

Options for Staging Orbits in Cislunar Space

Ryan Whitley Roland Martinez

NASA

IEEE Aerospace Conference March 2016

Introduction Long Term Ops •00 Need for Staging Orbit NASA's Building Blocks to Mars Expanding exploration capabilities by visiting an asteroid that has been redirected to high lunar orbit. Exploring Mars and other deep space destinations. Getting affordable access to low Earth orbit Traveling beyond low Earth orbit from U.S. companies. with the Space Launch System and Orion spacecraft. Learning fundamentals of living and working in space aboard ISS.

Earth Reliant

Missions: 6 to 12 months

Proving Ground

Missions: 1 month up to 12 months

Earth Independent

Missions: 2 to 3 years? / 14

roductior	n Earth Access 00	Lunar S 000	urface Lo: 00	ng Term Ops O	Summar; 00
ll Cisl	lunar Orbits Consid	ered			
	Orbit Type	Orbit Period	Amplitude Range	E-M Orientation	=
	Low Lunar Orbit (LLO)	$\sim 2 \text{ hrs}$	100 km	Any inclination	_
	Prograde Circular (PCO)	11 hrs	3,000 to 5,000 km	\sim 75 $^{\circ}$ inclination	
	Frozen Lunar Orbit	$\sim 13 \text{ hrs}$	880 to 8,800 km	40 [°] inclination	
El	liptical Lunar Orbit (ELO)	$\sim 14 \text{ hrs}$	100 to 10,000 km	Equatorial	
Ne	ear Rectilinear Orbit (NRO)	6-8 days	2,000 to 75,000 km	Roughly polar	
	Earth-Moon L2 Halo	8-14 days	0 to 60,000 km (L2) Dependent on size	
Dist	ant Retrograde Orbit (DRO)	$\sim 14 \text{ days}$	70.000 km	Equatorial	

In total, 7 types of orbits were considered, relying on both previous studies from literature and new analysis, primarily for the NRO. While the analysis presented is not comprehensive for all orbits, trends and characteristics are computed to permit generalized conclusions.

			Earth	Access	5			Long Tern	ı Ops		
000			00			000		000			
	0	\sim	0								l

Transfer Costs from Earth TLI Condition

- An important metric for orbit viability is accessibility from Earth using existing or planned transportation elements.
- The combined performance of NASA's SLS and Orion vehicles were evaluated:
 - **[SLS]** SLS completes ascent to Low Earth Orbit and than the SLS Exploration Upper Stage places Orion on trans-lunar trajectory
 - [Orion] The MPCV is ~ 25 t, with ~ 8 t of usable propellant, leaving a ΔV budget of around 1250 m/s with a total lifetime constraint of 21 days for 4 crew members
- Smaller Cislunar Orbits

Orbit	Total ΔV	C_3 (Moon)
LLO	1800+ m/s	$-2.67 \ km^2/s^2$
PCO	Unknown	85 km^2/s^2
Frozen	Unknown	75 km^2/s^2
ELO	940 to 1270 m/s a	$72 \ km^2/s^2$

^a Optimal values from 20 year epoch scan.

• Larger Cislunar Orbits

	Orbit		Total ΔV	Stay Time	Tot	al ΔV	Stay Tin	ne
			21 Day	Mission		60 Day	Mission	
	NRO		840 m/s	$10.9 \mathrm{~d}$	75	1 m/s	$37.6 { m d}$	
			18 Day Mission		31 Day Mission			
	L2 Halo	b	$811 \mathrm{m/s}$	$5 \mathrm{d}$	63	7 m/s	10 d	
			21 Day	Mission	26 Day Mission			
	DRO^{c}		$957 \mathrm{~m/s}$	6 d	84	1 m/s	6 d	
	^b From AIAA 2013-5478 ^c From AIAA 2014-1696							
Dr	ion		Feasible	Margina	ıl	Infe	asible	

^a Calculations assume implusive hohmann transfer ^b Eqn: $\Delta V_{pc} = 2vsin\left[\frac{\Delta i}{2}\right]$

Total Lander Cost (Includes, ascent, descent and staging orbit insertion ΔVs)

		Lunar Surface	Long Term Ops	
000	00	000	000	00
A martine o	unfo on to Cialumo	m Onbit About A	a o a a ma o mat	

- Anythine Surface to Cisiunal Orbit Abort Assessment
 - $\bullet\,$ For ${\bf LLO},$ orbit precession around the moon is key.
 - Analysis performed in the mid 2000's for Constellation suggest that some amount of plane change may be required to get back to an orbiting asset.
 - If Orion is in a polar orbit and landing site is also polar that plane change cost should be minimal. The plane change cost increases as the landing site moves away from the poles.
 - If the staging orbit is in a fixed plane, such as the **Frozen** orbit, the **PCO**, or the **ELO** selected for analysis, the plane change cost could be substantial.
 - As the PCO is around 75 degrees this cost may not be too large, while the Frozen orbit with 40 degree inclination may have a substantial plane change.
 - The equatorial ELO is a particular challenge for global aborts as only equatorial landing sites would be favored.
 - An assessment of the **NRO** anytime aborts was assessed from a both a polar surface landing site as well as an equatorial landing site.

Orbit	Anytii	ne Abor	t Requirem	ent
	From I	Pole	From Eq	uator
	ΔV	ΔT	ΔV	ΔT
NRO	$750 \mathrm{~m/s}$	$3.5~\mathrm{d}$	$900 \mathrm{~m/s}$	$2.5 \mathrm{d}$
$L2 Halo^a$	$900 \mathrm{~m/s}$	$3.5 \mathrm{~d}$	$850 \mathrm{~m/s}$	$2.5 \mathrm{~d}$
L2 Lissajous ^{a}	850 m/s	$3.5~\mathrm{d}$	800 m/s	$2.5 \mathrm{~d}$

 a See "Mission Analysis for Exploration Missions Utilizing Near-Earth Libration Points." Ph.D. Thesis by Florian Renk for detailed analysis.

• As the table demonstrates, for the larger orbits, **NRO** is substantially more favorable for polar landing sites, while the **L2 Halo** and Lissajous orbits are more favorable for equatorial landing sites with Lissajous generally out performing the L2 Halo.

For the NRO, small corrections each orbit can maintain stability at an average cost of 2.6 m/s per year (0.22 m/s per month). Two of NASA's ARTEMIS spacecraft successfully flew a similar Earth-Moon L_1 and L_2 Halo libration orbit stationkeeping strategy at 0.31 and 0.41 m/s per month cost.

Introduction 000	Earth 00	Access Lunar Surfac	e Long Terr	m Ops Su	ummary D
Commu	nication (Li	ne of sight to Earth	and Moon)		
	All O	rbits Line of Sight Commu	nications to Earth	_	
	Orbit Type	Communication			
	LLO	50% Occulted			1
	Frozen	Frequent Occultation		Legend	
	ELO	Frequent Occultation		Favorable	
	NRO	No Occultation		Marginal	

Unfavorable

NRO Line of Sight Communications to Lunar Surface

No Occultation

Infrequent Occultation

EM L2H

DRO

Percent (%) Communication Coverage From NRO

			Long Term Ops	
000	00	000	000	00
Thormal Comp	anicon			

Thermal Comparison

Heat Flux & Radiator Sizing Comparison

Orbit /	Maximum	Radiator		
Location	Radiative	Reflective	Total	Sizing a,b
LLO	1545	231	1776	N/A
NRO	54	8	62	$21.4 m^2$
DRO	_	—	0.6	$18.0\ m^2$
Deep Space	—	—	0.0	$17.9 m^2$

^aRadiator Sizing Based on 5000 W Q_{craft}

 ${}^{b}Eqn: Q_{net} = Q_r - \alpha(Q_s + Q_a) - \epsilon Q_{IR}, \alpha = .2, \epsilon = .8, T_{rad} = 280K$

All Orbits Thermal

Orbit Type	Thermal
LLO	Radiators Insufficient
NRO	Radiators Sufficient
EM L2H	Radiators Sufficient
DRO	Radiators Sufficient

Legend	
Favorable	
Marginal	
Unfavorable	

For LLO, the radiator sizing is undefined; a radiator cannot be sized large enough to handle the flux in LLO. No increase in radiator sizing is necessary for the vehicle in NRO, E-M L2 or DRO orbits as the radiator has margin already as designed to the benign deep space environment.

Introduction 000	Earth Access	s Lunar Su 000		Long Term Ops 000	Summary •0				
Staging Orbi	Staging Orbit Summary Comparison								
Orbit Type	Earth Access	Lunar Access		Crewed Spacecraf	ft				
Low Lunor	(Orion)	(to Polar LLO)	SK	Communication	n Thermal				
Orbit (LLO)	Infeasible	$\Delta V = 0 \text{ m/s}$ $\Delta T = 0$	per year	50% Occulted	Insufficient				
Prograde Circular Orbit (PCO)	Marginally Feasible	$\begin{array}{l} \Delta V < 700 \ \mathrm{m/s} \\ \Delta T < 1 \ \mathrm{day} \end{array}$	0 m/s for 3 years	Unknown	Unknown				
Frozen Lunar Orbit	Marginally Feasible	$\Delta V = 808 \text{ m/s}$ $\Delta T < 1 \text{ day}$	0 m/s	Frequent Occultation	Unknown				
Elliptical Lunar Orbit (ELO)	Marginally Feasible	$\begin{array}{l} \Delta V = 953 \ \mathrm{m/s} \\ \Delta T < 1 \ \mathrm{day} \end{array}$	>300 m/s per year	${ m Frequent} { m Occultation}$	Unknown				
Near Rectilinear Orbit (NRO)	Feasible	$\begin{array}{l} \Delta V = 730 \text{ m/s} \\ \Delta T = .5 \text{ day} \end{array}$	< 10 m/s per year	No Occultation	Radiators Sufficient				
Earth-Moon L2 Halo	Feasible	$\Delta V = 800 \text{ m/s}$ $\Delta T = 3 \text{ days}$	<10 m/s per year	No Occultation	Radiators Sufficient				
Distant Retrograde Orbit (DRO)	Feasible	$\begin{array}{l} \Delta V = 830 \text{ m/s} \\ \Delta T = 4 \text{ days} \end{array}$	$0 \mathrm{~m/s}$	Infrequent Occultation	Radiators Sufficient				
Legend Favorable Marginal Unfavorable									

Establishing a viable staging orbit in cislunar space is a key step in the human exploration journey. Maximizing flexibility in terms of access from Earth, access to other destinations, and spacecraft design impacts are all important. Accordingly, **the Near Rectilinear Orbit (NRO) appears to be the most favorable orbit** to meet multiple, sometimes competing, constraints and requirements.

