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Microarray technology has undergone a rapid evolution. With widespread interest in large-scale genomic

research, an abundance of equipment and reagents have now become available and affordable to a large cross

section of the scientific community. As protocols become more refined, careful investigators are able to obtain

good quality microarray data quickly. In most recent times, however, perhaps one of the biggest obstacles

researchers face is not the manufacture and use of microarrays at the bench, but storage and analysis of the array

data. This review discusses the most recent equipment, reagents and protocols available to the researcher, as well

as describing data analysis and storage options available from the evolving field of microarray informatics.

The Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine and The Trescowthick Research Laboratories, Peter MacCallum Cancer
Institute, Locked Bag 1, A’Beckett Street, Melbourne 8006, Victoria, Australia. Correspondence should be addressed to D.D.L.B. (e-mail:
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We reviewed the options for the manufacture and use of DNA
microarrays in the original Chipping Forecast1 in 1999. Since
then, the number of companies that produce microarrays equip-
ment and reagents has increased, and so has the choice of proto-
cols available to researchers. Perhaps the biggest change,
however, has been the explosion in options for data storage and
analysis, partly because effective array laboratories are now pro-
ducing vast quantities of data. Here we discuss the significant
advances in the field of microarray research made in the three
years since our original review.

Making or accessing DNA microarrays
The basic concept behind all microarrays is the precise position-
ing of DNA fragments (probes) at high density on a solid support
so that they can act as molecular detectors. In practice, microar-
rays vary according to the solid support used (such as glass or fil-
ters), the surface modifications with various substrates, the type
of DNA fragments on the array (such as cDNA, oligonucleotides
or genomic fragments), whether the gene fragments are presyn-
thesized and deposited or synthesized in situ, and the machinery
used to place the fragments on the array (such as ink-jet printing,
spotting, mask or micromirror-based in situ synthesis).

Currently, combinations of these variables are used to generate
three main types of microarray: filter arrays, spotted glass slide
arrays, and in situ synthesized oligonucleotide arrays. Both filter
and spotted arrays are produced readily in academic facilities;
they can also be purchased from commercial vendors for those
not inclined toward ‘do it yourself ’. By contrast, arrays of
oligonucleotides that are synthesized in situ, such as the
Affymetrix GeneChip, require complex equipment and are only
produced in commercial settings2–4. Below we first discuss issues
that affect the manufacture of filter and spotted arrays and then
consider the developments made in producing in situ synthesized
oligonucleotide arrays.
Probes for filter and spotted arrays. The first step in the produc-
tion of spotted DNA microarrays or filters is the generation of
‘array-ready’ material, which serves as the feedstock for printing.

In gene expression microarrays, either synthetic oligonucleotides
or cDNA fragments are used as probes. For most researchers, the
ideal microarray for expression profiling would be a complex
array of sequence-validated probes, in which each sequence is
unique, shows minimal cross-hybridization to related sequences
and provides, collectively, a comprehensive representation of the
expressed fraction of the genome including splice variants. It
would also be richly annotated in terms of the functions of the
genes that correspond to the probe sequences. In a similar way, a
nonredundant set of fragments that provide a comprehensive
representation of a genome would be ideal for carrying out com-
parative genomic hybridization5–8.

So far, the principal source of probe fragments used for array-
ing have been bacterial cDNA and bacterial artificial chromo-
some (BAC) clone sets, although sets of long oligonucleotides are
increasingly providing a viable alternative. Considerable progress
has been made in the past few years in improving the complexity
and reliability of the cDNA and BAC clone sets. For complex
organisms such as mice and humans, however, there are still
some shortcomings in the libraries available. Frequently these
libraries contain a certain amount of redundancy, misannotation
and contamination.

Sets of cDNA clones, comprising a single representative of 
each cluster, are distributed by licensed vendors to researchers
(see the IMAGE Consortium: http://image.llnl.gov/image/html/
idistributors.shtml) as bacterial cultures in a multiwell plate for-
mat. The most comprehensive sets are currently distributed by
the ResGen Invitrogen Corporation (http://www.resgen.com/)
and the Resource Center of the German Human Genome Project
(RZPD: http://www.rzpd.de/; see Web Table A online). Specifi-
cally for microarray analysis, Lion Bioscience (http://www.
lionbioscience.com/) has developed sets of mouse, rat and dog
cDNA clones that have been selected for size, 3′ bias and the
removal of poly(A) tails, and which therefore show limited cross-
hybridization (Web Table A online). Incyte Genomics
(http://www. incyte.com), a main provider of validated sets in
the past, stopped making their clone sets available in May 2001
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but supplies array-ready material from these sets for spot-
ting (http://www.incyte.com/expression/easy_to_spot/catalog.
jsp?page=index).

In addition to the IMAGE Consortium, other main contribu-
tors of cDNA clones sets include RIKEN (http://genome.rtc.
riken.go.jp/home.html), The Institute for Genomic Research
(http://www.tigr.org/) and other individuals (see, for example,
ATCC Bioproducts: http://www.atcc.org/SearchCatalogs/tasc2.
cfm#who). In many of these cases, individual clones or sets of
clones are available publicly, although access to some clones
involves the licensing or sharing of any intellectual property gen-
erated from them. For species for which no libraries are available,
some researchers have had success with arrays made from ran-
dom collections of clones9–11.

For some applications of microarrays, such as the sensitive
detection of genomic losses in tumor cells8, large insert clones
such as BACs are more appropriate than cDNAs. Some of the
companies that supply cDNA clone sets also supply curated BAC
libraries (ResGen: http://www.resgen.com/; Incyte Genomics:
http://www.incyte.com/). For species for which a pre-existing
BAC library is not available, some companies (for example,
Genomex: http://www.genomex.com/) will prepare custom
libraries. Many of the BAC clone sets, such as the RPCI-11 series of
human BAC clones12, were generated as part of genome sequenc-
ing efforts. Because most of these libraries contain up to a tenfold
redundancy across genomes, they require individual clones to be
selected to reduce clonal overlap for microarraying purposes.

An academic supplier of BAC libraries curated specifically for
microarraying purposes is BACPAC Resources at the Children’s
Hospital Oakland Research Institute (http://www.chori.
org/bacpac/). In addition to 53 BAC, 7 phage artificial chromo-
some (PAC) and some fosmid libraries, representing numerous
vertebrate and invertebrate genomes, BACPAC Resources also
offers a human BAC library containing 3,500 clones with a spac-
ing of 1 clone per 1,000,000 base pairs. These clones have been
verified for use as fluorescent in situ hybridization probes. A
more complex human BAC library containing 30,000 clones
with minimal spacing, and a similar mouse library are currently
under construction. These new libraries are expected to become
available by late 2002.

Many of the initial cDNA clone sets were compromised by
contamination with T1 phage, by multiple clones in individual
wells and by incorrect sequence assignment13, and substantial
efforts have been taken to reduce the error rate in clone sets.
Between 1 and 5% of clones in well-maintained clone sets are
said to be misassigned that is, they do not contain the specified
sequence although this figure has been disputed14.

Operationally, the clone error rate depends on the degree of
care taken both by the facilities that produce clone sets and by the
individual laboratories that use them. DNA for arraying is typi-
cally prepared from clone sets by high-throughput polymerase
chain reaction (PCR), rather than by the purification of recombi-
nant constructs such as plasmids15. Once the early stages of
microarray production are achieved, investigators often seek to
increase the complexity of their arrays, for example, stepping up
from arrays of 5,000 clones to 20,000–40,000 clones. Many have
found, however, that the ability to maintain high-quality, error-
free clone preparation and printing is not easily scalable. In
short, it is one thing for a person to spend a month doing PCRs
and running validation gels with the promise of carrying out
long-awaited microarray experiments; it is another to repeat this
process using the same equipment on 5–10 times as many clones
and to remain focused.

Given the logistical difficulties associated with handling large
numbers of bacterial clones, it has become very attractive to

obtain large sets of oligonucleotide probes that obviate much of
the work involved in producing array-ready material and take
advantage of the rapid growth in genome sequence information.
The production of complex, spotted oligonucleotide microarrays
has become progressively more accessible as the cost of oligonu-
cleotide synthesis has fallen and the yield of full-length long
oligonucleotides or ‘longmers’ has improved. Because oligonu-
cleotide sets, unlike cDNA sets, are not limited by the availability
of physical clones, in principle, sets could be generated in-house
from sequence information. But the design of oligonucleotides is
a complicated procedure16,17, and in practice, most investigators
use commercially available oligonucleotide sets that encompass
large numbers of genes ascertained from the latest draft of the
relevant genomic sequence (Web Table B online).

A forerunner of this approach was the generation of short
oligonucleotide primers to amplify fragments corresponding to
expressed regions of the genome. The use of gene-specific PCR
to generate array material was first applied to yeast18, and other
genomes have been subsequently amplified in this way, includ-
ing bacterial genomes19 and plants20. Although this is an appeal-
ingly systematic approach, it is not without its challenges in
terms of ensuring effective primer design for efficient high-
throughput PCR amplification. A more direct approach is to use
oligonucleotides of 50–70 bases that correspond to known or
predicted genes and to print these directly onto spotted arrays
(Web Table B online). Because the oligonucleotides are much
shorter than cDNAs, the base composition is likely to influence
their performance strongly, and an effective oligonucleotide
design is required. This is usually accomplished by using avail-
able cDNA sequence information and sequence prediction 
programs such as ArrayOligoSelector (http://sourceforge.net/
projects/arrayoligosel).

There is still a lack of good comparative data for cDNA arrays
versus long oligonucleotide arrays. One of the best analyses of the
utility of oligonucleotide arrays has been provided by Hughes 
et al.4, who used an ink-jet printer to synthesize large sets of
human and yeast oligonucleotides. Hughes et al.4 also evaluated
several key features of oligonucleotide design for sensitivity and
specificity. Their systematic study showed that oligonucleotides
of 60 bases can provide excellent results in terms of specificity
and sensitivity. We have found that, depending on the origin of
the oligonucleotide set, there can be surprising lack of concor-
dance between results obtained with cDNA arrays and those
obtained with oligonucleotide arrays. We therefore urge that care
should be taken when changing from cDNA to oligonucleotide
probes and suggest that investigators use test samples to compare
sets from different providers.
Printing substrates for spotted glass arrays. Spotted arrays are
typically printed on glass to allow visualization of the bound,
fluorescently labeled targets. Glass slides have continued to be
the favored solid support for immobilizing probes for reasons of
availability, low fluorescence, transparency, resistance to high
temperature, physical rigidity and the variety of surface chemi-
cal modifications possible. The nonporous nature of glass
means that targets have direct access to probes without the limi-
tations of internal diffusion. The use of a nonporous substrate
reduces the background problems that typically arise with the
high concentrations of targets and the agents designed to
deplete repeat sequences.

Initial studies used standard glass microscope slides that had
been thoroughly washed and then coated with poly-L-lysine21.
Poly-L-lysine is still popular as a substrate owing to its low cost,
its ease of manufacture and its generally good results. Slides for
printing have undergone considerable commercial development,
and alternative substrates on slides with highly uniform surface
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properties have been produced (Web Table C online). There is
probably no ‘best’ substrate at present, because substrate choice
depends on the type of material that is printed (for example,
cDNAs or oligonucleotides) and its purity, and particularly on
the protocols used to subsequently label and hybridize targets to
the array. Clearly, the type of substrate can markedly affect the
signal intensity, degree of background and durability of the slide.
The striking variation in signal and background that can occur
when different substrates are used for spotted cDNA arrays is
shown in Fig. 1.

Investigators are advised to test a range of substrates systemat-
ically to find those that best meet their needs and budgets,
because slides can constitute a substantial fraction of the cost
associated with construction of microarrays. It is also worth
checking that batches of slides have uniform geometry, as a
minor variation in edge length can accumulate over a platen of
slides with disastrous consequences for printing. Similarly, there
is no standard slide dimension across the industry at present, and
some microarray readers may not be able to focus on slides
whose width or thickness falls outside a predetermined range.
Arrayers for printing glass slide and filter arrays. Glass slide
microarrays were first produced in Patrick Brown’s laboratory at
Stanford University22. The microarrays were produced by an xyz-

axis gantry robot that used banks of pins to ferry small volumes
of DNA solutions from the wells of 96-well plates to the prepared
surfaces of a series of glass slides. Initially, the availability of com-
mercially produced microarray robots was very limited, and to
build their own arrayers, the early pioneers of the technology
made use of the detailed specifications provided by the Stanford
group (http://cmgm.stanford.edu/pbrown/mguide/index.html).

An increasing number of commercial robots can position a
print head precisely over a field of glass slides, and many investi-
gators have opted for the purchase of these devices as a fast, rela-
tively painless (but not inexpensive) way of entering into the
arraying field (Web Table D online). The development of pin-
based gantry microarray robots over the past few years has been
evolutionary rather than revolutionary. The machines work on
the same principles as the earlier arrayers, but they are more
automated and more commonly have features such as climate
control and plate stackers.

The development of high-precision printing pins that can
deliver smaller, more uniform spots over many slides probably
has been more significant than the development of the arrayers
themselves (Web Table E online). A practical consequence of
more efficient probe delivery by newer pin designs is the need for
arrayers with slide platens that can accommodate more than
100–200 slides, so that printable material is not wasted at the end
of the print cycle.

Although cDNAs can be renewed for use at moderate expense,
the use of expensive and non-renewable oligonucleotide sets has
made the issue of waste reduction even more important. The
recent development of noncontact ink-jet and piezo printing
machines may potentially reduce the wastage of print material
while offering increased precision and speed. Many companies
now manufacture noncontact arrayers, which use a variety of
configurations (Web Table D online). Although these provide a
solution to wastage and have other benefits over standard contact
printing, they are an expensive alternative, and individual labo-
ratories need to weigh the benefit of the investment.

Perhaps the most interesting recent development in laboratory-
based array manufacture is the promise of bench-top machines
that allow the in situ synthesis of oligonucleotide arrays. At least
two companies, febit and NimbleGen (Web Table F online), are
developing devices that use maskless, micromirror technology to
accomplish base addition during the in situ synthesis of oligonu-
cleotides2. These machines could potentially revolutionize the use
of genome information by investigators, by allowing the flexible
and rapid design of new microarray devices.

Filter arrays are sometimes called macroarrays because of their
generally lower probe density and to distinguish them from their
more glamorous cousins. Glass microarrays and filter macroar-
rays are to some extent seen as alternatives, but in reality both
formats have their strengths and weaknesses, and they probably
should be seen as complementary rather than competing tech-
nologies. Filter arrays can be produced rapidly using minimally
purified PCR material, require tiny amounts of RNA for radioac-

Fig. 1 Comparison of commercial slides for printing of cDNA material. Five
types of slide (a–e) were used for printing 10,500 cDNA arrays in a single print
run. cDNA was printed at roughly 100 µg/ml in 150 mM sodium phosphate
buffer (pH 8). After printing, each slide was blocked according to the respec-
tive manufacturer’s protocol. Duplicates of each slide type (slide 1 and slide 2)
were hybridized with an aliquot of a large pool of labeled cDNA (amino termi-
nally labeled total RNA from Jurkat (Cy3-labeled) and MCF7 (Cy5-labeled) cells)
and processed using the same stringency washes. Each slide was scanned using
identical settings on a Packard Bioscience Scanarray 5000. The images show
that there is considerable variation in spot morphology (see the enlargements)
and background among the types of slide, with specific effects consistent
between duplicate slides.
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tive target labeling, use widely available phosphoimager instru-
mentation to read, and are relatively cheap to produce and use15.
Their chief disadvantage is the need to carry out sequential
hybridizations of targets to the same filter or parallel hybridiza-
tions to duplicate filters to compare gene expression between
samples. This key difference distinguishes fluorescence-based
microarrays and filter arrays, and probably contributes to the
greater ability of fluorescent microarrays to detect differences in
expression, especially those of low-abundance genes23.

The printing of filter arrays using quill pins is constrained by
the fragility of the membrane and the tendency of quill pins to
wick unacceptably onto the porous surface of the filter. The
Affymetrix 417 and 427 pin and ring printers (Web Table D
online) are used widely for producing filter arrays in academic
facilities because this method combines a solid pin with the
speed of a traveling reservoir (ring) of printing material.
Obtaining microarrays from commercial or core facilities. A key
consideration in using microarray technology is whether to
adopt a do-it-yourself approach and spot arrays in the laboratory
or to purchase arrays from a commercial supplier. Given the
complexity of manufacturing microarrays, many investigators
have chosen to enter the field by obtaining microarrays for their
experiments from someone else. Initially, the options for doing
this were very limited, because commercially produced arrays,
such as Affymetrix GeneChip, cost several thousands of dollars.
In addition, very few academic facilities were in a position to part
with their hard won batches of glass slide arrays.

The situation regarding purchase of arrays has changed
markedly in the past few years as the price of commercial arrays
has tumbled. Affymetrix GeneChip arrays have increased in
complexity and in the number of species represented, and the
unit cost per probe has decreased several-fold; thus, GeneChip
arrays are now within the reach of academic users. Affymetrix
has also introduced new arrays for single-nucleotide polymor-
phism analysis. Agilent Technologies (http://www.agilent.com/)
has entered the field with spotted oligonucleotide and Incyte
cDNA collection arrays, and oligonucleotide arrays synthesized
in situ by ink-jet. A comprehensive summary of the commercial
arrays is available on the web (http://ihome.cuhk.edu.hk/
∼ b400559/array.html).

In parallel with increasingly affordable commercial options,
academic faculties have pooled their resources to create core
facilities to produce microarrays for several laboratories or insti-
tutes and to guide investigators through standardized protocols.
The development of core microarray facilities makes sense, given
the cost of the hardware and the complexity of the process. Any-
one who has participated in the development of a microarray
core facility will know, however, that such a development is not
without difficulties as impatient investigators wait for the new
microarray facility to deliver.

We have used a structure of two independent core facilities
located in research institutes to establish and develop the tech-
nology, which is then ported to a service-orientated genomics
facility to make slides on a large scale for a wide community of
users (http://www.vicmicroarray.org/). The developer nodes also
provide investigator training in the use of microarrays. Develop-
ment and service roles are equally important, but not necessarily
compatible; this is particularly true in the early days of a core
facility, when many new techniques are to be established.
Although it is probably not necessary to separate these roles
physically, it is essential to have enough staff to cater for both
activities. An excellent survey of the configuration of core facili-
ties, including the average number of staff, is available on the web
(http://abrf.org/ResearchGroups/Microarray/EPosters/MARG_
Survey_2000_Poster.pdf).

For large-scale users, it is currently cheaper to make your own
arrays than to buy them, and there are additional advantages in
terms of flexibility in array design. But it is likely that at some
time in the next few years the cost of making arrays will equal the
cost of purchasing them from a commercial vendor. Perhaps the
only way that this trend may be challenged is if affordable devices
become available that allow laboratory-based in situ synthesis of
oligonucleotide arrays, which will reduce further the price of in-
house prepared arrays (Web Table F online).

A consideration common to all array users, regardless of
whether the arrays are produced in an academic core facility or
commercially, is the ability to gauge the quality of the arrays and
the data produced. Numerous useful strategies for carrying out
such evaluation have been proposed24, including protocols for
determining a measure of spot quality25.

Using microarrays
The dominant application of microarrays has been in measuring
gene expression in different situations, including analysis of dis-
eased versus normal tissues26, profiling tumors and predicting
outcomes27–35, studying gene regulation during development36,
and following the stimulation of cells in vitro37. Other array
applications include comparative genomic hybridization5, chro-
matin immunoprecipitation38,39, mutation detection40, genotyp-
ing41,42 and microarray-mediated localized cell transfection43.
Expression analysis. Expression analysis using glass slide
microarrays is typically done by the competitive hybridization of
two targets (typically known as test and reference), each labeled
with a specific fluorescent dye such as Cy3 or Cy5 (ref. 21).
Because levels of gene expression are relative, the nature of the
RNA pairs is an important consideration when designing experi-
ments for spotted arrays. Researchers may carry out individual
pairwise comparisons or compare each sample against all oth-
ers44. As the number of samples increases, the latter option
rapidly becomes impractical in terms of both the number of
pairwise combinations needed and the amount of RNA required
for each sample.

The comparative nature of gene expression measurements
with spotted arrays creates many problems in terms of archiving
data and comparing data among different experiments and labo-
ratories. In principle, some of these problems could be alleviated
by adoption of universal references (such as for mouse, human
and Arabidopsis) by the microarray community.
Reference RNAs and oligonucleotides. Although there is no cur-
rent consensus on references, Brown’s research group at Stanford
University has described a pool of RNAs derived from 11 diverse
human tumor cell lines (Web Table G online) that has become a
kind of de facto universal human reference RNA. Because the ref-
erence pool is derived from immortalized cell lines, it is possible
to generate more reference material, although inevitably there is
some batch variation. To avoid creating ‘islands’ of data, a large
quantity of reference RNA must be made at the outset. Where
several batches are required, growth conditions of the cells
should be controlled tightly to reduce batch-to-batch variation.

Some researchers have elected not to generate their 
own reference RNA, but to purchase similar, pooled RNA 
from several commercial suppliers, including Stratagene 
(http://www.stratagene.com/displayProduct.asp?productId=439) 
and Clontech (http://www.clontech.com/archive/APR02UPD/
ControlRNA.shtml). The degree of batch-to-batch variation in
commercially supplied reference is not clear (although the manu-
facturers state that it is low). Usually only the type of cells is indi-
cated, and not the exact cell lines, which can make it difficult both
to decide whether a particular pool is appropriate and to inter-
pret results.
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Recently there have been developments in using a reference
that is not derived from mRNA. A labeled oligonucleotide that is
complementary to every feature on an array has been shown to
be an effective reference, without the complications associated
with references derived from mRNA45. In contrast to glass slide
arrays, each labeled target is hybridized to a separate Affymetrix
GeneChip array. This avoids some of the problems associated
with relative measurements of gene expression that are funda-
mental to two-color competitive hybridization. Some users of
Affymetrix arrays incorporate a reference-like pool of spiked
RNAs and have developed algorithms to facilitate both compar-
isons across groups of arrays, in a manner akin to spotted array
reference comparisons, and the determination of absolute 
concentrations of cellular mRNA species46. Ultimately, the 
development of microarrays or other processes to allow high-
throughput, parallel measures of absolute RNA abundance are
needed to provide a robust description of the transcriptome of
specific cellular lineages, developmental stages and disease states.
Protocols and hardware. In early microarray technologies, the
processes involved were often more of an art than a science: few
array reagents were commercially available or, if they were, they
often lacked reliability. The microarray field has now reached a
stage where there is some consensus about the best approaches
for producing reliable array results, and some of these ideas are
being formulated as comprehensive manuals (http://ihome.
cuhk.edu.hk/∼ b400559/book_mray.html). Accompanying this
has been the inevitable near saturation of the market with
reagents, often sold as kits, that are designed to purify and label
RNA, and to hybridize labeled probes.
RNA labeling protocols. Expression analysis labeling protocols
are based on the reverse transcription of mRNA, either from
highly purified poly(A) mRNA or total RNA extracts. Extensive
purification of RNA is essential to remove all contaminating pro-
tein, polysaccharide and other organic material, especially
RNases. Many protocols have been developed for the extraction
of high-quality RNA using various in-house and commercial kits
and reagents (Web Table H online). Initial protocols for target
labeling were based on direct labeling, whereby reverse transcrip-
tion of mRNA is primed using a poly(dT) primer in the presence
of fluorescently labeled nucleotides (typically Cy3- or Cy5-
conjugated dCTP or dUTP). Cy3- or Cy5-conjugated nucleotides
are bulky, however, which makes their incorporation using stan-
dard enzymes very inefficient. In addition, rates of incorporation
can differ between dyes, potentially resulting in dye biases47. In
an attempt to alleviate this problem, reverse transcriptases are
becoming available that may allow a more efficient incorporation
of fluorescently labeled nucleotides, for example Fluoroscript
reverse transcriptase (Invitrogen).

An alternative method to direct labeling, called indirect or
amino allyl labeling, circumvents the need to incorporate 
bulky fluorescent dyes during reverse transcription (http://
www.microarrays.org/pdfs/amino-allyl-protocol.pdf). In this
method, an amino allyl modified dUTP is used instead of a
prelabeled nucleotide. After reverse transcription, the free
amine group on the amino allyl dUTP can be coupled to a reac-
tive N-hydroxysuccinimydl ester fluorescent dye. Although this
technique is longer than direct labeling, its benefits including
better sensitivity, absence of dye biases and decreased
cost seem to be worth the extra effort. There are now several
N-hydroxysuccinimidyl dyes available, including the standard
Cy3 and Cy5 dyes (Amersham: http://www1.amershambio-
sciences.com/; Molecular Probes: http://www.probes.com/; see
Web Table I online). As the reactivity of the dyes can vary
markedly depending on the product, the batch and the supplier,
we recommend that a range of dyes be tested.

RNA amplification and detection. Direct and indirect labeling
requires a substantial amount of total RNA, typically between 20
and 75 µg. RNA amplification and high-sensitivity techniques
have been developed to overcome this obvious limitation (Web
Table H online), and many of these methods are based on ‘Eber-
wine’ amplification48. There are numerous commercially avail-
able kits for carrying out this kind of amplification; alternatively,
protocols and individual reagents are easily accessible to the
researcher (Web Table I online). Tyramide signal amplification49

and 3DNA dendrimer technology (Genisphere: http://www.
genisphere.com/) are directed toward increasing signal strength
without using an RNA amplification step.
Hybridizing arrays. Until recently, the options available for
hybridizing spotted arrays were limited. Many researchers found
that the conventional methods (under coverslips and in cham-
bers15) gave variable results. Probe distribution was often prob-
lematic, resulting in variations in gene expression dependent on
the spatial position50. But many commercial instruments now
have the potential to allow automated, highly reproducible
hybridization (Web Table J online).

The instruments available vary from ones based on simple
approaches, such as a vibrating temperature-controlled platform
(Thermo Hybaid: http://www.thermohybaid.com/), to ones based
on complex systems of probe application and mixing (see, for
example, Ventana Discovery: http://www.ventanadiscovery.com).
Although the advantages and disadvantages of the systems vary,
the volume of probe required for hybridization is a consideration
that is applicable to all. Frequently, the instruments require a sub-
stantial dilution of the probe with a consequent loss of signal.
Other factors include the reliability of the sealing of the hybridiza-
tion chamber, and the possibility that the sealing mechanisms may
not be compatible with all array layouts. The instruments cur-
rently available can be regarded as first generation, and significant
advances in design are likely.
Scanning arrays. The binding of the target to the probe is
detected by scanning the array, typically using either a scanning
confocal laser or a charge coupled device (CCD) camera–based
reader (Web Table K online). Like arrayers, scanners have gradu-
ally improved in sensitivity, reliability and their available fea-
tures, such as autofeeders. Although in principle the latter are
attractive to the high-end user, batch scanning may not be possi-
ble if adjustments of scanner settings are required for each slide.
The ability of the scanner to be upgraded is potentially important
as new dyes are developed.

With large numbers of experiments it is prudent to scan all
arrays using, at the very least, the same model of scanner, if not
the same unit. We have observed that results from two scanners
reading the same slide can be subtly different, and this can have
consequences in data analysis. At an extreme, samples could be
potentially clustered on the basis of the scanner used. The Mini-
mum Information About a Microarray Experiment (MIAME)
protocols51 (see below) include provision for recording the scan-
ner used in an experiment.

Informatics
Along with the rapid development of microarray technologies,
there has been an unprecedented amassing of data. Storage 
and analysis of these data can be a headache for microarray
researchers. Although at present there is no clear standard solu-
tion for microarray data storage and analysis software, there are
many open-source, public domain and commercial solutions
vying for a share of this evolving market. Most of the available
products are still in the early phases of the software development
process; consequently, new and improved versions of these are
being released frequently to keep up with consumer expectations

©
20

02
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
g

en
et

ic
s



review

486 nature genetics supplement • volume 32 • december 2002

and to fix programing ‘bugs’. An exhaustive record of microarray
software can be found on Y.F. Leung’s website (http://ihome.
cuhk.edu.hk/∼ b400559/array.html).

For some laboratories, combinations of public-domain or
noncommerical software (see Web Table L online for examples)
are capable of fulfilling data storage and analysis needs. A down-
side of this approach is the limited support or training available
for noncommercial software applications. Laboratories produc-
ing large amounts of data may find that they require the support
and the usually greater programming stability that comes with
commercial solutions.

Several products have been released that integrate data 
acquisition, pre-processing and analysis. For example, the com-
mercial GeneTraffic (http://www.iobion.com/), the academic
TM4 (http://www.tigr.org/software) and the open-source BASE
(http://base.thep.lu.se/) created at Lund University52 aim to pro-
vide all the tools needed for data storage, quality-control metrics,
normalization and statistical analysis in a web-based application.
Comprehensive solutions are also likely to offer image analysis
and data extraction in the near future. Some of the available soft-
ware for the various steps in microarray analysis, and considera-
tions for their use, are discussed below.
Data extraction software. Most commercial microarray scan-
ners are supplied with data extraction software, such as Quant-
Array (http://www.packardbioscience.com/products/521.asp)
and GenePix53, that is designed to accommodate the usually
unique parameters of the scanned images generated. Research
is continuing to define more precise and automated approaches
to spot detection and, particularly, the vexed issue of back-
ground measurement.

Improvement in printing processes has simplified grid mea-
surements and the detection of spot boundaries. But there is no
consensus on the best approaches to background subtraction.
Options include fixed (a user- or software-specified value), local
(the intensity of regions immediately surrounding individual
spots measured) and global (the intensity of the area outside the
array grid measured) background measurement. Further varia-
tion exists in each of these techniques on the exact formula used
to produce the final background value for each feature.

The storage of primary scanned data (usually in the form of tiff
images) is potentially important if investigators want to take
advantage of future developments in image extraction and/or
analysis software54.
Storage of microarray data. When a microarray laboratory
begins to produce reliable large-scale microarray data sets, two
pressing questions arise: what data should be stored, and how
should those data be stored to facilitate efficient analysis? When
considering what to store, it is important to ensure that investi-
gators can retrace their steps or reanalyze their data with new
analysis tools. In addition, sufficient information is needed to
interpret the quality of data submitted for publication and to
allow others to repeat published studies.

The MIAME51 set of protocols, developed by the Microarray
Gene Expression Database Group (MGED: http://www.mged.
org/), is currently the leading proposal for data submission and
database standards at present. MIAME 1.0 was approved at the
MGED 3 meeting at Stanford University in May 2001 (ref. 55). The
document seeks to capture information regarding (i) experimental
design; (ii) array design; (iii) the extraction, preparation and label-
ing of samples used for hybridization; (iv) hybridization conditions;
(v) measurements such as images, quantification and specifica-
tions; and (vi) normalization controls (http://www.mged.org/
Annotations-wg/index.html)51. Although not yet formalized, com-
plying with MIAME (or something similar) has become essential
for publishing array findings in several journals56,57.

As reviewed recently54 and summarized in Web Table M
online, there are many options for storing the output from a
microarray experiment. Storing the raw image files retains 
maximum information, allowing the use of different normal-
ization, image extraction and quality metrics to be used 
subsequently. A useful list of available databases and their
adherence to the MIAME structure has been prepared and 
is available online (http://www.wehi.edu.au/bioweb/Suzanne/
databases.html). Gardiner-Garden and Littlejohn58 have
weighed up the pros and cons of the leading products for data
storage, although reflecting the rapid evolution of the
field some of the applications described in their review are no
longer available.
Normalization of microarray data. Owing to the complicated
process of producing and hybridizing spotted microarrays, it is
not uncommon for a certain amount of systematic variation to
exist in the data produced. Normalization is a routine, but
important, step in the analysis of almost all microarray data47,59.
The selection of a normalization algorithm needs to be made
with a view to the type and degree of systematic bias present and
is an important step between obtaining raw data and analyzing
the biological issue under investigation (see also review by 
J. Quackenbush, pages 496–501, this issue)60. Caution must be
taken in applying global transformations to a data set to avoid to
overenhancing (or diminishing) the information contained in
the arrays and to ensure that any results obtained represent bio-
logical, not systematic, variation.

Factors such as differing intensities of dye incorporation,
minor irregularities in probe distribution during hybridization,
topographical slide variation or scanner introduced bias, are
examples of factors that can cause considerable systematic varia-
tion in a microarray experiment47. Most of these factors can be
corrected for by using one or more statistical procedures, some
of which are built into specialized microarray databases and
analysis packages (Web Table L online). But even when a range
of normalization options is available in a user-friendly format, it
can still take some experience to select the most appropriate
method confidently.

At present, there are few normalization algorithms that
address the issue of irregular spatial distribution across the 
surface of an array. When a global variation in mean expression,
or a bias towards one particular channel, has been corrected for,
there is often evidence of a nonrandom distribution of the 
differentially expressed genes present. Options for addressing 
this anomaly include pin-group normalization with 
SMA (http://stat-www.berkeley.edu/users/terry/zarray/Software/
smacode.html) and the more sophisticated SNOMAD
method50, which attempts to address both intensity and spatial
bias. Figure 2 illustrates the ability of SNOMAD to detect varia-
tions in local mean signal intensities for a given two-color
microarray.

Pin-group normalization, implemented in the open-source R
statistical language61, uses information provided about the 
grid and subgrid layout of the array to carry out a LOWESS-
based transformation of the data. The SNOMAD technique (also 
R-based) identifies and corrects specific regions of an array
where artifacts show a systematic spatial pattern. The LOWESS
method is again used in this technique to calculate the local mean
signal intensity across the surface of an array.

More development and improvement of normalization algo-
rithms are required to produce accurate and reliable means of
detecting and correcting for systematic variation. The MGED
Normalization Working Group website (http://www.dnachip.org/
mged/normalization.html) contains extensive information on
some of the available options for normalizing microarray data.
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Analysis of microarray data. Initial approaches to analyzing
microarray data focused heavily on the use of unsupervised hier-
archical clustering techniques (see also the review by D. Slonim,
pages 502–508, this issue)62. The twin programs Cluster, which
organizes related gene expression data, and Tree View, which
allows clustered microarray data to be visualized easily63, are
commonly used for this approach (Web Table L online).
Although not suited to all analyses, hierarchical clustering tech-
niques are a simple, powerful method of organizing such data. If
an experiment is designed to be an exploratory endeavor, rather
than to answer a particular question, then clustering is generally
an excellent choice when beginning data analysis. By contrast,
where there are data to guide the initial analysis, then computa-
tional methods that ‘train’ an algorithm to recognize patterns in
data the so-called ‘supervised learning programs’64–67 are
proving to be more effective than unsupervised approaches.

Several public domain and commercial solutions are now
available for scientists who want to carry out a statistical analysis
of microarray data but are not familiar with specialized statistical
software (Web Table L online). Although these programs are not
a substitute for understanding the statistical issues relevant to
one’s experimental design, they do reduce manual data manipu-
lation and present a user-friendly interface. Using programs such
as Silicon Genetics’ GeneSpring (http://www.silicongenetics.
com/), the Whitehead Institute’s GeneCluster (http://www.
genome.wi.mit.edu/cancer/software/software.html) or Biodis-
covery’s GeneSight (http://www.biodiscovery.com/genesight.asp),

one can view, normalize and extract a biologically annotated list
of differentially expressed genes at a specified confidence level on
an array with only a few clicks of the mouse.

Many of the supervised and unsupervised data analysis tech-
niques frequently published can now be done in graphical user
interface (GUI)-style programs. User-friendly packages such as
GeneSpring and GeneCluster (free to academic users; see Web
Table L online) make it possible for nonprogramers to carry out a
range of techniques including normalization, hierarchical clus-
tering, k-means clustering, principal component analysis, self-
organizing maps, profile similarity searches, gene filtering and
simple machine-learning analysis. Quality journals are now pub-
lishing papers in which the total analysis of data has been carried
out using one or more commercially available software products
(for example, Silicon Genetics maintains a list of publications cit-
ing use of their products: http://www.silicongenetics.com/
cgi/SiG.cgi/Products/GeneSpring/citations.smf), supporting the
idea that these products are gaining the necessary sophistication
needed to analyze the large data sets associated with microarray
experiments.

For researchers who wish to explore other analysis protocols,
microarray data sets can also be analyzed using methods that
have been applied to data from other disciplines for many years.
Statistical approaches that have been used to investigate data
from epidemiological, environmental or social studies, for exam-
ple, frequently can be adapted to microarray studies. Conse-
quently, industry-standard statistical packages such as Matlab
(http://www.mathworks.com), R (http://www.r-project.org), 
S-Plus (http://www.insightful.com/) or Minitab (http://www.
minitab.com/) can be used in place of specialized microarray
software (Web Table L online).

The recent adaptation of advanced machine-learning tech-
niques, such as neural networks, support vector machines and
decision trees64,67,68, has demonstrated the potential that exists
for powerful microarray analysis by methods that have been used
traditionally in disparate fields such as finance, computing and
engineering. Many machine-learning tools and algorithms are
available from industry, such as Microsoft’s Bayesian Network
Tool (http://research.microsoft.com/adapt/MSBNx/), and acad-
emic sources, such as the University of Waikato’s WEKA system
(http://www.cs.waikato.ac.nz/ml/weka/)69 and GeneCluster. At
present, only a few of the specialized microarray analysis pack-
ages offer any form of machine-learning tool. One of these is
GeneSpring (http://www.silicongenetics.com/), which contains a
simple yet effective k-nearest neighbor ‘class prediction’ tool.

A considerable quantity of machine-learning resources can be
found online (see, for example, http://www.ai.univie.ac.at/
oefai/ml/ml-resources.html and http://directory.google.com/
Top/Computers/Artificial_Intelligence/Machine_Learning/). As
more sophisticated learning algorithms are shown to produce
unparalleled pattern or class discovery and prediction with gene
expression data, one can expect these methods to trickle down
into the dedicated, biologist-friendly, microarray analysis 
software. In the meantime, a more advanced knowledge of 
data manipulation and statistical testing may be required to use 
software and algorithms not designed specifically for the
microarray field.

Fig. 2 Output from the local mean normalization step of SNOMAD normaliza-
tion. a,b, Locally calculated mean element intensity for each channel of a par-
ticular two-color microarray slide. There is clear variation in the distribution of
the mean intensity. Values are colored from white to yellow to red in order of
increasing intensity. c, Differences between the locally calculated mean spot
intensities. Blue or red regions of the image reflect sections of the array that
may be suffering from a hybridization (or other spatial) artifact.
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Gene annotation. Efficiently obtaining appropriate and readily
understandable information about genes in microarray experi-
ments is a crucial part of meaningful interpretation of the exper-
iment. In a perfect world, every gene would have a unique
identifier, and complete molecular information would be avail-
able, including an annotated sequence that described promoter
elements, intron–exon structure, splice variants and related
genes. Biological information associated with that gene would be
available readily through links to other databases, ranging from
PubMed to protein structure databases. Although there are active
steps towards achieving this molecular nirvana, we are still a long
way from it.

An essential part of synthesizing information from diverse
sources is the use of structured, controlled vocabularies. Such
vocabularies will allow automated searches to filter information
and draw meaningful inferences about possible associations
between the data obtained in a microarray experiment and infor-
mation that already exists. An attempt to address some of these
issues has been made by the Gene Ontology Consortium70,71 (see
also review by C. Stoeckert, pages 469–473, this issue)51. The goal
of the Gene Ontology project is to produce a comprehensive con-
trolled set of terms that can be used to describe genes in all
organisms. The use of medical subject headings (MeSH) for
describing scientific literature through MEDLINE is a familiar
example of this concept72,73. The Gene Ontology project began
with the development of shared vocabularies for the model
organism databases FlyBase, Mouse Genome Informatics
Database and Saccharomyces Genome Database and uses terms
that describe molecular function, cellular location and biological
processes. Some software such as GeneSpring allows the user to
sort genes contained in both commercial and custom arrays into
categories proposed by the Gene Ontology Consortium.

It is particularly important that cDNA clones are richly anno-
tated, but there is a great challenge in reconciling information
from several sources. Most laboratories identify cDNA clones by
the GenBank accession number or the IMAGE clone ID, but this
practice is not standardized. There are several files available at the
National Center for Biotechnology Information that show 
how IDs from different projects relate to each other (see, for 
example, the LocusLink ftp site: ftp://ncbi.nlm.nih.gov/refseq/
LocusLink/). It is important to work with annotation systems
that provide the most current and up-to-date information possi-
ble. Some sources of data that are kept reasonably current are
listed in Web Table N online. The SOURCE database created at
Stanford University conveniently combines the data from a range
of other databases and allows batch annotation of clone sets.

Conclusions
Although not a mature technology, microarray devices have
come a very long way in a short period of time and are now an
established industry in their own right. The future would seem to
lie in our ability to use full genome information for comprehen-
sive array manufacture and to reduce the aspects of the technol-
ogy that are labor-intensive and that introduce systematic
variations in the data. The development of methods that allow
absolute, rather than relative measures of gene expression is a
principal goal if durable descriptions of gene expression patterns,
analogous to DNA sequence database information, are to be
achieved. As this technology develops and the number of users
expands, one can expect the continued conception and develop-
ment of new and potentially revolutionary microarray-based
solutions for the whole spectrum of biological issues.

Note: Web Tables A to N are available on the Nature Genetics 
website.
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