
December 4, 2012 13:5 I jumpdf˙final2

I
Vol. 00, No. 00, Month 200x, 1–26

Options Pricing under the One-Dimensional Jump-diffusion

Model using the Radial Basis Function Interpolation Scheme

Tat Lung (Ron) Chana∗ and Simon Hubbertb′

aUEL Royal Docks Business School, University of East London, Docklands Campus, 4-6

University Way, London E16 2RD;
bDepartment of Economics, Mathematics and Statistics, Birkbeck, University of London,

Malet Street, London WC1E 7HX.
(Received 00 Month 200x; in final form 00 Month 200x)

This paper will demonstrate how European and American option prices can be computed
under the jump-diffusion model using the radial basis function (RBF)interpolation scheme.
The RBF interpolation scheme is demonstrated by solving an option pricing formula, a one-
dimensional partial integro-differential equation (PIDE). We select the cubic spline radial
basis function and propose a simple numerical algorithm to establish a finite computational
range for the improper integral of the PIDE. This algorithm can improve the approximation
accuracy of the integral with the application of any quadrature. Moreover, we offer a numerical
technique termed cubic spline factorisation to solve the inversion of an ill-conditioned RBF
interpolant, which is a well-known research problem in the RBF field. Finally, we numerically
prove that in the European case, our RBF-interpolation solution is second-order accurate for
spatial variables, while in the American case, it is second-order accurate for spatial variables
and first-order accurate for time variables.

Keywords: European options, American options, jump-diffusion models, radial basis
functions, cubic spline

1. Introduction

In this paper, we demonstrate the computation of the European and American
option prices using the jump-diffusion model and radial basis function (RBF) in-
terpolation techniques. The RBF methods were recently proposed to numerically
solve initial value and free-boundary problems for the classical Black and Scholes
equation in either one- or multiple-asset cases [23, 24, 29, 36]. In this paper, for
the jump-diffusion model, as with other Lévy-type models, the Black and Scholes
PDE is replaced by a partial integro-differential operator (PIDE), which involves a
global term in the form of an integral operator. The PIDE has the following form
[cf. 16, 48, 49]:

∂τu(x, τ) =
1

2
σ2∂2

xu+

(
r − q − 1

2
σ2 − η

)
∂xu− (r + λ)u+

λ

∫
R
u(x+ y, τ)f(y)dy (1)
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Our principal contribution is to demonstrate an efficient numerical solution (1) us-
ing RBFs, both for initial value and free-boundary problems (as with the American
options). We have chosen the jump-diffusion model as a typical case on which to
test this RBF methodology. However, our method can be easily extended to other
contexts in which the basic pricing equation is a PIDE, such as the Carr-Geman-
Madan-Yor (CGMY) [15] or variance Gamma (VG) [13, 41] Lévy-type models.
These models will be addressed in another paper [11].

PIDEs, such as the Merton [44] and Kou Models [34, 35], are typically treated us-
ing a traditional finite difference method (FDM) or finite element method (FEM).
In an FDM, the PIDE is fully discretised on an equidistant grid after having (arti-
ficially) localised the equations to some bounded interval/domain in R. The global
integral term can be computed using numerical quadrature or fast Fourier trans-
form (FFT) [see, 1–6, 9, 17–19, 28, 52]. In contrast, the FEM is defined by piecewise
polynomial functions or wavelet functions on regular triangularisations. This tech-
nique is used to approximate solutions of the partial differential terms and integral
term [cf. 2, 42, 43].

Our approach not only provides a new research direction for applying RBFs in
option pricing but also resolves problems that arise from using FDMs and RBFs.
We summarise the problems as follows:

(1) In FDM, the Crank-Nicolson scheme is one of the most popular methods
for time discretisation; however, with a short time to maturity, it produces
wiggles in both the option price and its sensitivities near the strike price (at
which the first-order differentiation is discontinuous). Giles and Carter shed
light on this problem [26] by suggesting Rannacher’s time stepping method
(a mixture of four half-timesteps of the backward Euler and Crank-Nicolson
methods). Although Giles and Carter provide proof of their methods and
resolve the problem, they limit their methods to pricing European options
under the Black-Scholes model and do not extend their ideas to solve (1)
or American-type options.

(2) Recently, the RBF-interpolation scheme using a multiquadric (MQ) basis
function was proposed to numerically solve the classical Black and Scholes
PDE [cf. 23, 24, 29, 36] because of its comparatively higher accuracy. The
MQ contains a shape parameter, which plays a critical role in the accuracy
of the interpolation [cf. 53]. Unfortunately, no theoretical proof for selecting
an optimal shape parameter [cf. 53] in the MQ basis function has emerged
to date.

(3) The standard approach to solving the radial basis function interpolation
problem has been recognised as ill conditioned for many years [cf. 21, chap-
ter 16], particularly when infinitely smooth basic functions, such as the
MQ and Gaussian functions, are used with small values for their associated
shape parameters. Recent research papers [e.g. 20, 22, 25, 37] have sug-
gested different numerical techniques for solving the RBF ill-conditioning
problem, but these techniques are restricted to solving the simple interpo-
lation problem and cannot solve PDEs. Although Ling and his co-workers
[e.g. 10, 39, 40] address the ill-conditioning problem using precondition-
ing methods and extend their work to solve PDEs, the methods are not
applicable to PIDEs.

Our RBFan approximation method using a cubic spline as a basis function will
circumvent these disadvantages. This paper is divided into five sections, including
this introduction. Section 2 provides a brief review of both the Merton and Kou
jump-diffusion models. In Section 3, we first explain and then define our RBF
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algorithm for solving PIDEs, which we then implement in the jump-diffusion model.
Section 4 contains our numerical results for both the European and American call
and put options, including an analysis of the maximum error, root-mean-square
error, rate of convergence and approximation of delta and gamma hedging formulas
and a comparison of the accuracy of our solution with that of the FDM and FEM.
Section 5 concludes the paper.

2. PIDE Option Pricing Formula in the Jump-diffusion Market

A jump-diffusion process has two main building blocks, a Brownian process and
a compound Poisson process. We use a Brownian process (Wt)t≥0 to describe the
evolution of a risky asset (St)t≥0 and a compound Poisson process (Nt)t≥0 to de-
scribe the jumps occurring in (St)t≥0. In the model, jumps represent rare events,
such as crashes and/or drawdowns, at random intervals in (St)t≥0. To ensure posi-
tivity and independent and stationary log-returns of the asset [cf. 16], St is typically
modelled as an exponential jump-diffusion process:

St = S0e
Lt (2)

where S0 is the asset price at time zero and Lt is defined as follows:

Lt := γct+ σWt +

Nt∑
i=1

Yi (3)

where γc is a risk-neutral drift term, σ is the volatility, Wt represents the Brownian
motion, Nt is the Poisson process with an intensity λ, and Yi is an i.i.d. sequence
of random variables. Moreover, the characteristic function of this process can be
considered a special case of the Lévy-Khintchine formula [16]:

E
[
eiuLt

]
= exp

(
t

(
iuγc −

σ2u2

2
+ λ

∫
R
(eiux − 1)f(x)dx

))
(4)

where

γc = r − q − 1

2
σ2 − λη. (5)

In this equation, r is the risk-neutral interest rate, q represents the compounded
dividends and η is a constant equal to

∫
R(ex−1)f(x)dx. The value of η is determined

by f(x), the probability density function of Yi given in (3). In the classical Merton
model [44], for any i ∈ {1, 2, . . .}, Yi represents log-normally distributed variables
with Yi ∼ N(µJ , σ

2
J),

f(x) :=
1√

2πσj
e(x−µJ)2/2σ2

J , (6)

and

η = eµJ+σ2
J/2 − 1 (7)
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(for the details on (7), we refer the reader to [8, 16]). If we replace f(x) with
exponential density functions defined by

f(x) := pα1e
−α1x1x≥0 + (1− p)α2e

α2x1x≤0, (8)

we obtain a new value for η:

η =
pα1

α1 − 1
+

(1− p)α2

α2 + 1
− 1. (9)

With this new f(x), the model is called the Kou model [34, 35]. The calculation of
η is found by simply integrating ex over the real line with α1 > 1 and α2 > 0 [cf.
16].

2.1 European options

Because σ > 0 in (3), a risk-neutral probability measure Q [cf. 47, Theorems
33.1 and 33.2] is required, and as a result, γc in (3) guarantees that the discounted
process e−(r−q)tSt is a martingale process. Based on the risk-neutral arguments
and the fact that e−(r−q)tSt is a martingale process (see, for example, [16]), we can
derive the following PIDE pricing formula that describes the price of a European
contingent claim u(x, τ) in logSt = x over the time to maturity, τ = T − t [cf. 16]:

∂τu(x, τ) =
1

2
σ2∂2

xu+

(
r − q − 1

2
σ2 − η∗

)
∂xu− (r + λ)u+

λ

∫
R
u(x+ y, τ)f(y)dy, (10)

=: L[u](x, τ).

with an initial value of

u(x, 0) = g(x) := G(ex) =

{
max{ex −K, 0} , call option

max{K − ex, 0} , put option
(11)

where η∗ = η +
∫
R xf(x) dx and K is the strike price.

2.2 American options

For an American put option, we must consider the possibility of early exercise
[e.g., 16, 48, 49]. As a result, the highest value of an American option can be
achieved by maximising over all allowed exercise strategies:

u(x, τ) = ess supτ∗∈Γ(t,T)E
Q
t

[
e−(r−q)(τ∗−t)G

(
exτ∗

)]
(12)

where Γ(t, T ) denotes the set of non-anticipating exercise times τ∗ that satisfy
t ≤ τ∗ ≤ T . To compute the u(x, τ) for the American put option, one can solve
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the following linear complementarity problem [16, 48, 49]:

∂τu(τ, x)− Lu(x, τ) ≥ 0, in (0, T )× R (13)

u(x, τ)−G(ex) ≥ 0, a.e. in (0,T)× R (14)(
u(x, τ)−G(ex)

)
(∂τu(τ, x)− Lu(x, τ)) = 0, in (0, T )× R (15)

u(x, 0) = G(ex), (16)

Because this paper only considers a jump-diffusion model with σ > 0 and a finite
jump intensity, the smooth pasting condition

∂u(xτ∗ , τ
∗)

∂x
= −1

is valid at the time of exercise τ∗, as noted by Pham [46]. The value of an American
put option is therefore continuously differentiable with respect to the underlying
(0, T )×R; in particular, the derivative is continuous across the exercise boundary.

Remark 1 One should note that if we set λ = 0, (10) will become the original
Black-Scholes PDE.

3. Mesh-free Numerical Approximation Method

The RBF interpolation scheme is a well-known meshless technique for recon-
structing an unknown function from scattered data that has numerous applica-
tions in various fields, such as geological terrain modelling, surface reconstruction
in imaging, and numerically solving partial differential equations in applied mathe-
matics. In particular, RBFs have recently been used to solve PDEs in quantitative
finance. Several authors, including Fausshauer et al. [23, 24], Larsson et al. [36],
Pettersson et al. [45] and Hon and Mao [29], have suggested RBFs as a tool for solv-
ing Black-Scholes equations for European and American options. This numerical
scheme for estimating partial derivatives using RBFs was originally proposed by
Kansa [32] and resulted in a new method for solving partial differential equations
[33].

To solve the PIDE, one must first obtain an RBF approximation of the initial
value or pay-off of the option. Once we have a disposition of such an RBF in-
terpolant, we can implement an RBF scheme to solve the PIDE using this RBF
interpolant as the initial value. The general idea of the proposed numerical scheme
is to approximate the unknown function u(x, τ) using an RBF interpolant with the
RBF scheme to determine the interpolation points for the initial value and deriving
a system for the linear constant coefficient ODE by requiring that the PIDE (10)
be satisfied for the chosen RBF interpolation points.

After selecting the interpolation points xj ∈ R, we Approximate the solution
u(x, τ) in (10) for any fixed time to maturity τ using its RBF interpolant as follows:

u(x, τ) '
N∑
j=1

ρj(τ)φ(||x− xj ||2) =: ũ(x, τ). (17)

Because the radial basis function is not time dependent, the time derivative of
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ũ(x, τ) in equation (10) is simply

∂ũ(x, τ)

∂τ
=

N∑
j=1

dρj(τ)

dτ
φ(|x− xj |). (18)

Moreover, the first and second partial derivatives of ũ(x, τ) with respect to x are
as follows:

∂ũ(x, τ)

∂x
=

N∑
j=1

ρj(τ)
∂φ(|x− xj |)

∂x
and (19)

∂2ũ(x, τ)

∂x2
=

N∑
j=1

ρj(τ)
∂2φ(|x− xj |)

∂x2
. (20)

For the particular case when φ is the cubic spline,

∂φ(|x− xj |)
∂x

=

{
3(|x− xj |)2 if x− xj > 0,

−3(|x− xj |)2 if x− xj < 0,
(21)

∂2φ(|x− xj |)
∂x2

= 6(|x− xj |). (22)

In this research, we chose the cubic spline rather than the more popular MQ and
IMQ as the basis function because of its simplicity, accuracy and lack of shape
parameters.

3.1 Transforming the PIDE to a System of ODEs using RBFs

Given a set of interpolation points x1, . . . , xj , . . . , xN in R and an RBF φ, we can
construct N ×N matrices AAA, AAAx and AAAxx that are defined by

(
φ(|xi−xj |)

)
1≤i,j≤N ,(

φ
′
(|xi − xj |)

)
1≤i,j≤N and

(
φ
′′
(|xi − xj |)

)
1≤i,j≤N , respectively. In this case, the xj

values are chosen according to the equally spacing method (ESM) described in
the literature [23, 24, 29]. The equally spacing method provides a mechanism for
choosing equally spaced points in a finite interval. Using the ESM, we determine
an interval [xmin, xmax] outside of which we can neglect the contribution of u(x, τ)
to the global integral term of the PIDE (10), and for a given N = 0, 1, 2, . . . ,

xj := x∆x
j = xmin + j∆x, j = 0, 1, 2, . . . , N − 1 (23)

where ∆x = (xmax − xmin)/N . We also define a matrix-valued function y → AAA(y)
by
(
φ(|xi + y−xj |)

)
1≤i,j≤N . If we substitute ũ(x, τ) for u(x, τ) in (10) and require

that the PIDE be satisfied in the interpolation points xj , we arrive at the following
system of ODEs for the vector ρρρ(τ) :=

(
ρ1(τ), . . . , ρN (τ)

)
:

AAAρρρτ =
σ2

2
AAAxxρρρ+

(
r − q − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+

λ

(∫ ∞
−∞

AAA(y)f(y) dy

)
ρρρ, (24)
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where ρτ := ∂ρ
∂τ , and we recall that f(y) is 1

σJ
√

2π
e
− (y−µJ )2

2σ2
J for the Merton model or

pα1e
−α1x1x≥0 + (1− p)α2e

α2x1x≤0 for the Kou model.

Before applying a suitable numerical integration algorithm to the integral terms
in (24), we truncate the integrals from an infinite to finite computational range. Bri-
ani et al. [9], Cont and Voltchkova [17], Tankov and Voltchkova [51] and d’Halluin
et al. [18, 19] have provided different numerical techniques for determining a fi-
nite computational range to reduce errors in the numerical approximation when
performing this truncation. In this paper, we adopt the Briani et al. numerical
technique for truncating the integral domain of our PIDE (cf. [9]) in both the Mer-
ton and Kou models. A proof is provided in Appendix A. If ε > 0, the formula for
selecting a bounded interval [y−ε, yε] for the set of points y in the Merton case is
as follows:

yε =

√
−2σ2

J log(εσJ
√

2π/2) + µJ , ∀ y ≥ 0 (25)

y−ε = −yε, ∀ y < 0, (26)

and in the Kou model we have

yε = log
(
ε/p
)
/(1− α1), ∀ y ≥ 0 (27)

y−ε = − log
(
ε/(1− p)

)
/(1− α2), ∀ y < 0. (28)

We therefore transform equation (24) into

AAAρρρτ =
σ2

2
AAAxxρρρ+

(
r − q − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+

λ

(∫ yε

y−ε

AAA(y)f(y) dy

)
ρρρ. (29)

We use the adaptive Gauss-Kronrod quadrature in MATLAB to evaluate the ma-
trix of the integrals in (29), which leads to the following approximation:∫ yε

y−ε

φ(|xi + y − xj |)f(y) dy ≈
m∑
k=1

wkφ(|xi + yk − xj |)f(yk), (30)

where wk and yk are suitable quadrature weights and quadrature points, respec-
tively ; see [50] for details. To simplify the notation, we set

F (xi − xj) =

m∑
k=1

wkφ(|xi + yk − xj |)f(yk).
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Then, the integrals in equation (29) can be approximated by

∫ yε

y−ε

AAA(y)f(y) dy ≈


F (x1 − x1) F (x1 − x2) . . . F (x1 − xN )
F (x2 − x1) F (x2 − x2) . . . F (x2 − xN )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F (xN − x1) F (xN − x2) . . . F (xN − xN )


= CCC(y). (31)

Substituting (31) into equation (29), we arrive at the new approximate equation:

AAAρτρτρτ =
σ2

2
AAAxxρρρ+

(
r − q − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+ λCCC(y)ρρρ. (32)

Because the cubic spline is a strictly conditionally positive definite function of order
2, the invertibility of AAA is not assumed without adding a real-valued polynomial of
degree 1 in (17) [cf. 53]. Nevertheless, Bos and Salkauskas proved that AAA is non-
singular in the univariate case [cf. 7, Theorem 5.1]. As a result, the invertibility of
AAA is still guaranteed.

Although the invertibility of AAA can be proven for all φ values of interest, the
inverse of AAA, AAA−1, may often be ill conditioned to solve when its size increases [cf.
21, chapter 16], and an accurate solution using standard floating point arithmetic
may be impossible. To address this problem, we factorise AAA into the following form
[cf. 7, Theorem 3.7]:

AAA = FFFCCCFFF, (33)

where FFF is an N ×N matrix,
|x1 − x1| |x1 − x2| |x1 − x3| . . . |x1 − xN |
|x2 − x1| |x2 − x2| |x2 − x3| . . . |x2 − xN |

...
. . .

...
|xN − x1| |xN − x2| |xN − x3| . . . |xN − xN |

 (34)

and CCC is a near-tridiagonal N ×N matrix,

h− S h
2 0 · · · 0 S

2
h
2 2h h

2 0 · · · 0

0 h
2 2h h

2 · · · 0
...

. . .
...

0 0 · · · h
2 2h h

2
S
2 0 . . . 0 h

2 h− S


, (35)

where h is the distance between xi+1 and xi for 1 ≤ i ≤ N − 1 and S = Nh. We
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also have an explicit form of FFF−1 [cf. 7, Lemma 3.6] that is equal to

h−S
2hS

1
2h 0 · · · 0 1

2S
1

2h −
1
h

1
2h 0 · · · 0

0 1
2h −

1
h

1
2h · · · 0

...
. . .

...
0 0 · · · 1

2h −
1
h

1
2h

1
2S 0 . . . 0 1

2h
h−S
2hS


. (36)

We perform Gaussian elimination with partial pivoting to calculate CCC−1. Then,
we multiply both sides of (32) byCCC−1 andFFF−1 to obtain the following homogeneous
system of ODEs with constant coefficients:

ρρρτ = F−1C−1F−1F−1C−1F−1F−1C−1F−1

(
σ2

2
AAAxx +

(
r − q − σ2

2
− λη

)
AAAx + (r + λ)AAA+ λCCC(y)

)
ρρρ

=: ΘΘΘρρρ, (37)

where ΘΘΘ is defined by the left-hand side. After some numerical experimentation,
we found that the matrix ΘΘΘ is stiff. To illustrate why ΘΘΘ is stiff, we use the following
example. Suppose we select −10 and 10 as the maximum and minimum logarithmic
prices xmin

(
log(Smin)

)
and xmax

(
log(Smax)

)
in equation (23), respectively. Then,

we use (23) to generate a list of 100 interpolation points. Based on the previously
mentioned procedures and ideas, we can obtain the 100 × 100 matrix ΘΘΘ in (37).
Then, we measure the stiffness ratio of ΘΘΘ, which is the quotient of the largest
and smallest eigenvalues of the Jacobian matrix ΘΘΘ. Thus, we obtain a ratio of
1.2864 × 105, which implies that equation (37) is a stiff ODE, and therefore, we
must use an implicit method to solve the ODEs, e.g., backward differentiation
formulas (BDFs), a modified Rosenbrock formula of order 2, the trapezoidal rule
or TR-BDF2, or an implicit Runge-Kutta formula with a first stage that is a
trapezoidal rule step and a second stage that is a backward differentiation formula
of order two . In this paper, we use the first option.

4. Numerical Results

4.1 European Vanilla Options

We first present a simple method for distributing a set of interpolation points.
We then present our interpolation solutions and their convergence rates under the
Black-Scholes and jump-diffusion models. Based on the cubic spline interpolation
scheme, we further derive explicit delta and gamma hedging formulas and graphi-
cally illustrate the results. Finally, we compare the numerical results of the cubic
spline interpolation scheme with those from the FDM and FEM.

A good method for placing interpolation points can determine the accuracy of
our scheme. To achieve this goal, we set a range of [xmin, xmax] and create N
interpolation points via EMS (23). We then distribute the first N/2 points uni-
formly in [xmin, log(K)], where K is the strike price, and the remaining points in
[log(K), xmax]. Our scheme for distributing the interpolation points is illustrated
in Figure 1.

In option trading, the region of most interest occurs when the mean of the stock
prices approaches the strike price. Typically, the probability is low for a stock to
default or to diverge greatly from the strike price. Therefore, we define the region
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xmin xmaxlog (K)

Figure 1. Uniform distributions of the interpolation points around the strike
price obtained using EMS. The red dots represent the interpolation points.
The blue cross is the location of the logarithmic strike price.

of interest as follows:

x̂i ∈ [x̂min, x̂max] := [ log(K/20), log(2K) ]. (38)

Based on this region, we can test the accuracy of our cubic spline interpolation
scheme using a set of evaluation points x̂∆x

i . We determine the grid points

x̂i := x̂∆x
i = x̂min + j∆x̂, j = 0, 1, 2, . . . , Neval − 1 (39)

where ∆x̂ = (x̂max − x̂max)/Neval with xmin ≤ x̂min ≤ x̂max ≤ xmax and Neval is
the number of evaluation points chosen. We will use the following three different
measures for the errors: the maximum error

E∞ = max
0≤i≤Neval

|f(x̂i)− ũ(x̂i)|, (40)

the root-mean-square (rms) error

E2 =

√
1

Neval

∑
0≤i≤Neval

|V (ex̂i , t)− ũ(x̂i)|2, (41)

and the relative error

Erel.(x̂, t) =
|V (ex̂, t)− ũ(x̂, t)|

V (ex̂, t)
, (42)

where V (ex̂, t) and ũ(x̂, t) are the exact and approximate values at point (x̂, t),
respectively.

We also calculate the rate of convergence of the maximum error and rms error
using E∞(x̂i, T ) and E2(x̂i, T ). We define the following formulae:

E∞(x̂i, T ) = C(1/N)R∞ (43)

for the maximum error and

E2(x̂i, T ) = C(1/N)R2 (44)

for the rms error, where N is the number of interpolation points, C is a constant
and R2 is the rate of convergence, which is linear when it equals one and quadratic
when it equals two.

Because the option price is approximated by the cubic spline interpolation
scheme, we can develop approximate formulas to compute option Greeks (sen-
sitivities in the option value to changes in the price of the underlying asset price
model parameters). We focus only on expressing the formulae for both delta 4, the
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sensitivity or the rate of change in the option price ũ with respect to the change
in the underlying logarithmic price and gamma Γ, the rate of change in delta with
respect to the change in the underlying price. For 4 at any time τ , we have

4 =
∂ũ(x, τ)

∂x

∣∣∣∣
x̂

=
N∑
j=1

ρj(τ)
∂φ(|x− xj |)

∂x

∣∣∣∣
x̂

(45)

and for Γ, we have

Γ =
∂ũ(x, τ)

∂x

∣∣∣∣
x̂

=

N∑
j=1

ρj(τ)
∂2φ(|x− xj |)

∂x2

∣∣∣∣
x̂

. (46)

As discussed in Section 3, the explicit forms of ∂φ(|x−xj |)/∂x and ∂2φ(|x−xj |)/∂x2

are equal to (21) and (22), respectively.
The analytical price of a European call/put option in the Merton jump-diffusion

model [44] is given by

VMJ(St, τ,K, r, q, σ)

=

∞∑
k=0

e−λ(1+η)τ ((λ(1 + η)τ)k

k!
VBS(St, τ,K, rk, σk, q), (47)

where τ = T − t is the time to maturity, η = eµJ+
σ2J
2 − 1 represents the expected

percentage change in the stock price originating from a jump, σ2
k = σ2 +

kσ2
J

T−t is the
observed volatility, rk = r − λη + k log(1 + η)/(T − t), q is the dividend and VBS
the Black-Scholes price of a call and put computed as

VBS(St, τ,K, rk, σk, q)

=

{
Ste
−qτΦ(d+,k)−Ke−rkτΦ(d−,k) call option,

Ke−rkτΦ(−d−,k)− Ste−qτΦ(−d+,k) put option,

}
,

where Φ(·) is the cumulative normal distribution and

d+,k =
log(St/K)+(rk−q+σ2

k/2)τ
σk
√
τ

, d−,k = d+,k − σk
√
τ .

For the derivation of VMJ(St, τ,K, r, q, σ), we refer the reader to [16, 44].
In general, for models in which the characteristic function of the Lévy process

is known, an analytical solution for the PIDE (10) may be found using Fourier
analysis [12, 38]. For the sake of simplicity and accuracy, we propose the Fourier
space time-stepping method of Jackson et al. rather than that of Carr-Madan [12]
or the FFT method of Lewis [38]. The idea of this method is based on a Fourier
transform of the PIDE. Using an FFT and inverse fast Fourier transform (FFT−1),
the European option price can be obtained. The pricing formula for evaluating the
European option can be expressed as follows:

VKou(S, τ,K, r, σ, q) = FFT−1[ FFT [VKou(S, T ) ]eψτ ] (48)

where ψ(z) is the characteristic function of the Kou model, which can be defined
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as

−σ
2z2

2
+ izγc + λ

( pα1

α1 − iz
+

(1− p)α2

α2 + iz
− 1
)
,

and VKou(S, T ) is the payoff function (11). For more details on this method, we
refer the reader to [31]. This method reportedly has a second-order convergence in
space in the European cases.

Our RBF algorithm for numerically solving (10) with initial condition (11) is as
follows:

(1) Find the RBF approximation to the initial value u(x, 0) using the ESM (see
(23)) to obtain a set of interpolation points x1, . . . , xn and an initial vector
ρρρ(0) =

(
ρ1(0), . . . , ρN (0)

)
.

(2) Then, use ρρρ(0) as the initial value for the system (37). By using any stiff
ODE solver, we can determine ρρρ(T ) at time T .

(3) Finally, substitute ρρρ(T ) back into
∑N

j=1 ρj(T )φ(|x − xj |) to obtain an ap-

proximate value for u(x, T ).

In our numerical experiment, we implement the algorithm in MATLAB R2007b
and, as we did above, set our maximum and minimum logarithmic prices xmin(

log(Smin)
)

and xmax

(
log(Smax)

)
to −10 and 10, respectively. To obtain a more

accurate approximation of the integral in (29), we set ε in both (25) and (27) to
3.72×10−40 to determine a finite computational interval [y−ε, yε]. Moreover, we use
the function quadgk, which implements an adaptive Gauss-Kronrod quadrature for
computing equation (30) and the function ode15s, which implements second-order
backward differentiation formulas (BDFs) to calculate equation (37). The principal
reason for choosing it is that according to [30], first- and second-order BDFs are
A-stable (the stability region includes the entire left half of the complex plane).
Because (37) is stiff, according to Theorem 4.11 (The Dahlquist second barrier)
[30], the highest order of an A-stable multistep method,1 such as BDFs, is two.

All tabulated parameters except those in Tables 3, 6 and 9 are chosen from
different reports in the literature. The parameter σ = 1 in Tables 3, 6 and 9 is
selected to stress our numerical algorithm. From Table 1 to 9, E∞ and E2 decrease
when the number of interpolation pointsN increases. Our cubic spline interpolation
scheme can obtain second-order convergence in space due to the limited smoothness
of the cubic spline, which has second-order convergence (cf. [53]). In Figures 2, 3
and 4, oscillations do not occur around the strike K for small values of T when we
approximate ∆ and Γ. In Table 10, we compare the results of the FD used by Briani
et al. [9] with those using our cubic spline interpolation scheme. Our numerical
approximation scheme can achieve lower Erel.(logS, T ) values than either the ARS-
233 or Explicit scheme. Tables 10 and 12 provide additional comparisons between
the accuracy of our cubic spline approximation scheme and that of Almendral
and Oosterlee’s FDM and FEM with BDF2. To illustrate a fair comparison, we
set our maximum and minimum logarithmic prices xmin and xmax to match those
proposed by Almendral and Oosterlee in their numerical experiments. Thus, we
set [xmin xmax] to [-4 4] and [-6 6] in the Merton model (Table 11) and Kou model
(Table 12), respectively. Our cubic spline interpolation scheme can attain a lower
Erel.(logS, T ) value than the FDM or FEM with BDF2 in both the Merton and
Kou cases.

1Multistep methods are used to the numerically solve ordinary differential equations. Conceptually, a
numerical method begins at an initial point and takes a short step forward in time to the next solution
point. The process continues with subsequent steps to map out the solution.
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Table 1. E∞ and E2 of the cubic spline interpolation for

pricing a European put under the Black-Scholes model. The

parameters are as follows: r = 0.04, q = 0, σ = 0.29, K = 1

and T = 1. The parameters are taken from the literature

[26]. The order of convergence is 2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 4.207101E-03 N/A 1.864736E-03 N/A
600 1.195088E-04 1.988 5.143665E-05 2.004
1100 3.554622E-05 2.000 1.528321E-05 2.002
1600 1.679290E-05 2.001 7.219811E-06 2.001
2100 9.745141E-06 2.001 4.189909E-06 2.001
2600 6.354765E-06 2.002 2.732818E-06 2.001
3100 4.468110E-06 2.003 1.921950E-06 2.001
3600 3.311319E-06 2.004 1.424931E-06 2.001

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.

Table 2. E∞ and E2 of the cubic spline interpolation for

pricing a European put under the Black-Scholes model. The

parameters are as follows: r = 0.05, q = 0, σ = 0.2, K = 1

and T = 2. The parameters are taken from the literature [?

]. The order of convergence is 2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 1.924131E-02 N/A 4.690135E-03 N/A
600 7.143939E-04 1.838 1.296858E-04 2.003
1100 2.171519E-04 1.965 3.870772E-05 1.995
1600 1.031950E-04 1.986 1.830673E-05 1.998
2100 6.002721E-05 1.992 1.063352E-05 1.998
2600 3.919766E-05 1.995 6.934013E-06 2.002
3100 2.758717E-05 1.997 4.877540E-06 2.000
3600 2.046213E-05 1.998 3.616699E-06 2.000

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.

Table 3. E∞ and E2 of the cubic spline interpolation for

pricing a European put under the Black-Scholes model. The

parameters are as follows: r = 0.3, q = 0.1, σ = 1, K = 1

and T = 0.25, whereas the parameter σ = 1 is selected to

stress our numerical algorithm. The order of convergence is

2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 2.325676E-03 0.000 1.404611E-03 N/A
600 6.473617E-05 1.999 3.856043E-05 2.007
1100 1.923322E-05 2.002 1.145625E-05 2.002
1600 9.079037E-06 2.003 5.411921E-06 2.001
2100 5.265272E-06 2.004 3.140776E-06 2.001
2600 3.430306E-06 2.006 2.048580E-06 2.001
3100 2.406208E-06 2.016 1.441039E-06 2.000
3600 1.782442E-06 2.007 1.068202E-06 2.002

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.
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Table 4. E∞ and E2 of the cubic spline interpolation for

pricing a European call under the Merton model. The pa-

rameters are as follows: r = 0.05, q = 0, σ = 0.15,

σJ = 0.45, µJ = −0.9, λ = 0.1, K = 1 and T = 0.25. The

parameters are taken from [6]. The order of convergence is

2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 1.428497E-02 N/A 3.749983E-03 N/A
600 4.642130E-04 1.912 1.011341E-04 2.016
1100 1.402519E-04 1.975 3.011378E-05 1.999
1600 6.640377E-05 1.995 1.423346E-05 2.000
2100 3.860331E-05 1.995 8.262241E-06 2.000
2600 2.518672E-05 1.999 5.389115E-06 2.001
3100 1.772559E-05 1.997 3.790660E-06 2.000
3600 1.314288E-05 2.000 2.810697E-06 2.000

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.

Table 5. E∞ and E2 of the cubic spline interpolation for

pricing a European put under the Merton jump-diffusion

model. The parameters are as follows: r = 0.05, q = 0.02,

σ = 0.15, σJ = 0.4, µJ = −1.08, λ = 0.1, K = 1 and

T = 0.1. The parameters are taken from [6]. The order of

convergence is 2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 1.956920E-02 N/A 4.723349E-03 N/A
600 7.326011E-04 1.833 1.305576E-04 2.003
1100 2.240092E-04 1.955 3.898655E-05 1.994
1600 1.069094E-04 1.974 1.844062E-05 1.998
2100 6.223777E-05 1.990 1.071235E-05 1.997
2600 4.062560E-05 1.997 6.985440E-06 2.002
3100 2.859186E-05 1.997 4.913762E-06 2.000
3600 2.121748E-05 1.995 3.643595E-06 2.000

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.

Table 6. E∞ and E2 of the cubic spline interpolation for

pricing a European call under the Merton model. The pa-

rameters are as follows: r = 0.05, q = 0.01, σ = 1, σJ = 0.6,

µJ = −1.08, λ = 0.1, K = 1 and T = 1, whereas the pa-

rameter σ = 1 is selected to stress our numerical algorithm.

The order of convergence is 2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 1.026524E-03 N/A 7.090253E-04 N/A
600 2.819557E-05 2.006 1.945356E-05 2.007
1100 8.415823E-06 1.995 5.762520E-06 2.007
1600 3.999351E-06 1.986 2.712396E-06 2.011
2100 2.373272E-06 1.919 1.559774E-06 2.035
2600 1.601472E-06 1.842 1.004746E-06 2.059
3100 1.136188E-06 1.951 7.021072E-07 2.038
3600 8.358248E-07 2.053 5.221973E-07 1.980

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.
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Table 7. E∞ and E2 of the cubic spline interpolation for

pricing a European put under the Kou model. The parame-

ters are as follows: r = 0, q = 0, σ = 0.2, α1 = 3, α2 = 2,

λ = 0.2, p = 0.5, K = 1 and T = 0.2. The parameters are

taken from the literature [2]. The order of convergence is 2

in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 1.239165E-02 N/A 3.422908E-03 N/A
600 3.932126E-04 1.926 9.440247E-05 2.004
1100 1.179555E-04 1.986 2.808850E-05 2.000
1600 5.589111E-05 1.993 1.327392E-05 2.000
2100 3.246588E-05 1.998 7.705266E-06 2.000
2600 2.118103E-05 2.000 5.025765E-06 2.001
3100 1.490021E-05 2.000 3.535171E-06 2.000
3600 1.105067E-05 1.999 2.621377E-06 2.000

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.

Table 8. E∞ and E2 of the cubic spline interpolation for

pricing a European call under the Kou model. The parame-

ters are as follows: r = 0.05, q = 0, σ = 0.15, α1 = 3.0465,

α2 = 3.0465, λ = 0.1, p = 0.3445, K = 1 and T = 0.25. The

parameters are taken from the literature [14]. The order of

convergence is 2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 1.433875E-02 N/A 3.766745E-03 N/A
600 4.665677E-04 1.912 1.022079E-04 2.013
1100 1.404381E-04 1.981 3.043034E-05 1.999
1600 6.660275E-05 1.991 1.438190E-05 2.000
2100 3.868283E-05 1.998 8.348098E-06 2.000
2600 2.522395E-05 2.002 5.444331E-06 2.001
3100 1.773247E-05 2.003 3.828943E-06 2.001
3600 1.314079E-05 2.004 2.838628E-06 2.001

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.

Table 9. E∞ and E2 of the cubic spline interpolation for

pricing a European put under the Kou model. The param-

eters are as follows: r = 0.04, q = 0.03, σ = 1, α1 = 4,

α2 = 4, λ = 0.3, p = 0.6 K = 1 and T = 1, whereas the pa-

rameter σ = 1 is selected to stress our numerical algorithm.

The order of convergence is 2 in space.

Na E∞(x̂i, T )b R∞ E2(x̂i, T )b R2

100 1.080306E-03 N/A 7.074108E-04 N/A
600 2.973137E-05 2.005 1.940773E-05 2.007
1100 8.870629E-06 1.995 5.757611E-06 2.005
1600 4.229400E-06 1.977 2.712641E-06 2.009
2100 2.490583E-06 1.947 1.567674E-06 2.016
2600 1.674611E-06 1.859 1.014582E-06 2.037
3100 1.191565E-06 1.935 7.096338E-07 2.032
3600 9.018770E-07 1.863 5.232205E-07 2.038

a N is the number of interpolation points. x̂i = logSi

is any evaluation point ranging from S = 0.05 to 2, of
which there are 1950. b T is the maturity time.
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Figure 2. Put option delta ∆ (Left) and gamma Γ (Right) in the Black-
Scholes Model. The number of interpolation points is 3600 . The number of
evaluation points ranging from S = 0.05 to 2 is 1950. The input parameters
are provided in the caption for Table 3.
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Figure 3. Call options delta ∆ (left) and gamma Γ (right) in the Merton
model. The number of interpolation points is 3600. The number of evaluation
points ranging from S = 0.05 to 2 is 1950. The input parameters are provided
in the caption for Table 5.

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

S

Δ

0 0.5 1 1.5 2
0

1

2

3

4

5

6

S

Γ

Figure 4. Put options delta ∆ (left) and gamma Γ (right) in the Kou model.
The number of interpolation points is 3600. The number of evaluation points
ranging from S = 0.05 to 2 is 1950. The input parameters are provided in the
caption for Table 8.
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Table 10. Comparison between the explicit scheme ([9]), ARS-233 scheme ([9])

and cubic spline interpolation scheme for evaluating European call/put options

under the Merton jump-diffusion model. The input parameters are as follows:

r = 0.05, q = 0, σ = 0.2, σJ = 0.8, µJ = 0, λ = 0.1, K = 100, T = 1, and

x = log 100. The reference prices of 13.218501 (call) and 8.341444 (put) and

the parameters are from [9].

Explicit scheme ARS-233 scheme

N V alue Erel.(logS, T ) V alue Erel.(logS, T )

Call 1024 13.286915 5.175624E-03 13.287427 5.214358E-03

Put 1024 8.319940 2.57797E-03 8.326102 1.839249E-03

Cubic spline N/A

N V alue Erel.(logS, T ) V alue Erel.(logS, T )

Call 1024 13.219358 6.489263E-05 N/A N/A
Put 1024 8.342301 1.027679E-04 N/A N/A

Table 11. Comparison of the FDM with BDF2 ([2]), the FEM with BDF2 ([2])

and the cubic spline interpolation scheme for evaluating a European call (put)

under the Merton model. The input parameters are as follows: r = 0, q = 0,

σ = 0.2, σJ = 0.5, µJ = 0, λ = 0.1, K = 1, T = 1, and S = 1. The reference

prices of 0.094135525 for both the call and put, and the parameters are from

[2].

FD with BDF2 FE with BDF2

N V alue Erel.(logS, T ) V alue Erel.(logS, T )
1025 9.411968E-02 1.682457e-04 9.412972E-02 6.165536E-05

Cubic spline N/A

N V alue Erel.(logS, T ) V alue Erel.(logS, T )
1025 9.413023E-02 5.621522E-005 N/A N/A

Table 12. Comparison of the FDM with BDF2 ([2]), the FEM with BDF2

([2]) and the cubic spline interpolation scheme for evaluating a European

call (put) under the Kou model. The input parameters are as follows: r = 0,

q = 0, σ = 0.2, α1 = 3, α2 = 2, λ = 0.2, p = 0.5, K = 1, T = 0.2, and

S = 1. The reference prices of 0.0426761 for both the call and put, and the

parameters are from [2].

FD with BDF2 FE with BDF2

N V alue Erel.(logS, T ) V alue Erel.(logS, T )
513 4.240E-02 6.346096E-03 4.24579E-02 5.1285862E-03

Cubic Spline N/A

N V alue Erel.(logS, T ) V alue Erel.(logS, T )
513 4.254583E-02 3.061686E-03 N/A N/A
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4.2 American Vanilla Put Options

In this section, we adapt an RBF algorithm to compute American put option
prices. We then compare the option prices obtained from our RBF algorithm with
those obtained from the Jackson et al. FST methods [31]. As mentioned in Section
2, an American put option problem is a free-boundary problem because of the
possibility of early exercise at any point during its lifetime, leading to the free-
boundary condition

u(x, τ) = max
(
K − ex, u(x, τ)

)
.

Together with the smooth pasting condition mentioned in Section 2, this uniquely
determines the exercise boundary.

The Jackson et al. FST methods suggest that their solutions can achieve second
order in space when they implement their methods to price American put options.
The methods are implemented in the context of the LCP. As described in Section
2, the value of an American option u(τ, x) is always greater than or equal to the
payoff function G(ex). To numerically maintain the condition u(τ, x) − G(ex) ≥
0 continuously (see Section 2), the boundary conditions must be applied. The
numerical algorithm for this idea can be defined as follows:

V (S, (m+ 1)∆t,K, r, σ, q)

= max{FFT−1[ FFT [V (S,m∆t,K, r, σ, q) ]eψ∆t ], G(ex), } (49)

where the time interval ∆t is obtained by dividing the time to maturity T by the
total number M ; m∆ is the time step, where m ∈ {0, 1, 2, . . . ,M − 1}, ψ(z) is the
characteristic function of the Merton/Kou models, V (S, (m+1)∆t,K, r, σ, q) is the
American put price at time (m+ 1)∆t and the payoff condition G(ex) is equal to
max(K − ex, 0). These methods are also required to switch between the real and
Fourier spaces at each time step when the American option prices are calculated
for each time interval because no convenient representation exists for the max(., .)
operator in Fourier space. For the full schematic and numerical description of this
method, we refer the readers to [31].

As before, we use the ESM to approximate u(x, 0) = max(K−ex, 0) and continue
to work with the interpolation points found at τ = 0. The algorithm now reads as
follows:

(1) Divide time to maturity T by the total number of time-steps M to obtain
time interval ∆t and create a list of equally spaced time-points m∆t, m ∈
{0, 1, 2, . . . ,M − 1}.

(2) Find the RBF approximation for the initial value u(x, 0) using the ESM.
This will yield a set of interpolation points x1, . . . , xn, together with an
initial vector ρρρ(0) =

(
ρ1(0), . . . , ρN (0)

)
.

(3) Assume that we have already determined ρρρ(m∆t) (if m = 0, we know ρρρ(0))
in equation (37). Solve the system of (stiff) ODEs to find ρρρ

(
(m+ 1)∆t

)
at

the next successive time step, (m+ 1)∆t.
(4) Then, at time (m+ 1)∆t, for each interpolation point xi, define

u
(
xi, (m+ 1)∆t

)
= max

(
(K − exi),

N∑
j=1

ρj
(
(m+ 1)∆t

)
φ(|xi − xj |)

)
.

(5) Find a new vector ρρρ
(
(m+1)∆t

)
such that u

(
xi, (m+1)∆t

)
=
∑N

j=1 ρj
(
(m+
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1)∆t
)
φ(|xi − xj |) for all i.

(6) Repeat Steps 3 to 5 until m = M − 1.

(7) Finally, substitute ρρρ(T ) back into
∑N

j=1 ρj(T )φ(|x − xj |) to obtain an ap-

proximate value for u(x, T ).

The settings of our numerical experiment are identical to those in Section 4.1.
The results from Tables 13 to 18 suggest that our cubic spline interpolation scheme
for pricing American put options is second order in spatial variables and first order
in time variables when the number of interpolation numbers N and the number
of time-steps M0 are twofold and fourfold, respectively. Moreover, Figures 5 to 7
indicate that oscillations do not occur around the strike K for small or large values
of T when we approximate ∆ and Γ.

5. Conclusion

We implemented an RBF interpolation scheme to price American put and Euro-
pean call/put options using the jump-diffusion model. By utilising the numerical
scheme of Briani et al., we determined a finite computational range for the global
integral of the PIDE. Our results suggest that the interpolation scheme can achieve
second-order convergence in both spatial variables for computing European prices.
Our other numerical results demonstrate that our scheme is also able to obtain
second-order convergence in spatial variables and first-order convergence in time
variables when pricing American put options. In addition, we compared our in-
terpolation scheme against the FDM and FEM. Our results suggest that one can
achieve a high level of accuracy by implementing our method. For the RBF inter-
polation, we used a cubic spline basis function rather than an MQ basis function.
This basis function not only avoids the open question of choosing an optimal shape
parameter for MQ but also avoids directly inverting an ill-conditioned cubic spline
interpolant. Finally, throughout the analysis of both ∆ and Γ, our RBF interpo-
lation method can resolve the oscillation problem around the strike in both the
American and European cases.

At this stage of development, the RBF interpolation scheme is first order in time
for American put options, although a second-order time-stepping scheme, BDFs of
order 2, was also implemented. We are investigating various approaches to improve
the cubic spline interpolation for time variables and will discuss these efforts in a
future paper. In principle, our method extends to pure jump Lévy-type models for
the underlying stocks, such as the variance gamma (VG) model or CGMY model
[cf. 11].
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Table 13. E∞ and E2 of the cubic spline interpolation for pricing

an American put under the Merton model. The parameters are as

follows: r = 0.05, q = 0, σ = 0.15, σJ = 0.45, µJ = −0.9, λ = 0.1,

K = 1 and T = 0.25. The parameters are taken from [6]. The order

of convergence is 2 in space and 1 in time.

Na M0
b E∞(x̂i, T )c R∞ E2(x̂i, T )c R2

225 10 2.368536E-03 N/A 1.007946E-03 N/A
450 40 7.746936E-04 1.612 2.740154E-04 1.879
900 160 2.260415E-04 1.777 6.969946E-05 1.975
1800 640 6.362341E-05 1.829 1.888980E-05 1.884
3600 2560 1.613907E-05 1.979 4.715908E-06 2.002

a N is the number of interpolation points. x̂i = logSi is any
evaluation point ranging from S = 0.05 to 2, of which there are
1950. b M0 is the number of time steps . c T is the maturity
time.

Table 14. E∞ and E2 of the cubic spline interpolation for pricing

an American put under the Merton model. The parameters are as

follows: r = 0.05, q = 0.02, σ = 0.15, σJ = 0.4, µJ = −1.08,

λ = 0.1, K = 1 and T = 0.1. The parameters are taken from the

literature [6]. The order of convergence is 2 in space and 1 in time.

Na M0
b E∞(x̂i, T )c R∞ E2(x̂i, T )c R2

225 10 3.401417E-03 N/A 7.995993E-04 N/A
450 40 1.318325E-03 1.367 2.451148E-04 1.706
900 160 3.744579E-04 1.816 6.873071E-05 1.834
1800 640 1.055849E-04 1.826 1.927219E-05 1.834
3600 2560 2.823205E-05 1.903 5.121082E-06 1.912

a N is the number of interpolation points. x̂i = logSi is any
evaluation point ranging from S = 0.05 to 2, of which there are
1950. b M0 is the number of time steps. c T is the maturity time.

Table 15. E∞ and E2 of the cubic spline interpolation for pricing an

American put under the Merton model. The parameters are as follows:

r = 0.05, q = 0.01, σ = 1, σJ = 0.6, µJ = −1.08, λ = 0.1, K = 1

and T = 1, whereas the parameter σ = 1 is selected to stress our

numerical algorithm. The order of convergence is 2 in space and 1 in

time.

Na M0
b E∞(x̂i, T )c R∞ E2(x̂i, T )c R2

225 10 4.935878E-03 N/A 1.613323E-03 N/A
450 40 1.236617E-03 1.997 3.725615E-04 2.114
900 160 3.093198E-04 1.999 9.101657E-05 2.033
1800 640 7.734030E-05 2.000 2.133679E-05 2.093
3600 2560 1.932168E-005 2.001 5.074520E-06 2.072

a N is the number of interpolation points. x̂i = logSi is any
evaluation point ranging from S = 0.05 to 2, of which there are
1950. b M0 is the number of time steps. c T is the maturity time.
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Table 16. E∞ and E2 of the cubic spline interpolation for pricing an

American put under the Kou model. The parameters are as follows:

r = 0, q = 0, σ = 0.2, α1 = 3, α2 = 2, λ = 0.2, p = 0.5, K = 1 and

T = 0.2. The parameters are taken from the literature [2]. The order

of convergence is 2 in space and 1 in time.

Na M0
b E∞(x̂i, T )c R∞ E2(x̂i, T )c R2

225 10 1.508321E-03 N/A 5.589125E-04 N/A
450 40 7.233939E-04 1.060 1.759571E-04 1.667
900 160 1.958968E-04 1.885 4.733738E-05 1.894
1800 640 5.243753E-05 1.901 1.271703E-05 1.896
3600 2560 1.374207E-05 1.932 3.405083E-06 1.901

a N is the number of interpolation points. x̂i = logSi is any
evaluation point ranging from S = 0.05 to 2, of which there are
1950. b M0 is the number of time steps. c T is the maturity time.

Table 17. E∞ and E2 of the cubic spline interpolation for pricing an

American put under the Kou model. The parameters are as follows:

r = 0.05, q = 0, σ = 0.15, α1 = 3.0465, α2 = 3.0465, λ = 0.1,

p = 0.3445, K = 1 and T = 0.25. The parameters are taken from

[14]. The order of convergence is 2 in space and 1 in time.

Na M0
b E∞(x̂i, T )c R∞ E2(x̂i, T )c R2

225 10 1.933354E-03 N/A 8.983577E-04 N/A
450 40 8.487095E-04 1.188 2.783005E-04 1.691
900 160 2.497213E-04 1.765 7.257535E-05 1.939
1800 640 6.843085E-05 1.868 1.933309E-05 1.908
3600 2560 1.827216E-05 1.905 5.119491E-06 1.917

a N is the number of interpolation points. x̂i = logSi is any
evaluation point ranging from S = 0.05 to 2, of which there are
1950. b M0 is the number of time steps. c T is the maturity time.

Table 18. E∞ and E2 of the cubic spline interpolation for pricing an

American put under the Kou model. The parameters are as follows:

r = 0.04, q = 0.03, σ = 1, α1 = 4, α2 = 4, λ = 0.3, p = 0.6, K = 1

and T = 1, whereas the parameter σ = 1 is selected to stress our

numerical algorithm. The order of convergence is 2 in space and 1 in

time.

Na M0
b E∞(x̂i, T )c R∞ E2(x̂i, T )c R2

225 10 3.839148E-03 N/A 1.095217E-03 N/A
450 40 9.616353E-04 1.997 2.458977E-04 2.155
900 160 2.405238E-04 1.999 6.111403E-05 2.008
1800 640 6.013812E-05 2.000 1.508359E-05 2.019
3600 2560 1.490999E-05 2.012 3.768285E-06 2.001

a N is the number of interpolation points. x̂i = logSi is any
evaluation point ranging from S = 0.05 to 2, of which there are
1950. b M0 is the number of time steps. c T is the maturity time.
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Figure 5. Put option delta ∆ (left) and gamma Γ (right) in the Merton
model. The number of interpolation points N is 1800, and the number of
time steps M0 is 640. The number of evaluation points ranging from S = 0.05
to 2 is 1950. The input parameters are provided in the caption for Table 13.
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Figure 6. Put option delta ∆ (left) and gamma Γ (right)in the Kou model.
The number of interpolation points N is 1800, and the number of time steps
M0 is 640. The number of evaluation points ranging from S = 0.05 to 2 is
1950. The input parameters are provided in the caption for Table 17.
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Figure 7. Put option delta ∆ (left) and gamma Γ (right)in the Kou model.
The number of interpolation points N is 1800, and the number of time steps
M0 is 640. The number of evaluation points ranging from S = 0.05 to 2 is
1950. The input parameters are provided in the caption for Table 18.



December 4, 2012 13:5 I jumpdf˙final2

23

Appendix A. A Finite Computational Range in the Jump-diffusion Model

In the Merton model, suppose that a domain Ω ∈ R for the European option
price u(x, τ) satisfies the Lipchitz inequality such that

|u(x1, τ)− u(x2, τ)| ≤ L|x1 − x2|, ∀x1, x2 ∈ Ω.

Then, we choose a parameter ε > 0 and select the bounded intervals [y−ε, yε] as
the set of all points y that verify

k(y) =
1√

2πσJ
e
− (y−µJ )2

2σ2
J ≥ ε.

Given the symmetry of k(y), we set y−ε = −yε. Then, the truncation of the integral
domain yielding an error in the approximation of the problem can be estimated by∣∣∣∣∫ ∞

−∞
(u(x+ y)− u(x))k(y) dy −

∫ yε

−yε
(u(x+ y)− u(x))k(y) dy

∣∣∣∣
≤ L

∣∣∣∣∫ ∞
−∞

(x+ y − x)k(y) dy −
∫ yε

−yε
(x+ y − x)k(y) dy

∣∣∣∣ (A1a)

≤ L
(∫ −yε
−∞
|y|k(y) dy +

∫ ∞
yε

|y|k(y) dy

)
(A1b)

= 2

∫ ∞
yε

y
1√

2πσJ
exp(−(y − µJ)2

2σ2
J

) dy (A1c)

= 2

∫ ∞
yε−µJ

(y + µJ)
1√

2πσJ
exp(− y2

2σ2
J

) dy (A1d)

= 2

∫ ∞
yε−µJ

(y + µJ)
1√

2πσJ
exp(− y2

2σ2
J

) dy (A1e)

≤ 2

∫ ∞
yε−µJ

(y + y)
1√

2πσJ
exp(− y2

2σ2
J

) dy (A1f)

=
4σJ√

2π
exp(−(yε − µJ)2

2σ2
J

) (A1g)

= 2σ2
Jε. (A1h)

Thus, by using (A1g) and (A1h),

yε =

√
−2σ2

J log(εσJ
√

2π/2) + µJ (A2)

. We use the aforementioned arguments to determine the finite computational range
[y−ε, yε] in the Kou model. We carry out the reasoning for the positive semi-axis
(the reasoning is similar to that for the negative semi-axis) and set k(y) = pα1e

−α1y

for y ≥ 0
(
(1 − p)α2e

α2x for y < 0
)
. Then, yε can be determined by the following
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equations:∣∣∣∣∫ ∞
0

(u(x+ y)− u(x))λf(y) dy −
∫ yε

0
(u(x+ y)− u(x))λf(y) dy

∣∣∣∣
≤ L

∣∣∣∣∫ ∞
0

(x+ y − x)λf(y) dy −
∫ yε

0
(x+ y − x)λf(y) dy

∣∣∣∣ (A3a)

≤ L
∫ ∞
yε

|y|f(y) dy (A3b)

=

∫ ∞
yε

|y|pα1e
−α1y dy (A3c)

= pα1e
−yεα1

(
1

α2
1

+
yε
α1

)
(A3d)

[27, equation 3.351]

=
p

α1
e−yεα1(1 + yεα1) (A3e)

≤ p

α1
e−yεα1α1e

yε (A3f)

= peyε(1−α1) (A3g)

= ε, (A3h)

resulting in

yε = log(ε/p)/(1− α1). (A4)

Similar arguments can be applied to y < 0. Thus,

y−ε = − log
(
ε/(1− p)

)
/(1− α2). (A5)
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