.1), which indicates the l∞ stability of

the discrete scheme (7.3.20).

Lemma 7.4.2. (Consistency) The discrete scheme (7.3.20) is consistent, i.e. for any smooth

function ϕ, with ϕni = ϕ(τn, xi), we have

lim
∆τ→0,∆x→0

|(ϕτ −max
u∈R

{Luϕ})n+1
i −Gn+1

i (∆τ,∆x, ϕn+1
i , ϕn+1

i−1 , ϕ
n+1
i+1 , ϕ

n
i )| = 0. (7.4.7)

Proof. Suppose ϕ(τ, x) is a smooth test function with bounded derivatives of all order with

respect to its variables and denote ϕni = ϕ(τn, xi). After applying Taylor series expansions, we

have

|{Luϕ}n+1
i − {Lu∆xϕ}n+1

i | = O(∆x). (7.4.8)
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Then we obtain an estimate as

|(ϕτ −max
u∈R

{Luϕ})n+1
i −Gn+1

i (∆τ,∆x, ϕn+1
i , ϕn+1

i−1 , ϕ
n+1
i+1 , ϕ

n
i )|

= |(ϕτ )n+1
i −max

u∈R
{Luϕ}n+1

i − [
ϕn+1
i − ϕni
∆τ

− max
un+1∈R

{(Lun+1

∆x ϕn+1)i}]|

≤ |(ϕτ )n+1
i − ϕn+1

i − ϕni
∆τ

|+max
u∈R

|{Luϕ}n+1
i − {Lu∆xϕn+1}n+1

i |

= O(∆τ) +O(∆x),

where the inequality follows

|max
x

X(x)−max
y
Y (y)| ≤ max

x
{|X(x)− Y (x)|}. (7.4.9)

Then the consistency of the discrete scheme (7.3.20) is demonstrated.

Definition 7.4.1. (Monotonicity) The discrete scheme (7.3.20) is monotone if for all ϵ ≥ 0, we

have

Gn+1
i (∆τ,∆x, V n+1

i , V n+1
i−1 + ϵ, V n+1

i+1 + ϵ, V n
i + ϵ) ≤ Gn+1

i (∆τ,∆x, V n+1
i , V n+1

i−1 , V
n+1
i+1 , V

n
i ).

(7.4.10)

Lemma 7.4.3. (Monotonicity) If the positive coefficient condition (7.3.13) holds, then the

discrete scheme (7.3.20) is monotone.

Proof. When i = 1 or i = M , the monotonicity of the scheme is obvious. When 1 < i < M ,

we have

Gn+1
i (∆τ,∆x, V n+1

i , V n+1
i−1 , V

n+1
i+1 , V

n
i )

=
V n+1
i − V n

i

∆τ
+ min

un+1∈R
{(αn+1

i + βn+1
i )V n+1

i − αn+1
i V n+1

i−1 − βn+1
i V n+1

i+1 }.
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For any ϵ ≥ 0, we have

Gn+1
i (∆τ,∆x, V n+1

i , V n+1
i−1 + ϵ, V n+1

i+1 , V
n
i )−Gn+1

i (∆τ, V n+1
i , V n+1

i−1 , V
n+1
i+1 , V

n
i )

= min
un+1∈R

{(αn+1
i + βn+1

i )V n+1
i − αn+1

i V n+1
i−1 − βn+1

i V n+1
i+1 − αn+1

i ϵ},

− min
un+1∈R

{(αn+1
i + βn+1

i )V n+1
i − αn+1

i V n+1
i−1 − βn+1

i V n+1
i+1 },

≤ max
un+1∈R

{−ϵαn+1
i },

≤ −ϵ min
un+1∈R

{αn+1
i }

≤ 0,

where the first inequality follows

min
x
X(x)−min

y
Y (y) ≤ max

x
{X(x)− Y (x)}, (7.4.11)

and the last inequality holds due to the fact that βn+1
i (u) ≥ 0 for the positive coefficient

condition (7.3.13) holds. Similarly, we have also

Gn+1
i (∆τ,∆x, V n+1

i , V n+1
i−1 , V

n+1
i+1 + ϵ, V n

i ) ≤ Gn+1
i (∆τ,∆x, V n+1

i , V n+1
i−1 , V

n+1
i+1 , V

n
i ),

Gn+1
i (∆τ,∆x, V n+1

i , V n+1
i−1 , V

n+1
i+1 , V

n
i + ϵ) ≤ Gn+1

i (∆τ,∆x, V n+1
i , V n+1

i−1 , V
n+1
i+1 , V

n
i ).

As a result, the monotonicity of the discrete scheme (7.3.20) has been demonstrated.

Theorem 7.4.1. (Convergence) If the positive coefficient condition (7.3.13) holds, then the

discrete scheme (7.3.20) converges to the viscosity solution of the HJB equation (7.3.1).

Proof. Since it has been shown that the discrete scheme (7.3.22) is l∞ stable, consistent, and

monotone, It really converges to the viscosity solution of the HJB equation (7.3.1) following

the results of Barles (1997).

It is also noted that the following property of the matrix [I − ∆τAn(u)], which is very

important when we demonstrate the convergence of our iterates for the nonlinear algebraic
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equations in the next section.

Property 7.4.1. (M-matrix) If the positive coefficient condition (7.3.13) holds, then [I −

∆τAn(u)] is an M-matrix for any u ∈ R.

Proof. Since the positive coefficient condition holds, αni (u) and β
n
i (u) are both positive for any

u ∈ R. Hence, matrix [I − ∆τAn(u)] has positive diagonals, nonpositive off diagonal, and is

diagonally dominant. As a result, it is an M-matrix.

7.5 Solutions of the nonlinear algebraic equations

After demonstrating the convergence of our numerical scheme, it is still not a practical one

and there still exists another obstacle we need to overcome. Solving the nonlinear algebraic

equation (7.3.21) at each time step is our another problem, for we adopt fully implicit scheme

in time direction. In this chapter, we adopt a popular iterative algorithm to deal with the

nonlinear algebraic equations (7.3.21). The details are shown in Algorithm 3.

Algorithm 3 The iterative scheme for the nonlinear algebraic equations (7.3.21)

Require:
Let V̂ 0 := V n;
V̂ k := (V n+1)k;

Ensure:
1: while iteration error is greater than tolerance do
2: k = k + 1;
3: Solve

[I −∆τAn+1(uk, V̂ k)]V̂ k+1 = V n + F n,
where uki = argmax

u∈R
{αi(u)V̂ k

i−1 + βi(u)V̂
k
i+1 − (αi(u) + βi(u))V̂

k
i };

4: error =∥ V̂ k+1 − V̂ k ∥l∞ ;
5: end while

Now we would demonstrate that such an iterative scheme is convergent. First of all, after

some manipulations of the Algorithm 3, we have

[I −∆τAn+1(uk)](V̂ k+1 − V̂ k) = ∆τ [An+1(uk)V̂ k − An+1(uk−1)V̂ k]. (7.5.1)

Before proving the convergence of Algorithm 3, we need such a lemma:
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Lemma 7.5.1. In Algorithm 3, the optimal control is determined by

uki = argmax
u∈R

{αn+1
i (u)V̂ k

i−1 + βn+1
i (u)V̂ k

i+1 − (αn+1
i (u) + βn+1

i (u))V̂ k
i }, (7.5.2)

then every element of the right hand of equation (7.5.1) is nonnegative, that is ,

[An+1(uk)V̂ k − An+1(uk−1)V̂ k]i ≥ 0. (7.5.3)

Proof. According to the selection of uk in Equation (7.5.2), we have

An+1(uk)V̂ k = max
u∈R

{An+1(u)V̂ k}, (7.5.4)

for given V̂ k. As a result, any other choice of u would lead to the inequality (7.5.3).

With Lemma 7.4.1 in hand, it is easy to demonstrate that the iterative scheme converges.

Theorem 7.5.1. (Convergence of the iterative scheme) Provided that Property 7.4.1 holds, i.e.

[I − ∆τAn(u)] is an M-matrix, then the iterative scheme described in Algorithm 3 converges

to the unique solution of the nonlinear algebraic equation for any initial iterate V̂ 0. Moreover,

the iterates {V̂ k} converge monotonically.

Proof. First of all, it is proved that the iterates {V̂ k} are bounded. For 1 < i < M , we have

[1 + ∆τ(αki + βki )]V̂
k+1
i = V n

i +∆τβki V̂
k+1
i−1 +∆ταki V̂

k+1
i−1 , (7.5.5)

where αki = αn+1
i (uk) and βin+ 1k = βi(u

k). Consequently, we obtain

[1 + ∆τ(αki + βki )]|V̂ k+1
i | ≤ ∆τ(αki + βki ) ∥ V̂ k+1 ∥∞ + ∥ V n ∥∞ . (7.5.6)

Similar to the proof of Lemma 7.5.1 we come to a conclusion that

∥ V̂ k+1 ∥∞≤ max{∥ V n ∥∞, |V̂ k+1
1 |, |V̂ k+1

M |} = max{∥ V n ∥∞, |V n
1 |, |V n

M |}, (7.5.7)
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where V n
1 and V n

M are given Dirichlet boundary conditions at each time step τn. Consequently,

the iterates {V̂ k}∞k=0 is bounded independent of iteration k

The next step is to prove that these iterates are non-decreasing sequences. After some

simple calculation, we obtain

[I −∆τAn+1(uk)](V̂ k+1 − V̂ k) = ∆τ [An+1(uk)− An+1(uk−1)]V̂ k. (7.5.8)

According to Lemma 7.5.1, every element of the right side of Equation (7.5.8) is nonnegative.

In addition, according to the Property 7.4.1 that [I − ∆τAn(u)] is an M-matrix, we have

[I − ∆τAn(u)]−1 ≥ 0, it is obvious that the iterates {V̂ k}∞k=0 form a bounded non-decreasing

sequence. When V̂ k+1 = V̂ k, the iteration converges to the solution of the nonlinear algebraic

equation. The uniqueness of the solution follows the Property 7.4.1 that [I −∆τAn(u)] is an

M-matrix.

7.6 Numerical examples

Since our numerical scheme can be applied to solve the HJB equation arising from the Merton

problem with general utility functions, three examples are presented in this section. First of all,

the utility function is considered to be of a power form (Example 1) and an exponential form

(Example 2). In the literature, analytical solutions for the two examples have been obtained and

they are considered as the benchmark solution to verify our numerical results. In Example 3, a

new mixed power utility function, which shows non-constant relative risk aversion, is adopted.

In each example, the numerical results at τ = T are reported with two difference schemes:

central difference as much as possible and forward/backward difference only.

All the computations reported in this chapter were performed with Matlab R2016a on 64-bit

quad-core Intel 2.83GHz system with 16GB of RAM. The parameters in the following examples

are set as

µ = 0.1, r = 0.05, σ = 0.5, T = 1, Xmax = 100. (7.6.1)
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7.6.1 Example 1: power utility function

In the first example, we consider the power utility function defined as

U(x) =
xγ

γ
, (7.6.2)

where γ < 1 and γ ̸= 0. The Arrow-Pratt measure of relative risk aversion of such a utility is

defined as

δ[U(·)] = −U
′′
(x)

U ′(x)
x = 1− γ. (7.6.3)

Obviously, the power utility function (7.6.2) belongs to the CRRA class as its Arrow-Pratt

measure is constant. When we implement the numerical scheme for Example 1, the parameter

γ is set to be 1
2
and the Robin boundary condition at x→ ∞ is given as

lim
x→∞

Vx(τ, x) =
Ux(x)

U(x)
V (τ, x) =

γ

x
V (τ, x). (7.6.4)

On the boundary x = Xmax, it is disctetized as
VM − VM−1

∆x
=

γ

xM
VM .

Actually, when the utility function is of power form, Zariphopoulou (1999) has derived an

analytical solution to the original HJB equation (7.2.9) as follows:

V (τ, x) =
xγ

γ
eDτ , (7.6.5)

where D = rγ − γ
γ−1

(µ−r)2
2σ2 . In the following, such an analytical solution would be considered

as a benchmark to verify the numerical results obtained from our monotone scheme.

The numerical results of V (T, x) calculated with two difference schemes, using central dif-

ference as much as possible and using forward/backward difference only, are reported in Table

7.1 and Table 7.2 with γ = 1
2
. The results calculated from the analytical solution (7.6.5) are

considered as the benchmark when we report the l∞ errors for our numerical results. The

convergence tolerance in Algorithm 3 is set to be 10−5 and it is the same in the following two

examples. The last column of Tables 7.1 and 7.2 is the ratio of successive l∞ errors as the
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grid is refined by a factor of two and the time step sizes are reduced by a factor of four. The

numerical order of convergence is then defined by

Rate = log2(Ratio). (7.6.6)

The iter is the average number of the nonlinear iteration for each time step.

(M,N) x = 3 x = 4 x = 5 x = 6 iter l∞ error ratio
(100,10) 3.568289 4.120992 4.607631 5.047567 1.80 1.310× 10−3

(200,40) 3.569273 4.121555 4.608112 5.047985 1.95 3.262× 10−4 4.0
(400,160) 3.569462 4.121714 4.608247 5.048103 1.9875 1.373× 10−4 2.4
(800,640) 3.569534 4.121769 4.608292 5.048140 1.996875 6.519× 10−5 2.1
Benchmark 3.569600 4.121818 4.608332 5.048176

Table 7.1: Numerical results for value function by applying central difference as much as possible
when utility function is xγ

γ
with γ = 1

2
.

(M,N) x = 3 x = 4 x = 5 x = 6 iter l∞ error ratio
(100,10) 3.558002 4.111932 4.599573 5.040239 1.80 1.160× 10−2

(200,40) 3.564122 4.117111 4.604144 5.044367 1.95 5.477× 10−3 2.1
(400,160) 3.566910 4.119506 4.606274 5.046302 1.9875 2.690× 10−3 2.0
(800,640) 3.568262 4.120668 4.607307 5.047241 1.996875 1.337× 10−3 2.0
Benchmark 3.569600 4.121818 4.608332 5.048176

Table 7.2: Numerical results for value function by applying forward/backward difference only
when utility function is xγ

γ
with γ = 1

2
.

It is noted that the successive l∞ errors in both Table 7.1 and Table 7.2 are approaching to

zero as the grid spacing is diminished, which shows a clear convergence trend to the benchmark

solution (7.6.5). In addition, both Table 7.1 and Table 7.2 show that the average number

of nonlinear iteration is about two, which indicates that the nonlinear iteration converges

rapidly. The results obtained using cental difference as much as possible in Table 7.1 are more

accurate than those obtained using forward or backward difference only in Table 7.2 on the

same grid, because the central difference has higher order of accuracy. Especially on the grid

(M,N) = (800, 640), the l∞ error in Table 7.1 is of 10−5 level; while the counterpart in Table

7.2 is of 10−3 level. Moreover, the ratio in Table 7.2 is around two, which implies that the

numerical order of convergence is one according to Equation (7.6.6). If the central difference is
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applied to all the nodes, the ratio in Table 7.2 is expected to four. Although the ratio in Table

7.1 is greater than those in Table 7.2, it has not reached four, which implies that there must be

some nodes on which the coefficients generated by the central difference is negative. To make

them satisfy the positive coefficient condition, forward or backward difference is applied instead

on these nodes.

Based on the analytical solution (7.6.5), the analytical form of the optimal investment

proportion should be

u∗ = −µ− r

xσ2

Vx
Vxx

=
µ− r

σ2(1− γ)
, (7.6.7)

which is constant. Numerically, the optimal investment proportion u∗(T, x) can also be com-

puted according to Equation (7.3.25). Comparisons between the numerical results and the

analytical form (7.6.7) are shown in Figure 7.1.
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Figure 7.1: Optimal investment proportion u∗ for utility U(x) = xγ

γ
with γ = 1

2
.

It is observed in Figure 7.1 that the numerical results match with the analytical form (7.3.25)

very well, which demonstrates that our numerical scheme converges to the exact solution. It

is also noted that there are some computational error near the boundary x = 0, which is

introduced by imposing the approximate boundary condition.
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7.6.2 Example 2: exponential utility function

In this example, an exponential utility function defined as

U(x) = −e
−ηx

η
, η > 0, (7.6.8)

is taken into account to demonstrate that our numerical scheme could deal with the cases with

non-constant relative risk aversion utility function successfully. The Arrow-Pratt measure of

relative risk aversion for this case is:

δ[U(·)] = −U
′′
(x)

U ′(x)
x = ηx, (7.6.9)

which is an increasing function of x, instead of being constant.

In this case, the exponential utility function would converge to zero as x tends toward

infinity. As a result, we impose a Dirichlet boundary condition as

lim
x→∞

V (τ, x) = 0. (7.6.10)

Actually, we have an alternative boundary condition based on the financial reasoning of expo-

nential utility function. As shown in Equation (7.6.9), the risk aversion of the investor increases

as his wealth grows up. When wealth x approaches towards infinity, the investor’s risk aversion

goes extremely and consequently, he would allocate all of his money on the risk-free asset, i.e.

u∗ = 0. As an approximation, the optimal investment proportion u∗ should be zero at x = Xmax

. Upon substituting u∗ = 0 into the PDE (7.3.1), we have a degenerate equation as

∂V

∂τ
= rx

∂V

∂x
, (7.6.11)

which can be adopted as an appropriate boundary condition at x = Xmax. In this chapter, we

only adopt the Dirichlet boundary condition (7.6.10) to implement our numerical scheme.

In fact, the analytical solution to the Merton problem with exponential utility function was
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derived by Ma & Zhu. (2017) Ma & Zhu. (2017) as follows

V (τ, x) = −1

η
e−Cτ−ηxe

rτ

, (7.6.12)

where C = (µ−r)2
2σ2 .

Two discretization methods, using central difference method as much as possible and using

forward/backward difference only, are implemented respectively with η = 1. The numerical

results and convergence analysis are reported in Tables 7.3 and 7.4. The results calculated

from the analytical solution (7.6.12) is considered as the benchmark to calculate the l∞ error.

(M,N) x = 1 x = 2 x = 3 x = 4 iter l∞ error ratio
(100,10) -0.359053 -0.128931 -0.046289 -0.016615 1.80 1.130× 10−2

(200,40) -0.353126 -0.125029 -0.044268 -0.015673 1.950 5.376× 10−3 2.1
(400,160) -0.350458 -0.123289 -0.043372 -0.015258 1.9875 2.708× 10−3 2.0
(800,640) -0.347739 -0.122421 -0.042927 -0.015053 1.996875 8.843× 10−4 3.1
Benchmark -0.347750 -0.121536 -0.042476 -0.014845

Table 7.3: Numerical results for value function by applying central difference as much as possible
when utility function is U(x) = − e−eta

η
with η = 1.

(M,N) x = 1 x = 2 x = 3 x = 4 iter l∞ error ratio
(100,10) -0.359053 -0.128931 -0.046289 -0.016615 1.80 1.130× 10−2

(200,40) -0.353126 -0.125029 -0.044268 -0.015674 1.95 5.376× 10−3 2.1
(400,160) -0.350460 -0.123289 -0.043372 -0.015258 1.9875 2.710× 10−3 2.0
(800,640) -0.349121 -0.122421 -0.042927 -0.015053 1.996875 1.371× 10−3 2.0
Benchmark -0.347750 -0.121536 -0.042476 -0.014845

Table 7.4: Numerical results for value function by applying forward or backward difference only
when utility function is U(x) = − e−eta

η
with η = 1.

The numerical result in both Table 7.1 and 7.2 are converging to the benchmark solution

by observing the l∞ error. Comparing the results in both tables, we find that there is no

significant difference except the results on grid (M,N) = (800, 640). It means that central

difference for first-derivative is adopted only on few nodes because the coefficients generated

by central difference not violate the positive coefficient condition on most nodes. On grid

(M,N) = (800, 640), the l∞ error is improved from level of 10−3 to level of 10−4 and the ratio

of successive l∞ error is improved from 2.0 to 3.1, which implies that the central difference
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can really improve the order of accuracy and convergence if it does not violate the positive

coefficient conditions. In this example, the nonlinear iteration also converges quickly with the

average number of nonlinear iteration being around two in both Table 7.3 and Table 7.4.

According to the analytical solution (7.6.12), the optimal investment proportion can be

expressed as

u∗ = −µ− r

xσ2

Vx
Vxx

=
µ− r

σ2ηerτx
. (7.6.13)

When implementing our monotone scheme, we replace the computational domain [0, Xmax]

with [ϵ,Xmax] where ϵ = 10−3 since x = 0 is a singular point. The comparisons between the

numerical results and the analytical form (7.6.13) are shown in Figure 7.2. Most part of our

numerical results are in good agreement with the results from the analytical form (7.6.13). The

truncation error is relative large near the point x = 0 because it is a singular point. In order

to reduce the truncation error near x = 0, we have to refine the grids by increasing the number

of grid points along wealth direction. It is also pointed out that applying a non-uniform grid

near the singular point x = 0 may be a good alternative, which we would not discuss in details

here.
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η
with η = 1..



180 7.6. NUMERICAL EXAMPLES

7.6.3 Example 3: mixed power utility function

Recently, Fouque et al. (2015) presented a new utility function of mixed form to characterize

an investor whose relative risk aversion varies with his wealth. The mixed utility function is

taking the form as

U(x) = kU1 + (1− k)U2, k ∈ [0, 1], (7.6.14)

where U1 =
xγ1
γ1

and U2 =
xγ2
γ2

. Its Arrow-Pratt measure is expressed as:

δ[U(·)] = U
′′
(x)

U ′(x)
x =

k(1− γ1) + (1− k)(1− γ2)x
γ2−γ1

k + (1− k)xγ2−γ1
. (7.6.15)

Obviously, this mixed utility function is non-constant relative risk aversion with k ∈ (0, 1).

Although it is just a simple sum of two power utility function in Example 1, such a linear

combination results in a total nonlinear result due to the nonlinearity of the PDE.

In this example, the parameters are set as k = 0.5, γ1 = 0.15, and γ2 = 0.85. Obviously,

the mixed utility function would blow up as x approaches infinity and its growth order is 0.85.

As a result, the boundary condition at x→ ∞ is given as

lim
x→∞

Vx(τ, x) =
Ux(x)

U(x)
V (τ, x). (7.6.16)

Since there is no analytical solution for this example in the literature, the results calculated

at a very fine grid (M,N) = (1600, 5120) are chosen as the benchmark solution. Numerical

results computed with two difference schemes are reported in Tables 7.5 and 7.6.

(M,N) x = 2 x = 4 x = 6 x = 8 iter l∞ error ratio
(25,10) 4.840164 6.161236 7.255904 8.229597 1.80 2.048× 10−2

(50,40) 4.850215 6.163160 7.259521 8.246478 1.950 3.602× 10−3 5.7
(100,160) 4.850961 6.163560 7.260065 8.249110 1.9875 9.703× 10−4 3.7
(200,640) 4.851130 6.163654 7.260179 8.249782 1.996875 2.978× 10−4 3.3
(1600,5120) 4.851182 6.163685 7.260220 8.250080

Table 7.5: Numerical results for value function by applying central difference as much as possible
for the mixed utility function (7.6.14) with k = 0.5, γ1 = 0.15, and γ2 = 0.85.

It is observed that the ratio of successive l∞ errors in Table 7.5 is significantly greater than
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(M,N) x = 2 x = 4 x = 6 x = 8 iter l∞ error ratio
(25,10) 4.829856 6.154625 7.250093 8.222792 1.80 2.722× 10−2

(50,40) 4.845531 6.160000 7.256893 8.243977 1.95 6.032× 10−3 4.5
(100,160) 4.848670 6.162002 7.258780 8.247941 1.9875 2.371× 10−3 2.5
(200,640) 4.849994 6.162880 7.259541 8.249210 1.996875 1.047× 10−3 2.3
(1600,5120) 4.851041 6.163588 7.260140 8.250001

Table 7.6: Numerical results for value function by applying forward or backward difference only
for the mixed utility function (7.6.14) with k = 0.5, γ1 = 0.15, and γ2 = 0.85.

two; while it is about two in Table 7.6. Obviously, the modified scheme using cental difference

as much as possible does really improve the rate of convergence from two to four. The accuracy

of the scheme is also improved from 10−3 to 10−4 on the finest girds. Both Table 7.5 and Table

7.6 show that the average number of nonlinear iteration is about two, which indicates that the

nonlinear iteration converges rapidly.

Our numerical results can be used to verify a series solution to the HJB equation (7.2.9).

Zhu & Ma (2018) applied the Homotopy Analysis Method (HAM) to solve the HJB equation

with the mixed power utility function (7.6.14) and obtained an explicit series solution as follows:

V (τ, x) =
+∞∑

n=0

Vn(τ, x)

n!
. (7.6.17)

However, when the numerical results are required, their infinite series solution has to be trun-

cated as a finite one.

SL =
L∑

n=0

Vn(τ, x)

n!
. (7.6.18)

Here we would like to verify their series solution with our numerical results to confirm how

many terms is necessary for the truncated series solution. Their series solution is obtained with

symbolic calculation. Here we list first two terms as follows:

V0(τ, x) =
k

γ1
(xerτ )γ1 +

1− k

γ2
(xerτ )γ2 , (7.6.19)

V1(τ, x) =
Cτ [(1− k)(xerτ )γ2 + k(xerτ )γ1 ]2

k(1− γ1)(xerτ )γ1 + (1− k)(1− γ2)(xerτ )γ2
. (7.6.20)

where C = (µ−r)2
2σ2 . Actually, more terms Vn can be explicitly expressed but it becomes more
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and more complicated as n increases. For example, the third term V2(τ, x) is too messy to

express it in full parameters and we substitute the values of some parameters to simplify it as

follows:

V2(τ, x) = −C2τ 2(13722y4.45 + 13280y3.05 + 18491y3.75 − 28.226y7.95 + 1579y5.85

+ 5941y5.15 + 85.79y7.25 + 0.2y8.65 + 256.4y6.55 + 4112.9y2.35 + 199.58y1.65

− 1.448y9.35)/(672.5y3.55 − 43180.66y2.15 − 7620y2.85 − 122345y1.45 − 138658y0.75

− 23.83y4.25)2|y=xerτ . (7.6.21)

In this chapter, we only show the series solution with the first three terms and demonstrate

such a few terms has converged. The details how these terms are derived haven been provided

by Zhu & Ma (2018).

To verify their series solution, the numerical results calculated on grid (M,N) = (1600, 5120)

using central difference as much as possible is considered as the reference solution to report

the l∞ error. The numerical results obtained from truncated series solution with L terms are

shown in Table 7.7.

Method SL x = 2 x = 4 x = 6 x = 8 l∞ error
S0 4.832737 6.128867 7.208718 8.182219 6.79× 10−2

HAM S1 4.850979 6.163165 7.259378 8.249383 8.42× 10−4

S2 4.851178 6.163637 7.260200 8.249924 1.56× 10−4

Reference solution 4.851182 6.163685 7.260220 8.250080

Table 7.7: Comparison of values calculated with different terms.

From Table 7.7, the l∞ error decreases rapidly from 10−2 to 10−4 as the number of truncated

term, L, increases from 0 to 2, which implies that the series solution with only first three terms

is really in good agreement with our numerical results. In other words, the truncated series

solution S2 is indeed a good analytical approximate solution to the HJB equation (7.2.9) with

the mixed power utility function. Our numerical solution and the approximate truncated series

solution with merely three terms can verify with each other perfectly.

Finally, the optimal investment proportion u∗ calculated from the monotone scheme and
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the truncated series solution S2(T, x) are presented in Figure 7.3. These curves obtained by

numerical scheme and the truncated series solution S2(T, x) are almost indistinguishable except

that some error appear near x = 0, which is introduced by approximate boundary condition.

More discussion about the optimal investment proportion u∗ would be presented in next section.

0 2 4 6 8 10 12 14 16 18 20

wealth x

0

0.5

1

1.5

O
pt

im
al

 in
ve

st
m

en
t p

ro
po

rt
io

n 
u

* (T
,x

)

Monotone scheme with (M,N)=(800,1280)
Calculated from S

2
(T,x)

Figure 7.3: Optimal investment proportion u∗ for the mixed utility function (7.6.14) with
k = 0.5, γ1 = 0.15, and γ2 = 0.85.

7.7 Economic discussions

In last section, three different utility functions have been taken as examples to demonstrate

the accuracy and versatility of the monotone numerical scheme. These three utility functions

actually represent three different kinds of investors. We provide some economic discussions

about the corresponding optimal investment policies in different examples.

The power utility function in Example 1 belongs to the CRRA class, which indicates that

the investor’s attitude to the risk would never change no matter how much money he has. Due

to the constant relative risk aversion, the optimal investment proportion u∗ is also constant in
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Example 1, which was ever observed by Merton (1969).

The exponential utility function in Example 2 is obviously not a member of the CRRA class,

because its Arrow-Pratt measure of relative risk is an increasing function of wealth x as shown

in Equation (7.6.9). In other words, the more money the investor has, the more risk aversion

he shows. As a result, the corresponding optimal investment proportion u∗ is a decreasing

function of wealth x as shown in Figure 7.2. In other words, with his wealth rising up, the

investor prefers the risk-free asset to the risky asset and consequently, he would allocate more

and more money on the risk-free asset.

Since the analytical solutions for the first two examples have been obtained in the literature,

the corresponding economic discussions have been provided by Merton (1969) and Ma & Zhu.

(2017). In this chapter, discussions are mainly focused on the new mixed utility function

in Example 3, since no closed-form analytical solution has been obtained so far. From the

definition of the mixed power utility function (7.6.14), it is indeed a linear combination of two

power utility functions as shown in Example 1. When we set k = 1 (or k = 0), it degenerates

to a single power utility function U1 (or U2). According to Equation (7.6.15), the Arrow-Pratt

measure becomes a function of wealth, instead of being constant in the case of single power

utility function. In other words, it is a non-constant relative risk aversion utility function if it

is not degenerate. One can appreciate more of the complexity associated with the mixture of

two simple power utilities through their visualization shown in Figure 7.4(a) (a graphic display

of U1, U2 and the mixture U) and Figure 7.4(b) (the corresponding Arrow-Pratt measure of

relative risk aversion) with a set of parameters being

k = 0.5, γ1 = 0.15, γ2 = 0.85. (7.7.1)

From Figure 7.4(b), The Arrow-Pratt measure of the mixed utility function U varies with

wealth x; while that of the single power utility function U1 or U2 is a constant. In contract

to the exponential utility function in Example 2, the Arrow-Pratt measure in Example 3 is
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a decreasing function of wealth x, which implies that the risk aversion would be reduced as

his wealth increases. This different behavior of risk aversion results in a significantly different

optimal investment proportion u∗ as shown in Figure 7.3. As the wealth increases, the optimal

investment proportion u∗ increases, too. In other words, the more money the investor has, the

less risk aversion he shows and consequently, he allocate higher proportion of his wealth on the

risky asset.

From Figure 7.4(b), it is noted that the Arrow-Pratt measure of the mixed utility function is

bounded by that of U2 and U1 from blew and above. It is expected that the optimal investment

proportion corresponding to the mixture should also be bounded by the counterpart of U1 and

U2. The optimal investment proportion u∗ corresponding to U1, U2 and the mixture U are

pictured in Figure 7.5 with a large enough value of Xmax.

0 100 200 300 400 500 600 700 800 900 1000

wealth x

0.2

0.4

0.6

0.8

1

1.2

1.4

O
pt

im
al

 in
ve

st
m

en
 p

ro
po

rt
io

n 
u

* Mixture U
U

1

U
2
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Obviously, the optimal investment proportion u∗ is also bounded by that corresponding to

the single utility function U1 and U2 as shown in Figure 7.5, which agrees with what we expect.
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7.8 Conclusions

In this chapter, we present a monotone scheme for the HJB equation arising from the Merton

problem with general utility functions. To ensure the monotonicity of the scheme, the dis-

cretization is applied to guarantee that the positive coefficient condition always holds. After

demonstrating the l∞ stability, consistency, and monotonicity, we prove that our numerical

scheme really converges to the viscosity solution of the HJB equation.

To show the accuracy and versatility of the monotone scheme, three different utility functions

are taken as examples. In the first two examples, the analytical solutions obtained in the

literature are adopted to verify the results of the numerical scheme. In the last example, after

demonstrating the convergence of our scheme, we also in turn use the numerical results to

verify a truncated series solution obtained with homotopy analysis method. Some economic

discussions about the optimal investment proportion u∗ are provided finally.



Chapter 8

Option pricing with short selling bans

being imposed

8.1 Introduction

During the Global Financial Crisis 2007-2009, most regulatory authorities around the world

imposed restrictions or bans on short selling to reduce the volatility of financial market and to

limit the negative impacts of a downturn market (Beber & Pagano 2013). These interventions

were implemented to restore the orderly financial markets and limit drops in stock price. How-

ever, these regulations imposed on short selling also result in some new problems, one of which

is how to price options or contingent claims. In this chapter, we focus on our interest on the

valuation of the contingent claim in a financial market with short selling being banned.

In a complete market, any contingent claim can be replicated perfectly by some self-financing

dynamic portfolio strategies and, under a no-arbitrage condition, the price of contingent claim

must equal to the cost of constructing such a portfolio. However, imposing short selling ban

makes it impossible to hedge a contingent claim perfectly even in the classic Black-Scholes

model, which implies that the market becomes incomplete due to the restriction or even ban

on short selling. In the literature, how to price contingent claims in an incomplete market has

been studied extensively and a large number of approaches and techniques have been provided.

188
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The literature can be grouped into two categories.

Chapters in the first category share a common feature that an equivalent martingale measure

is chosen as pricing measure according to some optimal criterion. Follmer & Schweizer (1991)

first proposed a criterion to choose the minimal martingale measure in order to price option

in incomplete market. Then minimal entropy martingale measure was proposed by Frittelli

(2000) to minimize the entropy difference between the objective probability measure and the

risk-neutral measure. Similar concepts, such as the minimal distance martingale measure and

minimax measure were also put forward by Goll & Rüschendorf (2001) and Bellini & Frittelli

(2002), respectively. Each measure will lead to a different price, which is “fair” according to the

criteria they chose the measure. It is hard to justify which choice of these equivalent martingale

measures is “correct”.

Chapters in the second category include Karatzas & Kou (1996), Davis (1997), Rouge &

El Karoui (2000), Musiela & Zariphopoulou (2004) and Hugonnier et al. (2005) . The key

idea of these chapters is utility indifference pricing. An investor chooses a utility function first

according to his risk preference. The utility indifference buying price pb is the price at which the

utility of the investor is indifferent between (1) paying nothing and not having the claim and

(2) paying pb now to receive the contingent claim at expire time (Henderson and Hobson, 2004).

The utility indifference selling price is defined similarly. In finance literature, utility indifference

price is also referred to as “private valuation”, which emphasizes the proposed price is for an

individual with particular risk preference and not a transactional price (Detemple & Sundaresan

1999, Tepla 2000). In contrast to Black-Scholes price, utility indifference price is nonlinear due

to the concavity of the utility function. In addition, it degenerates to the unique fair price

when the market is complete.

For any contingent claim in an incomplete market, El Karoui & Quenez (1995) demonstrate

that there will be a price interval within which the price must lead to arbitrage opportunities.

The maximum price of this interval, called selling price, is the lowest price that allows the

seller to hedge completely with an optimal hedging strategy. Similarly, the minimum price

of this interval, called buying price, is the highest price that the buyer is willing to pay for a



190 8.1. INTRODUCTION

contingent claim. Both of these two concepts have been addressed in the literature on contingent

claims hedging and pricing under transactions cost (Hodges 1989, Davis 1997, Constantinides

& Zariphopoulou 1999, Munk 1999). Obviously, either selling price or buying price is a private

price for the seller or buyer because they just consider to minimize unilateral risk. The buyer

and seller have to negotiate and compromise with each other in order to reach an agreement

on the transactional price.

Recently, Guo & Zhu (2017) proposed a completely new approach, referred to as the equal-

risk pricing approach, which determines the derivative price by simultaneously analyzing the

risk exposure of both parties involved in the contract. It appears to be, but not the same as,

the existing utility indifference price method as pointed out in Remark 3.2 in their chapter.

They aimed to find out an equal-risk price which distributes expected loss evenly between the

two involved parties. Such an equal-risk price is interpreted as a fair price that both parties

are happy to accept during the negotiation if they intend to enter into a derivative contract.

Equal-risk price is a transactional price and it must lie in the price interval consisting of selling

price and buying price. Both the seller and buyer would face the same amount of risk when

they accept such a price. They also established the existence and uniqueness of equal-risk price

for arbitrage European and American options and demonstrated that their model is consistent

with standard arbitrage-free pricing model to cover the degenerated case when the market is

complete. Although they have derived an analytical pricing formula for European call and put

options, it is still hard to extend their analysis method for a general contingent claim, which

has limited the application of equal-risk pricing approach.

The main contribution of this chapter is that we have established a PDE framework for the

equal-risk pricing approach in order to expand the range of its application. Under our PDE

framework, we first recover the analytical pricing formula for European call and put options

which demonstrates that our PDE approach is consistent with the previous work of Guo &

Zhu (2017). Furthermore, we provide an efficient numerical scheme to solve the PDE system

when the payoff function is non-monotonic. Taking a butterfly spread option as an example, we

compare its equal-risk price from this new pricing approach with Black-Scholes price to show
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how short selling bans affect the valuation of contingent claims.

The chapter is organized as follows. In Section 8.2, a financial market with short selling

ban is introduced first. The PDE framework is established to derive equal-risk price of general

contingent claims. In Section 8.3, analytical pricing formulae are derived when claims are

European call and put options. In Section 8.4, a finite difference numerical scheme is introduced

to solve the PDE system and two numerical experiments are conducted accordingly. Conclusions

are provided in the last section.

8.2 A framework of equal-risk pricing approach

8.2.1 The financial market model

Consider a financial model on a complete probability space (Ω,F ,Q). Let F = {Ft : t > 0}

be the filtration that represents the information flow available to market participants. For

simplicity, we assume there are only two assets traded continuously in this market. One is a

risk-free asset, the price of which satisfies the ordinary differential equation

dPt = rPtdt, (8.2.1)

where r is the risk-free interest rate. The other one is a risky asset with its price following the

Black-Scholes model

dSt = rStdt+ σStdWt, (8.2.2)

where σ is the volatility of the underlying and Wt is a standard Brownian motion. Since this

is the first chapter to set up a PDE framework for equal-risk pricing approach, we choose the

simple Black-Scholes model to illustrate how the short selling bans affect the derivative price.

Of course, some complicated stock models, such as stochastic volatility and interest rate models,

can also be adopted under our PDE framework in the future.

Without short selling bans, market is complete and there exists a unique equivalent martin-

gale measure Q. The price of European contingent claims that expires at time T with a payoff
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function Z(ST ) can be easily calculated as v = EQ[e
−rTZ(ST )]. Such a price is accepted by

both the seller and buyer of the claim since they are able to perfectly replicate the claim by

corresponding self-financing trading strategies.

When short selling is banned, market becomes incomplete for perfect replication is not valid.

In this case, an admissible self-financing trading strategy is a progressively measurable non-

negative process ϕt, which represent the shares of stock at time t. Given an initial wealth v, an

investor, who adopt the trading strategy ϕt, would hold ϕt shares of stock at time t and leaves

all the remaining on the risk-free bond account. Then the wealth process of such a portfolio,

denoted as vt, follows

dvt = d(ϕtSt)︸ ︷︷ ︸
stock account

+ d(vt − ϕtSt)︸ ︷︷ ︸
free-risk account

= ϕtdSt + r(vt − ϕtSt)dt = rvtdt+ ϕtσStdWt, (8.2.3)

where ϕt comes from the set of all self-financing, progressively measurable, non-negative and

square integrable trading strategy

Φ := {ϕ(t, ω) : [0, T ]× Ω → R+| E

∫ T

0

ϕ2(t, ω)dt <∞, ϕ ≥ 0}, (8.2.4)

where the positivity condition on ϕ represents the short-selling ban in the market.

8.2.2 Equal-risk price for general contingent claims

As mentioned above, short selling bans have made perfect hedging strategy impossible even

the stock price follows the classic Black-Scholes model. Applying any unilateral utility-based

arguments would lead to a price interval consisting of buying price as the lower bound and

selling price as the upper bound. Any price that lies in this interval would make both the buyer

and seller face risk whatever they do to hedge. Intuitively, a higher price of the contingent

claim increases the risk exposure of the buyer and decreases that of the seller; while a lower

price has the opposite effect. Guo & Zhu (2017) proposed an idea to look for a price that lies

in this interval and distributed the risk between the buyer and seller equally. To measure the
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risk exposure, they introduced the risk function as follows.

Definition 8.2.1. A function R : R → R is called a risk function if it satisfies the following

conditions:

1. R(x) is non-decreasing convex and has a finite lower bound LB.

2. R(0) = 0 and R(x) > 0 for all x > 0.

Remark 8.2.1. It is easy to check that both R1(x) = x+ and R2(x) = ex−1 are risk functions

we defined. The former is adopted by Guo & Zhu (2017), while the latter is the one we choose

in this chapter. Here we provide two reasons for our choice. From the view of mathematics,

R2(x) is a smooth function, while R1(x) is not. In addition, R1(x) maps all the negative x to

zero. However, from the view of finance, a company that owns one million dollars should be

more riskless than a company that has only one dollar. R1(x) cannot tell the difference between

these two companies, while R2(x) can do it.

Suppose an investor has the opportunity to sell one unit of European contingent claim Z(ST )

at a transaction price v. After receiving the payment, he would establish an hedging account

with his initial wealth v. Z(ST ) is a future liability for the seller, which represents the possible

risk. The terminal wealth process of the hedging account vT is an income that reduces the risk

he takes at expire date T . As a result, the risk exposure of the seller who sells a European

contingent claim Z(ST ) at a price v with the current stock price S is defined

ρs(S, v;Z) = inf
ϕ(·)∈Φ

ES,v
Q R(Z(ST )− v

v,ϕ(·)
T ), (8.2.5)

where E
S,v
Q denotes the conditional expectation under the measure Q with S0 = S, v0 = v and

v
v,ϕ(·)
t is the solution of Equation (8.2.3) given trading strategy ϕ(·) and initial wealth v.

How to calculate the minimum risk exposure for the seller has becomes an optimal stochastic

control problem with objective function (8.2.5) and dynamics St and vt governed by Equations

(8.2.2) and (8.2.3). According to the dynamic programming method (Yong & Zhou 1999), the
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HJB equation governing the value function F s(t, S, v) is derived as





0 =
∂F s

∂t
+ inf

ϕ≥0
Lϕ1F s,

F s(T, S, v) = R(Z(S)− v),

(8.2.6)

where

Lϕ1F =
1

2
S2σ2∂

2F

∂S2
+ ϕS2σ2 ∂

2F

∂S∂v
+

1

2
S2σ2ϕ2∂

2F

∂v2
+ rS

∂F

∂S
+ rv

∂F

∂v
. (8.2.7)

The value function at t = 0 corresponds to the minimum risk exposure of the seller, i.e.

F s(0, S, v) = ρs(S, v;Z).

Similarly, we come to the analysis of the buyer’s risk exposure. Assume the buyer offers

a price v for a European contingent claim Z(ST ) and his offer is accepted by a seller. The

buyer has to borrow money v right now to purchase the claim, which corresponds to the

deterministic liability verT for the buyer at the expire date. Although the initial wealth is zero,

the buyer would also establish a hedging account with a hedging strategy ϕ(·), which comes

from the admissible set Φ defined in (8.2.4). Then the risk exposure of the buyer, who pays v

to purchase a European contingent claim Z(ST ) with current stock price S, is defined as

ρb(S, v;Z) = inf
ϕ(·)∈Φ

Ev,S
Q [R(verT − v

0,ϕ(·)
T − Z(ST ))] = inf

ϕ(·)∈Φ
Ev,S

Q [R(v
v,−ϕ(·)
T − Z(ST ))]. (8.2.8)

To solve this optimal stochastic control problem associated with the buyer, another HJB equa-

tion governing the value function F b(t, S, v) is also established as





0 =
∂F b

∂t
+ inf

ϕ≥0
Lϕ2F b,

F b(T, S, v) = R(v − Z(S)),

(8.2.9)

where

Lϕ2F =
1

2
S2σ2∂

2F

∂S2
− ϕS2σ2 ∂

2F

∂S∂v
+

1

2
S2σ2ϕ2∂

2F

∂v2
+ rS

∂F

∂S
+ rv

∂F

∂v
. (8.2.10)

Remark 8.2.2. It is pointed out that the differences between these two HJB equations (8.2.6)
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and (8.2.9) lie in the sign of the cross-derivative term and the terminal condition.

From the view of finance, a buyer who purchases a European contingent claim Z(S) at

a price v is equivalent to a seller who sells a contingent claim −Z(S) at the price of −v.

Mathematically, it is expressed as

ρb(S, v;Z) = ρs(S,−v;−Z). (8.2.11)

Such a relation plays an important role in the rest of this chapter.

Functions ρs(S, v;Z) and ρb(S, v;Z) represent the minimum risk exposure of the seller and

buyer through selecting an optimal hedging strategy when the transactional price of claim is v

and the underlying stock price is S. The following lemma describes some properties of these

functions.

Lemma 8.2.1. Assume that Z,Z1, Z2 are square integrable, FT -measurable random variables.

The monotonicity and limits behavior of both risk functions ρs(S, v;Z) and ρb(S, v;Z) are

described as follows:

1. If Z1 ≤ Z2, then ρ
s(S, v;Z1) ≤ ρs(S, v;Z2) and ρ

b(S, v;Z1) ≥ ρb(S, v;Z2).

If v1 ≤ v2, then ρ
s(S, v1;Z) ≥ ρs(S, v2;Z) and ρ

b(S, v1;Z) ≤ ρb(S, v2;Z).

2. As v tends toward ∞ or −∞, the asymptotic behavior of them are

lim
v→∞

ρs(S, v;Z) = LB, lim
v→∞

ρb(S, v;Z) = ∞,

lim
v→−∞

ρs(S, v;Z) = ∞, lim
v→−∞

ρb(S, v;Z) = LB.

Proof. We leave the proof of Lemma 8.2.1 in Appendix C.1.

Now we present the definition of equal-risk price for a European contingent claim based on

the risk exposure functions ρs(S, v;Z) and ρb(S, v;Z).

Definition 8.2.2. Consider a European contingent claim Z. When the underlying stock price

is S and the transactional price of this claim is v, the minimum risk for the seller and buyer
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are denoted as ρs(S, v;Z) and ρb(S, v;Z), respectively. Then equal-risk price of this claim with

current price S is the price v̄(S) such that the seller and buyer face the same amount of risk,

i.e.

ρs(S, v̄(S);Z) = ρb(S, v̄(S);Z). (8.2.12)

In order to demonstrate that equal-risk price is well-defined, the following theorem states

its existence and uniqueness.

Theorem 8.2.1. Consider a market where the stock follows the Black-Scholes model and short

selling is banned. For a European contingent claim Z(ST ), there exists a unique equal-risk price

v̄(S) such that it satisfies the following equation,

ρs(S, v̄(S);Z) = ρb(S, v̄(S);Z). (8.2.13)

Proof. The proof of this theorem is left in Appendix C.2.

In a brief summary, the equal-risk pricing approaching consists of two steps. In the first step,

we calculate the risk exposure of the seller and buyer respectively through solving two stochastic

optimal control problems. In the second step, equal-risk price is implied by Equation (8.2.12).

Obviously, the first step is the significantly important and complicated. To solve the stochastic

control problems associated with the seller and buyer, we have to deal with two nonlinear

PDE systems (8.2.6) and (8.2.9). For some special contingent claims, the corresponding HJB

equations can be solved analytically and the pricing formula for equal-risk price can be derived

easily. However, for general claims, analytical solution of these HJB equations are unavailable

and hence numerical scheme would be an alternative to solve them.

8.3 Equal-risk price of European call and put options

When the contingent claim is a European call option, the PDE systems (8.2.6) and (8.2.9) can

be solved analytically and the risk exposure of the seller and buyer is derived in the following

propositions.
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Proposition 8.3.1. When the contingent claim is a European call option with payoff Z(S) =

(S −K)+, the seller’s risk exposure is

ρs(S, v;Z) = R(erT [CBS(S,K, r, σ, T )− v]), (8.3.1)

where CBS(S,K, r, σ, T ) is the classic Black-Scholes formula for a European call option with the

underlying price S, strike price K, risk-free interest rate r, volatility σ and time to expiration

T − t.

Proof. In order to derive the risk exposure of the seller, we would focus on the PDE system

(8.2.6) with Z = (S −K)+. Consider a trial solution to the PDE system (8.2.6) as

F s(t, S, v) = R(er(T−t)[CBS(S,K, r, σ, T − t)− v]). (8.3.2)

Assuming that R(x) is twice differential, it follows from the chain rule that

∂F s

∂t
= R′er(T−t)(∂C

BS

∂t
− rCBS + rv), ∂F s

∂S
= R′er(T−t) ∂C

BS

∂S
,

∂F s

∂v
= −R′er(T−t), ∂2F s

∂S∂v
= −R′′e2r(T−t) ∂C

BS

∂S
,

∂2F s

∂S2 = R′′e2r(T−t)(∂C
BS

∂S
)2 + R′er(T−t) ∂

2CBS

∂S2 , ∂2F s

∂v2
= R′′e2r(T−t).

Based on the convexity of function L1F with respect to ϕ, the optimal hedging strategy is

ϕ∗ = max{− ∂2F s

∂S∂v
(
∂2F s

∂v2
)−1, 0} = max{∂C

BS

∂S
, 0} (8.3.3)

The Black-Scholes Delta of a European call option
∂CBS

∂S
is always non-negative, which leads

to ϕ∗ =
∂CBS

∂S
. After substituting ϕ∗ back into the HJB equation (8.2.6), we have

∂F s

∂t
+ inf

ϕ≥0
{1
2
σ2S2∂

2F s

∂S2
+ ϕS2σ2 ∂

2F s

∂S∂v
+

1

2
S2σ2ϕ2∂

2F s

∂v2
+ rS

∂F s

∂S
+ rv

∂F s

∂v
}

= R′er(T−t)[
∂CBS

∂S
+

1

2
σ2S2∂

2CBS

∂S2
+ rS

∂CBS

∂S
− rCBS],

= 0. (8.3.4)
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The last equation holds just because CBS satisfies the Black-Scholes PDE. Consequently, the

trial solution (8.3.2) is exactly the solution to the HJB equation (8.2.6). Therefore, the risk

exposure of the seller is expressed as (8.3.1) because ρs(S, v;Z) = F s(0, S, v).

Remark 8.3.1. The seller of European call options would adopt the same optimal hedging

strategy in the classic Black-Scholes model, i.e. ϕ∗ = ∂CBS

∂S
, which means that the ban of short

selling does not affect his hedging strategy. That is because such an optimal hedging strategy

for European call options is always non-negative when the payoff function is Z(ST ) = (ST−K)+

which is non-decreasing with respect to S.

Proposition 8.3.2. When the contingent claim is a European call option with payoff Z(S) =

(S −K)+, the buyer’s risk exposure is

ρb(S, v;Z) =
1√
2π

∫ ∞

−∞
R(verT − (Se(r−

σ2

2
)T+σ

√
Tx −K)+)e−

x2

2 dx. (8.3.5)

Proof. We first claim that the optimal hedging strategy ϕ∗ for the buyer should be zero when

Z(S) = (S −K)+, i.e.

ρb(S, v;Z) = EQR(v
v,0
T − Z). (8.3.6)

It suffices to demonstrate that EQR(v
v,−ϕ(·)
T −Z) ≥ EQR(ve

rT −Z) for any ϕ(·) ∈ Φ. According

to the dynamics (8.2.3), we have v
v,−ϕ(·)
t = vert − σ

∫ t
0
er(t−u)ϕuSudWu. Since R(x) is a convex

function, we have

EQ[R(v
v,−ϕ(·)
T − Z)−R(verT − Z)] ≥ EQ[−R′(verT − Z)σ

∫ T

0

er(T−u)ϕuSudWu]. (8.3.7)

According to the martingale representation theorem, random variable −R′(verT − Z(ST )) can

be expressed as

−R′(verT − Z(ST )) = −EQR
′(verT − Z(ST )) +

∫ T

0

ψuσSudWu, (8.3.8)

which financially indicates that such a random variable is decomposed into an initial wealth
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−EQR
′(verT − Z) and a trading strategy ψ(·), which is a predictable process. Obviously, such

a random variable is non-decreasing of ST . Following Lemma 3.2 in Guo & Zhu (2017), we

come to a conclusion that such a trading strategy ψ(·) is non-negative. Based on stochastic

calculation, we have

EQ[−R′(verT − Z)σ

∫ T

0

er(T−u)ϕuSudWu] = EQ

∫ T

0

σ2er(T−u)ϕuψuS
2
udu ≥ 0, (8.3.9)

which completes the proof of our claim (8.3.6). Since the optimal trading strategy ϕ∗ is zero,

the HJB equation (8.2.9) becomes





0 =
∂F b

∂t
+

1

2
σ2S2∂

2F b

∂S2
+ rS

∂F b

∂S
+ rv

∂F b

∂v
.

F b(T, S, v) = R(v − Z(S)).
(8.3.10)

By introducing time reversal τ = T − t and function G(τ, S, v) = F b(t, S, v), we have





∂G

∂τ
=

1

2
σ2S2∂

2G

∂S2
+ rS

∂G

∂S
+ rv

∂G

∂v
,

G(0, S, v) = R(v − Z(S)).
(8.3.11)

According to Feynman-Kac formula, the solution the such a linear PDE system can be written

as a condition expectation

G(τ, S, v) = Ev,S
Q R(vv,0τ − (Sτ −K)+)

=
1√
2π

∫ ∞

−∞
R(verτ − (Se(r−

σ2

2
)τ+σ

√
τx −K)+)e−

x2

2 dx. (8.3.12)

The risk exposure is expressed as (8.3.5) since ρb(S, v;Z) = F b(0, S, v) = G(T, S, v).

Remark 8.3.2. It is noted that the optimal hedging strategy for the buyer of European call

options is doing nothing when short selling is banned, which is totally different from the coun-

terpart in the classic Black-Scholes model. The reason is that the optimal hedging strategy in

the classic Black-Scholes model ϕ∗ = −∂CBS

∂S
is non-positive, which is infeasible due to the short

selling bans.
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After deriving the risk exposure of both the seller and buyer, the analytical pricing formula

for European call options is provided in the following theorem.

Theorem 8.3.1. When short selling is banned in the Black-Scholes model, equal-risk price of

European call options is produced as follows according to different risk functions.

1. When risk function is R(x) = x+, equal-risk price v is implied by

v = CBS(S,K, r, σ, T )− [PBS(S,K + verT , r, σ, T )− PBS(S,K, r, σ, T )], (8.3.13)

where PBS(S,K, r, σ, T ) is classic Black-Scholes formula for a European put option with

underlying price S, strike price K, risk-free interest rate r, volatility σ and time to

expiration T .

2. When risk function is R(x) = ex − 1, equal-risk price v is explicitly expressed as

v =
1

2
{CBS(S,K, r, σ, T )− e−rT ln [

1√
2π

∫ ∞

−∞
e−(Se(r−

σ2

2 )T+σ
√
Tx−K)+−x2

2 dx]}. (8.3.14)

Proof. The risk exposure of both the seller and buyer have been derived in Propositions 8.3.1

and 8.3.2. According to Definition 8.2.2, equal-risk price of European call options is the root

of Equation

ρs(S, v; (S −K)+) = ρb(S, v; (S −K)+). (8.3.15)

When risk function is taken to be R(x) = x+ and R(x) = ex − 1, equal-risk price is derived

easily as Equations (8.3.13) and (8.3.14) after some simple calculations.

Remark 8.3.3. It is remarked that the analytical pricing formula is the same as the one

provided by Guo & Zhu (2017) when the risk function is assume to R(x) = x+, which demon-

strates that our PDE approach is consistent with Guo and Zhu’s method. In addition, we

produce an explicit and analytical pricing formula as Equation (8.3.14) when a new risk func-

tion R(x) = ex − 1 is adopted. The significant difference between these two formula is that
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Equation (8.3.13) is not explicit and it has to be solved by root finding algorithm; while Equa-

tion (8.3.14) is explicit.

The pricing formula (8.3.13) has been interpreted in terms of the standard Black-Schole

prices and an adjustment term in Guo and Zhu’s chapter. In this chapter, we mainly focus on

the new explicit equal-risk price (8.3.14) when risk function is assumed to be R(x) = ex − 1.

To illustrate how the short selling bans affect the European call option price, we figure out the

results computed from the equal-risk pricing formula (8.3.14) and those calculated from the

classic Black-Scholes formula in Figure 8.1(a) with the parameters being set as

K = 10, r = 0.05, T = 0.5, σ = 0.3. (8.3.16)

As shown in Figure 8.1(a), the absolute difference between equal-risk price and Black-Scholes

price is significant for the large underlying price, which indicates that the short selling bans

affect the option price substantially. To demonstrate the effect for the small underlying price,

the relative difference between equal-risk price and Black-Scholes price is characterized by the

percentage distance to Black-Scholes price defined by

Equal-risk price− Black-Scholes price

Black-Scholes price
× 100%, (8.3.17)

which is depicted in Figure 8.1(b). It is also observed that the relative difference is substantial

although the absolute difference is not significantly large for small underlying price. From

Figures 8.1(a) and 8.1(b), we draw a conclusion that the short selling bans would significantly

decrease the European call option price for both small and large underlying prices.

From Propositions 8.3.1 and 8.3.2, the optimal hedging in the classic Black-Scholes model

is still available for the seller of European call options; while the counterpart is unavailable for

the buyer due the short selling bans. If the transaction price of contingent claim is still set to

be Black-Scholes price, the seller would face no risk; while the buyer could not eliminate the

risk totally because the optimal hedging strategy is infeasible now. To transfer some risk from

buyer to seller so that both of them face the same amount, equal-risk price should be lower
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Figure 8.1: Comparisons between equal-risk price and Black-Scholes price for European call
options.
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than Black-Scholes price. The premium between these two prices is used to compensate the

buyer because he takes too much risk due to the ban of short selling.

According to the relation (8.2.11) between the risk exposure of the buyer and seller, we can

derive equal-risk price for European put options as corollaries.

Corollary 8.3.1. When the contingent claim is a European put option with payoff Z(S) =

(K − S)+, the buyer’s risk exposure is

ρb(S, v;Z) = R(erT [v − PBS(S,K, r, σ, T )]). (8.3.18)

Proof. Consider the seller’s risk exposure for a contingent claim −(K − S) first. To calculate

ρs(S, v;−(K − S)), we need to solve the corresponding HJB equation





0 =
∂F s

∂t
+ inf

ϕ≥0
Lϕ1F s,

F s(T, S, v) = R(−(K − S)+ − v).

(8.3.19)

With the same technique in Proposition 8.3.1, the solution can be produced as

F s(t, S, v) = R(er(T−t)[−PBS(S,K, r, σ, T − t)− v]). (8.3.20)

According to the relation (8.2.11), we have

ρb(S, v; (K − S)+) = ρs(S,−v;−(K − S)+) = F s(0, S,−v) = R(erT [v − PBS(S,K, r, σ, T )]).

Corollary 8.3.2. When the contingent claim is a European put option with payoff Z(S) =

(K − S)+, the seller’s risk exposure is

ρs(S, v;Z) =
1√
2π

∫ ∞

−∞
R((K − Se(r−

σ2

2
)T+σ

√
Tx)+ − verT )e−

x2

2 dx. (8.3.21)

Proof. Consider the buyer’s risk exposure for a contingent claim −(K − S)+ first. To compute
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ρb(S, v;−(K − S)), we goes to the HJB equation





0 =
∂F b

∂t
+ inf

ϕ≥0
Lϕ2F b,

F b(T, S, v) = R(v + (K − S)+).

(8.3.22)

Similar to Proposition 8.3.2, the solution to such a PDE system is

F b(t, S, v) =
1√
2π

∫ ∞

−∞
R(ver(T−t) + (K − Se(r−

σ2

2
)(T−t)+σ

√
T−tx)+)e−

x2

2 dx. (8.3.23)

From relation (8.2.11), the seller’s risk exposure of European put options is

ρs(S, v; (K − S)+) = ρb(S,−v;−(K − S)+) = F b(0, S,−v)

=
1√
2π

∫ ∞

−∞
R((K − Se(r−

σ2

2
)T+σ

√
Tx)+ − verT )e−

x2

2 dx.

Corollary 8.3.3. When short selling is banned in the Black-Scholes model, equal-risk price of

European put options is derived according to different risk functions.

1. When risk function is R(x) = x+, equal-risk price is implied by

v = PBS(S,K, r, T, σ) + PBS(S,K − verT , r, T, σ). (8.3.24)

2. When risk function is R(x) = ex − 1, equal-risk price is explicitly expressed as

v =
1

2
{PBS(S,K, r, T, σ) + e−rT ln

1√
2π

∫ ∞

−∞
e(K−Se(r−

σ2

2 )T+σ
√
Tx)+−x2

2 dx}. (8.3.25)

Proof. The proof is similar to Theorem 8.2.1.

Again, when risk function is taken of R(x) = x+, equal-risk price (8.3.24) for European put

options is the same with that produced by Guo & Zhu (2017). With the same parameter as

stated in (8.3.16), the comparisons between equal-risk price (8.3.25) and Black-Scholes price
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for European put options are plotted in Figure 8.2(a) to demonstrate the effects of short selling

bans on the European put option price. From Figure 8.2(a), the absolute difference between
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(a) European put option price.
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Figure 8.2: Comparisons between equal-risk price and Black-Scholes price for European put
options.

two prices is significant when the underlying price is not very large. The percentage distance
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of equal-risk price to Black-Scholes price is depicted in Figure 8.2(b), which indicates that the

relative difference is significantly large even though the absolute difference is small for large

underlying price. From both Figures 8.2(a) and 8.2(b), we come to a conclusion that equal-risk

price of a European put option is higher than Black-Scholes price. In other words, the short

selling bans have pumped up the European put option price substantially. Compared with the

classic Black-Schole model, the buyer would pay more to purchase a European put option when

short selling is banned. Such a premium compensates the seller of the European put option for

he cannot short the underlying stock to hedge his risk due to the short selling bans.

As a brief summary of this section, we have analytically produced equal-risk price of Eu-

ropean call and put options because the PDE systems (8.2.6) and (8.2.9) can be solved ana-

lytically, which is also consistent with the results of Guo & Zhu (2017). However, equal-risk

price is still hard to produce analytically when the payoff function of contingent claim is not

monotonic, such as the butterfly spread option. In a complete market, a butterfly spread option

can be replicated by a linear combination of European call and put options. As a result, its

price is actually also a linear combination of the price of the corresponding European call and

put options. Guo & Zhu (2017) pointed out that such a replication method does not work any

more due to the ban of short selling. To provide equal-risk price of the butterfly spread option,

we have to apply a numerical scheme in the next section.

8.4 Numerical scheme for the PDE system

In this section, we provide a numerical scheme to solve the HJB equations (8.2.6) and (8.2.9).

Mathematically, they are of the same type and we only take the former as an example when we

demonstrate our numerical scheme. The other one can also be numerically solved similarly. In

the following, the numerical discretization is implemented first and then two experiments are

conducted accordingly.
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8.4.1 Discretization

In order to solve the HJB equation (8.2.6) effectively, we introduce time reversal τ = T − t to

change the terminal value problem to be a initial value problem as





F s
τ = inf

ϕ≥0
{1
2
S2σ2F s

SS + ϕS2σ2F s
Sv +

1
2
S2σ2ϕ2F s

vv + rSF s
S + rvF s

v },

F s(0, S, v) = R(Z(S)− v), (τ, S, v) ∈ Ω := [0, T ]× [0,∞)×R.

(8.4.1)

To implement the numerical scheme, we truncate the unbounded domain into a finite one:

Ω̄ = [0, T ]× [0, Smax]× [−vmax, vmax].

It is noted that there is only a terminal condition in the PDE system (8.4.1). In order to estab-

lish the properly-closed PDE system, some boundary conditions are needed. In this subsection,

we focus on the numerical scheme and assume that some Dirichlet boundary conditions have

been imposed properly. The details of how to impose these boundary conditions according to

the financial reasoning are left in the next subsection. Of course, such a truncation would in-

troduce some errors. As pointed out by Barles et al (1995), we can expect these errors incurred

by imposing approximate boundary to be arbitrarily small by extending the computational

domain.

The discretization is performed by placing a set of uniformly distributed grids in the com-

putation domain Ω̄ as

Si = (i− 1) ·∆S, i = 1, · · · , N1,

vj = (j − 1) ·∆v, j = 1, · · · , N2,

τl = (l − 1) ·∆τ, l = 1, · · · ,M,

where N1, N2 and M are the number of grids in the S,v and τ directions and the step sizes are

correspondingly ∆S =
Smax

N1 − 1
, ∆v =

vmax

N2 − 1
, and ∆τ =

T

M − 1
. The value of the unknown

function F s(τ, S, v) at a grid point thus is thus denoted by F n
i,j = F s(τn, Si, vj).
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We first adopt an explicit scheme to approximate the unknown function ϕ as follows:

ϕni,j := ϕ(τn, Si, vj) = max{− ∆v

4∆S

F n
i+1,j+1 + F n

i−1,j−1 − F n
i+1,j−1 − F n

i−1,j+1

F n
i,j+1 − 2F n

i,j + F n
i,j−1

, 0}, (8.4.2)

and then apply an implicit scheme for the unknown function F

F n+1
i,j − F n

i,j

∆τ
= L3(ϕ

n
i,j)F

n+1
i,j , (8.4.3)

where

L3(ϕ)F = aFSS + ρFSv + bFvv + cFS + dFv, (8.4.4)

with a = 1
2
σ2S2, b = 1

2
ϕ2σ2S2, ρ = ϕσ2S2, c = rS, d = rv.

The alternative direction implicit (ADI) scheme is then applied to discretize the linear

operator L3. In the first step, only the derivatives with respect to S are evaluated in terms of

unknown values F 2n+1, while the other derivatives are replaced in terms of known values of F 2n.

The difference equation obtained in the first step is implicit in the S-direction and explicit in

v-direction. The procedure is then repeated at next step with the difference equation implicit in

the v-direction and explicit in the S-direction. The cross derivative is always treated explicitly.

Thus, we have two difference equations:

F 2n+1
i,j − F 2n

i,j

∆τ
= ai

F 2n+1
i+1,j − 2F 2n+1

i,j + F 2n+1
i−1,j

∆S2
+ ci

F 2n+1
i+1,j − F 2n+1

i−1,j

2∆S
(8.4.5)

+bi,j
F 2n
i,j+1 − 2F 2n

i,j + F 2n
i,j−1

∆v2
+ dj

F 2n
i,j+1 − F 2n

i,j−1

2∆v

+ρi,j
F 2n
i+1,j+1 − F 2n

i−1,j+1 − F 2n
i+1,j−1 + F 2n

i−1,j−1

4∆S∆v
,

F 2n+2
i,j − F 2n+1

i,j

∆τ
= bi,j

F 2n+2
i,j+1 − 2F 2n+2

i,j + F 2n+2
i,j−1

∆v2
+ dj

F 2n+2
i,j+1 − F 2n+2

i,j−1

2∆v
(8.4.6)

+ai
F 2n+1
i+1,j − 2F 2n+1

i,j + F 2n+1
i−1,j

∆S2
+ ci

F 2n+1
i+1,j − F 2n+1

i−1,j

2∆S

+ρi,j
F 2n+1
i+1,j+1 − F 2n+1

i−1,j+1 − F 2n+1
i+1,j−1 + F 2n+1

i−1,j−1

4∆S∆v
.

The unknown functions F n
i,j and ϕ

n
i,j are both derived by solving these difference equations.
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After solving the PDE system (8.2.6) and (8.2.9), the risk exposure of both the seller and

buyer are produced numerically on the grids. To find out equal-risk price for the contingent

claims, we have to find the root of equation (8.2.12) numerically, which is similar to determin-

ing the optimal exercise from the values of American put option through the free-boundary

condition. We demonstrate how to produce equal-risk price numerically in the following.

Given a current underlying stock price S, it is assumed to be located between two grid

points Si and Si+1. When the offer price v is larger than equal-risk price v(S), the seller would

take less risk for he gets more compensation, i.e

ρs(S, v;Z) < ρb(S, v;Z), v > v(S). (8.4.7)

On the other hand, when the offer price v is smaller than equal-risk price v(Si), the buyer takes

less risk because he pays less, i.e.

ρs(Si, v;Z) > ρb(Si, v;Z), v < v(Si). (8.4.8)

Consequently, equal-risk price of the claim Z with current price Si is produced as

v(Si) = max
j

{vj, j = 1, · · · , N2| ρs(Si, vj;Z) > ρb(Si, vj;Z)}. (8.4.9)

Similarly, equal-risk price of the claim Z with current price Si+1 is obtained as

v(Si+1) = max
j

{vj, j = 1, · · · , N2| ρs(Si+1, vj;Z) > ρb(Si+1, vj;Z)}. (8.4.10)

As a result, equal-risk price of the contingent claim Z with current price S is

v(S) =
v(Si) + v(Si+1)

2
. (8.4.11)
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8.4.2 Numerical experiments

In this subsection, two numerical experiments are conducted to illustrate the performance and

convergence of our numerical scheme provided above. Both of them experiments were carried

out with Matlab 2016a on an Intel(R) Xeon (R) CPU and risk function is assumed to be

R(x) = ex − 1.

Experiment 1: European call option

In the first experiment, the contingent claim is European call option, of which the value func-

tions F s(t, S, v) and F b(t, S, v) have been obtained analytically according to Propositions 8.3.1

and 8.3.2. The analytical solutions are considered as the benchmark to illustrate the perfor-

mance of our numerical scheme. Before implementing our numerical scheme, we need provide

the proper boundary conditions for the PDE systems (8.2.6) and (8.2.9).

First of all, we consider the boundary condition on S = 0. The stock price stays at zero once

it hits zero for it follows geometric Brownian motion. As a result, the European call option is

worthless at the expire date. The seller of such a claim faces no liability; while the buyer gets

nothing. In addition, the hedging strategies for both seller and buyer must be ϕ∗ = 0 because

they could not invest on a stock whose price is zero. Therefore, the boundary conditions at

S = 0 are 



F s(t, 0, v) = R(−ver(T−t)),

F b(t, 0, v) = R(ver(T−t)).
(8.4.12)

On the other hand, S → ∞ implies ST → ∞, which indicates that the European call option

is priceless. The buyer of such a claim would have an infinite income at the expire date. The

boundary condition for the buyer at S → ∞ is imposed as

lim
S→∞

F b(t, S, v) = lim
S→∞

inf
ϕ(·)∈Φ

ES,v
Q [R(v

v,ϕ(·)
T − (ST −K)+)] = lim

S→∞
R(−S) = −1. (8.4.13)
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Such a bounded Dirichlet boundary condition is approximated by

F b(t, Smax, v) = −1. (8.4.14)

As S → ∞, we have

lim
S→∞

F s(t, S, v) = lim
S→∞

inf
ϕ(·)∈Φ

ES,v
Q [R((ST −K)+ − v

v,ϕ(·)
T )] = ∞. (8.4.15)

When the value function approaches infinity on the boundary, we have to do growth order

analysis so that such a boundary condition can be imposed on the truncated boundary. For

any admissible hedging strategy ϕ, by applying the Jensen’s inequality to the risk function

R(x), we have

ES,v
Q [R(Z(ST )− v

v,ϕ(·)
T )] ≥ R(ES,v

Q [Z(ST )− v
v,ϕ(·)
T ])

= R(er(T−t)(CBS(S,K, r, σ, T − t)− v)). (8.4.16)

Consequently, the asymptotic behavior of the value function F s(t, S, v) is described as

lim
S→∞

F s(t, S, v) ≥ lim
S→∞

R(CBS(S,K, r, σ, T−t)er(T−t)−ver(T−t)) → ∞ for t ∈ [0, T ], (8.4.17)

which means that the growth order of F s(t, S, v) with respect to S is higher than that of the

right hand for any t. On the other hand, at the specific time t = T , it follows that

lim
S→∞

F s(T, S, v) = lim
S→∞

R((S −K)+ − v), (8.4.18)

which implies that the growth order of F (t, S, v) is the same as the right hand of the above

equation at t = T . In order to make sure the boundary condition at S → ∞ is consistent with

the terminal condition at the corner point, the boundary condition on S = Smax is

F s(t, Smax, v) = R((Smax −K)+ − ver(T−t)). (8.4.19)
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Remark 8.4.1. When the value function is bounded as Equation (8.4.13), it can be directly

imposed on the truncated boundary as Equation (8.4.14). When the value function approaches

infinity on the boundary, such as Equation (8.4.17), we should do growth order analysis first

and then impose an approximate boundary condition as Equation (8.4.19) to make sure that

it is consistent with the terminal condition. In the rest of this chapter, such steps would

be repeated. Without demonstrating details again, we would directly provide the truncated

boundary conditions.

Following Lemma 8.2.1, the boundary conditions along the v direction are





lim
v→∞

F b(t, S, v) = ∞,

lim
v→∞

F s(t, S, v) = −1,

lim
v→−∞

F b(t, S, v) = −1,

lim
v→−∞

F s(t, S, v) = ∞.

(8.4.20)

which are approximated by





F b(t, S, vmax) = R(vmaxe
r(T−t) − (S −K)+),

F s(t, S, vmax) = −1,

F b(t, S,−vmax) = −1,

F s(t, S,−vmax) = R((S −K)+ + vmaxe
r(T−t)).

(8.4.21)

After providing these proper boundary conditions for the value functions F s(t, S, v) and

F b(t, S, v), we now implement our numerical scheme. The parameters used in the this experi-

ment are listed in Table 8.1.

Parameters K T r σ Smax vmax v0
values 5 0.5 0.05 0.3 10 5 2

Table 8.1: Parameters.

Given τ = T and v = v0, the values of F s(τ, S, v) and F b(t, S, v) are computed at different

values of S and then listed in Tables 8.2 and 8.3. To determine the numerical rates of con-
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vergence, we choose a sequence of meshes by successively halving the mesh parameters. The

analytical solutions (8.3.1) and (8.3.5) obtained in Propositions 8.3.1 and 8.3.2 are considered

as a benchmark when we report the l2 error. The ratio column of Tables 8.2 and 8.3 is the

ratio of successive l2 error as the grid is refined by a factor of two.

(N1, N2,M) S = 4 S = 4.5 S = 5 S = 5.5 S = 6 l2 error ratio
(21,21,160) -0.8604 -0.8399 -0.7981 -0.7216 -0.5889 0.0452
(41,41,320) -0.8595 -0.8371 -0.7915 -0.7074 -0.5601 0.0123 3.7
(81,81,640) -0.8593 -0.8364 -0.7898 -0.7039 -0.5528 0.0040 3.1
(161,161,1280) -0.8591 -0.8361 -0.7891 -0.7026 -0.5503 0.0012 3.4
Benchmark (8.3.1) -0.8592 -0.8362 -0.7892 -0.7023 -0.5492

Table 8.2: The values of F s(T, S, v0) with different meshes for European call options.

(N1, N2,M) S = 4 S = 4.5 S = 5 S = 5.5 S = 6 l2 error ratio
(21,21,160) 6.3860 5.7689 4.8250 3.7099 2.6162 0.1635
(41,41,320) 6.3423 5.6985 4.7540 3.6598 2.5889 0.0403 4.1
(81,81,640) 6.3307 5.6812 4.7369 3.6475 2.5819 0.0099 4.1
(161,161,1280) 6.3302 5.6791 4.7348 3.6465 2.5820 0.0071 1.4
Benchmark (8.3.5) 6.3268 5.6755 4.7313 3.6435 2.5800

Table 8.3: The values of F b(T, S, v0) with different meshes for European call options.

From Tables 8.2 and 8.3, it is observed that the successive l2 error is approaching to zero as

the grid spacing is diminished, which show that our numerical results are in good agreement

with the benchmark solution. Therefore, we choose the numerical results calculated on the grid

(161, 161, 1280) to produce equal-risk price numerically.

In Figure 8.3, we demonstrate how risk exposure functions F s(T, S, v) and F b(T, S, v)

changes as v varies with S = 5. As expected, the seller’s risk exposure is increasing; while

the buyer’s risk exposure is decreasing as v goes toward infinity. Equal-risk price of Eu-

ropean call options with current price S = 5 corresponds to the offer price v that makes

ρs(S, v;Z) = ρb(S, v;Z), which is numerically solved according to formula (8.4.11).

We repeat the above steps again and again with different values of S. Then how equal-risk

price varies with the underlying stock price is plotted in Figure 8.4(a), compared with the

results calculated from analytical pricing formula (8.3.14). The absolute error between them is

plotted in Figure 8.4(b). From Figures 8.4(a) and 8.4(b), our numerical equal-risk price is in a
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Figure 8.3: Risk exposure for both seller and buyer of European call option with S = 5.

good agreement with the analytical pricing formula except near the boundary S = Smax. This

error is actually incurred by truncating the domain and imposing an approximate boundary

condition there. As pointed out by Barles et al (1995), by extending the computational domain,

it is possible to make the near-field error arbitrarily small. The first experiment demonstrates

that our method to produce equal-risk price by solving HJB equation numerically is consistent

with analytical pricing formula, which provides us more confidence to apply it to the general

contingent claim.

It has to been pointed out that oscillation can be observed in the absolute error in Figure

8.4(b). That’s because the numerical scheme we applied in Section 8.4.2 is not the monotone

scheme we proposed in Chapter 7. The reason is that it is hard to implement our monotone

scheme when the PDE system is two dimensional, especially when the cross derivative term

appears.
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Figure 8.4: Comparisons between analytical pricing formula (8.3.14) and numerical results.
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Experiment 2: Butterfly spread option

The second experiment we conduct is to derive equal-risk price for a butterfly spread option,

of which the payoff function is defined as

Z(S) = (S −K1)
+ − 2(S − K1 +K2

2
)+ + (S −K2)

+. (8.4.22)

Figure 8.5 provides a diagram of such a payoff function. Obviously, it is not monotonic and Guo
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Figure 8.5: Payoff of a butterfly option with K1 = 4, K2 = 6.

& Zhu (2017) could not provide its corresponding equal-risk price according to their methods.

We now apply our numerical scheme to solve the corresponding HJB equations first and then

derive its equal-risk price numerically.

Before implementing the scheme, we also need to specify the boundary conditions according

to the financial reasoning. Similar to the analysis in the first experiment, the stock price would

stay at zero (or infinity) once it hits zeros (or infinity) at any time t because it follows geometric

Brownian motion. According to the payoff function of the butterfly spread option, it becomes

worthless at both S = 0 and S → ∞. The seller of the claim faces no liability and he has no

motivation to hedge. Consequently, he would invests his initial wealth on the risk-free account

and obtains the profits ver(T−t) at time T . Consequently, the boundary conditions at S = 0
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and S → ∞ are imposed as





F s(t, 0, v) = R(−ver(T−t)),

lim
S→∞

F s(t, S, v) = R(−ver(T−t)).
(8.4.23)

According to the same financial reasoning, on the boundaries S = 0 and S → ∞, the buyer

pays v at time t for a worthless contingent claim and has no motivation to hedge. At the

expire date, the buyer only faces a deterministic liability ver(T−t) and we impose the boundary

conditions as 



F b(t, 0, v) = R(ver(T−t)),

lim
S→∞

F b(t, S, v) = R(ver(T−t)).
(8.4.24)

The boundary condition along the v direction are also implied by Lemma 8.2.1, i.e





lim
v→∞

F s(t, S, v) = −1,

lim
v→∞

F b(t, S, v) = ∞,

lim
v→−∞

F s(t, S, v) = ∞,

lim
v→−∞

F b(t, S, v) = −1,

(8.4.25)

which are approximated by





F s(t, S, vmax) = −1,

F b(t, S, vmax) = R(vmaxe
r(T−t) − Z(S)),

F s(t, S,−vmax) = R(Z(S) + vmaxe
r(T−t)),

F b(t, S, vmax) = −1,

(8.4.26)

to make sure they are consistent with the terminal condition.

After all the boundary conditions are provided properly, we apply our numerical scheme to

numerically solve the PDE system associated with the butterfly spread option. The parameters

in the second experiment are listed in Table 8.4

When the contingent claim is a butterfly spread option, we do not have an analytical solution
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Parameters K1 K2 T r σ Smax vmax v0
values 4 6 0.5 0.05 0.3 10 3 1

Table 8.4: Parameters.

in hand and we choose the results computed on the uniform mesh with 321×321×2560 nodes as

a benchmark solution. The numerical results of the value functions F s(T, S, v0) and F
b(T, S, v0)

calculated on different meshes are reported in Tables 8.5 and 8.6.

(Nx, Ny, NT ) S = 4 S = 4.5 S = 5 S = 5.5 S = 6 l2 error ratio
(11,11,40) -0.5654 -0.4601 -0.3767 -0.4398 -0.4925 0.1183
(21,21,80) -0.5429 -0.4816 -0.4548 -0.4715 -0.5106 0.0294 4.0
(41,41,160) -0.5445 -0.4919 -0.4696 -0.4832 -0.5172 0.0068 4.3
(81,81,320) -0.5451 -0.4944 -0.4729 -0.4859 -0.5189 0.0015 4.7
(321, 321, 2560) -0.5453 -0.4951 -0.4739 -0.4867 -0.5194

Table 8.5: The values of F s(T, S, v0) on different meshes for a butterfly spread option.

(Nx, Ny, NT ) S = 4 S = 4.5 S = 5 S = 5.5 S = 6 l2 error ratio
(11,11,40) -0.5480 -0.4491 -0.3658 -0.4112 -0.4385 0.1368
(21,21,80) -0.5427 -0.4807 -0.4508 -0.4568 -0.4669 0.0324 4.2
(41,41,160) -0.5444 -0.4914 -0.4665 -0.4704 -0.4763 0.0071 4.5
(81,81,320) -0.5451 -0.4939 -0.4701 -0.4736 -0.4786 0.0013 5.6
(321, 321, 2560) -0.5452 -0.4946 -0.4710 -0.4742 -0.4786

Table 8.6: The values of F b(T, S, v0) on different meshes for a butterfly spread option.

The l2 error reported in Tables 8.5 and 8.6 indicates the numerical results have converged

and they can be used to produce equal-risk price for the butterfly spread option by solving

Equation (8.2.12). Given S = 5, we plot the risk exposure of both the seller and buyer in

Figure 8.6. The equal-risk price for the butterfly spread option with current price S = 5

should be the offer price that makes the risk exposure of seller and buyer equal, which can be

numerically solved by formula (8.4.11).

When short selling is allowed and the market is complete, a butterfly spread option can be

replicated by three European call options as shown in Equation (8.4.22). Its price is a linear

combination of three call options

v = CBS(S,K1, r, σ, T )− 2CBS(S,
K1 +K2

2
, r, σ, T ) + CBS(S,K2, r, σ, T ). (8.4.27)
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Figure 8.6: Risk exposure for both seller and buyer of a butterfly spread option with S = 5.

Such a Black-Scholes price is taken as the benchmark solution to illustrate how short selling

bans affect the price of the butterfly spread option. Equal-risk price calculated through our

PDE method and numerical results calculated from the formula (8.4.27) are plotted in Figure

8.7(a) and the percentage distance to Black-Scholes price is depicted in Figure 8.7(b).

Unlike the cases of European call (put) options where short selling decreases (increases) the

option price for all the underlying stock prices, it is observed from Figure 8.7(a) that equal-risk

price is higher than Black-Scholes price when S > 5; while it is lower than Black-Scholes price

on the other side. Figure 8.7(b) shows that the relative difference between equal-risk price and

Black-Scholes price is significant even though the absolute difference is tiny, which demonstrates

that short selling bans indeed affect the price of the butterfly spread option. The effects of short

selling bans depend on the current underlying stock price, which is totally different from the

cases we considered before. To explain the effects of short selling bans, we come to its payoff

function displayed in Figure 8.5. Locally, the payoff function is monotonically increasing with

the underlying stock price when S < 5. In this region, the short selling bans push down the

option price as it does in the case of European call option. On the other side, the short selling

bans have an opposite effects.

Finally, we consider how the hedging strategy is affected by the ban of short selling. Take the
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Figure 8.7: Comparisons between equal-risk price and Black-Scholes price.
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seller of this claim as an example. The optimal hedging strategy for the seller is numerically

calculated from the PDE system (8.4.1). To make comparisons, the corresponding optimal

hedging strategy in the Black-Scholes model without short selling bans is as

ϕBS =
∂CBS(S,K1, r, σ, T )

∂S
− 2

∂CBS(S, K1+K2

2
, r, σ, T )

∂S
+
∂CBS(S,K2, r, σ, T )

∂S
. (8.4.28)

The numerical results calculated from the PDE system and the formula (8.4.28) are plotted in

Figure 8.8(a) with v = 0.5.

It is observed from Figure 8.8(a) that the optimal hedging strategy takes both positive

and negative values as the underlying stock price varies when short selling is allowed. After

imposing the short selling bans, the negative part becomes zero and the positive negative part

becomes larger as the absolute difference between them is plotted in Figure 8.8(b) when S < 5.

8.5 Conclusions

This chapter has discussed how to price the contingent claim when short selling bans are

imposed in the Black-Scholes model. We have successfully established and implemented a PDE

framework of equal-risk pricing approach proposed by Guo & Zhu (2017). Under our PDE

framework, analytical pricing formula has been derived for European call and put options,

which indicates that our PDE approach degenerates to the results by Guo & Zhu (2017). In

addition, our PDE approach has also been applied to deal with the case where the payoff

function is non-monotonic, such as the butterfly spread option. According to the numerical

results, the effects of short selling bans are discussed through comparisons between equal-

risk price and Black-Scholes price. Generally, short selling bans would decrease the price of

European call option; while it has an opposite effect on European put options. As for the

butterfly spread option, short selling ban draws down the option price when payoff function

is increasing with underlying stock price; while it pushes up the option price when the payoff

function is decreasing.
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option.



Chapter 9

Concluding Remarks

In this thesis, we have explored how regulations on short selling affect option pricing. In

particular, our study is divided into two parts: the first one focuses on option with short selling

restrictions and the second one is about option pricing with short selling bans.

In the case where short selling is restricted, a new dynamic model proposed by Avellaneda

& Lipkin (2009) is adopted to describe the underlying stock. We provide a PDE approach to

European option pricing problem under this new dynamic model. Then numerical results are

obtained with two carefully chosen methods, the difference of which lies in the treatment of the

jump term. In addition, a Monte Carlo scheme is also provided to implement the semi-explicit

pricing formula so that we can compare the numerical results from our PDE system with those

from the semi-explicit pricing formula. Through comparisons, it is verified that semi-explicit

pricing formula is a good approximate solution when the independence is reasonable. However,

in the event that this is not the case, it is our PDE approach that can solve the option problem

correctly instead of the semi-explicit pricing formula. In other words, the derivation of the semi-

explicit pricing formula requires an independence assumption, which has limited its application;

while our PDE method always works whether the independence assumption is valid or not.

The PDE system established for European option pricing has also laid a solid foundation for

our study on American option pricing. The PDE method is easily extended to the American

case as a linear complimentary problem (LCP); while it is impossible for such an extension under
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the semi-explicit pricing formula. Lagrange multiplier approach is applied to solve the LCP

and then numerical results are provided to demonstrate how option prices and optimal exercise

price are affected by the value of parameters in the hard-to-borrow stock model. A significant

conclusion from our study is that American call option may be exercised early although the

underlying stock does not pay dividend in the hard-to-borrow stock model. Such a conclusion

supports a recent empirical study conducted by Jensen & Pedersen (2016) and overturns the

classic result by Merton (1973). Explanations both from mathematical and financial aspects

have been presented.

When short selling is completely banned, Guo & Zhu (2017) recently proposed a new and

efficient equal-risk pricing approach. However, they only obtained analytical pricing formula

for European call and put options as the payoff function is monotonic and it is difficulty to

apply their analysis method to the case where the payoff function is non-monotonic. In or-

der to expand the range of its application, we have successfully established a PDE framework

by solving the maximization problem with the HJB equation. When the payoff function is

monotonic, analytical pricing formula has also been derived from our PDE framework, which is

consistent with the results from Guo & Zhu (2017). Furthermore, equal-risk price is also pro-

duced through solving the PDE system numerically when the payoff function is non-monotonic,

such as a butterfly spread option, which is absent in Guo & Zhu (2017). Comparisons between

equal-risk price and Black-Scholes price are provided to demonstrate how short selling bans

affect the price of different options. In general, short selling bans would decrease the price of

European call options; while it has an opposite effect on European put options. As for the

butterfly spread option, short selling ban draws down the option price when payoff function

is increasing with underlying stock price; while it pushes up the option price when the payoff

function is decreasing.

Along with our research on short selling bans, we have also proposed three different solution

approaches to the HJB equation, which has many applications even beyond mathematical

finance. The homotopy analysis method has been successfully applied to decompose the highly

nonlinear HJB equation into a series of linear PDEs that can be solved analytically. Besides, for
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the first time, we derive a closed-form analytical solution to the HJB equation from the Merton

problem defined on a finite horizon with exponential utility. In the literature where analytical

solution is available, they have to make at least one of the following assumptions: (1) the utility

function belongs to the constant relative risk aversion (CRRA) class; (2) the utility function is

defined over terminal wealth only and consumption is not allowed; (3) the investment horizon is

infinite. As one of contributions to the literature, our closed-form analytical is derived without

any one of these three assumptions. A monotone numerical scheme is also presented to solve

the HJB equation after demonstrating its stability, consistency and monotonicity. All these

three approaches, albeit being quite different from each other, have shed some light on the final

“exertion” on the very difficult problem of what we initially aimed at, i.e. being able to solve a

highly nonlinear HJB equation in order to price options with a non-monotonic payoff function

under the PDE framework of equal-risk pricing approach.



Appendix A

Proofs for Chapter 3

A.1 Proof of Proposition 3.3.1

Under the risk-neutral measure, the dynamics are shown in Equation (4.2.5). According to the

definition of European call options, we have

u(x, S, t) = E[e−r(T−t)h(ST )|St = S, xt = x] = E[e−r(T−t)h(ST )|Gt]. (A.1.1)

where Gt = Ft ∨ Ht, Ft is the filtration generated by the standard Browain motion Wt and Zt

and Ht is the filtration generated by the Poisson process Nλt . Supposing that 0 ≤ s ≤ t ≤ T ,

using Equation (A.1.1), we obtain

E[e−rtu(xt, St, t)|Gs] = E[E[e−rTh(ST )|Gt]Gs]

= E[e−rTh(ST )|Gs],

= e−rsE[e−r(T−s)h(ST )|Gs],

= e−rsu(xs, Ss, s).
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Therefore, e−rtu(xt, St, t) is a martingale with respect to the filtration Gt. By applying Ito’s

formula to u(xt, St, t), we have

du(xt, St, t)

= utdt+ uSdSt + uxdx+
1

2
uSS(dSt)

2 +
1

2
uxx(dxt)

2 + [u(x− βγ, S(1− γ))− u]dNλt

= {ut + rStuS + [α(x− xt) + βr]ux +
1

2
σ2S2

t uSS +
κ2 + σ2β2

2
uxx + βσ2StuxS}dt

+ (uSσS + uxβσ)dWt + κuxdZt + [u(x− βγ, St(1− γ))− u]dNλt

= {rStuS + [α(x− xt) + βr]ux +
1

2
σ2S2

t uSS +
κ2 + σ2β2

2
uxx + λt[u(x− βγ, St(1− γ))− u]

+ βσ2StuxS + ut}dt+ (uSσSt + uxβσ)dWt + κuxdZt + [u(x− βγ, St(1− γ))− u](dNλt − λtdt)

where ut =
∂u(x,S,t)

∂t
, uS = ∂u(x,S,t)

∂S
,ux = ∂u(x,S,t)

∂x
, uxx = ∂2u(x,S,t)

∂x2
, uSS = ∂2u(x,S,t)

∂S2 , and uxS =

∂2u(x,S,t)
∂x∂S

. Consequently, we obtain

d(e−rtu(xt, St, t))

= e−rt{(uSσS + uxβσ)dWt + κuxdZt + [u(x− βγ, S(1− γ))− u](dNλt − λtdt)}

+ e−rt{ut + rSuS + [α(x− xt) + βr]ux +
1

2
σ2S2uSS +

κ2 + β2σ2

2
uxx+

+ βσ2SuxS + λt[u(x− βγ, S(1− γ))− u)]− ru}dt.

According to the martingale representation theorem, we set the dt term to be zero. Finally, we

obtain 



−∂u
∂t

= (L1 + L2)u,

u(x, S, T ) = max{S −K, 0},
(A.1.2)

where





L1u =
κ2 + β2σ2

2
uxx +

1

2
σ2S2uSS + βσ2SuxS + [α(x− x) + βr]ux + rSuS − ru,

L2u = ex[u(x− βγ, S(1− γ), t)− u(x, S, t)].
(A.1.3)
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A.2 The derivation for Equation (3.4.10)

The space discretization is performed first. The governing PDE system (3.4.9) becomes:

∂uni,j
∂τ

= aiδxxu
n
i,j + biδyyu

n
i,j + ciδxu

n
i,j + diδyu

n
i,j + ρiδxyu

n
i,j − runi,j (A.2.1)

where

(δxxu)i,j =
ui+1,j−2ui,j+ui−1,j

∆x2
(δyyu)i,j =

ui,j+1−2ui,j+ui,j−1

∆y2

(δxu)i,j =
ui+1,j−ui−1,j

2∆x
(δyu)i,j =

ui,j+1−ui,j−1

2∆x

(δxyu)i,j =
ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

4∆x∆y
.

The mixed derivative, the spatial derivatives in the x direction and the spatial derivatives in the

y direction are denoted as linear operators A0, A1, A2 respectively so that we can demonstrate

the ADI method more clearly.

A0u
n
i,j = ∆τρiδxyu

n
i,j

A1u
n
i,j = ∆τ(aiδxxu

n
i,j + ciδxu

n
i,j −

r

2
uni,j)

A2u
n
i,j = ∆τ(biδyyu

n
i,j + diδyu

n
i,j −

r

2
uni,j)

Thus, the weighted average of the fully implicit scheme and explicit scheme can be represented

as :

[I − θ(A0 + A1 + A2)]u
n+1 = [I + (1− θ)(A0 + A1 + A2)]u

n +O((∆τ)3) (A.2.2)

Note that when θ = 0 or θ = 1, (A.2.2) becomes fully explicit or fully implicit respectively.

When θ = 0.5, it is equivalent to apply Crank-Nicolson scheme to the time derivative
∂u

∂τ
.

After some simple algebra, we obtain:

[I − θ(A0 + A1 + A2) + θ2A1A2]u
n+1 = [I + (1− θ)A0 + (1− θ)A1 + (1− θ)A2) + θ2A1A2]u

n

+θ2A1A2(u
n+1 − un) +O((∆τ)3). (A.2.3)
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As the term θ2A1A2(u
n+1 − un) ∼ O((∆τ)3), it can be taken into the error term.

Thus, (A.2.3) turns to

(I−θA1)(I−θA2)u
n+1−θA0u

n+1 = [I+(1−θ)A0+(1−θ)A1+(1−θ)A2+θ
2A1A2]u

n+O((∆τ)3).

(A.2.4)

Moving the term θA0u
n+1 to the right side of the (A.2.4), we obtain :

(I − θA1)(I − θA2)u
n+1 = [I + A0 + (1− θ)A1 + (1− θ)A2 + θ2A1A2]u

n

+θA0(u
n+1 − un) +O((∆τ)3) (A.2.5)

= [I + A0 + (1− θ)A1 + (1− θ)A2 + θ2A1A2]u
n +O((∆τ)2).

The finite difference equation for PDE system (A.2.1) is of the form :

(I − θA1)(I − θA2)u
n+1 = [I + A0 + (1− θ)A1 + (1− θ)A2 + θ2A1A2]u

n. (A.2.6)

A.3 The matrix forms in Methods 1 and 2

Both in Method 1 and Method 2, the boundary conditions are the same:

bnd1 = u(x1, y, τn) = CBS(ey, K, r, n∆τ, σ);

bnd2 = u(xNx
, y, τn) = max(ey −K, 0);

bnd3 = u(x, y1, τn) = 0;

bnd4 = u(x, yNy
, τn) = max(eyN −K, 0);

It is pointed out that bnd2 is an approximate Dirichlet boundary condition at x→ ∞. For the

convenience of our implementation, we adopt such a condition at the beginning of each time

step and then apply the Neumann boundary condition limx→∞
∂u
∂x
(x, y, τ) = 0 as u(xNx

, y, τ) =

u(xNx−1, y, τ) to correct it at the end of each time step.
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For Method 1, the matrix form are

H1u
2n+1
j = P 2n

j + xBnd1
j (A.3.1)

H2u
2n+2
i = Q2n+1

i + yBnd1
i (A.3.2)

with

xBnd1
j =




∆τ( a
∆x2

− c2
2∆x

)bnd1j

0

∆τ( a
∆x2

+
cNx−1

2∆x
)bnd2j



,

yBnd1
i =




∆τ( b
(∆y)2

− d
2∆y

)bnd3i

0

∆τ( b
(∆x)2

+ d
2∆y

)bnd4i



,

P 2n
j = (p2n1,j, p

2n
1,j, · · · , p2nNx,j)

T ,

Q2n+1
j = (q2n+1

i,1 , q2n+1
i,2 , · · · , q2n+1

i,Ny
)T ,

pi,j = ui,j +∆τ [
b

∆y2
(ui,j+1 − 2ui,j + ui,j−1) +

d

2∆y
(ui,j+1 − ui,j−1)−

r

2
ui,j] +∆τ [exi(uint − ui,j)],

qi,j = ui,j +∆τ [
a

∆x2
(ui+1,j − 2ui,j + ui−1,j) +

ci
2∆x

(ui+1,j − ui−1,j)−
r

2
ui,j]∆τ [e

xi(unint − ui,j)],

H1 =




1 + ∆τ
(

2a
∆x2

+ r
2

)
−∆τ

(
a

∆x2
+ c2

2∆x

)

−∆τ
(

a
∆x2

− c3
2∆x

)
1 + ∆τ

(
2a
∆x2

+ r
2

)
−∆τ

(
a

∆x2
+ c3

2∆x

)

. . . . . .

−∆τ
(

a
∆x2

− cNx−2

2∆x

)
1 + ∆τ

(
2a
∆x2

+ r
2

)
−∆τ

(
a

∆x2
+

cNx−2

2∆x

)

−∆τ
(

a
∆x2

− cNx−1

2∆x

)
1 + ∆τ

(
2a
∆x2

+ r
2

)




,
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H2 =




1 + ∆τ
(

2b
∆y2

+ r
2

)
−∆τ

(
b

∆y2
+ d

2∆y

)

−∆τ
(

b
∆y2

− d
2∆y

)
1 + ∆τ

(
2b
∆y2

+ r
2

)
−∆τ

(
b

∆y2
+ d

2∆y

)

. . . . . .

−∆τ
(

b
∆y2

− d
2∆y

)
1 + ∆τ

(
2b
∆y2

+ r
2

)
−∆τ

(
b

∆y2
+ d

2∆y

)

−∆τ
(

b
∆y2

− d
2∆y

)
1 + ∆τ

(
2b
∆y2

+ r
2

)




,

As for Method 2, we have the matrix form as :

AZj = Pj + xBnd2
j (A.3.3)

Bui = Qi + yBnd2
i (A.3.4)

with

xBnd2
j =




θ∆τ( a2
∆x2

− c2
2∆x

)bnd1j

0

θ∆τ(
aNx−1

∆x2
+

cNx−1

2∆x
)bnd2j



,

xBnd2
i =




∆τ( bi
(∆y)2

− di
2∆y

)bnd3i

0

∆τ( bi
(∆x)2

+ di
2∆y

)bnd4i



,

Pj = (p1,j, p1,j, · · · , pNx,j)
T ,

Qj = (qi,1, qi,2, · · · , qi,Ny
)T ,

pi,j = ui,j +∆τρi
ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1

4∆x∆y
+∆τ [

bi
∆y2

(ui,j+1 − 2ui,j + ui,j−1)

+
di

2∆y
(ui,j+1 − ui,j−1)−

r

2
ui,j] + (1− θ)∆τ [

ai
∆x2

(ui+1,j − 2ui,j + ui−1,j)

+
ci

2∆x
(ui+1,j − ui−1,j)−

r

2
ui,j],

qi,j = zi,j − θ∆τ [
bi

∆x2
(ui,j+1 − 2ui,j + ui,j−1) +

ci
2∆x

(ui+1,j − ui−1,j)−
r

2
ui,j],
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A =




1 + θ∆τ( 2a2
∆x2

+ r
2
) −θ∆τ( a2

∆x2
+ c2

2∆x
)

−θ∆τ( a3
∆x2

− c3
2∆x

) 1 + θ∆τ( 2a3
∆x2

+ r
2
) −θ∆τ

(
a3
∆x2

+ c3
2∆x

)

. . . . . . . . .

−θ∆τ(aM−2

∆x2
− cM−2

2∆x
) 1 + θ∆τ(2aM−2

∆x2
+ r

2
) −θ∆τ

(
aM−2

∆x2
+ cM−2

2∆x

)

−θ∆τ(aM−1

∆x2
− cM−1

2∆x
) 1 + θ∆τ(2aM−1

∆x2
+ r

2
)




,

B =




1 + θ∆τ
(

2bi
∆y2

+ r
2

)
−θ∆τ

(
bi

∆y2
+ di

2∆y

)

−θ∆τ
(

bi
∆y2

− di
2∆y

)
1 + θ∆τ

(
2bi
∆y2

+ r
2

)
−θ∆τ

(
bi

∆y2
+ di

2∆y

)

. . . . . .

−θ∆τ
(

bi
∆y2

− di
2∆y

)
1 + θ∆τ

(
2bi
∆y2

+ r
2

)
−θ∆τ

(
bi

∆y2
+ di

2∆y

)

−θ
(
aj∆τ

∆x2
− d

′
j∆τ

2∆x

)
1 + θ∆τ

(
2bi
∆y2

+ r
2

)




.

A.4 Proof of Proposition 3.4.1

Following the standard procedure of von Neumann stability analysis (Strikwerda, 2004), unk,m

in (3.4.11) and (3.4.12) is expressed by gn1 e
ikϕeimψ and Zk,m by gn1 g2e

ikϕeimψ , where g1 is the

amplification factor of (3.4.11) and g2 is the amplification factor of (3.4.12), with ϕ, ψ ∈ [−π, π].

Therefore, Equations (3.4.11) and (3.4.12) are transformed to :

g2(1− θz1) = 1 + z0 + (1− θ)z1 + z2

g1(1− θz2) = g2 − θz2

After simple calculations, we obtain :

g1 = 1 +
z0 + z1 + z2

(1− θz2)(1− θz2)
,
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where

z0 = − ρ∆τ

∆x∆y
sinϕsinψ

z1 = −4a∆τ

∆x2
sin2ϕ

2
− r∆τ

2
+ i

c∆τ

∆x
sinϕ

z2 = −4b∆τ

∆y2
sin2ψ

2
− r∆τ

2
+ i

d∆τ

∆y
sinψ

It is easy to check that the coefficients satisfy

4ab− ρ2 = [κ2 + β2σ2 + β2γ2ex][σ2 + ln2(1− γ)ex]− γ2β2ln2(1− γ)e2x

≥ γ2β2ln2(1− γ)e2x − γ2β2ln2(1− γ)e2x

= 0

4R(z1)R(z2)− |z0|2 ≥ 16ab∆τ2

∆x2∆y2
sin2 ϕ

2
sin2 ψ

2
− ∆τ2ρ2

∆x2∆y2
sinϕsinψ

= 4∆τ2

∆x2∆y2
sin2 ϕ

2
sin2 ψ

2
(4ab− ρ2cos2 ϕ

2
cos2 ψ

2
)

≥ 4∆τ2

∆x2∆y2
sin2 ϕ

2
sin2 ψ

2
(4ab− ρ2)

≥ 0

Define vi = (
√
−2R(zi),

|1+θzi|√
2θ

)′, where i = 1, 2. By Cauchy-Schwarz inequality, we have

|1− θz1||1− θz2|
2θ

= ∥v1∥∥v2∥

≥ v1 · v2
= 2

√
R(z1)R(z2) +

(1+θz1)(1+θz2)
2θ

≥ |z0|+ | (1−θz1)(1−θz2)
2θ

+ z1 + z2|

Dividing both sides with |1− θz1||1− θz2|, we have

1

2θ
≥ |z0|

|1− θz1||1− θz2|
+ | 1

2θ
+

z1 + z2
|1− θz1||1− θz2|

| ≥ | 1
2θ

+
z1 + z2

|1− θz1||1− θz2|
| (A.4.1)
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Finally, we have such an estimate for the amplification factor g1

|g1| = |1 + z0+z1+z2
(1−θz1)(1−θz2) |

= |1− 1
2θ

+ 1
2θ

+ z0+z1+z2
(1−θz1)(1−θz2) | (θ ≥ 1

2
)

≤ 1− 1
2θ

+ | 1
2θ

+ z0+z1+z2
(1−θz1)(1−θz2) |

≤ 1.

Therefore, the scheme of DR method (3.4.11) and (3.4.12) is unconditionally stable.



Appendix B

Proofs for Chapter 6

B.1 Proof of Theorem 6.3.2

By introducing a transformation d = 1
γ
, we rewrite the functions a1(t) and b1(t) as





a1(t; d) = e−A1(T−t)(d−1)[ 1
η
(1− d)(−d) 1

d−1 + B1

A1
(1− eA1(T−t))]d−1,

b1(t; d) = e−
∫ T
t
A2(s)ds[α(1−d

η
)d −

∫ T
t
B2(s)e

∫ T
s
A2(u)duds],

(B.1.1)

where 



A1(t; d) =
dρ
d−1

− r
d−1

− dC
(d−1)2

,

B1(t; d) =
d−1
η
(−d) 1

d−1 ,

A2(t; d) = dρ+ dC
1−d +

(d−1)2

η
(−a1

d
)

1
1−d ,

B2(t; d) =
α
η
(1−d)
d
a1.

(B.1.2)

According to L’Hospital rules, we obtain

lim
γ→∞

V (t, x; γ) = lim
d→0−

V (t, x; d) = lim
d→0−

−e−ρte ln [a1(t;d)x+b1(t;d)]
d = −e−ρte lim

d→0−

ȧ1x+ḃ1
a1x+b1 , (B.1.3)

where ȧ1 =
∂a1
∂d

and ḃ1 =
∂b1
∂d

.

After rearranging the terms, we have

a1 = f1f2 = f1(f3 + f4)
d−1, (B.1.4)
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with 



f1 = e−A1(T−t)(d−1),

f2 = e(d−1) ln (f3+f4),

f3 =
1
η
(1− d)(−d) 1

d−1 ,

f4 =
1−eA1(T−t)

A1

d−1
η
(−d) 1

d−1 .

(B.1.5)

It is easy to check that lim
d→0−

f1 = er(T−t) and

lim
d→0−

f2 = lim
d→0−

e(d−1) ln (f3+f4) = 0.

Combining f1 and f2 together, we obtain

lim
d→0−

a1 = 0. (B.1.6)

To calculate function ȧ1, we first obtain

lim
d→0−

ḟ2 = lim
d→0−

ln(f3 + f4)

(f3 + f4)1−d
+ (d− 1)

ḟ3 + ḟ4
(f3 + f4)2−d

= lim
d→0−

(d− 1)
ḟ3 + ḟ4

(f3 + f4)2−d
= −ηg(t)e−r(T−t),

where g(t) =
r

1 + (r − 1)e−r(T−t)
.

According to the chain rule, we come to

ā1 := lim
d→0−

ȧ1 = lim
d→0−

ḟ1f2 + ḟ2f1 = −ηg(t). (B.1.7)

Again, according to L’Hospital rules, we have

lim
d→0−

A2 = lim
d→0−

(d− 1)2

η
e

1
1−d

ln (
−a1
d

) = lim
d→0−

1

η
eln (−ȧ1) = g, (B.1.8)

lim
d→0−

B2 = lim
d→0−

α

η

(1− d)

d
a1 = lim

d→0−

α

η
ȧ1 = −αg. (B.1.9)

and

lim
d→0−

(
1− d

η
)d = lim

d→0−
ed ln ( 1−d

η
) = 1. (B.1.10)
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Using Equations (B.1.8),(B.1.9) and (B.1.10), we obtain

lim
d→0−

b1 = lim
d→0−

e−
∫ T
t
A2ds(α(

1− d

η
)d −

∫ T

t

B2e
∫ T
s
A2duds)

= e
−

∫ T
t

lim
d→0−

A2ds
( lim
d→0−

α(
1− d

η
)d −

∫ T

t

lim
d→0−

B2e

∫ T
s

lim
d→0−

A2du
ds)

= e−
∫ T
t
gdsα(1 +

∫ T

t

ge
∫ T
s
gduds).

The term lim
d→0−

ḃ1 is the last one we need to obtain now.

b̄1 := lim
d→0−

ḃ1 = lim
d→0−

e−
∫ T
t
A2ds(−

∫ T

t

Ȧ2ds)[α(1− d)d −
∫ T

t

B2e
∫ T
s
A2duds]

+ e−
∫ T
t
A2ds[α(

1− d

η
)d(ln

1− d

η
− d

1− d
)]

− e−
∫ T
t
A2ds

∫ T

t

(Ḃ2e
∫ T
s
A2du +B2e

∫ T
s
A2du

∫ T

s

Ȧ2du)ds

= −e−
∫ T
t
gds[α

∫ T

t

lim
d→0−

Ȧ2ds(1 +

∫ T

t

ge
∫ T
s
gduds) + α ln η

+

∫ T

t

e
∫ T
s
gdu( lim

d→0−
Ḃ2 − αg

∫ T

s

lim
d→0−

Ȧ2du)ds]. (B.1.11)

It is pointed out that lim
d→0−

Ȧ2 and lim
d→0−

Ḃ2 are calculated as follows:

lim
d→0−

Ḃ2 = lim
d→0−

∂

∂d
(
α

η

1− d

d
a1) = lim

d→0−

α

η
(
ȧ1d− a1

d2
− ȧ1) = lim

d→0−

α

η
(
ä1
2
) + αg,

and

lim
d→0−

Ȧ2 = lim
d→0−

ρ+
C

(1− d)2
+ 2

(d− 1)

η
(
−a1
d

)
1

1−d +
(d− 1)2

η
I

= ρ+ C − 2

η
lim
d→0−

e
1

1−d
ln (

−a1
d

) +
1

η
lim
d→0−

I

= ρ+ C − 2g +
1

η
lim
d→0−

I,
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where

lim
d→0−

I = lim
d→0−

e
1

1−d
ln (

−a1
d

)[
ȧ1d− a1
a1d(1− d)

+
1

(1− d)2
ln (

−a1
d

)]

= ηg ln ηg + ηg lim
d→0−

ä1
ȧ1(1− d) + a1

d
(1− 2d)

= ηg ln ηg − 1

2
lim
d→0−

ä1.

The term lim
d→0−

ä1 is involved in both terms lim
d→0−

I and lim
d→0−

Ḃ2. We can also obtain

lim
d→0−

ḟ1 = lim
d→0−

e(1−d)A1 [−A1 + (1− d)Ȧ1](T − t) = er(T−t)(t− T )(ρ+ C). (B.1.12)

According to the chain rules, we have

lim
d→0−

ä1 = f̈1f2 + 2ḟ1ḟ2 + f̈2f1 = 2ηg(T − t)(ρ+ C) + er(T−t)f̈2. (B.1.13)

Now we turn to the term lim
d→0−

f̈2.

lim
d→0−

f̈2 = lim
d→0−

∂

∂d

(f3 + f4) ln (f3 + f4) + (d− 1)(ḟ3 + ḟ4)

(f3 + f4)2−d

= lim
d→0−

(ḟ3 + ḟ4)[2 + ln (f3 + f4)] + (d− 1)(f̈3 + f̈4)

(f3 + f4)2−d

−
[(f3 + f4) ln (f3 + f4) + (d− 1)(ḟ3 + ḟ4)][− ln (f3 + f4) + (2− d) ḟ3+ḟ4

f3+f4
]

(f3 + f4)2−d

= lim
d→0−

(d− 1)(ḟ3 + ḟ4)

(f3 + f4)2−d
[2 ln (f3 + f4)− 2

ḟ3 + ḟ4
f3 + f4

+
f̈3 + f̈4

ḟ3 + ḟ4

+
2

d− 1
+ d

ḟ3 + ḟ4
f3 + f4

+
(f3 + f4) ln

2 (f3 + f4)

(d− 1)(ḟ3 + ḟ4)
]. (B.1.14)

After some complicated calculations, we have





lim
d→0−

(d−1)(ḟ3+ḟ4)
(f3+f4)2−d = −ηge−r(T−t),

lim
d→0−

d ḟ3+ḟ4
f3+f4

= −1,

lim
d→0−

(f3+f4) ln
2 (f3+f4)

(d−1)(ḟ3+ḟ4)
= 0.

(B.1.15)
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The expression (B.1.14) can be simplified as

lim
d→0−

f̈2 = −ηge−r(T−t) lim
d→0−

[2 ln (f3 + f4)− 2
ḟ3 + ḟ4
f3 + f4

+
f̈3 + f̈4

ḟ3 + ḟ4
− 3]. (B.1.16)

Each term of Equation (B.1.16) is explored separately as

lim
d→0−

ln (f3 + f4)

= lim
d→0−

ln [(−d) 1
d−1

1− d

η
(1 +

eA1(T − t)− 1

A1

)]

= r(T − t)− ln ηg + lim
d→0−

ln (−d)
d− 1

.

and

lim
d→0−

ḟ3 + ḟ4
f3 + f4

= lim
d→0−

∂

∂d
ln (f3 + f4) = lim

d→0−

1

d(d− 1)
− ln (−d)

(d− 1)2
+ f(t),

with f(t) = g(t)
r − ρ− C

r
[T − t− 1− e−r(T−t)

r
]− 1.

With the help of such limits





lim
d→0−

f̈3+f̈4
ḟ3+ḟ4

+ 2
d(1−d) = 3,

lim
d→0−

[ ln (−d)
d−1

+ ln (−d)
(d−1)2

] = 0,
(B.1.17)

we have

lim
d→0−

2 ln (f3 + f4)− 2
ḟ3 + ḟ4
f3 + f4

+
f̈3 + f̈4

ḟ3 + ḟ4
= 2r(T − t)− 2 ln ηg − 2f(t) + 3. (B.1.18)

Finally, we obtain

lim
d→0−

f̈2 = 2ηg(t)e−r(T−t)[ln ηg(t) + f(t)− r(T − t)], (B.1.19)

and from Equations (B.1.13) and (B.1.16), we have

lim
d→0−

ä1 = 2ηg(t)F (t), (B.1.20)
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with F (t) = (T − t)(ρ+ C − r) + ln ηg(t) + f(t).

As a result, expression (B.1.11) can be obtained explicitly as

b̄1(t) = −e−h1(t){α[h2(t)H(t) + ln η] +

∫ T

t

eh1(s)[G(s)− αg(s)H(s)]ds}, (B.1.21)

where h1(t), h2(t), H(t) and G(t) are defined in Equation (6.3.19).The unknown terms in (B.1.3)

all have been obtained. The limiting form of the solution (6.3.17) is explicitly expressed as

lim
d→0−

V (t, x; d) = −e−ρte ā1x+b̄1
α . (B.1.22)

B.2 Proof of Theorem 6.3.3.

To prove the solutions obtained with different methods are equivalent given α = 1, we just

need to check that

b̄1 = ln b2 − ln η. (B.2.1)

Although b̄1 and b2 have been expressed explicitly in Theorems 6.3.2 and 6.3.3, they need to

be simplified further to show the equivalence between solutions (6.3.17) and (6.3.20). We have

D(t) = ρ+ C − 2g + g(t)[ln ηg(t)− F ]

= ρ+ C − g(t)[
(C + ρ− r)(T − t)(r − 1)e−r(T−t)

1 + (r − 1)e−r(T−t)
+
C + ρ− r

r

er(T−t) − 1

er(T−t) + r − 1
+ 1],

and

H(t) =

∫ T

t

D(s)ds = (ρ+ C)(T − t) +

∫ T

t

g(s)ds− (C + ρ− r)(r − 1)Π1 −
C + ρ− r

r
Π2

= (ρ+ C − r)(T − t) + ln g − (C + ρ− r)(r − 1)Π1 −
C + ρ− r

r
Π2, (B.2.2)
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with Π1 =

∫ T

t

(T − s)g(s)

er(T−s) + r − 1
ds and Π2 =

∫ T

t

(er(T−s) − 1)g(s)

er(T−s) + r − 1
ds. Furthermore, we obtain

Π1 =

∫ T

t

(T − s)g(s)

er(T−s) + r − 1
ds =

T

1− r
+

ln g(t)

r(r − 1)
+
g(t)

r
[
T

r − 1
+ te−r(T−t)], (B.2.3)

and

Π2 =

∫ T

t

(er(T−s) − 1)g(s)

er(T−s) + r − 1
ds =

1− g(t)

r
+ r(T − t)− ln g(t)− g(t)− 1

r(r − 1)
. (B.2.4)

From Equations (B.2.2), (B.2.3) and (B.2.4), we have

H(t) =

∫ T

t

D(s)ds = ln g(t)− C + ρ− r

r

er(T−t)−1

r − 1 + er(T−t)
+

(T − t)(C + ρ− r)(r − 1)

r − 1 + er(T−t)
. (B.2.5)

Furthermore, we obtain

G(t) = g(t)(F + 1) = g(t) ln ηg(t) +
(C + ρ− r)[(T − t)(r − 1)r + er(T−t) − 1]

er(T−t) + 2(r − 1) + (r − 1)2e−r(T−t)
. (B.2.6)

In addition, we explore

∫ T

t

er(T−s)
G(s)

g(s)
ds =

∫ T

t

er(T−s) ln ηg(s) +
(C + ρ− r)[(T − s)(r − 1)r + er(T−s) − 1]

r[1 + (r − 1)e−r(T−s)]
ds

= (C + ρ− r)(r − 1)Π4 +
C + ρ− r

r
Π5 +

∫ T

t

er(T−s) ln g(s)ηds, (B.2.7)

with





Π4 =

∫ T

t

T − s

1 + (r − 1)e−r(T−s)
ds,

Π5 =

∫ T

t

er(T−s) − 1

1 + (r − 1)e−r(T−s)
ds =

er(T−t) − 1

r
− r(T − t) + ln g(t).

(B.2.8)
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Now we have

∫ T

t

er(T−s)H(s)ds

=

∫ T

t

er(T−s)[(ρ+ C − r)(T − s) + ln g − (C + ρ− r)(r − 1)Π1 −
C + ρ− r

r
Π2]ds

=
C + ρ− r

r
[
er(T−t) − 1

r
− r(T − t) + ln g] +

(C + ρ− r)T (er(T−t) − 1)

r
+

∫ T

t

er(T−s) ln gds

− C + ρ− r

r
[

∫ T

t

Trer(T−s)

1 + (r − 1)e−r(T−s)
ds+

∫ T

t

r(r − 1)s

1 + (r − 1)e−r(T−s)
ds]. (B.2.9)

According to Equations (B.2.7) and (B.2.9), we obtain

∫ T

t

er(T−s)[
G(s)

g(s)
−H(s)]ds =

er(T−t) − 1

r
ln η. (B.2.10)

The term b̄1 has been simplified as follows

b̄1 = −e−h1(t){(h2(t)H(t) + ln η) +

∫ T

t

eh1(s)[G(s)− g(s)H(s)]ds}

= −H(t)− g(t)e−r(T−t)[ln η +

∫ T

t

er(T−s)(
G

g
−H)ds]

= −H(t)− g(t) ln η
1 + (r − 1)e−r(T−t)

r

= −H(t)− ln η. (B.2.11)

On the other hand, we obtain

ln b2

= −g(t)e−r(T−t)[(C + ρ)

∫ T

t

r − 1 + er(T−s)

r
ds−

∫ T

t

er(T−s)ds+

∫ T

t

ln g(s)er(T−s)ds]

= −g(t)e−r(T−t)[ (r − 1)(T − t)(ρ+ C)

r
+
C + ρ− r

r

er(T−t) − 1

r
+

∫ T

t

ln g(s)er(T−s)ds]

= −g(t)e−r(T−t)[ (r − 1)(T − t)(ρ+ C − r)

r
+
C + ρ− r

r

er(T−t) − 1

r
]− ln g(t). (B.2.12)
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According to the Equations and (B.2.11) and (B.2.12), we finally have

b̄1 + ln η − ln b2

= −
{
ln g(t)− C + ρ− r

r

er(T−t)−1

r − 1 + er(T−t)
+

(T − t)(C + ρ− r)(r − 1)

r − 1 + er(T−t)
}

+ g(t)e−r(T−t)[
(r − 1)(T − t)(ρ+ C − r)

r
+
C + ρ− r

r

er(T−t) − 1

r
] + ln g(t)

= 0. (B.2.13)

This completes the proof.



Appendix C

Proofs for Chapter 8

C.1 The proof of Lemma 7.4.1

1. If Z1 ≤ Z2, the following inequality always holds because of the monotonicity of R(x) for

any admissible hedging strategy ϕ(·),

R(Z1(ST )− v
v,ϕ(·)
T ) ≤ R(Z2(ST )− v

v,ϕ(·)
T ). (C.1.1)

Taking expectation and infimum on both sides leads to

ρs(S, v;Z1) ≤ ρs(S, v;Z2). (C.1.2)

When v1 ≤ v2, for any admissible hedging strategy ϕ(·) the inequality becomes

R(Z(ST )− v
v1,ϕ(·)
T ) ≥ R(Z(ST )− v

v2,ϕ(·)
T ), (C.1.3)

which results in

ρs(S, v1;Z) ≥ ρs(S, v2;Z). (C.1.4)
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By relation (8.2.11), the monotonicity of ρb(S, v;Z) is characterized as

ρb(S, v;Z1) = ρs(S,−v;−Z1) ≥ ρs(S,−v;−Z2) = ρb(S, v;Z2)

ρb(S, v1;Z) = ρs(S,−v1;−Z) ≤ ρs(S,−v2;−Z) = ρb(S, v2;Z).

2. If the seller sets his hedging strategy to be zero, we obtain

lim
v→∞

ρs(S, v;Z) ≤ lim
v→∞

EQR(Z(ST )− vv,0T ) = lim
v→∞

EQR(Z(ST )− verT ) = LB. (C.1.5)

Due to the fact that R(Z(ST )− v
v,ϕ(·)
T ) ≥ LB always holds for any ϕ(·) ∈ Φ, we have

lim
v→∞

ρs(S, v;Z) ≥ LB. (C.1.6)

Combing Equations (C.1.5) and (C.1.6) together, we have lim
v→∞

ρs(S, v;Z) = LB.

For any ϕ(·) ∈ Φ, we apply Jensen’s inequality to risk function R(x) and obtain

Ev,S
Q [R(v

v,−ϕ(·)
T − Z(ST ))] ≥ R(verT − EQZ(ST )). (C.1.7)

Taking infimum and limits on both sides results in

lim
v→∞

ρb(S, v;Z) = lim
v→∞

inf
ϕ(·)∈Φ

Ev,S
Q [R(v

v,−ϕ(·)
T − Z(ST ))] ≥ lim

v→∞
R(verT − EQZ(ST )) = ∞.

Following the relation (8.2.11), it is easy to derive that

lim
v→−∞

ρs(S, v;Z) = lim
v→−∞

ρb(S,−v;−Z) = lim
v→∞

ρb(S, v;−Z) = ∞

lim
v→−∞

ρb(S, v;Z) = lim
v→−∞

ρs(S,−v;−Z) = lim
v→∞

ρs(S, v;−Z) = LB,

which completes the proof.
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C.2 The proof of Theorem 8.2.1

Given the current underlying price S and the European contingent claim Z, we construct a

map:

H(v) := ρb(S, v;Z)− ρs(S, v;Z). (C.2.1)

According to Lemma 7.4.1, such a map H(v) is continuous and non-decreasing. On one hand,

we have

lim
v→−∞

H(v) = lim
v→−∞

[ρb(S, v;Z)− ρs(S, v;Z)] = −∞. (C.2.2)

On the other hand, as v tends toward infinity, we obtain

lim
v→∞

H(v) = lim
v→∞

[ρb(S, v;Z)− ρs(S, v;Z)] = ∞. (C.2.3)

Hence, we conclude that there exists at least one solution to H(v) = 0 on (−∞,∞).

To demonstrate the uniqueness of the solution, we first assume that the equation H(v) = 0

has two different solutions v1 > v2. According to the monotonicity described in Lemma 7.4.1,

we have

ρb(S, v1;Z) ≥ ρb(S, v2;Z) = ρs(S, v2;Z) ≥ ρs(S, v1;Z) = ρb(S, v1;Z), (C.2.4)

which implies that ρb(S, v1;Z) = ρb(S, v2;Z). Again, according to the monotonicity and con-

vexity of ρb(S, v;Z) with respect to v, we come to a conclusion that ρb(S, v;Z) is constant for

v ≤ v1. It follows that

ρs(S, v1;Z) = ρb(S, v2;Z) = lim
v→−∞

ρb(S, v;Z) = LB (C.2.5)

By Jensen’s inequality, we have





R(v1e
rT − EQZ(ST )) ≤ ρs(S, v1;Z) = LB ≤ 0,

R(EQZ(ST )− v2e
rT ) ≤ ρb(S, v2;Z) = LB ≤ 0.

(C.2.6)
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The above equations implies that both v1e
rT −EQZ(ST ) and EQZ(ST )−v2erT are non-positive

because that R(x) ≥ 0 for any x ≥ 0. However, this conclusion contradicts the fact that

v1e
rT − EQZ(ST ) + EQZ(ST )− v2e

rT = (v1 − v2)e
rT > 0. (C.2.7)

Therefore, the solution must be unique.
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