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Resumo 
 

Para conseguirem sobreviver num ambiente em constante mudança, é essencial que os 

animais consigam prever o desfecho de um determinado evento e/ou desenvolver 

comportamentos antecipadamente, no caso de esse mesmo evento voltar a acontecer. A 

cronometragem é um dos processos implicados nestes e noutros contextos de aprendizagem, 

já que confere ao organismo a capacidade de medir a duração do tempo entre eventos numa 

escala de segundos a minutos a horas. 

Embora muitos modelos teóricos tenham sido desenvolvidos na tentativa de explicar a 

forma como o nosso cérebro codifica informação temporal, poucos são aqueles que tentam 

explicar a forma como os estímulos exteriores são integrados, o papel de diferentes tipos 

celulares nessa integração e ainda a influência do estado das redes neuronais no momento de 

integração. Apesar da sua extrema importância, o nosso conhecimento sobre como o cérebro 

representa a passagem do tempo é ainda muito limitado, parcialmente devido à falta de 

paradigmas comportamentais que acomodem electrofisiologia e também devido à incapacidade 

de identificar tipos neuronais específicos recorrendo a técnicas clássicas de electrofisiolofia 

extra-celular. Em relação à cronometragem, diversos estudos indicam que os gânglios da base 

desempenham um papel fundamental no processamento de informação temporal. Anomalias 

no circuito dos gânglios da base estão intimamente ligados a doenças severas como a doença 

de Parkinson, doença de Huntington ou esquizofrenia, cujos pacientes demonstram 

incapacidades não só a nível motor, mas também na performance de tarefas de 

cronometragem. No entanto, as áreas envolvidas nestes processos, como é o caso do corpo 

estriado, possuem uma grande heterogeneidade a nível neuronal, tornando ainda mais 

complexo o estudo do papel de cada tipo de neurónio na representação temporal.  

Existem pelo menos dois tipos de neurónios de projecção (MSNs) e quatro tipos de 

interneurónios no corpo estriado, e cada um deste tipo de células poderá desempenhar papeis 

distintos durante o processamento de informação temporal. Sabe-se que cada tipo de MSNs 

expressam predominantemente receptores para a dopamina do tipo 1 (D1) ou do tipo 2 (D2), 

formando subpopulaçoes de neurónios D1MSN ou D2MSN distribuídas no estriado. Sabe-se 

que os receptores D1 e D2 produzem efeitos antagónicos em cascadas intra-celulares, quando 

ligados à dopamina. Existem ainda estudos que sugerem um papel importante do receptor D2 

na capacidade de estimar intervalos de tempo. O desenvolvimento de linhas de ratinhos 

transgénicas torna a utilização deste modelo animal muito apelativa neste prisma, já que pode 

facilitar o desenvolvimento de técnicas para identificação in vivo destes diferentes tipos de 
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neurónios. No entanto, a real aplicabilidade destes animais a paradigmas comportamentais 

dinâmicos e complexos é questionada.  

Pretende-se com este trabalho treinar ratinhos numa tarefa de cronometragem que 

acomode electrofisiologia, mas que seja mais dinâmica do que as tarefas clássicas utilizadas 

nesta área actualmente. Paralelamente, esperamos conseguir isolar diferentes tipos neuronais 

no corpo estriado de forma a que, a longo prazo, seja possível distinguir o tipo de célula cuja 

informação está a ser gravada durante experiências de electrofisiologia.  

Treinámos ratinhos numa nova tarefa de cronometragem altamente dinâmica chamada 

Serial Fixed Interval (SFI). Esta tarefa foi desenvolvida no nosso laboratório, baseada num 

paradigma clássico no estudo de cronometragem, denominado Fixed Interval (FI) schedule. O 

equipamento da tarefa SFI é bastante simples, consistindo apenas numa alavanca de metal e 

um orifício por onde a recompensa (uma gota de água com açúcar) é entregue. Durante o 

período de treino e teste na tarefa SFI, os ratinhos são privados de água e estimam diferentes 

intervalos de tempo, tendo apenas a última recompensa como referência para estimarem a 

entrega da próxima recompensa. Após a entrega de uma recompensa, os ratinhos passam um 

determinado intervalo fixo (FI) de tempo sem terem a possibilidade de receber qualquer gota de 

água com açúcar, mesmo que pressionem a alavanca de metal. Após este intervalo fixo 

terminar, os animais têm 15 segundos durante os quais a primeira resposta na alavanca produz 

uma recompensa e o FI de espera repete-se. Após pelo menos 25 repetições do mesmo FI, 

que representa um bloco de tentativas, selecciona-se aleatoriamente uma nova duração, e 

durante uma sessão de duas horas são estimados vários blocos com intervalos de tempo 

diferentes.  

Durante o decorrer da tarefa, os ratinhos desenvolveram um padrão de resposta que 

indica que estes animais estão a estimar intervalos de tempo. Depois de receberem uma 

recompensa, os ratinhos esperam um determinado intervalo de tempo antes de voltarem a 

pressionar a alavanca para tentar receber uma nova recompensa, e a esta latência para 

responder novamente chamamos PRP. Este padrão de respostas dos ratinhos é sensível à 

passagem do tempo, já que observamos que os PRPs variam no mesmo sentido da variação 

do FI entre cada bloco. Mais especificamente, obtivemos correlações significativas entre as 

PRPs e o intervalo anterior experimentado pelo animal, quer em sessões individuais (R2 = 

0.45809, valor P < 0.001) quer na análise de toda a população (R2 = 0.7813, valor P < 0.001). 

Adicionalmente, a frequência com que os animais pressionam a alavanca desenvolve-se 

progressivamente mais lentamente quanto maior for o FI a ser estimado. Este perfil de resposta 
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foi acompanhado por rápidas curvas de aprendizagem, quer se tratasse da aprendizagem entre 

a passagem de um intervalo curto para um longo ou o inverso.  

Paralelamente, começámos por tentar identificar dois tipos de neurónios do corpo 

estriado: os neurónios de projecção D2MSNs e um tipo de interneurónios que expressam 

parvalbumina (PV). Para isso, usamos duas linhas de ratinhos transgénicos: uma que expressa 

a enzima Cre recombinase (Cre) sob o controlo do promotor para o receptor D2 (linha D2-Cre); 

e outra que expressa Cre sob o controlo do promotor para a PV (linha PV-Cre). Estas linhas de 

ratinhos trangénicos foram sujeitas a micro-injecções de um virus adeno-associado (AAV) 

contendo um gene de fusão que codifica um canal iónico activado por luz, a channelrhodopsin-

2 (ChR2), ligado a uma yellow fluorescent protein (YFP). Como a expressão de ChR2-YFP é 

dependente de dupla recombinação pela enzima Cre e as duas linhas de ratinhos transgénicos 

expressam Cre sob o controlo de dois promotores distintos, a acção do sistema cre-lox permite-

nos expressar ChR2-YFP nestes dois tipos específicos de neurónios do corpo estriado. Através 

de técnicas de histoquímica, marcamos ainda os núcleos (no caso da linha D2-Cre) e corpos 

celulares (no caso da linha PV-Cre) destes neurónios para uma melhor análise anatómica. 

Observamos que em cada linha transgénica estudada (D2-Cre e PV-Cre), os tipos de neurónios 

identificados possuem as características morfológicas de neurónios D2MSNs ou de 

interneurónios PV, respectivamente. Observamos ainda a existência de pequenas inclusões 

fluorescentes presentes praticamente em todas as áreas onde existem células infectadas por 

virus. Algumas alternativas foram já pensadas de forma a evitar esta observação que parece 

ser um sinal de expressão elevada da proteína de fusão. Serão necessárias futuras 

experiências para avaliar até que ponto estas inclusões alteram a as propriedades 

electrofisiológicas das células, assim como o efeito a expressão de ChR2-YFP por si só. 

Com este trabalho, demos um passo importante para conseguirmos no futuro isolar 

subpopulações de neurónios e identifica-los durante gravações electrofisiológicas. Neurónios 

que expressem ChR2 serão identificados electrofisiolgicamente recorrendo à técnica PINP 

(Photostimulation-assisted Identification of Neuronal Populations): uma vez estimulados com 

luz azul, a activação ChR2 causará uma despolarização da membrana do neurónio, e este 

produzirá um potencial de acção. Este efeito tornará possível identificar estes neurónios por 

técnicas extra-celulares de electrofisiolgia enquanto os animais são testados na tarefa de SFI. 

Desta forma, poderemos estudar que tipo neuronal codifica que tipo de informação durante o 

processo de cronometragem. Esta informação poderá aprofundar o nosso conhecimento sobre 

os circuitos neuronais que estão na base deste processo fundamental. A compreensão da 

forma como integramos e processamos informação temporal poderá ainda ter enormes 
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vantagens no estudo de doenças neuro-degenerativas como as doenças de Parkinson e 

Huntington.  

 

Palavras-chave: Cronometragem; interval fixo; gânglios da base; corpo estriado; ratinhos 

trangénicos; channelrhodopsin-2. 
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Abstract 
  

The ability to time intervals in the range of seconds-to-minutes-to-hours, (interval timing) 

is a fundamental aspect of learning and behavior. Although many theoretical models have set 

out to address how the brain may process temporal information, little is known about the neural 

mechanisms that underlie this fundamental ability. Many studies indicate that the basal ganglia 

(BG) is the brain structure most involved in interval timing, but we still don’t know how the BG 

might process and encode duration information. Neurophysiological recording from single cells 

in a situation where a subject must access learned duration information provides a powerful tool 

to investigate interval timing mechanisms. However, information about neural cell type and 

connectivity within BG networks will ultimately be necessary to understand how timing 

information is computed, stored, and read out to guide behavior.  We want to train transgenic 

mice in a dynamic paradigm and try to identify which signals are carried by which cell types 

during timing behavior. To achieve this, we trained mice in a new dynamic schedule, the Serial 

Fixed Interval (SFI) task. Animals showed a reliable response pattern that co-varied with the 

time duration being sampled and learned to adjust their response time rapidly in response to 

interval changes.  

To ultimately identify recorded cell type during the SFI task, we used channelrhodopsin-

2 to label two subpopulations of striatal neurons. We used adeno-associated virus to deliver 

channelrhodopsin-2 in to the striatum of two transgenic mouse lines in which the expression of 

the enzyme Cre was driven either by the parvalbumin promoter or by the dopamine type-2 

receptor promoter.  

Together, these results suggest that transgenic mice can be used in a highly dynamic 

timing paradigm, and that we may identify recorded cell types during such behavior, providing a 

powerful opportunity to study the neuronal circuit mechanisms of interval timing. 

 

 

 

Keywords: Interval timing; serial fixed interval; basal ganglia; striatum; transgenic Cre mice; 

channelrhodopsin-2. 
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Introduction 
 

Time and timing scales 

Time is essential for innumerous daily life activities, like walking, speaking, playing music 

and learning. Such activities are possible because during our evolutionary history, we, like many 

organisms, have developed systems to deal with an environment where somewhat consistent 

variation of events across time is present, and producing behavior in such a manner is adaptive. 

This variation can occur at different scales. For example, the circadian rhythms are an 

adaptation to the regularity of days, interval timing for events within those days, and millisecond 

timing for proper perception and motor production. The mechanisms underlying circadian 

rhythms are perhaps the best understood of these three classes of timing. They operate roughly 

over the range of the 24-h light–dark cycle controlling the sleep-awake cycle, as well as 

metabolic and reproductive fitness1,2. Millisecond timing is required for proper motor control, for 

generating and recognizing speech, or even for activities like dancing and playing music 3,4. 

Interval timing operates on a scale from seconds-to-minutes-to-hours and is involved in 

foraging, decision making and learning5,6. We are surrounded by an environment in constant 

change, where important events can happen in regular intervals or at a predictable delay from 

other events. Having the ability to learn this regularity presents a great advantage and allows us 

to predict certain outcomes given a specific situation and develop anticipatory behaviors to 

prepare ourselves for the next time that a certain event will happen7. For example, an animal in 

the jungle may have to wait still in a hidden place, for a certain amount of time, until predators 

are likely to have left an area before seeking out a food or water source. Therefore, interval 

timing allows a wide range of species to estimate short intervals of time which are essential for 

their survival.  

 

 

Interval timing 

Interval timing, defined as the perception, estimation and discrimination of durations in the 

range of seconds to minutes to hours, has been verified in organisms as diverse as insects8, 

birds9, fish10, rodents11, primates12, human infant13 and adults14. Traditionally, three types of 

behavioral protocols have been applied in the field of interval timing. These can be based on the 

estimation, production or reproduction of intervals of time. Both estimation and production 

protocols rely on verbal instructions, requiring the subject to convert the verbal representation of 

time durations into a performance of that representation. Because these protocols can lead to 
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confounds, using a reproduction procedure is a more reliable approach, and it can be applied to 

a wide variety of animal species, from humans to rodents14,15. In a reproduction type behavioral 

protocol, the subject is presented with a given criterion duration and is then required to 

reproduce this duration. Usually, animals are deprived of either food or water, they are given a 

lever or a button to press and they are reinforced for that response (i.e. they receive a small 

amount of either food or liquid). 

One of the most common schedules used to study interval timing is the Fixed Interval (FI) 

Schedule of Reinforcement. In this schedule, the first response of the subject after some FI of 

time since the last reinforcement has elapsed is reinforced. During that FI, no response is 

reinforced. Ferster and Skinner16 described that animals performing the FI schedule behaved in 

a characteristic sequential manner. First, just after receiving the reinforcer, animals stop 

responding and start engaging in self grooming or exploratory behaviors. Second, the animal’s 

position and behavior are gradually oriented towards the response site. Finally, as the FI 

elapses, the animal’s rate of response increases gradually and reaches the maximum near the 

moment when the reinforcer will be available again. Additionally, the three steps described 

above have different durations that are proportional to the duration of the FI.  

Another classical schedule used to study interval timing is the Peak procedure17, also 

known as the Peak Interval (PI) task. It is a modification of the FI schedule, where trials identical 

to those of the FI schedule are shuffled with a small percentage of so called probe trials. In 

these probe trials, no reward is presented to the animals, no matter when they respond. In the 

PI task, only probe trials are selected for data analysis. The subject’s response profile in probe 

trials follows a normal distribution around the estimated FI and the width of this response 

distribution is proportional to the FI. Also, the manner in which both the mean and standard 

deviation of the response distribution co-vary is usually referred to as the scalar property, 

because the variability of timing performance scales proportionally to the interval being timed14. 

It implies that, for example, one can estimate more precisely a 4 second interval than a 14 

second interval. This property resembles Weber’s Law, which is obeyed by many sensory 

dimensions18. Weber’s Law states that the relative increase in a stimulus needed to produce a 

noticeable difference is constant.  

This scalar property of interval timing affects the system in such a way that it becomes 

increasingly less precise as the interval being timed lengthens and it applies not only to 

behavioral responses but also to neural activation19.  

Several models have been developed over the years, aiming to provide a possible 

explanation for the mechanisms by which the brain processes timed information. One of the 
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most popular views on interval timing in animals is the pacemaker-accumulator model, also 

called Scalar expectancy theory (SET)18. This information-processing model is based on an 

internal clock model20 and proposes the existence of a Poisson-variable pacemaker that 

regularly emits pulses, which are temporarily stored in an accumulator. By the time of reward, 

the number of pulses present in the accumulator is stored in reference memory. The behavioral 

response results from the comparison of the ratio between the current time estimation, which is 

stored in the accumulator, and a sample selected from the distribution of previously estimated 

durations, which are represented as the number of pulses from previous reinforced readings 

stored in reference memory. This model presents an explanation for the scalar property of 

interval timing, since it suggests that the error generated during the accumulation of pulses is 

proportional to the criterion duration.  

A second model, the Behavioral theory of timing (BeT), was developed by Killeen and 

Fetterman21, based on the idea that reinforcement generates collateral behaviors that can be 

interpreted as a sequence of behaviors. BeT is a behavioral model that retains some aspects of 

SET, like the existence of a Poisson-variable pacemaker, but it proposes that behavior itself 

may serve as a signal for the passage of time, possibly mediating time discrimination. BeT 

suggests that each behavior is associated with a particular underlying state and that the 

transitions between one state to the next occur thanks to pulses that a Poisson-variable 

pacemaker produces. The speed of this pacemaker depends on the rate of reinforcement in a 

given experimental context, so that increases in reinforcement rate lead to an increase of the 

speed of the pacemaker.  

Using BeT as a basis, Machado22 developed another behavioral model which he called 

Learning-to-time (LeT). His model consists of three major components: a sequential chain of 

behavioral states (similar to BeT), a vector of associative links connecting the behavioral states 

to the operant responses, and the actual operant responses. LeT hypothesizes that when the 

criterion duration starts, only the first behavioral state is active, but with the passage of time, the 

activation shifts from the previous to the next behavioral state in the sequence. Additionally, LeT 

proposes that each behavioral state is paired with the operant responses, and that the level of 

pairing varies during training, decreasing during extinction and increasing during reinforcement. 

Therefore, the strength of an operant response at a given moment is a result of the combination 

between which state is predominantly active at that moment and how strong is the association 

between that state and the response.  

More recently, another model was developed, proposing that activity from loops involving 

the thalamus, cortex and striatum could be involved in timing. This new model was developed 
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taking the Striatal beat-frequency (SBF) computational model23 as a reference, but it was 

slightly modified and proposes specific roles for certain brain areas, trying to build a more 

biologically plausible model. This SBF based model suggests that some oscillatory cortical 

neurons can cause simultaneous activation of striatal projection neurons in the basal ganglia24. 

During a timing task, these striatal projection neurons would constantly compare the current 

pattern of activation of cortical neurons with the pattern present when reward is collected. The 

SBF based model suggests that dopamine plays a role in synchronizing these oscillatory 

cortical neurons at the onset of a trial as well as maintaining them at a fixed frequency of 

oscillation throughout the criterion interval. This hypothesis relies on biological observations 

such as that dopaminergic projections to the striatum are active in different ways during a timing 

task. At trial onset, they discharge a burst response, show a sustained activity during the 

criterion interval and display another burst response at the time when reward was expected25. 

Interestingly, the scalar property of interval timing was demonstrated in simulations using the 

modified SBF model24.  

The models previously mentioned focus on greater extent on the integration of external 

stimuli. But, within complex neuronal networks, the response of a population of neurons may be 

determined both by the characteristics of the input stimuli and by the internal state of the 

network26. For example, a neuron can respond to a tone as a result of its specific frequency but 

also because of the strength of each of its synapses at that moment (which vary on a rapid 

timescale) or also because that neuron may be receiving additional internally generated 

excitatory and inhibitory inputs at the same time. Attempting to account for a role of the 

characteristics of external stimuli and also of the internal states during information processing 

within neural circuits, a new model has been developed. The State-dependent model was 

developed based mainly on cortical networks and accounts for both theoretical and 

experimental studies27,28. It suggests that both spatial and temporal information are processed 

taking into account the features of the incoming stimuli and the internal dynamic state of the 

neural network. This internal dynamic state can be divided in two components. The first 

component, called “active state”, comprises the ongoing pattern of activity in the network. The 

second component, known as the “hidden state”, includes the collection of time-dependent 

properties that are affected by prior activity and that can have an effect on whether, after 

receiving some input, a neuron fires or not (e.g. short- and long-term synaptic plasticity29,30). 

Therefore, the real internal state is created by combining the active and the hidden states, since 

both can influence the response of a local cortical network to a stimulus.  
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Regarding timing, state-dependent models predict that, for example, when two short 

tones are presented with a certain interval between each presentation, this inter tone interval 

can be encoded in the response of the network to the second tone presentation27. A few studies 

in cortical areas, cerebellum as well as in the hippocampus have tested predictions that arise 

from State-dependent models. For example, in the cerebellum, the pattern of response of 

granule cell populations to a constant stimulus may depend on the stimulus features but also on 

the current state of the connections within that cerebellar network31,32.  

Data from our lab (personal communication) indicates that, during a Serial Fixed Interval 

(SFI) task, striatal cells are active at different times over tens of seconds, when their response 

profiles are aligned on reward delivery. Such a response profile could be helpful to encode time 

information, and is consistent with the predictions of State-dependent or SBF models, but not 

with the predictions of a pacemaker-accumulator model. 

 

Neurobiological systems involved in timing 

Many efforts have been made in the last decades in order to expand our understanding of 

the neurobiological systems that are involved in timing, and many brain areas have been 

implicated in these distinct timing systems. Regarding interval timing, researchers have been 

studying the basal ganglia (BG) and cerebellum, because there is evidence that these brain 

areas are involved in the integration of timed information. BG have been associated with interval 

timing24, and the cerebellum has been charged with millisecond timing33,34. This general 

attribution rises from studies that suggest that interval timing depends on the intact striatum35-37, 

combined with studies where cerebellar lesions failed to affect performance on interval timing 

tasks38. For example, a 1996 study showed that cerebellar lesions in rats led to an impaired 

performance during a duration discrimination task, when the stimulus range was centered at 

500 ms, but did not affect performance when the range was centered at 30 sec 39. Also, 

because cerebellar injury fails to affect the scalar property of interval timing, it is presumed that 

the cerebellum is not fundamental for appropriate interval timing40. Imaging studies also point to 

the BG as one of the players in timing behavior, together mainly with cortical areas. Jueptner 

and colleagues 41 reported regional cerebral blood flow increases in the BG during a timing task, 

using positron emission tomography. Additionally, studies using ensemble recording techniques 

in animals or functional magnetic resonance imaging in humans, have also suggested a role for 

the BG during timing behavior42-44. 

Furthermore, patients with disorders that involve meso-striatal dopaminergic pathways, 

such as Parkinson’s disease (PD)35,36 Huntington’s disease (HD)45 and schizophrenia46-48, 
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display impaired performances during an interval timing task. Patients performance is improved 

by L-dopa (L-3,4-dihydroxyphenylalanine) medication or by stimulation of the subthalamic 

nucleus, two standard treatments to alleviate PD symptoms. In PD, degeneration of the 

nigrostriatal dopaminergic projections occurs. This leads to low levels of dopamine (DA) in the 

striatum and the patient’s interval timing abilities are impaired in a variety of ways35,36. Patients 

with PD, when performing a task where they had to time two different durations without 

medication during the training process, tend to overestimate both intervals. On the contrary, 

when the testing phase occurs without medication, the two remembered time intervals are 

estimated in such a way that overestimation of the shorter and underestimation of the longer 

one occurs. Also, the patient’s distributions of timed responses display the scalar property when 

medicated with L-dopa, but not when tested without medication.  

DA is a major neuromodulatorthe activity of the projection neurons in the striatum49,50,51. A 

specific type of DA receptor expressed in striatal neurons, the D2 receptor, has been the target 

of many studies regarding its role on striatal modulation during interval timing. Meck52 assessed 

the effects of several D2 receptor antagonists on rats performing an interval timing task and 

found that the dose of the drug needed to impair interval timing ability was negatively correlated 

with the drugs affinity for the D2 receptor. Additionally, studies using a transgenic mouse line 

that selectively overexpresses the D2 receptor in striatal neurons suggest that striatal D2 

overexpression impairs interval timing mainly by decreasing the animal’s motivation 7, 8 and by 

its impact on working memory and/or sustained attention. Together, these results suggest an 

important role for striatal D2 receptor signaling in interval timing. 

Although BG and the dopaminergic system seem to be major players in interval timing 

behavior, we still don’t know how the signals that are carried by neurons in the BG network 

processes temporal information to support the broad range of animals’ timing behavior. We 

propose to add a new layer of information on this subject, which is largely unavailable to 

neurophysiologists until now. Specifically, we aim to answer the question: what signals are 

encoded by which cell type during timing behavior?  

 

Basal ganglia organization 

The BG are a group of nuclei that are profoundly important clinically. Lesions of different 

cellular components of the BG lead to devastating neurological disorders including PD and 

HD55, and BG dysfunction is associated with a range of neuropsychiatric disorders such as 

schizophrenia22 or obsessive-compulsive disorder23.  
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Fig1 – Sagital diagram of input and output nuclei 

within basal ganglia in rodents. Striatum, that in 

rodents is comprised of CPu (caudate-putament) and 

nucleus accumbens, is the main input nucleus of the 

striatum, receiving information from most cortical areas. 

The internal segment of the globus pallidus (GPi) and 

substantia nigra pars reticulata (SNr) are the main 

output nuclei of the basal ganglia. Figure adapted 

from
58

. 

 

The position of the BG in the circuitry 

of the brain gives a clue to their numerous 

functions. The BG occupy the center of 

the forebrain and it is composed by 

evolutionarily conserved motor nuclei that 

form loops with areas such as the 

cerebral cortex, thalamus and brainstem. 

Therefore, they are in a prime position to 

influence motor planning and even 

cognitive behaviors. A general canonical 

organization of the BG consists of four 

structures: the striatum, the globus 

pallidus (GP), the subthalamic nucleus 

(STN) and the substantia nigra (SN)58. 

The striatum is the main input structure of the BG (Fig1). In primates, the striatum is divided 

in caudate nucleus, putamen and ventral striatum. However, in rodents, the caudate nucleus 

and the putamen are fused in one structure often denominated CPu (caudate-putamen) and the 

ventral striatum is denoted as the nucleus accumbens.  

The GP (divided in an external and an internal segment, GPe and GPi, respectively) is the 

site of therapeutic lesions (pallidotomy) and deep-brain stimulation procedures that were 

historically used to alleviate PD symptoms.  

The SN is subdivided in two regions (pars compacta and pars reticulata, SNc and SNr, 

respectively) and it is a critical nucleus to BG function. DA-synthesizing neurons in the SNc 

degenerate in PD, and SNr, together with the GPi, represent the major output nuclei of the BG 

(Fig1). Finally, the STN is a key structure controlling GP function, and is now a favored site for 

deep-brain stimulation in the treatment of PD.  

Glutamatergic layer 5 neurons from nearly all areas of the cortex project to the BG, which in 

turn provide output to brain systems that are involved in the generation of behaviors (e.g. output 

nuclei in the basal ganglia project to thalamic nuclei that in turn send inputs to frontal cortical 

areas involved in the planning and execution of movement; midbrain areas like the superior 

colliculus, which is involved in the generation of eye movements and orienting responses). It is 

hypothesized that BG receives inputs from these areas and acts as a filter, selecting activity and 

sending the result of its selection back to other brains systems. It is further thought that 
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reinforcement based plasticity occurs in the BG, and that this plasticity may somehow influence 

the input selection process based on previous experience58. 

 In a classic view, information from the striatum can travel through the nuclei of the BG by 

two different parallel circuits, the direct and the indirect pathways (Fig2). Neurons within the 

striatum can project directly to the output nuclei of the BG (direct pathway), or instead, they can 

project to other nuclei in the BG that thereafter indirectly connect the striatum and the output 

nuclei of the BG (indirect pathway)55. 

These signaling pathways are regulated by DA in the striatum, and they have been the 

subject of intense study since it was discovered that the loss of DA in the BG leads to the 

psychomotor symptoms of PD59.  

 

Anatomy and histochemistry of striatal neurons  

The primary input nucleus of the BG is the striatum. Although generally implicated in control 

of motor actions, recent studies account for a more numerous subdivision of functions within 

striatal areas. The dorsal striatum has been implicated in essential aspects of decision-making, 

sensorimotor, cognitive, and motivational information60-62. Interestingly for interval timing, studies 

also suggest that neurons within dorsal striatum respond to sensory events related to the task in 

question, becoming active before task-related motor behaviors and, in addition, they display 

tonic activity until the time when reward was expected to be delivered63,64. 

The striatum is the largest nucleus within BG and it completely lacks glutamatergic 

neuronal cell bodies. Instead, most neurons with cell bodies in the striatum release γ- 

aminobutyric acid (GABA). Neurons within striatum have been characterized anatomically, 

histochemically, and physiologically65,66. Regarding their anatomic characteristics, striatal 

neurons can be either medium spiny projection neurons (MSNs) or aspiny interneurons. MSNs 

are the principal cell type of the striatum, since they account for more than 95% of striatal 

Fig2 – Direct and indirect striatal projection 

pathways in sagital schemes of rodents. A – 

Direct and indirect pathway rise from different 

poulations of striatal neurons. Direct projecting 

neurons provide an axon with collateral to the 

globus pallidus external (GPe) globus pallidus 

internal (GPi) and substantia nigra pars reticulata 

(SNr). Indirect projection neurons project to the 

GPe and are indirectly connected to the GPi and 

SNr through connections involving GPe and 

subthalamic nucleus (STN). Figure adapted 

from
58

. 
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neurons 67. These GABAergic neurons are the major receiver of extrinsic input and they are the 

only output neurons of the striatum65,68. Glutamatergic inputs from cortex and thalamus to the 

MSNs terminate predominantly on dendritic spines69. In addition, the MSNs are a main target of 

dopaminergic neuron axons from the ventral tegmental area and from the SNc, that form 

synapses on MSNs dendrites and spine necks70  

The MSNs can be generally divided into two subpopulations. This division is based on their 

axonal projection targets, the expression of genes for certain peptides, and the expression of 

DA receptors. These two subpopulations of MSNs give rise to the two parallel BG circuits, the 

direct and indirect pathways55. About half of MSNs send projections directly to the output 

neurons of the BG in the GPi and SNr. For that reason, they are called striatonigral MSNs and 

give rise to the so called direct pathway of the BG circuitry. The other half of MSNs, also called 

striatopallidal MSNs, belong to the indirect pathway because they don’t send direct projections 

to the BG output nuclei. Instead, MSNs from the indirect pathway send their projections to the 

GPe neurons, which then project to the STN, and then to SNr and GPi. The direct and indirect 

pathway model of the BG has been the target of many studies, more specifically studies 

regarding its role on motor control. It has long been thought that excitation of the direct pathway 

would facilitate movement and activation of the indirect pathway would inhibit movement55,71. 

Although the validity of this hypothesis has been challenged over the years, a recent study 

brought strong evidence in favor of this classical model72. In this work, Kravitz and colleagues 

performed bilateral excitation of striatopallidal MSNs in transgenic mice using optogenetic 

methods and observed that this protocol induced a parkinsonian state, identified by increased 

freezing, decreased locomotor initiations and bradykinesia. Conversely, activation of 

striatonigral MSNs caused a decrease in freezing and an increase in locomotion. Additionally, in 

a mouse model of PD, activation of the direct pathway rescued the impairments displayed in 

freezing, bradykinesia and locomotor initiation.  

MSNs belonging to either de direct or indirect pathway show selective expression of certain 

peptides and receptors for DA. Studies using in situ hybridization histochemistry combined with 

retrograde labeling of striatonigral neurons suggest that striatonigral MSNs express substance 

P, dynorphin and the DA type 1 (D1) receptor, and therefore are also referred to as D1MSNs. 

The striatopalidal neurons express enkephalin and the D2 receptor, and for that reason are also 

known as D2MSNs 73. Although initial studies using RT-PCR claimed that there was 

considerable co-localization of these DA receptor subtypes, improvements of this technique 

confirmed this partial division of MSNs74. Within striatonigral and striatopallidal MSNs, there was 

found a 10%–20% co-localization of D1 and D2 receptor transcripts74. Nonetheless, 
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immunohistochemical studies indicate that the co-localization between D1 and D2 receptors is 

only about 1%75. This suggests the existence of major posttranscriptional control of the 

expression of DA receptors in MSNs.  

Considerable progress has been made in characterizing the DA receptors in the striatum 

and the brain in general. Molecular cloning studies have helped to discover at least five DA 

receptor genes (D1, D2, D3, D4, D5)
76-80. These receptors can be further grouped on the basis of 

their affinities for classical dopaminergic ligands and their coupling to intracellular signaling 

cascades into D1 (D1, D5) and D2 (D2, D3, D4). Both D1 and D2 receptors couple to adenylate 

cyclase via G (guanine nucleotide-binding)-proteins. D1 receptors stimulate adenylate cyclase 

via stimulatory Gs-proteins, whereas D2 receptors inhibit adenylate cyclase via inhibitory Gi-

proteins81. Although different cell types express distinct DA receptor subtypes, every cell type 

within striatum expresses DA receptors. 

Anatomically, besides MSNs, there is another category of striatal neurons, the 

interneurons. They represent about 3-5% of striatal neurons and include cholinergic 

interneurons and several types of GABA-releasing interneurons82,83. Within striatal neurons, only 

about 1-2% are cholinergic interneurons84. These neurons are generally characterized by a 

large soma, often >50µm long and they stain positively for choline acetyltransferase (ChAT). 

Immunohistochemical analysis suggest that cholinergic interneurons express both D2 and D5 

receptors85,86. The GABAergic interneurons seem to express mainly D5 receptors85 and can be 

divided into at least three groups based on their distinct histochemical and physiological 

properties82. Histochemically, striatal GABAergic interneurons can be subdivided into: (a) 

parvalbumin (PV)-positive; (b) somatostatin-, neuropeptide Y-, and nitric oxide synthase-

positive; and (c) calretinin-positive83. 

Physiologically, these three groups of striatal GABAergic interneurons can be further 

separated in at least two different types based on the firing patterns that they exhibit82. While 

PV-positive neurons display rapid and continued firing rates post current injection, somatostatin-

positive interneurons display lower firing rates and plateau potentials. Thus, PV-positive 

neurons are alternatively known as fast spiking (FS) interneurons and somatostatin-positive 

interneurons are known as low-threshold spiking (LTS) interneurons. Calretinin-positive 

interneurons appear to share some characteristics of LTS interneurons, but further physiological 

classification is required to confirm this suggestion87. Although few in number, striatal 

GABAergic interneurons play a major role in regulating spike timing in the MSNs, mainly 

through feedforward inhibition87. Like MSNs, striatal interneurons receive glutamatergic input 

from cortex and thalamus. Conversely, their output is directed primarily to MSNs and other 
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interneurons, thus forming microcircuits capable of modulating striatal output. Therefore, striatal 

interneurons may produce disproportionately strong effects despite being numerically in 

minority. As for the physiology of the cholinergic interneurons, they display spontaneous activity 

under physiological conditions, and therefore are also referred to as tonically active neurons 

(TANs). They exhibit significant hyperpolarization-activated currents, but they display a pause in 

their tonic firing in the presence of salient cues, including reward88,89. 

Though the basic physiology of striatal cell types has been characterized, a more detailed 

description of these neurons has been difficult. To distinguish striatonigral and striatopallidal 

MSNs in vitro without recurring to post hoc analysis has been an unsuccessful attempt, since 

they share most anatomical and electrophysiological features. In contrast, striatal interneurons 

are more easily identifiable during electrophysiological recordings82. Despite this, to target 

interneurons for electrophysiology is also challenging, since they represent a very small portion 

of the total number of striatal neurons and they are similar to MSNs under the light microscope.  

Although researchers have developed new methods to visualize distinct neuron types, 

within striatum, for cellular and synaptic electrophysiology90, these provide advances mainly for 

isolation of these different neuronal types in vitro. Because we are interested in understanding 

which signals are carried by each striatal neuronal type during interval timing behavior, we want 

to be able to distinguish these different subpopulations for electrophysiological recordings in 

vivo, while mice perform an interval timing task. 

 

Optogenetics 

Using classical extracellular recording techniques, it appears possible to distinguish just 

two general populations of striatal neurons. Berke and colleagues91 recorded from striatal 

neurons in freely moving rats and found that, although the majority of units recorded were 

probably MSNs based on their firing pattern, a second neuronal population displayed 

characteristic that were attributed to fast-spiking GABAergic interneurons. These include tonic 

activity, brief waveforms, and high-frequency bursts. Despite these advances, we cannot yet 

electrophysiologically distinguish between the two types of MSNs and between all the 

interneuron types in the striatum. These different neuronal subpopulations may play different 

roles during timing behavior. Isolating each neuronal type within striatum in behaving animals 

would lead to a deeper understanding of the BG circuitry and also of the signals that are carried 

by components of that circuitry. But because of the heterogeneity within striatal neurons (and 

within whole brain), resolving the role of particular neuron types in information processing poses 

fundamental challenges. Therefore, a noninvasive genetically based method, with a high 
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temporal resolution, to control neural activity may elucidate the spatial and temporal of activity 

encoded by particular neuronal populations that drive circuit dynamics and behavior.  

Optogenetics may be the way to achieve the selectivity that classical extracellular 

recording techniques fail to provide. Optogenetics is a recent term that is used to describe an 

approach of using new optical methods, which operate at a high temporal resolution, for probing 

and controlling neurons that are genetically targeted within intact neural circuits92. The 

introduction of optogenetics allows researchers to control not only electrical properties within 

targeted cell types, but also biochemical events, and all of this can be done in living, freely 

moving animals. Several of the methods that have been developed allow control of neuronal 

activity over timescales of seconds to minutes93,94. Although this presents an advantage, a 

method with a higher temporal resolution would be required in order to enable control of 

individual spikes. Such a strategy was developed in 200595 and it uses a light-activated cation 

channel called channelrhodopsin-2 (ChR2)96 derived from the alga Chlamydomonas reinhardtii. 

ChR2 is a protein constituted by seven-transmembrane domains and an all-trans retinal (ATR) 

molecule located at the core, functioning as a photosensor96. When illuminated with ~470 nm 

blue light, the ATR molecule undergoes isomerization and this event triggers a conformational 

change that ultimately leads to the opening of the channel’s pore. Following just 50 µs of 

illumination, ChR2 allows a depolarizing current to be evoked, and therefore neurons can be 

activated at the temporal precision of a single action potential97. Moreover, engineered ChR2 

fusions with several classes of fluorescent proteins have been expressed in both isolated 

neurons95 as well as in neural circuits97.  

While optogenetics has been widely used as a way to control neuronal activity, 

investigators have also been trying to employ it in the identification of different neuronal 

populations in vivo. In a recent study, Lima and colleagues98 developed a method of labeling 

neurons to be further identified during in vivo electrophysiological recording, called PINP 

(Photostimulation-assisted Identification of Neuronal Populations). Following expression of 

ChR2 in restricted neuronal subpopulations, neurons labeled with ChR2 can then be detected 

electrophysiologically in vivo, because when illuminating a certain brain region with a short flash 

of blue light, neurons expressing ChR2 at their membrane will fire a short latency reliable action 

potential (Fig3B). Consequently, that specific group of neurons is distinguishable for 

electrophysiological recordings, and one can then study which signals are carried by that ChR2-

tagged neuron. PINP was applied in mouse cortical FS interneurons and in excitatory neurons 

in the rat auditory cortex. ChR2 delivery was achieved by using, respectively, adeno-associated 

virus (AAV) and herpes simplex virus 1 for mouse and rat neurons.  
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Our ultimate objective is to train mice on a dynamic timing task and simultaneously 

record electrophysiologically from striatal neurons. Moreover, we aim to functionally tag striatal 

neuronal types, in order to identify from which neuron we are performing the recordings (Fig3). 

This will enable us to analyze which timing signals are carried by each neuronal type. To 

achieve this, we will selectively express a ChR2-YFP (yellow fluorescent protein) fusion in 4 

different types of striatal neurons: D1MSNs, D2MSNs, PV+ interneurons and ChAT+ 

interneurons. Expression of the fusion gene will be Cre (cyclization-recombination enzyme) 

dependent and delivered by viral vectors in 4 different transgenic mouse lines, in which Cre 

expression is driven by a given promoter that provides cellular specificity, therefore restricting 

ChR2-YFP expression to one of the 4 neuronal types mentioned. We will then use PINP to 

identify each neuronal type in each mouse line, while they perform the interval timing task 

(Fig3).  

? 
D

2
MSN 

? 
D

2
MSN ? 

PV 

 interneuron  

PV 

 interneuron  

Fig3 – Diagram of an example of the method for applying PINP to identify neurons tagged 

with ChR-2 in a PV-Cre mouse line during timing behavior. A - In a PV-Cre transgenic mouse 

implanted with an electrode (grey thin line) and cannula (blue thin line), different units display 

different response patterns during the timing task. We don’t know which cell types are 

responsible for each pattern.  B – With the introduction of an optic fiber through the cannula (blue 

thin line), when flashes of blue light (blue thick bars) are sent through the optic fiber, a reliable 

response from the ChR2-tagged neurons will be recorded. Since ChR2-YFP expression is Cre 

dependent, and this mouse line only expresses Cre in PV interneurons, we can now assume that 

a PV interneuron is responsible for that specific pattern of response. C – Now, we identified the 

single unit tagged with ChR-2 as a PV interneuron and recordings from that single unit can be 

performed on mice while they perform the SFI task. 
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We predict that in general, different types of striatal neurons will display significant 

differences in their response profile during a timing task. We think that, because of DA’s 

antagonist effect on D1MSNs and D2MSNs, the response profile of D1MSNs may tend to 

increase around the time of reward, and that D2MSNs response profile may tend to decrease to 

reward. Also, due to the fact that the TANs cholinergic interneurons display a reduction in their 

tonic activity in response to salient cues like a reward, we think this class of interneurons will 

display a similar response profile during the SFI task. 
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Fig4 – Diagram of the lever and nose poke behavior. A- Illustration of lever press 

behavior. B – Illustration of nose poke behavior. 

Lever 

 

Nose poke 

A B 

Materials and Methods 
 

Subjects 

All procedures were carried out in accordance with European Union Directive 

86/609/EEC and National Institute of Health guidelines on animal care and experimentation. 

Eight C57BL/6 male mice (Jackson Laboratory), aged 8-10 weeks were housed 2 per cage and 

kept under a 12 h light/dark cycle, at 22ºC, relative humidity of 50%. Two lines of transgenic 

animals (kind gift from Rui Costa) expressing Cre under the promoter for D2 receptor (D2-Cre) or 

the promoter for PV (PV-Cre) were treated as above, but housed one per cage. Experimental 

procedures were performed during the light phase of their cycle. Each animal was identified by 

a system of ear marks and named with different numbers for selection, behavior and data 

analysis purposes.  

 

Apparatus 

Behavior training and testing procedures were performed in a 15 cm*30 cm*36 cm 

polypropene chamber with a covered ceiling to minimize distraction of the animal inside the 

chamber.  

A lever (MedAssociates, Inc.) and a nose poke (Island Motion, Corp.) were placed in one 

of the widest walls of the chamber, as illustrated in Fig4. Because the lever was placed above 

the nose poke, the animal could not press the lever (Fig4A) and introduce its snout in the nose 

poke (Fig4B) at the same time. This design (and the small dimensions of the chamber) also 
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Fig5 – Top view of the nose poke components. It consists of an infra-red light and sensor, 

placed just before a small tube from where water is delivered. A – View of the nose poke without 

interruption. B – View of the nose poke with interruption, when the mouse approximates to collect 

the reinforcement. 

Infra-red light 

Water delivery tube 

Infra-red sensor 

A B 

Infra-red sensor 

Water delivery tube 

Infra-red light 

reduced the occurrence of other behaviors.  

The nose poke was equipped with a small tube (from where the reinforcer was 

delivered), an infra-red light and a sensor placed just before the hole, to detect headentries 

(Fig5). Rubber tubings connected a 1mL receptacle to a valve (Island Motion, Corp.) and the 

valve to a metal tube that was placed in the nose poke hole. 

 

The majority of the behavioral procedures were automated and did not require an active 

participation of the experimenter. The Bcontrol Behavioral Control System, developed by 

BrodyLab at Howard Hughes Medical Institute (Princeton Univeristy), was used to control the 

inputs (lever presses and headentries) and the output (sucrose 10% (m/v)). This system 

consists of two computers, one running Lynux Fedora OS with Real Time Linux Machine 

application and the other running Windows XP OS and MatLab 2007b (MathWorks, Inc.) 

application with a BControl library. Within the BControl system, each state had a specific 

relationship between inputs from and outputs to the behavioral chamber.  

 

Behavioral Procedures 

Mice were weighed for five consecutive days, while given ad libitum food and water, and 

their weights were averaged to calculate the baseline body weight. After those five days, water 

was removed from their home cages and they were given ~1mL of sucrose solution (10% (m/v)) 

every 24 h until they reached ~87% of their baseline weight. Mice were given 1mL of sucrose 

solution per day to maintain ~87% of their total body weight, the percentage at which they were 

maintained for behavioral training and testing in order to promote motivated behavior. The 
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sucrose solution at 10% (m/v) was the standard reinforcer for all the experiments and, since it is 

isotonic, there was no need to provide another source of water. 

The training period was divided in 3 steps. First, mice were placed in the behavioral 

chamber and submitted to a continuous reinforcement schedule (CRF). In the CRF, every time 

the animal emitted a response, this is, pressed the lever, 3.5µL of sucrose solution were 

delivered in the nose poke. In this first step, animals were trained for 2 sessions every day. 

Each session lasted 30 min or until the animal received 100 rewards. Naive mice learned to 

press the lever by repeatedly reinforcing approximations to the lever, until the actual lever press 

was achieved. Sometimes, treats were placed over the lever to lure the animal to emit a 

behavior closer the lever, in order to speed the learning process. Only this first step required an 

active participation of the experimenter and then automation began. When animals reached 200 

rewards in one day, they were moved to the second training step, where the SFI training began. 

Only few aspects of the SFI changed in between training steps. In all training steps, animals 

were placed in the behavior chamber and the first lever press was rewarded and initiated the 

actual task. This means that the animal controlled when the task began. The lever presses that 

occurred before some FI of time after the last reward were not reinforced (Fig6A). After this FI 

elapsed, animals had limited time to respond and get a reward, or the trial restarted and a new 

FI during which there was no possibility to acquire the reward would be presented (Fig6A). This 

time to respond after the end of the FI was different for each training step. In all SFI sessions, 

trials were grouped in blocks of at least 25 trials (Fig6B). Each block had a different FI, which 

was randomly selected from a sequence of 5 intervals (12, 24, 36, 48 and 60 sec). In every 

training step, after at least 25 trials in a given block elapsed, the script checked if mice 

completed 80% of the last 15 trials. If mice achieved this precision criterion, the FI changed and 

a different block started. If not, mice were kept on the same block until they reached the 

precision criterion. The sessions ended when mice performed 5 block switches or 2 h have 

elapsed since the beginning of the session.  

During the second step of the training period, mice had unlimited time to respond after 

the FI elapsed.  

The third training step was the same as the second one, but now the animal had only 25 

sec to respond after the FI elapsed in order to get the reward or the trial was restarted. When 

the animals performed at least 5 block switches in two consecutive training sessions, the 

training step moved forward, from second to third step and from third step to the data collection 

sessions.  



32 

 

  

B 
Block n 

FI 

12sec 

Block 2 

FI 

60sec 

Block 1 

FI 

36sec 

Time until the first lever press 

N
u

m
b

er
 o

f 
tr

ia
ls

 

Time (sec) 

                Cue 

 (Previous reward) 

Fixed Interval 

(from 12-60 sec) 

A 

Lever Press Lever Press 

No Reward  Reward 

Time to Respond 

15 sec 

   Time (sec) 

Fig6 – Illustration of the SFl task structure. A – Diagram of the structure of a single trial. In blue 

is represented the reward of the last trial that is used as cue in the actual trial. The FI, represented 

in white, lasts from 12 to 68 seconds. During this FI, no lever press produces a reward. After t he 

FI elapses, mice have 15 seconds to press the lever in order to get the reward. Time to respond is 

represented in green. B – Diagram of a session. First trial, represented in green, does not have a 

time limit. All the other colors represent the same parameters as described in A. The first lever 

press in the first trial will produce a reward and random selection of the first FI block of trials takes 

place. If there is no response during the time to respond, the trial is restarted. The FI changes 

when the animal reaches certain criteria. 
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During the data collection sessions, animals had 15 sec to respond after the FI elapsed 

in order to get a reward. Also, animals still had to perform at least 25 trials per block and get at 

least 80% of the last 15 trials correct to switch blocks. Sessions lasted 2 h and only those in 

which the animals performed at least 5 block switches were used for data analysis.  

 

Data analysis 

Sessions in which animals performed at least 5 block switches were selected for data 

analysis. In this set of data, lever presses were represented by the moment of occurrence in 

time (milliseconds) since the start of the session. We wanted to perform a trial by trial analysis, 

and therefore we transformed the absolute times into relative times, by subtracting those lever 

press times by the trial start time, also in milliseconds. Because mice needed a cue to measure 

the FI, and this cue was the reward from the previous trial, only data from reinforced trials that 

were also preceded by a reward were selected for data analysis. In addition, only trials with 

more than two lever presses were selected for analysis. 

We also used a heuristic in order to further select responses from the relative times data 

set. A heuristic is an experience based method of solving problems, to determine something 

that cannot be formally proven. In our analysis, we developed a heuristic that comprised two 

points. First, we ignored lever presses that occurred on the first 2 sec after the reward was 

available because the immediate responses in the beginning of each trial were, most likely, an 

effect of high frequency responses from the previous trial. Also, mice always spent more than 2 

sec collecting the reward. Second, we observed that mice occasionally pressed the lever in a 

manner that didn’t seem to reflect the true response. These occasional presses often occurred 

isolated in time, maybe reflecting an exploratory behavior inside each trial. In order to avoid 

these isolated lever presses, we measured the inter response interval (IRI), this is, the time 

between each lever press. This was done by subtracting the time of every lever press from the 

time of the next one and then removing from the analysis all the lever presses in which the IRI 

was over the percentile 85.  

From the data set filtered with the heuristic, we measured the post reinforcement pause 

(PRP). The PRP is the time since the start of the trial until the first response of the data set 

filtered by the heuristic. 

For single session analysis, we grouped blocks that had the same FI and calculated the 

average frequency rate of response within the groups of trials with the same FI. The rate was 

generated by taking the mean of responses in every 0.5 ms bin and then convolving this set of 

data with an 11 kernel size Gaussian. This step smoothed the average rates curves but, 
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because artifacts at the edges of the smoothed curves were generated by the convolution, we 

padded the beginning and the end of our data with vectors with the same size as the kernel. All 

the elements of the padding vectors had the same value (the first value of the data set for the 

beginning or the last value of the data set for the end of the curve). 

Timing learning curves were generated by calculating Z-scores. These were calculated 

by taking the PRPs data from the first 15 trials after block switch in each block. PRPs mean and 

standard deviation were calculated using the distributions of the PRPs in each block, after 

excluding the first five trials post block switch. We then subtracted this mean from each of the 

first 15 trials PRPs and divided the result by the standard deviation within each block. We made 

3 independent analysis: for all block switches; for shorter FI to longer FI block switches and 

finally for longer FI to shorter FI block switches. 

 Correlations between FIs or EIs (experienced interval, meaning, real interval between 

rewards experienced by the animal) and the PRPs were achieved by performing linear 

regression analysis. In the case of the single session analysis, we performed linear regressions 

using either the PRPs and the FI or the PRPs and the EIs.  

 For the population analysis, data from 91 individual single sessions was filtered as 

described above and combined in sets of blocks with the same FI size, each belonging to a 

single session. Then we calculated the PRPs mean for each block belonging to each individual 

session. We also generated average frequency rate of response in each individual session as 

described above, but additionally, we also calculated the average frequency rate of response for 

each block size, in the population. This was done simply by taking the average frequency rate of 

response from all the single sessions and averaging the data belonging to the same block size. 

 We also performed linear regression analysis for the population data set in order to look 

for correlations only between PRPs and EIs. We only used this combination because the EIs 

were a more realistic measure of the time between rewards experienced by the animal than the 

FI, and because the difference between the two analysis performed in the single session case 

was not significant. 

 Learning curves were generated in a similar way as in the single session analysis, but 

using a larger data set and averaging the results from the multiples sessions, in the trial by trial 

calculations of the Z-scores. We also calculated the standard error of the PRPs mean by taking 

the standard deviation of the mean distribution of PRPs in each session and dividing it by the 

square root of the sample size. 

 All data analysis was performed using the MatLab2009b software (MathWorks, Inc). 
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Viral construction and production 

 The AAV construct was a 

kind gift from Karl Deisseroth. It 

consisted of a ChR2-YFP coding 

region was originally subcloned 

from a lentiviral vector into 

loxP/lox2722-flanked (locus of X-

over P1), inverted ORF (open 

reading frame) AAV plasmid (Fig7). 

The ChR2-YFP coding region was 

located downstream of the 

elongation factor-1α (EF1α) promoter and upstream of the woodchuck hepatitis post-

transcriptional regulatory element (WPRE), to enhance expression. Plasmid was verified by 

sequencing. High-titer stock of AAV-EF1α-DIO (double-floxed inverted open reading frame)-

ChR2-YFP-WPRE expressing virus (8x1012 pfu/mL in PBS - phosphate buffered saline) was 

produced at the Penn Vector Core (University of Pennsylvania).  

 

Viral injection 

 For the AAV injections, one PV-Cre mouse and one D2-Cre mouse, both two months old, 

underwent the same surgery protocol. They were anesthetized with isoflurane in a chamber and 

then positioned in a stereotaxic apparatus, where they continued under anesthesia through a 

gas anesthesia mask connected to the head holder section of the stereotaxic equipment (923-B, 

Kopf). The mouse’s upper front teeth were placed in the head holder and zygoma ear cups 

(921, Kopf) were positioned and tightened over the animal’s temporal lobes. This was done to 

make sure that the animal’s head was not moving through the surgery and therefore the 

injection coordinates could be measured correctly.  

The scalp was rubbed with alcohol and then swabbed with iodine/betadine to sterilize. 

Then, a central incision was made, the skull was mapped stereotaxically for bregma, and two 

craniotomies approximately 2mm in diameter were drilled bilaterally (0.5 mm anterior-posterior, 

± 2.25 mm medial-lateral; all coordinates relative to bregma). The virus (0.5, 0.75 and 1 µL into 

distinct injection sites) was delivered with a glass micropipette connected to a Nanoject 

automatic injector (Drummond, Sci. Co.). A pulse generator was connected to the Nanoject and 

sent one TTL (transistor-transistor logic) pulse every 5 sec, with 1 ms width. Viral injection to the 

dorsal striatum was achieved by lowering down the micropipette 2.25mm from pial surface. 

Fig7 – Scheme of the double-floxed Cre-dependent AAV 

vector. The double-floxed inverted ChR2–YFP coding region is 

flanked by 2 loxP and 2 lox2722 sites, therefore its expression is 

Cre dependent. The EF-1α (elongation factor-1α) promoter. ITR – 

inverted terminal repeat. WPRE - woodchuck hepatitis virus post-

transcriptional regulatory element.  
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Then, the virus was injected at 9,2nL/sec. Different volumes were injected in each animal. The 

PV-Cre animal was injected with 1µl in each hemisphere. In the case of the D2-Cre animal, 

0.5µL were injected in the right hemisphere and 0.75µL were injected in the left hemisphere. 

Since a TTL pulse was sent every 5 sec, it took 4 min and 30 sec, 6 min 45sec and 9 min to 

inject 0.5, 0.75 and 1 µL, respectively.  

In order to prevent the virus from being carried out along with the micropipette, we 

waited at least 10 min before removing the micropipette. After injection, the craniotomies were 

covered with silicone sealant, the skin was repositioned with tissue adhesive VetBond (3M, Co.) 

and the animals were returned to their home cages after regaining movement. During all 

surgical procedures, animals were placed on a heating pad and their eyes protected with 

Frakidex (Bausch & Lomb, Inc.). 

 

Histology 

Two weeks post surgery, both animals that undergo viral injection were deeply 

anesthetized intraperitoneally with Ketamine/Xilazine (120 mg/mL Ketamine, 1.8 mg/mL 

Xilazine). Next, their hearts were exposed, a needle connected to a pump (101U/R, Watson-

Marlow) was introduced in the left ventricle and the right atrium was sniped. The animals were 

then slowly perfused with about 40-50mL of cold 0.9% (m/v) solution of NaCl until the fluid 

coming from the right atrium was clear. Then, the NaCl solution was changed to cold 4% (m/v) 

paraformaldehyde (PFA) and the animal was again slowly perfused with about 50ml of PFA. 

The brains were removed and fixated in PFA overnight at 4ºC, and then stored in PBS 1x at 

4ºC. Then, 50 µm thick coronal sections were prepared with a VT100 vibratome (Leica 

Microsystems). 

 Free floating sections from PV-Cre injected mice were placed 4 per well, washed 3x5min 

in PBS 1X and then incubated overnight at room temperature with a mouse monoclonal anti-PV 

antibody (Sigma) diluted 1:10000 in PBS 1x with 0.4% Triton X-100 (v/v). After washing 5x5 min 

in PBS 1x, the sections were incubated for 2 h at room temperature with the Alexa594-

conjugated goat IgG fluorescent secondary antibody (Invitrogen), diluted 1:1000 in PBS 1x with 

0.4% Triton X-100 (v/v). The slices were then rinsed in PBS 1x, mounted on glass slides and 

coverslipped with mowiol mounting media.  

Free floating sections from D2-Cre injected mice were placed 4 per well, washed 3x5min in PBS 

1X and then stained for 30min at room temperature with TO-PRO-3 (Invitrogen) in PBS 1x with 

0.4% Triton X-100 (v/v). After washing 5x5 min in PBS 1x, the sections were mounted on glass 

slides and coverslipped with mowiol mounting media. 
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In order to analyze the overall expression of ChR2-YFP in full slices of both mouse lines, 

we used a SteREO Lumar V.12 to acquire images in a low magnification with a ApoLumar 1,2 

lens (all from Zeiss). For YFP detection, we used band pass (BP) 500/25nm excitation filters 

and BP 535/30nm emission filters. 

Identification of PV+ interneurons expressing ChR2-YFP was achieved by using AxioImager Z1 

microscope, equipped with an Axiocam MR ver.3.0 camera and the Axiovision 4.7 software (all 

from Zeiss). Images were acquired with a 40x objective (ECplan Neofluar 40x, 0.75 numerical 

aperture), with BP 500/25nm excitation filters and BP 535/30nm emission filters for YFP and we 

used BP 546/12nm excitation filters and 590nm LP (long pass) emission filters for Alexa-594. 

In order to assess labeling specificity, we used a confocal microscope (LSM-510/META, 

Zeiss) under a 63x objective (oil plan-Apochromat 63x, 1.4 numerical aperture) to acquire 

images and the labeled neurons were analyzed morphologically. Excitation was performed 

using 488nm and 543nm lasers for YFP and Alexa-594 respectively, and the same main 

dichroic beam splitter configurations (HFT 488/543/633nm) for both cases. The two emission 

records were captured using the META detector in the ranges of 500–550nm for YFP and 565–

615nm for Alexa-594. 

Identification of D2MSN expressing ChR2-YFP was achieved by using the same confocal 

microscope and objectives as in the PV+ interneurons imaging. Also, excitation of D2MSN 

samples was performed in a similar way as in the PV+ interneurons imaging, with the difference 

that the samples were excited using 488nm and 633nm lasers for YFP and TO-PRO-3, 

respectively. Again, two emission records were captured using the META detector in the ranges 

of 500–550nm for YFP and 650–710 nm for TO-PRO-3. 
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Results 
 

Behavior during the SFI task 

We first trained mice in the SFI schedule and analyzed the raw data in single sessions. 

We noticed that mice developed a reliable pattern of behavior that consisted in pressing the 

lever once and “checking” rapidly if the reward had been delivered. This was true even for times 

when the mice were pressing the lever at a very high frequency, and faithfully resemble the 

pattern of behavior displayed by rats performing the same task (personal communication).  

In Fig8 we have an example of the lever press distribution in a single session, without 

any data filtering. Every trial and block is in the same sequence as they were during the session 

and all the single session plots here shown use data from this session. The gray dots in the very 

beginning of some trials represent a lasting effect of a high rate response from the previous trial. 

Therefore, for every trial, we selected the first response after reward using a heuristic and not 

the actual first response in the data set (see Methods). The distribution of these first responses 

after reward suggests that the PRP is sensitive to the block size, since the first lever press after 

reward appears later in trials with a long FI when compared to trials with shorter FI. 

Fig8 - Trial by trial distribution of all lever presses as a function of time, during a 

SFI single session. Each gray dot represents one lever press. The first response 

selected by the heuristic for data analysis is highlighted in red.  
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Fig9 - Running mean of the 

PRPs during a SFI single 

session. Solid black line 

represents the FI duration in 

each block. The PRPs are 

represented in solid gray and 

the dashed light gray line 

represents the running mean 

of the PRPs. 

Fig10 – Distribution of the 

average rate of response and 

mean PRP as a function of block 

size. The average rate of response 

is color coded, and the color scale 

is on the left panel, in Hz. Light 

blue represents 0 Hz, and dark red 

represents the maximum average 

rate, up to 0.9 Hz. Each line 

represents the average rate of 

response of all trials with the same 

FI, during a single session. Dark 

blue data points represent the 

mean PRP in each block of trials.  
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Because we wanted to have a better visualization of the PRPs changes during the 

course of a single session, we plotted in Fig9 the running mean of the PRPs from the 3 previous 

trials, together with the mice PRPs and the FI sizes in each trial. In this and in all subsequent 

figures, data has been filtered and only trials that were preceded by a reward were used. Here 

we can see more clearly how the increase in FI size is followed by an increase in the running 

mean of the PRPs.  

For the population data set (n=91 sessions), we plotted the mean PRP in each block 

(Fig10) and, again, we observed an increase in the mean PRPs for longer FI durations.  
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The EI, this is, the real time between rewards experienced by the animal, was slightly 

different on a trial by trial basis. This happened because, after the FI elapsed, mice had 15 sec 

to press the lever and receive the reward. Therefore, the EI varied from FI sec to FI+15 sec. To 

check whether the EI could have an effect on the PRPs, we calculated the EI and plotted it 

together with the running mean of the PRPs and the median PRP within each block (Fig11). 

Here we can see that the EI is very close to the FI within each FI size, because mice show a 

relatively high rate of lever presses right before the end of the FI, as it can also be seen in 

Fig10. 

We then performed linear regression analysis to analyze possible correlations between 

the FIs and the PRPs (Fig12A) (R2 = 0.43959, P-value < 0.001), as well as between the PRPs 

and the EIs of the previous trial (Fig12B) (R2 = 0.45809, P-value < 0.001) and found a significant 

linear correlation in both cases. During the SFI task, animals can directly evaluate the EIs but 

not the actual FIs. Therefore, and because there was not a significant difference between both 

correlations, we only searched for correlations between PRPs and EIs in the population data 

set. We also found a significant linear correlation between PRPs and EIs when we analyzed the 

Fig11 – Distribution of the median PRP and EI during a single session. Solid black line 

represents the FI (fixed interval) duration in each block. Solid gray line represents the interval 

between rewards delivery, this is, the actual interval experienced by the animal (EI). The 

running mean of PRPs (post reinforcement pauses) is represented in dashed dark gray line and 

the solid red line represents the median PRPs in each block. Solid blue line represents constant 

amount of reward delivered thorough the session. 
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Fig12 – Correlation between the latency to 

respond and the fixed intervals as well as 

between latency to respond and 

experienced intervals in a single session. A 

– Correlation between the latency to respond 

(PRPs) and the fixed interval (FI) in a single 

session. B – Correlation between the PRPs and 

the experienced interval (EI) between rewards 

in a single session. Error bars in red above and 

below the mean PRP represent the standard 

deviation of the PRPs. 
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population data set (Fig13) (R2 = 0.7813, P-

value < 0.001), confirming that PRPs 

distribution is time sensitive. 

We found that, along with the 

PRPs, the response rate profile also 

showed this time sensitivity. In Fig14A we 

can see that, although the maximum 

average response frequency rate for each 

block of FIs is similar, its development is 

progressively slower for longer FIs. This 

result was also seen in the population analysis (Fig14B), both in the average response 

frequency rates in several sessions and in the averaged response frequency rates of the whole 

population. Thus, manipulating the FI during a SFI operant lever pressing task can be used to 

systematically vary the report of time until reward in mice. To check if mice could rapidly adapt 

their timing behavior to FI changes, we calculated the Z-Score for the early trials in each block 

of both single session and population data, as well as its standard error of the mean (SEM). In 

Fig15 we can see that mice change their PRPs to match the new FI size, and they do it 

considerably fast (~6trials), even though this result is not seen in the individual data analysis 

(Fig16).  
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Fig13 – Correlation between the latency to respond and the experienced intervals, 

in the population data sets. Correlation between the PRPs and the EI between rewards 

in the population data set. Single trial PRPs are represented in red. Black dots represent 

the mean PRP per block of trials with the same FI within each session. Blue bars 

represent the standard deviation of the PRPs. 
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Fig14 – Distribution of the average response rate in each block of trials 

with the fixed interval (FI). A – Each curve represents the single session 

average frequency rate of response in a given block size. Block sizes are 

color coded so that the greener, the longer the FI size.  B – Each thin curve 

represents a single session average frequency rate of response in a given 

block size and many sessions are plotted in this figure that is representative 

of the population. Color code is identical to panel A. The four thicker curves 

represent the population average rate of response in each block of trials with 

the same FI. Again, color code is identical to panel A. 
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We then asked if mice could learn faster how to go from a long FI to a short FI than the 

other way around, so we analyzed separately block switches that were preceded by a smaller 

Fig16 – Distribution of the learning curves for block transitions in a single 

session. A – Distribution of Z-scores extracted from the post reinforcement pauses 

(PRPs) in the first 15 trials after a switch from a long FI to a short FI. B – Distribution of 

Z-scores extracted from the PRPs in the first 15 trials after a switch from a short FI to a 

long FI. C – Combined distribution of Z-scores extracted from the PRPs in the first 15 

trials after a switch in FI duration. 
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Fig15 – Distribution of the population average learning curves. A – Distribution of 

the Z-scores extracted from the post reinforcement pauses (PRPs) in the first 15 trials 

after a switch from a long FI to a short FI in all the sessions. B – Distribution of the Z-

scores extracted from the PRPs in the first 15 trials after a switch from a short FI to a 

long FI in all the sessions. C – Combined distribution of Z-scores extracted from the 

PRPs in the first 15 trials after a switch in FI duration. 

The thin solid blue line represents the standard error of the mean (SEM) in all panels. 
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block (Fig15A) and block switches that were preceded by longer blocks (Fig15B). As we can 

see in these figures, mice performed very well in both scenarios. 

 

Preliminary results on ChR2 expression 

We looked at the expression of ChR2-YFP in the dorsal striatum of two mouse lines: D2-

Cre and PV-Cre. The inverted ChR2-YFP coding region of the AAV was flanked by two loxP 

sites (one regular and one mutated, lox2722) on each side of the coding region, 4 in total 

(Fig17). Because the loxP sites upstream the coding region were on the opposite orientation of 

the ones downstream, double recombination between these sites leads to an inversion of the 

cassette. Selectivity in the expression of ChR2-YFP is achieved because the recombination only 

occurs in the presence of Cre. 

 

In Fig18A and Fig19A, fluorescence images of a D2-Cre mouse brain slice expressing 

YFP are shown in comparison to a schematic of a coronal section of the mouse brain, at the 

respective approximate anterior-posterior coordinates. These illustrate the areas of ChR2-YFP 

expression. The injection of the virus shown in Fig18B targeted the dorsolateral striatum. In 

figure Fig19B we see that, there is ChR2-YFP expression in GPe. Since the expression of D2-

Cre in the transgenic mouse line we used is limited to a subset of adult D2 expressing neurons 

(primarily striatopallidal neurons), and no other area has shown ChR2-YFP expression, we can 

   

Fig17 – Scheme of the recombination sequence for inversion of 

ChR2-YFP coding region. loxP sites don’t recombine with lox2772 sites, 

only with its equivalent pair. Since these are oppositely orientated, the 

inversion process occurs in two steps. First, the inversion occurs, 

independently of which pair of lox sites suffers recombination (A). This first 

step is followed by the excision of one lox site from each pair (B). 
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Fig18 - Selective viral-mediated ChR2 expression 

in striatal D2MSNs. A – A fluorescent image from a 

coronal section of a D2-Cre mouse brain (left) 

compared to a coronal mouse brain schematic 

(right). Anterior-posterior coordinates are ~+0.5mm. 

CPu – Caudate-putamen (striatum). B - Coronal 

section showing striatal D2MSNs expressing ChR2–

YFP following injection of Cre-dependent AAV into 

D2-Cre BAC transgenic mice. Scale bar – 2mm. C – 

Confocal image of ChR2–YFP-expressing neurons in 

the striatum. Arrows indicate points of accumulation 

of ChR2-YFP. D – Confocal image of To-Pro-3 

staining in the same region as in panel C. E – Panels 

C and D merged. Example of To-Pro-3 stained 

nucleus and ChR2–YFP expression in the same 

neuron (arrow). The white box indicates the region 

shown in panel F. F – Example of a spiny dendrite 

from a D2MSN expressing ChR2-YFP. Scale bars in 

C, D, E represent 15µm, in panel F it represents 

5µm. 
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Fig19 - Selective viral-mediated ChR2 

expression in striatal D2MSNs projections 

to the GPe. A – A fluorescent image from a 

coronal section of a D2-Cre mouse brain (left) 

compared to a coronal mouse brain schematic 

(right). Anterior-posterior coordinates are ~-

0.46mm. CPu – Caudate-putamen (striatum); 

GPe – globus pallidus external.  B - Coronal 

section showing striatal D2MSNs projections 

expressing ChR2–YFP in the GPe, following 

injection of Cre-dependent AAV into D2-Cre 

BAC transgenic mice (same animal as in 

Fig15). Scale bar – 2mm. C – Confocal image 

of a region with processes expressing ChR2–

YFP in the GPe. D – Confocal image of To-

Pro-3 staining in the same region as in panel 

C. E – Panels C and D merged. Example of 

To-Pro-3 stained nuclei and ChR2–YFP 

expression in processes that do not belong to 

the same neuron. Scale bars in C, D and E 

represent 15µm. 
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deduce that the processes expressing ChR2-YFP that we see in the GPe are in fact projections 

from the striatal D2MSNs. Using confocal microscopy, we can identify neurons expressing 

ChR2-YFP (Fig18C). We also stained these slices with a deoxyribonucleic acid (DNA) binding 

fluorescent marker, TO-PRO-3 (Fig18D, Fig19D) in order to visualize cell nuclei. Combining 

both panels C and D in Fig18E, we 

see that there is co-localization of cells 

expressing ChR2-YFP at their 

membrane and nuclei stained with TO-

PRO-3, that take over most of the cell 

body, a feature present in MSNs. Also, 

the labeled cells have spiny dendrites 

(Fig18F), another characteristic 

feature of MSNs. In (Fig19C), we see 

the MSNs projections to the GPe area, 

where no cell bodies express ChR2-

YFP. Also, Fig19D shows stained 

nuclei that don’t have the same 

morphology as the ones in Fig18D. 

Analyzing both panels together 

(Fig19E), we find that the processes 

expressing ChR2-YFP don’t seem to 

belong to the stained nuclei, 

suggesting that there are no cells 

expressing ChR2-YFP in the GPe. We 

also observed accumulations of ChR2-

YFP that are present across all slices 

that show ChR2-YFP expression, 

forming small spherical inclusions 

(Fig18C and Fig19C).  

Additionally, we targeted PV+ 

interneurons by injecting the AAV in a 

PV-Cre mouse line. In Fig20A we have a fluorescence image of a brain slice from the PV-Cre 

line compared to a schematic of a mouse brain, illustrating the areas of ChR2-YFP expression. 

In Fig20B we have the complete fluorescent image: we can scarcely see any fluorescence in 

Fig20 - Selective viral-mediated ChR2 expression in 

striatal PV+ interneurons. A - A fluorescent image from a 

coronal section of a PV-Cre mouse brain (left) compared to a 

coronal mouse brain schematic (right). Anterior-posterior 

coordinates ~0.38mm. CPu – Caudate-putamen.   B - Coronal 

section showing striatal PV+ interneurons expressing ChR2–

YFP, following injection of Cre-dependent AAV into PV-Cre 

BAC transgenic mice. Scale bar – 2mm. Arrow on the left 

indicates ChR2-YFP expression in the striatum, arrow on the 

right indicates expression of ChR2-YFP in the cortex. C - 

Example of ChR2–YFP-expressing neuron in the striatum. D – 

Example of a cell body expressing the interneuronal marker 

PV, in the same region as in panel C. E – Panels C and D 

merged. Example of a neuron expressing ChR2–YFP and also 

the interneuronal marker PV. Scale bars in C, D and E 

represent 30µm. 
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the striatum and cortical neurons are labeled (arrows). When we look in a higher magnification 

to the striatal area, we can identify neurons expressing ChR2-YFP (Fig20C). The labeled 

neurons possess the anatomical features of a PV+ interneuron. We immunostained the slices 

for PV and analyzed areas where there was expression of ChR2-YFP and in parallel the 

immunostaining result for the same area (Fig20D). Merging the two panels, we see co-

localization of ChR2-YFP cells and PV+ cells (Fig20E).  

Our results from the group of mice trained in the SFI task show that these animals 

display time sensitive behavior. In parallel, we achieved ChR2-YFP expression in two types of 

striatal cells (D2MSNs and PV interneurons). We confirmed this neuron type selectivity by 

analyzing the cells projection sites and by using histochemical techniques.  
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Discussion 
 

We trained mice in the SFI, a task developed in our lab that combines the required 

features for a behavioral paradigm to the electrophysiological research of timing. Although at 

first this task appears to be somewhat difficult, mice display a very reliable time sensitive 

behavior, since its PRPs significantly co-varied with the FI inside each block. This stable and 

reliable response pattern was accompanied by fast learning curves for short to long and long to 

short interval changes in the population, but not on a single session analysis. Also, animals do 

not appear to possess a directional facilitation for learning a new FI when trained in the SFI 

task. 

We successfully expressed ChR2 in two transgenic mouse lines, D2-Cre and PV-Cre. 

Tagged neuronal population in each line display characteristic morphological features of 

D2MSNs and PV+ interneurons, respectively. Additionally, we immunostained slices with an 

antibody against PV in the PV-Cre line, and used the DNA binding marker TO-PRO-3 to identify 

nuclei within D2-Cre mice infected with the DIO AAV. PV immunostaining confirmed the identity 

of the tagged neurons, and TO-PRO-3 staining suggests that infected cells are MSNs, and 

based on their projection pattern (to the GPe area), they are most likely D2MSNs. ChR2-YFP 

expression was followed by the occurrence of inclusions of the fusion protein, which were more 

noticeable in the D2-Cre mice.  

Regarding the behavioral results, in a single session analysis, mice did not achieve 

learning curves nearly as good as in the population set. The SFI task is more dynamic, in terms 

of the range of time intervals that the animal has to time during one single session, than other 

classical timing tasks. The SFI stands on a simple paradigm where every trial can provide 

valuable information, unlike other tasks where only a fraction of the total number of trials is used 

for statistical analysis. The use of several FIs in one single session with big time ranges (from 

12s to 60s) allows the search for correlations between the animal’s behavior in specific time 

intervals and their electrophysiological activity during those intervals. Among rodents, rats have 

been the main animal model used for timing research. To train transgenic mice in such a task 

may lead to deeper understanding of the response profile of each cell type during timing 

behavior.  

The SFI task was developed and implemented for the first time in our lab, using rats as a 

model (personal communication). The results here shown suggest a very similar pattern of 

behaviors between both species of rodents, making it more plausible to try and create 
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hypothesis for our future studies with mice, taking the electrophysiological data from the rats as 

a basis.  

Regarding the preliminary results on the expression of ChR2-YFP, an intriguing 

observation was that expression of ChR2-YFP in the cell membrane was accompanied by the 

presence of inclusions of ChR2-YFP. These could be a result of high viral expression, maybe 

caused because of a too high viral titer, leading to accumulations of fusion protein within cells. If 

so, the physiological properties of the cell could be altered or it could even be causing cell 

death. We stained slices from infected D2-Cre mice with the DNA binding marker TO-PRO-3 to 

identify nuclei and try to detect some abnormality but stained nuclei looked normal. To exclude 

the hypothesis that these inclusions may be causing cell death, an apoptotic marker should be 

used in these slices in the future. 

Although previous work suggests that ChR2–YFP expression alone does not alter the 

electrophysiological properties of MSNs, these used either different titers of this DIO viral 

construct or different viral constructs72,95,98,99. Therefore, further testings in vitro are required in 

order to understand the impact of ChR2-YFP alone, as well as the impact of the inclusions in 

the electrophysiological properties of the cell types in question. One way to try and overcome 

the high levels of expression would be to reduce the viral titter. Interestingly, a recent study 

shows images of ChR2-YFP MSNs and inclusions seem to be present there as well (though 

they are not mentioned). This same study claims that electrophysiological properties of MSNs 

were not altered by ChR2-YFP expression alone72.  

In the PV-Cre line, in a low magnification, we could not detect the same levels of 

fluorescence as in the D2-Cre animals. This is probably due to the fact that this type of neurons 

represent only about 0.7% of all the striatal neurons100. Another interesting observation was 

that, in the case of PV-Cre animals, because this transgenic line also expresses Cre in cortical 

interneurons, a population of cortical cells also expresses ChR2-YFP. Although the viral 

microinjection was performed in the striatum, the labeled cells in the cortex seem to reveal the 

“path” of the micropipette meaning that, most likely, viral particles traveled with the micropipette 

when the last was being removed from the animal’s brain. Although we waited for more than 10 

min post injection before removing the micropipette slowly, this step probably needs to be 

performed even more slowly. Moreover, another approach to try and avoid the problems related 

to the virus would be to perform multiple injections of about 100nL each. With these problems 

overcome, we believe that during image acquisition, it would be easier to acquire confocal 

images that more distinctly show dendrites from MSNs.  



50 

 

Future experiments, including slice physiology studies, will test what has been shown in 

other studies, that ChR2 expression allows for reliable, millisecond timescale control of neuronal 

spiking, as well as control of excitatory and inhibitory synaptic transmission72,95,97,98,99. Further 

work is required to fully understand the extent of ChR2-YFP expression in cells other than 

D2MSNs and PV+ interneurons (false positives) and the existence of false negatives, although 

this would be potentially less problematic. Specifically, stereological cell counting should be 

performed to evaluate at which extent PV+ interneurons are co-localized with ChR2-YFP 

expression, and staining against several types of interneurons should be done in D2-Cre slices, 

because some interneuron classes also express D2 receptors. Also, Cre mediated 

recombination could generate false positives but this should be of less great extent, since we 

used a double recombination scheme that is more reliable that using virus with a classic lox-

stop-lox cassette. 

Additional experiments need to be performed in order to express ChR2-YFP in other cell 

types, specifically D1MSNs and cholinergic interneurons. Although there are at least two more 

subtypes of interneurons, they either are much poorly characterized (calretinin-positive 

interneurons), or they present themselves very difficult to target (somatostatin-, neuropeptide Y-, 

and nitric oxide synthase-positive interneurons). As for the D1MSNs and cholinergic 

interneurons, there are already transgenic mouse lines expressing Cre in each neuronal type, 

allowing for the same approach to be applied. 

 We now have been able to train mice in a very reliable and highly dynamic timing 

paradigm. In parallel, we have a way to target two specific neuronal types within striatum. Now, 

animals can be trained in the SFI and then submitted to viral microinjection as well as cannula 

and electrode implantation. We will then record from specific neuronal types in each transgenic 

line and compare their behavioral responses with the electrophysiological activity of the neurons 

being recorded. This approach promises to add crucial information about how different cell 

types process timed information. Ultimately, this information will be essential for building 

accurate circuit models that faithfully replicate the computations normally carried out by brain 

circuits in behaving animals. In addition to a contribution in the development of new circuit 

models, the information concerning which signals are carried by which cell types during timing 

behavior can also be helpful to characterize brain circuits implicated in motor and cognitive 

dysfunctions in diseases such as PD and HD.   
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