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Tunable directional scattering is of paramount importance for operation of antennas, routing of light,
and design of topologically protected optical states. For visible light scattered on a nanoparticle, the
directionality could be provided by the Kerker effect, exploiting the interference of electric and magnetic
dipole emission patterns. However, magnetic optical resonances in small sub-100-nm particles are
relativistically weak. Here, we predict inelastic scattering with the unexpectedly strong tunable directivity
up to 5.25 driven by a trembling of a small particle without any magnetic resonance. The proposed
optomechanical Kerker effect originates from the vibration-induced multipole conversion. We also put
forward an optomechanical spin-Hall effect, the inelastic polarization-dependent directional scattering.
Our results uncover an intrinsically multipolar nature of the interaction between light and mechanical
motion and apply to a variety of systems from cold atoms to two-dimensional materials to superconducting
qubits. An application for engineering of chiral optomechanical coupling and nonreciprocal transmission
at nanoscale is proposed.
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I. INTRODUCTION

Scattering of light manifests itself in everyday life,
fundamental science, and device applications [1]. Elastic
Rayleigh scattering governs the blue color of the sky and
sea. Inelastic Raman scattering is a workhorse of sensors.
The ability to control the direction, frequency, and polari-
zation of the scattered light is essential for optical devices.
However, both Rayleigh and Raman scattering usually have
a symmetric emission pattern: the waves are symmetrically
scattered in two opposite directions, in particular, forward
and backward [2,3]. The asymmetry can be induced if the
particle that scatters light moves. Then, the Doppler effect
leads to a difference between the incident and scattered
light frequencies [4], which depends on the scattering angle
in a highly asymmetric way. As first noted by Raman
himself [5], it vanishes for the forward-scattered wave and
reaches maximum for the backscattered one. The scattering
cross section depends on the angle between the incident
light propagation direction and particle velocity, enabling
cooling of atomic gases in optical molasses [6]. Still, the
asymmetry of the emission intensity pattern remains small

unless the particle velocity becomes comparable to that
of light, which is realized, e.g., for Compton scattering
of x rays [7].
A simpler mechanism to achieve strong scattering direc-

tionality was proposed by Kerker et al. [8]. Rather than using
mechanical motion, it requires a scatterer to possess both
electric dipole (ED) and magnetic dipole (MD) susceptibil-
ities. Since the electric field of these two modes is of the
opposite spatial parity, their interference enables directional
forward or backward scattering depending on the relative
phase [9–11]. Thus, implementation of the Kerker effect
requires magnetic response of the same strength as the
electric one. At optical frequencies this becomes challenging
since magnetic dipole transitions are intrinsically relativis-
tically weak [12]. A promising recently emerged work-
around is provided by submicron-size high-refractive-index
dielectric nanoparticles [13–15] hosting both magnetic and
electric Mie resonances. For instance, Huygens metasurfaces
of Si nanodisks that transmit light forward changing its
phase without reflection open new avenues for wave front
control at the nanoscale [16,17]. However, optical Kerker
effect for the particles smaller than the wavelength in the
medium ∼100 nm is still unfeasible.
Here, we uncover a deep nexus of the motion-induced

scattering directionality and the Kerker effect. We put
forward an optomechanical Kerker effect, where strong
tunable directionality is achieved for light scattered by a
small particle without any magnetic response that trembles in
space. Our main concept is sketched in Fig. 1. The incident
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wave excites electric dipole polarization, that oscillates in
time. Trembling of the electric dipole in the direction
transverse to its polarization induces the loop electric
current j with nonzero magnetic momentum m as well as
the electric quadrupole (EQ) momentum. Interference of
ED and MDþ EQ contributions results in unidirectional
scattering as shown in Figs. 1(b) and 1(c). While the idea
to use motion-induced conversion of electric dipole to
magnetic dipole seems straightforward, a naive expectation
would be that the magnetic dipole is relativistically weaker
than the electric one and their interference cannot result
in any significant directionality. We found that magnetic
and electric dipole components counterintuitively are of the
same order when inelastic light scattering is considered. To
demonstrate this, we have developed a novel theoretical
framework of multipolar resonant optomechanics. It incor-
porates the effect of the resonant dispersion of the moving
medium on the multipolar emission in a rigorous non-
perturbative fashion and goes beyond previous approaches
[18–20] restricted to nonresonant scatterers. Our predictions
are quite general and apply both for particles and for thin
layers, as shown in Figs. 1(b) and 1(c). We also put forward
an optomechanical spin-Hall effect, i.e., directional inelastic
scattering of light depending on its circular polarization.
An application of the uncovered effects for design of chiral
optomechanical coupling at nanoscale and nonreciprocal
transmission is proposed.

II. DIRECTIONAL INELASTIC SCATTERING

A. Nonresonant inelastic backscattering

We start with the qualitative geometrical consideration to
reveal a drastic difference in the angular patterns of elastic
and inelastic scattering. Figure 2(a) sketches the plane wave
with the frequency ω that is scattered on a small particle
trembling at the frequency Ω along the incident light
propagation direction. The incident light induces dipole
polarization of the particle that then emits light in a
different direction. The shift of the particle in the real
space uzðtÞ gives rise to an additional time-dependent phase

of the scattered light ϕðθ; tÞ ¼ ð1 − cos θÞðω=cÞuzðtÞ,
where the two terms are illustrated by cyan and magenta
arrows in Fig. 2(a) and θ is the scattering angle. The electric
field of the scattered wave reads E0ðθÞ ¼ EdðθÞeiϕðθ;tÞ, with
EdðθÞ being the electric field of the light scattered by the
particle at rest. Taking the particle displacement in the form
uzðtÞ ¼ uze−iΩt þ c:c: and expanding the scattered field
into series over uz, one obtains harmonics at the frequencies
ωþ pΩ with integer p. We suppose that the vibration
amplitude is small. Then, the electric field of the harmonic
at the initial light frequency ω, that describes the elastic
light scattering, coincides with EdðθÞ. Its angular depend-
ence is governed by the well-known electric dipole radi-
ation pattern that yields equal amplitudes of forward and
backward scattering [21]. The linear-in-uz terms yield the
harmonics at anti-Stokes- and Stokes-shifted frequencies
ω� Ω that describe inelastic scattering. Their intensities
read

I0ðθÞ ≈ ðω=cÞ2juzj2ð1 − cos θÞ2IdðθÞ; ð1Þ

where IdðθÞ ∝ jEdðθÞj2 is the intensity of elastic dipole
scattering. In stark contrast to elastic scattering, the inelastic
scattering is strongly anisotropic. In forward scattering
geometry, the particle shift does not change the optical
path. Thus, Stokes and anti-Stokes light intensities vanish
for θ ¼ 0. The inelastic scattering is the most intensive in
the backscattering geometry, θ ¼ π, when the optical path
change is maximal.

B. Multipolar resonant inelastic scattering

The above geometric consideration predicting the
inelastic scattering asymmetry has a crucial limitation:

(b)

(c)

(a)

FIG. 2. (a) A sketch of light scattering on a trembling particle.
The incident and elastically scattered light are shown by yellow
color, inelastically scattered light is shown by blue color. Inelastic
scattering is caused by the temporal modulation of the optical
path (cyan and magenta arrows) due to particle displacement. (b),
(c) Diagrammatic representation for the inelastic light scattering
on a trembling particle. Wavy lines denote photons, bubbles
correspond to the dressed polarization operator of the particle at
rest, dashed lines represent mechanical displacement, solid dot
stands for the optomechanical interaction given by Eq. (A5).

(a) (b) (c)

FIG. 1. (a) A sketch of the motion-induced multipole con-
version. Trembling of an oscillating dipole in the space u leads to
appearance of an electric quadrupole and a current curl. The latter
yields a magnetic dipolem. (b) A sketch directional inelastic light
scattering on a trembling particle. (c) A sketch of the trembling
resonant layer, an optomechanical analogue of Huygens surface.
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It is applicable only to the particle with the frequency-
independent polarizability. Indeed, in the case of resonant
optical response, the elastic scattering intensity Id strongly
depends on the light frequency. Yet, it is completely unclear
which frequency to choose in Eq. (1): that of the incident
light ω or that of the scattered light ω0 ¼ ω�Ω.
To resolve this fundamental problem, we develop a

rigorous theory of light interaction with a polarization of
a trembling medium. We stress that the inelastic scattering
considered here is caused by the motion-induced modula-
tion of the interaction between light and scatterer, in con-
trast to conventional resonant Raman scattering that is due
to modulation of the eigenenergies of the scatterer itself.
We derive the general expression for inelastic scattering
intensity in Appendix B while here we focus on the case
of a small trembling object described by the frequency-
dependent electric dipole polarizability tensor αðωÞ. In that
case, the amplitude of inelastic scattering comprises two
terms that are diagrammatically represented in Figs. 2(b)
and 2(c). They show the vibration quantum (dashed line)
being absorbed or emitted either before or after the medium
polarization (bubble) is induced. This reflects the change
of the optical path before and after the scattering on the
particle; see cyan and magenta arrows in Fig. 2(a), res-
pectively. Concomitantly, the two terms in the inelastic
scattering amplitude feature polarization operators P at the
frequency of scattered lightω0 and at that of the incident light
ω. It is the interference of these two contributions, which can
be both constructive and destructive for objects with resonant
permittivity, that leads to the strong directivity of the
scattered light.
For the electric field at the anti-Stokes-shifted frequency

ω0 ¼ ωþ Ω at r → ∞, we get

E0ðrÞ ¼ iω02eiω0r=c

c3r
½ω0ðn0 · uÞαðω0ÞE0 − ωðn · uÞαðωÞE0

−Ωðu · E0Þαðω0Þn0 − Ωðn · αðωÞE0Þu�⊥; ð2Þ

where n ¼ r=r, n0 and E0 are the propagation direction
and electric field of the incident wave, subscript⊥ indicates
that the perpendicular component with respect to n should
be taken, ½E�⊥ ¼ −n × ðn × EÞ. The field Eq. (2) can be
decomposed into electric dipole p, quadrupole Q, and
magnetic dipole m contributions oscillating at the fre-
quency ω0 with the amplitudes

d ¼ i
c
αðω0Þ½ωðn0 · uÞE0 −Ωu × ðn0 × E0Þ�;

Q ¼ 3αðωÞE0 ⊗ uþ 3u ⊗ αðωÞE0 − 2I(u · αðωÞE0);

m ¼ i
2c

ðω −ΩÞ½αðωÞE0 × u�; ð3Þ

where ða ⊗ bÞαβ ¼ aαbβ and I is the identity matrix. All
the multipole terms are of the same order; however, the

induced electric dipole is proportional to the polarizability
at the scattered light frequency αðω0Þ while electric quadru-
pole and magnetic dipole are determined by αðωÞ.
Therefore, the frequency dependence of polarizability
can be exploited to tune d, m, and Q to the Kerker
condition.

C. Optomechanical Kerker effect

Now we analyze in detail the direction pattern Eq. (2) for
light scattered on a trembling particle with the isotropic
resonant electric dipole polarizability αðωÞ. We focus on
the anti-Stokes component at the frequency ω0 ¼ ωþ Ω.
Similar results for the Stokes component are obtained by
inverting the sign of Ω and complex conjugation of the
particle displacement vector u. First, we neglect the last two
terms in the right-hand side of Eq. (2) proportional to the
parameter Ω=ω, that is small for realistic systems. Figure 3
shows the radiation pattern of the light scattered on the
particle trembling along the propagation direction of
the linearly polarized incident wave. Figure 3(a) shows
the usual elastic electric dipole scattering at the frequency
ω, while Figs. 3(c) and 3(d) correspond to the inelastic
scattering to the frequency ω0. Figure 3(c) shows the
contribution of the first electric dipole term in Eq. (2) to
the scattered field, while Fig. 3(d) corresponds to the
second term in Eq. (2) and a combination of magnetic
dipole and electric quadrupole radiation. The total scatter-
ing intensity is a superposition of the patterns Figs. 3(c)
and 3(d) with the coefficients αðω0Þ and αðωÞ, respectively.
While the frequenciesω andω0 are close, the corresponding
polarizabilities can differ strongly in the vicinity of the
material resonance. Figures 3(b) and 3(e) show the two
limiting cases when αðω0Þ ¼ �αðωÞ. In the nonresonant
case, αðω0Þ ¼ αðωÞ, the interference of electric dipole,

ED MD&EQMD&EQ+ED MD&EQ–ED

Elastic
scattering

Inelastic scattering
Off-resonant Resonant

MD&EQ+E EDED D&EQ–EDMD&EQQ MDMED

(a) (b) (c) (d) (e)

FIG. 3. Radiation pattern for (a) elastic light scattering and
(b)–(e) inelastic scattering by a trembling particle for different
ratios of the polarizabilities at initial and scattered frequencies
αðωÞ and αðω0Þ. The interference of the electric dipole (c) and
magnetic dipole and electric quadrupole (d) patterns results in
directional inelastic forward (e) and backward (b) scattering.
The light is incident from the bottom (yellow arrow) and is
linearly polarized (green arrow), the particle trembles along the
light propagation direction (black arrow). Red and blue colors
indicate the sign of electric field.
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magnetic dipole, and electric quadrupole radiation leads to
the complete suppression of forward inelastic scattering,
Fig. 3(c). In the opposite case of strong frequency depend-
ence of polarizability when αðω0Þ ¼ −αðωÞ, Fig. 3(d), the
inelastic backscattering vanishes.
Using Eq. (2) we evaluate the cross section of the

inelastic scattering for unpolarized light,

dσ
do

¼ ω6

2c6
j½αðω0Þn0 − αðωÞn� · uj2½1þ ðn0 · nÞ2�; ð4Þ

where do is the solid angle for scattered light direction.
In the nonresonant case when αðω0Þ ¼ αðωÞ and n0ku,
we recover the geometric optics result Eq. (1) with dσ ∝
ð1 − cos θÞ2 and suppressed forward scattering.
The asymmetry of the light scattering pattern can be

quantified by the directivity DðnÞ¼4πðR dσÞ−1dσ=do [22].
In the considered geometry, ukn0, the directivity for forward
(n ¼ n0) and backward (n ¼ −n0) scattering reads

Dð�n0Þ ¼
15jαðω0Þ ∓ αðωÞj2

10jαðω0Þj2 þ 4jαðωÞj2 : ð5Þ

For the nonresonant case, when αðω0Þ ¼ αðωÞ, the forward
scattering is absent while the backward directivity reaches
30=7. The maximal value of forward (backward) directivity
is 5.25, which is achieved when αðω0Þ ¼ �ð2=5ÞαðωÞ.
Thus, the directivity of the optomechanical Kerker effect
surpasses the limiting value of 3 for the classical Kerker
effect, because the electric quadrupole contribution is addi-
tionally involved [11]. Even larger values of directivity
[23,24] can be achieved in second- and higher-order inelastic
scattering processes, where the scattered light contains
higher electric and magnetic multipoles.
For numerical demonstration, we consider the simplistic

general model of the particle characterized by the resonant
polarizability

αðωÞ ¼ A
ω − ωx þ iΓ

; ð6Þ

where A is a constant, ωx is the resonance frequency, and
Γ is the resonance width. Such dependence corresponds to,
e.g., exciton resonance in quantum dots and transitional
metal dichalcogenide monolayers, electron transitions in
cold atomic gases, plasmon resonance in graphene,
resonances in atomic nuclei probed by Mössbauer γ-ray
spectroscopy, and superconducting resonators for radio-
frequency electromagnetic field; see Sec. VI. Figures 4(a)
and 4(b) show the color plots of the directivity of backward
and forward anti-Stokes (Ω > 0) and Stokes (Ω < 0) light
scattering depending on the incident light frequency ω
and the trembling frequency Ω. In the dark areas bounded
by the solid lines, the directivity is larger than 3, which
can be termed a super-Kerker effect. For backward and
forward scattering it is realized when initial and scattered
light frequencies ω and ω0 ¼ ωþ Ω are located on the
same side or on the opposite sides of the resonance,
respectively. Shown in Fig. 4(c) is the degree of directivity
½Dðn0Þ −Dð−n0Þ�=½Dðn0Þ þDð−n0Þ�. Red and blue colors
indicate predominance of the backward and forward scatter-
ing, respectively. The degree of directivity reaches �1 if
αðω0Þ ¼∓ αðωÞ, which is realized at Ω ¼ 2ðωx − ωÞ ≫ Γ
and Ω → 0, respectively.

III. OPTOMECHANICAL SPIN HALL EFFECT

The interference of the electric and magnetic modes is
known to give rise to a strong circular polarization of the
scattered light upon excitation with a linearly polarized
light [25,26]. Conversely, photons with opposite circular
polarizations scatter in different directions. This is termed
an optical spin-Hall effect [27,28] in analogy with the spin-
dependent scattering of electrons in solids [29]. Here,
we put forward an optomechanical spin-Hall effect, i.e.,
inelastic polarization-dependent directional scattering on a
trembling particle.
The two first terms in Eq. (2) are dominant and yield the

scattered light with the same polarization as the incident.
Optomechanical spin-Hall effect results from the last two
terms, which give a small correction of the order Ω=ω
describing linear-to-circular polarization conversion. The
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FIG. 4. (a) Backward and (b) forward directivity of nonpolarized light inelastically scattered by a trembling resonant particle
depending on the incident light frequency ω and trembling frequency Ω. Solid line shows the directivity equal to 3 that limits usual
Kerker effect. (c) Degree of directivity ½Dðn0Þ −Dð−n0Þ�=½Dðn0Þ þDð−n0Þ�.
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circular polarization degree of the plane wave with the
electric field amplitude E can be defined as PcðnÞ ¼
in · ½E × E��=jEj2. Substituting here the scattered wave
from Eq. (2) we obtain for the case of nonpolarized
incident light

Pc ¼
Ω
ω

2n × n0
1þ ðn0 · nÞ2

Im
½αðω0Þ þ ðn0 · nÞαðωÞ�u
½αðω0Þn0 − αðωÞn� · u ; ð7Þ

where we keep linear in Ω=ω terms only. Equation (7)
indicates two possible origins of circular polarization:
(i) the phase difference of the polarizabilities αðωÞ and
αðω0Þ and (ii) the phase difference of the components of the
displacement vector u. The first mechanism is likely to
contribute in the vicinity of the material resonance where
the phase of α rapidly changes by π. The second mechanism
is realized even away from the resonances; however, it
requires the particle trembling around a circle or an ellipse
rather than just along one axis.
Figure 5 shows by red and blue color the circular

polarization degree of the anti-Stokes-scattered light for
different particle trembling directions, indicated on the
left, and different relations between polarizabilities at the
frequencies of incident and scattered light, indicated on
the top. The plots on the gray background show the cases
where both mechanisms (i) and (ii) are absent, so the
circular polarization does not emerge. The first mecha-
nism is realized for the plots on the blue background,
where we as an example assume αðω0Þ ¼ iαðωÞ. For ukn0,
see Fig. 5(d), the dependence of Pc on the azimuthal angle
is described by the second angular harmonic, so Pc is
inverted when the incident light with the perpendicular
polarization is considered. For unpolarized excitation,
the circular polarization vanishes in agreement with
Eq. (7). Figure 5(h) shows the angular pattern of Pc for
light scattered by the particle trembling perpendicularly to
the direction of incident light and E0ku. For the other
linear polarization of the incident light (not shown), the
conversion to circular polarization is absent. Therefore,
even for the nonpolarized incident light the circular
polarization of scattered light persists and it is described
by Eq. (7).
Now we turn to the second mechanism of the generation

of circular polarization, that is realized for the plots on the
yellow background. Figures 5(i)–5(k) illustrate the circular
polarization of the light scattered by the particle trembling
around a circular trajectory in the plane perpendicular to the
incident light direction. Then, the forward- and backward-
scattered light reveal opposite signs of circular polarization,
except for the case of Fig. 5(i) when the scattered wave
is of the order of the small parameter Ω=ω and linearly
polarized; see Eq. (2). Figures 5(m)–5(o) and 5(q)–5(s)
show the pattern of the circular polarization degree of
the light scattered by the particle trembling around a
circular trajectory in the plane parallel to the incident light

propagation direction. The circular polarization sign
depends on whether the light is scattered to the left or to
the right with respect to the plane of trembling. Finally,
if both optomechanical spin-Hall effect mechanisms are
present, see plots on the purple background, their interplay
leads to a strong asymmetry of both the scattering intensity
pattern and the circular polarization pattern.

IV. OPTOMECHANICAL HUYGENS SURFACES

A two-dimensional planar array of scatterers tuned to the
Kerker condition is known to demonstrate no forward or
backward scattering [16,17,30]. When the backscattering
is suppressed it realizes a Huygens’ surface that transmits

(a) (b) (c) (d)

Circular polarization degree [        ]

) ( ) ( ) ( )

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

FIG. 5. The anti-Stokes light scattering pattern with the
degree of circular polarization marked by red and blue colors.
Light is incident from the bottom and linearly polarized, see
yellow and green arrows on the left, respectively. Rows
correspond to different trembling directions indicated by black
arrows on the left. Columns correspond to different relations
between particle polarizabilities at the frequencies of incident
and scattered light, αðωÞ and αðω0Þ, indicated in the top. The
colored areas represent different origins of the optomechanical
spin-Hall effect: phase difference between the polarizabilities
αðωÞ and αðω0Þ (blue color), the phase difference between
components of the displacement vector u (yellow color), or
their combined action (purple color).
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light without reflection and modifies only its phase. An
optomechanical analog of the Huygens’ surface is a thin
layer with a resonant dipole polarizability that trembles
along its normal; see Fig. 6(a).
Since the flexural layer vibrations can possess an in-

plane wave vector q, the direction of scattered light can
differ from that of the incident light. It is determined from
the conservation of the in-plane wave vector component in
the process of anti-Stokes (Stokes) scattering, k0 ¼ k� q,
where k ¼ ðω=cÞ cos θ and k0 ¼ ðω0=cÞ cos θ0 are the in-
plane wave vectors of the incident and scattered light, and
θ and θ0 are the angles between the light propagation
direction and the layer normal. The electric field amplitudes
of the anti-Stokes forward- (→) and backward- (↩)
scattered light are given by the diagrams of Figs. 2(b)

and 2(c) and read E0→ð↩Þ
σ ¼ P

σ0 S
→ð↩Þ
σσ0 E0;σ0uq;z, where

σ; σ0 enumerates two polarizations, s and p. The Jones

matrix S→ð↩Þ
σσ0 with the elements (see Appendix C for

calculation details)

S→ð↩Þ
ss ¼ i

ω0

c
cos θ cosϕ½rsðθ0;ω0Þ ∓ rsðθ;ωÞ�;

S→ð↩Þ
ps ¼ i

ω0

c
cos θ sinϕ
cos θ0

½rpðθ0;ω0Þ ∓ rsðθ;ωÞ�;

S→ð↩Þ
sp ¼ −i

ω0

c
sinϕ½rsðθ0;ω0Þ ∓ rpðθ;ωÞ�;

S→ð↩Þ
pp ¼ i

ω0

c
cosϕ − sin θ sin θ0

cos θ0
½rpðθ0;ω0Þ ∓ rpðθ;ωÞ�

ð8Þ

describes polarization conversion, where rsðθ;ωÞ and
rpðθ;ωÞ are the reflection coefficients for oblique inci-
dence of s- and p-polarized light on the layer at rest, and ϕ
is the angle between the in-plane wave vectors k and k0.
Similarly to the optomechanical Kerker effect for the
trembling particle, the forward (backward) scattering on a

trembling layer vanishes when rsðpÞðθ0;ω0Þ¼�rsðpÞðθ;ωÞ.
The power of the anti-Stokes light scattered forward
(backward) into the solid angle do by the unit area of
the layer for the case of unpolarized excitation with the
intensity I0 reads

dI0

do
¼ ω02

c2
cos2θ0

cos θ
1

2

X
σσ0

jS→ð↩Þ
σσ0 j2juqj2I0: ð9Þ

Figures 6(b) and 6(c) show the forward- and backward-
scattered power for the case of normal incidence, θ ¼ 0,
and constant juqj2. Both plots feature two resonances
indicated by dashed lines: the resonance for incident light
at ω ¼ ωx and the resonance for scattered light at
ωþ Ω ¼ ωx. Since the vibration frequency Ω increases
with the vibration wave vector q ¼ ðω0=cÞ sin θ0, the two
resonances split with an increase of the scattering angle θ0.
The main result of Figs. 6(b) and 6(c) is that the forward
scattering involving vibration with q ¼ 0, i.e., for θ0 ¼ 0,
is suppressed while the backward scattering at θ0 ¼ 0 is
increased. The absence of the forward-scattered wave in
the limit Ω, q → 0 has a clear physical interpretation: in
the quasistatic picture, the shift of the layer as a whole
affects the reflected plane wave but does not affect the
transmitted one.

V. RESONANT CHIRAL OPTOMECHANICS

We now discuss how the tunable directional scattering
demonstrated above can be used for the design of chiral
optomechanical interaction at the nanoscale. Chiral quan-
tum optics has recently emerged as a concept to couple the
wave vector of propagating light to the spin of quantum
emitters [32,33], enabling nonreciprocal transmission of
light and one-way superradiance. The chiral optomechan-
ical coupling, i.e., when the light propagating in opposite
directions interacts with mechanical modes differently,
can be induced by an optical pump with a propagating

(a) (b) (c)

un
its

un
its

FIG. 6. (a) A sketch of light scattering on a resonant layer with flexural vibrations. Color maps of (b) backward- and (c) forward-
scattered power for the case of normal incidence as a function of incident light frequency and scattering angle θ0. Dashed lines indicate
the resonances for incident and scattered light. The reflection coefficient of resonant layer was taken in the form rsðpÞðω; θÞ ¼
−iΓsðpÞ=ðω − ωx þ iΓsðpÞÞ, with Γs ¼ Γ= cos θ and Γp ¼ Γ cos θ [31]. The linear dispersion of phonons was assumed, Ω ¼ sjqj,
with ðs=cÞðωx=ΓÞ ¼ 5.
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wave [34,35]. The pump wave vector breaks the parity and
time-inversion symmetries and imposes different phase-
matching conditions for copropagating and counterpropa-
gating waves, enabling nonreciprocity in optomechanical
waveguides and circular resonators [36–38]. However, this
mechanism cannot be used in subwavelength systems
where the phase-matching condition is relaxed.
In the optomechanical Kerker effect demonstrated above

for subwavelength particles, the light scattering amplitude
Eq. (2) depends on the propagation direction of both
incident and scattered waves. This results in dominance
of the backward or forward scattering indicating that the
particle vibrations are preferentially coupled to backward or
forward propagating light and enabling chiral optomechan-
ical effects even for strongly subwavelength systems.
To illustrate applications of such intrinsically chiral

coupling, we consider the simplest optomechanical system
depicted in Fig. 7(a). It consists of a one-dimensional
waveguide and a small resonant particle located inside or
in its vicinity and interacting with the guided mode. The
particle is confined in such a way that it can move along the
waveguide with the eigenfrequency Ωr and some mechani-
cal damping γ. In the absence of particle motion, the light
propagation through the waveguide can be characterized by
the reflection coefficient rðωÞ and transmission coefficient
tðωÞ ¼ 1þ rðωÞ. The system is pumped from the bottom by
the laser light with frequency ω0 and electric field amplitude
E0. We study pump-dependent reflection and transmission
coefficients for additional probe optical waves at the
frequency ω, incident either from the top or from the bottom.
Probe reflection and transmission are modified due to the

processes where in the presence of pump field the probe
photon is converted to a mechanical vibration quantum,
which is then converted back to a photon. The amplitude of
the latter process is, as it was calculated in the previous
sections, proportional to rðωÞ − s0rðω0Þ, where s0 ¼ �1

corresponds to the scattered photon propagating in the
same (opposite) direction as the pump light. The amplitude
of the reciprocal process of light-vibration conversion is
calculated similarly. It consists of two contributions cor-
responding to processes shown in Figs. 2(b) and 2(c) and is
proportional to rðωÞ þ sr�ðω0Þ, where s ¼ �1 corresponds
to the incident probe photon propagating in the same
(opposite) direction as the pump light. It is instructive
to consider a nonresonant case when r is frequency-
independent and purely imaginary. Then, the conversion
between the probe light and the vibration occurs only at s,
s0 ¼ −1; i.e., only the probe wave which propagates in
the direction opposite to that of the pump can couple to the
mechanical mode.
The optomechanical correction to the light transmission

(s0 ¼ s) and reflection (s0 ¼ −s) coefficients reads

δSs0s ¼
iωJ
mv2

½rðωÞ − s0rðω0Þ�½rðωÞ þ sr�ðω0Þ�
ðω − ω0 þ iγÞ2 − Ω2

r
; ð10Þ

where J ¼ jE0j2=ð2πÞ is the power of the pump light, m is
the particle mass, and v is the speed of the waveguide
mode. Equation (10) yields δSþþ ≠ δS−−, meaning that the
light transport is nonreciprocal. The transmission coeffi-
cients for the probe waves propagating in the direction of
pump and in the opposite direction become different, as do
the corresponding reflection coefficients. Using Eq. (10)
we calculate δT ¼ jt↑↑j2 − jt↑↓j2 and δR ¼ jr↑↑j2 − jr↑↓j2:

δTðωÞ ¼ 8ωJ
mv2

Im rðω0ÞRe
½1þ r�ðωÞ�rðωÞ

ðω − ω0 þ iγÞ2 − Ω2
r
;

δRðωÞ ¼ −
8ωJ
mv2

Re rðω0Þ Im
jrðωÞj2

ðω − ω0 þ iγÞ2 − Ω2
r
: ð11Þ

Figures 7(b) and 7(c) show the dependence of the nonre-
ciprocal transmission δT and reflection δR on the frequen-
cies of the pump and probe light for the case of a particle
with resonant polarizability. The nonreciprocity arises
when the detuning between pump and probe matches the
mechanical frequency, ω − ω0 ¼ �Ωr, enabling excitation
of vibrations. Note that the sign of δT is inverted in the
vicinity of material resonance frequency ωx, opening a way
for tunable optomechanical nonreciprocity.
The emergence of the pump-induced scattering non-

reciprocity can be understood as a result of an effective
synthetic magnetic field, induced by the pump wave and
acting upon the probe [39–41]. For multiple scatterers in a
one-dimensional or two-dimensional array with properly
engineered phase difference, this magnetic field can lead to
the formation of the topological edge states of light and
sound [42,43]. Such effects are out of the scope of the
present study, where we focus on the chiral interaction for
one scatterer only.

(a)

Pump

Probe

Probe
(b) (c)

FIG. 7. (a) A sketch of an optomechanical system consisting of
a waveguide and a small particle that can oscillate in space along
its axis. Color plots of the optomechanically induced probe light
(b) nonreciprocal transmission and (c) asymmetrical reflection as
a function of pump and probe light frequencies. Calculation is
made for a resonant particle with the reflection coefficient
rðωÞ ¼ −iΓ=ðω − ωx þ iΓÞ, Ωr ¼ Γ, and γ ¼ 0.2Γ.
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The optical pump also modifies the properties of the
mechanical motion [44]. The effect is described by the self-
energy correction

ΣðΩÞ ¼ iJ
2mv2Ωr

½ðω0 þ ΩÞrðω0 þ ΩÞ

− ðω0 −ΩÞr�ðω0 −ΩÞ − 2Ωjrðω0Þj2
− 2iω0Imrðω0Þ� ð12Þ

derived in Appendix D. The real and imaginary parts of
self-energy represent the correction to the mechanical
eigenfrequency and damping, ΣðΩrÞ ¼ δΩr − iδγ. If the
mechanical frequency Ωr is smaller than the width of the
reflection coefficient resonances, the corrections describing
optomechanical spring and heating or cooling effects are
given by

δΩr ¼ −
JΩr

2mv2
Im

d2

dω2
ðωrÞ; ð13Þ

δγ ¼ J
mv2

�
jrj2 − Re

d
dω

ðωrÞ
�
: ð14Þ

In the absence of optical losses the optical theorem
yields Rer ¼ −jrj2, so Eq. (14) is simplified to δγ ¼
ðJ=mv2Þ½2jrj2 þ ωdjrj2=dω�. Therefore, optomechanical
heating or cooling effects are realized when the reflec-
tion coefficient decays or grows with the frequency,
respectively.

VI. CONCLUSION

To conclude, we discuss the possibilities for experimen-
tal realization of the optomechanical Kerker effect. The
proof-of-principle observation of the suppression of the
forward inelastic scattering in the nonresonant regime,
Fig. 3(b), seems to be relatively straightforward for an
arbitrary subwavelength particle. The only requirements
are to operate in the far-field regime and to avoid the
internal deformations of the particle, so that it trembles
as a whole. The true challenge is to realize a dynamical
tunability between forward and backward scattering by
exploiting the resonance of particle polarizability. This
requires the width of the resonance Γ to be comparable with

the frequency of vibrations Ω, i.e., narrow resonances and
high vibration frequencies. Table I presents an overview of
various potential systems in different ranges of the electro-
magnetic spectrum and Fig. 8 visualizes their tunability
Ω=Γ. Apparently, the highest degree of tunability can be
attained by exploiting the Mössbauer resonances in the
nuclei of crystals for γ rays [45]. Namely, the linewidth can
be as narrow as 0.5 MHz [46], while the gigahertz-range
hypersound waves in metals are available [47]. Further
opportunities are provided by organizing planar cavities for
synchrotron γ radiation [48]. The opposite side of the
electromagnetic spectrum, with sub-0.1-meV rather than
10-keV photon energies, is represented by the supercon-
ducting qubits [49]. They feature a high quality factor
resulting in potentially high tunability when being coupled
to the ultrasound generator [50]. An apparent drawback of
such a setup is a relatively weak scattering efficiency due
to the vibration amplitude being relatively small as com-
pared to the electromagnetic wavelength; see Table I. The
terahertz and optical frequency ranges are accessible by
membranes made of graphene [51] and transition-metal
dichalcogenide monolayers (TMDs) [52], respectively.
These platforms feature reasonable coupling strength but
have limited tunability because of the relatively low

or

FIG. 8. Tunability of various resonant optomechanical systems
operating in different spectral ranges. When Ω ≪ Γ (blue area),
the directional scattering can occur only in the backward
direction. When Ω ≫ Γ (red area), one can realize both direc-
tional forward and backward scattering by a proper tuning of the
incident light frequency and trembling frequency. Numerical
parameters and references are given in Table I.

TABLE I. Parameters of various resonant optomechanical systems.

System ℏωx Γ=ð2πÞ Ω=ð2πÞ u Tunability ðΩ=ΓÞ Coupling ½ðωx=cÞu�
Plasmon in graphene [51,54,55] 0.1–1 eV 10 THz 0.1 GHz 10 nm 10−5 0.01–0.1
Exciton in TMD monolayers [52,55] 2 eV 20 GHz 0.1 GHz 10 nm 5 × 10−3 0.1
Exciton in colloidal QDs [50,56] 2 eV 400 MHz 20 MHz 200 nm 5 × 10−2 2
Cold atoms [53] 1.5 eV 10 kHz 100 kHz 200 nm 10 1.5
Superconducting qubits [49,50] 20 μeV 0.1 MHz 20 MHz 200 nm 200 2 × 10−5

Resonance in nuclei [46,47] 15 keV 0.5 MHz 10 GHz 10−3 nm 2 × 104 0.1
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frequency of the flexural vibrations (≲0.1 GHz) as com-
pared to the broad width of plasmonic or excitonic
resonance. High tunability and strong optomechanical
coupling efficiency for visible light can be realized by
exploiting narrow resonances in cold atoms vibrating in an
optical trap [53]. Alternatively, one could use excitonic
resonances in artificial atoms, colloidal quantum dots
(QDs)[50].
The rich consequences of the interplay of magnetic and

electric response on the electromagnetic wave propagation
have been known for at least 50 years, since the seminal
work by Veselago on the media with negative permittivity
and permeability [57,58]. Still, the mutual effect of electric
and magnetic resonances is very far from being completely
understood. For example, it has been realized only quite
recently that the interference and coupling of electric and
magnetic resonances underpin bianisotropic photonic topo-
logical insulators [59,60], where the light backscattering on
disorder is suppressed. We demonstrate that the proposed
optomechanical Kerker and spin-Hall effects with trem-
bling-induced magnetic response open a pathway to engi-
neer chiral optomechanical coupling at the nanoscale,
expanding chiral quantum optics [32,33] to the optome-
chanical domain. Our results can be instructive for the
design of nonreciprocal topological circuits [61,62], where
the disorder-robust propagation of light and sound is
ensured by the time modulation of optical and mechanical
properties [41,63,64].
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APPENDIX A: POLARIZATION OF
TREMBLING MEDIA

We consider light with frequency ω incident on a
medium vibrating with frequency Ω. The medium motion
is described by the displacement vector uðr; tÞ ¼
uðrÞe−iΩt þ c:c: We suppose that the vibration amplitude
is small and focus on the linear-in-u effect only, i.e., the
appearance of polarization at anti-Stokes- and Stokes-
shifted frequencies ω�Ω.
Consider the unitary volume of a medium that in the

absence of vibration has coordinate r. Its polarization at
time t is determined by the electric field Ẽðr; t0Þ that has
acted on it in all previous moments of time t0 < t,

P̃ðr; tÞ ¼
Z

t

−∞
dt0χ ðr; t − t0ÞẼðr; t0Þ; ðA1Þ

where χ ðr; τÞ is the dielectric susceptibility function. Here,
we do not account for the possible change of susceptibility
under medium deformation, because such a photoelastic
effect requires separate microscopic calculation. While
photoelasticity may give dominant contribution to opto-
mechanical coupling in resonant structures [65–68], it does
not play any role in the effects we consider, where the
objects move as a whole and deformation is absent. The
electric field Ẽðr; t0Þ in Eq. (A1) should be calculated in
the reference frame that moves and rotates together with
the considered medium volume. Keeping linear-in-u terms
only, we obtain

Ẽ ¼ Eþ
�
u ·

∂
∂r
�
E −

rot u
2

× Eþ 1

c
∂u
∂t × B; ðA2Þ

where E and B are the electric and magnetic fields in the
reference frame at rest, and all quantities are evaluated at
the moment t0. The second term in the right-hand side of
Eq. (A2) stems from the fact that the electric field should be
evaluated at the point rþ uðr; t0Þ, the third term accounts
for the medium rotation, and the last term comes from the
Lorentz transform.
Equation (A1) gives the polarization of the unitary

volume of an undeformed medium in the reference frame
that moves and rotates with the medium. In the reference
fame at rest, the polarization density reads

P ¼ P̃ −
�
u ·

∂
∂r
�
P̃þ rot u

2
× P̃ − P̃ div u; ðA3Þ

where the last term accounts for the difference between the
deformed and undeformed unitary volumes. Additionally,
the magnetization M ¼ −∂u=∂t × P̃ appears in the frame
at rest due to the Lorentz transform.
Finally, we combine Eqs. (A1)–(A3) and evaluate the

current j ¼ ∂P=∂tþ rot M in the reference frame at rest.
The relation between the current j at the anti-Stokes-shifted
frequency ω0 ¼ ωþΩ and the vector potential A of light
at the initial frequency ω in k space assumes the form
jk0 ðω0Þ ¼ P

k δΠk0;kAkðωÞ, where we use the gauge with
zero scalar potential,

δΠk0;k ¼ ω02χ k0þq−kðω0ÞΛkþq;kðω0;ωÞ
þ ΛT

q−k0;−k0 ð−ω;−ω0Þω2χ k0þq−kðωÞ; ðA4Þ

χqðωÞ ¼ ∬ χðr; τÞeiωτ−iq·rdτd3r and uq are the spatial
Fourier transforms of ½εðr;ωÞ − 1�=ð4πÞ and uðrÞ, respec-
tively, superscript T denotes matrix transposition, and
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Λkþq;kðω0;ωÞ ¼ iðuq · kÞ − i
ω0 − ω

ω0 k ⊗ uq

− i
ω

ω0
uq ⊗ q − q ⊗ uq

2
: ðA5Þ

To calculate the polarization at the Stokes-shifted frequency
ω −Ω, one should change in the above equations the
sign of Ω and replace uq with u�−q. The quantity δΠ is
the correction to the polarization operator caused by the
medium vibration. The two terms in the right-hand side of
Eq. (A3) can be represented diagrammatically as shown in
Figs. 9(a) and 9(b). The wavy line corresponds to a photon,
the dashed line is a vibration, the bubble stands for
polarization operator of medium at rest, Πk0;kðωÞ ¼
ω2χ k0−kðωÞ, and the solid dot represents optomechanical
interaction Λ.

APPENDIX B: LIGHT SCATTERING ON
TREMBLING OBJECTS

Here we describe how the amplitude of inelastic light
scattering on a trembling object of an arbitrary shape can be
calculated. We use c ¼ 1 for simplicity. The full amplitude
can be represented as a sum of four terms diagrammatically
shown in Figs. 2(b), 2(c), 9(c), and 9(d). They correspond
to the medium polarization, described by the dressed
polarization operator P ¼ Πð1 − DΠÞ−1, accounted for
before, after, or both before and after the optomechanical
interaction.
Note that the photon Green’s functionDkðωÞ ¼ −4πð1 −

k ⊗ k=ω2Þ=ðω2 − k2Þ is k-even while the optomechanical
interaction Λ is k-odd in the absence of the last term

describing medium rotation; see Eq. (A5). In the main text,
we consider the small object characterized by the wave-
vector-independent dressed polarization operatorPk0;kðωÞ ¼
ω2αðωÞ. In such a case, the summation over the phonon
wave vectors in the intermediate states of the diagrams
Figs. 9(c) and 9(d) yields zero. The scattering amplitude is
then given by the remaining diagrams Fig. 2(b) and 2(c).
In the general case, all the diagrams of Fig. 9 contribute

to the total scattering matrix element that reads

Mk0k ¼ A�
k0 · ð1þPDÞðΛTΠþΠΛÞð1þ DPÞAk; ðB1Þ

where Ak ¼
ffiffiffiffiffiffiffiffiffiffiffi
2π=ω

p
e0eik·r and Ak0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2π=ω0p

e0eik0·r are
the vector potentials of the incident and scattered photons,
and e0 and e0 are their polarizations. Introducing the field
distributions of incident and scattered photons in the form
A0ðrÞ ¼ ð1þ DPÞAk and A 0�ðrÞ ¼ ð1þ DPTÞA�

k0 , we
finally obtain the scattering amplitude per solid angle do:

dSk0k
do

¼ iω02

ð2πÞ2
Z

½ΠTðr;ω0ÞA 0�ðrÞ · Λðω0;ωÞA0ðrÞ

þ Λð−ω;−ω0ÞA 0�ðrÞ ·Πðr;ωÞA0ðrÞ�dr: ðB2Þ
Here, the operator Λ with the components

Λαβðω0;ωÞ ¼
�
u ·

∂
∂r
�
δαβ −

ω0 − ω

ω0 uβ
∂
∂rα

þ 1

2

ω

ω0 ϵαβγðrot uÞγ ðB3Þ

is the optomechanical interaction operator Eq. (A5) in the
coordinate representation, and the polarizability operator
can be readily expressed via the dielectric permittivity as
Πðr;ωÞ ¼ ω2½εðr;ωÞ − 1�=4π. When the time-inversion
symmetry holds, the dielectric permittivity tensor is sym-
metric, soΠT ¼Π. Then the distributionsA0ðrÞ andA 0�ðrÞ
can be calculated as the fields induced in the system by the
light incident with wave vectors k and −k0, respectively.

APPENDIX C: LIGHT SCATTERING BY A
VIBRATING RESONANT LAYER

We derive here the amplitudes of light scattering on a
vibrating resonant layer, Eq. (8). The layer is described
by a dielectric susceptibility tensor with the components
χαβðr;ωÞ ¼ δαβδðzÞ χðωÞ and χzz ¼ χαz ¼ χzα ¼ 0. Here
α; β ¼ x, y are the in-plane coordinates and z is the layer
normal. Using the Green’s function

Dαβðk; z;ωÞ ¼
2πi
kz

�
δαβ −

kαkβ
ω2

�
eikzjzj; ðC1Þ

where k ¼ ðkx; kyÞ is the in-plane wave vector and kz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
, the dressed polarization operator of the layer

P ¼ Πð1 − DΠÞ−1 can be evaluated. We find

(a) (b)

(c) (d)

FIG. 9. (a),(b) Diagrammatic representation for the optome-
chanical interaction of light (wavy line), medium polarization
(bubble), and mechanical vibration (dashed line). (c),(d) The
contributions to the amplitude of light scattering by a trembling
medium that together with contributions shown in Figs. 2(b)
and 2(c) give the full amplitude of inelastic light scattering. Wavy
line denotes photon and corresponds to the Green’s function for
vector potential Dðk;ωÞ¼−4πð1−k⊗k=ω2Þ=ðω2−k2Þ, empty
and filled bubbles correspond to the bare and dressed polarization
operators of the medium at rest, Π and P ¼ Πð1 − DΠÞ−1,
respectively, dashed line represents mechanical displacement uq,
solid dot is the optomechanical interaction Λ given by Eq. (A5).
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Pαβðk; z;ωÞ ¼
ω2 χðωÞδðzÞ

1 − 2πiω2 χðωÞ=kz

�
δαβ −

kαkβ
k2

�

þ ω2 χðωÞδðzÞ
1 − 2πikz χðωÞ

kαkβ
k2

: ðC2Þ

and Pzz ¼ Pαz ¼ Pzα ¼ 0. The amplitude of coherent light
reflection from the layer is given by r ¼ e0� · ð2πiP=kzÞe0.
For s- and p-polarized light we obtain

rsðk;ωÞ ¼
2πiω2 χðωÞ=kz

1 − 2πiω2 χðωÞ=kz
; ðC3Þ

rpðk;ωÞ ¼
2πikz χðωÞ

1 − 2πikz χðωÞ
: ðC4Þ

To calculate the amplitudes of light scattered by a layer
vibration, we use the approach described in Appendix B.
First, we calculate the vector potential distribution induced
by a photon at the frequency ω incident from z → −∞ with
the in-plane wave vector k and the polarization e,

Aω;kðrÞ ¼
ffiffiffiffiffiffi
2π

ω

r
eik·rfeeikzz þ ½rsðk;ωÞet

þ rpðk;ωÞel þ sgn zrpðk;ωÞez�eikzjzjg; ðC5Þ

where e ¼ el þ et þ ez with ezkz being the out-of-plane
component of the light polarization vector e, and elkk, et⊥k
being its in-plane components. The layer polarization
induced by the photon reads

Πðr;ωÞAω;kðrÞ ¼ −
ikzδðzÞffiffiffiffiffiffiffiffiffi
2πω

p eik·r

×

�
rsðk;ωÞet þ

ω2

k2z
rpðk;ωÞel

�
: ðC6Þ

Then we calculate Λðω0;ωÞAω;kðrÞ. Keeping in mind that
according to Eq. (B2) the result is to be multiplied by
Πðr;ωÞAω;kðrÞ, all we need are the in-plane components of
Λðω0;ωÞAω;kðrÞ at z ¼ 0. They read

Λðω0;ωÞAω;k ¼ i

ffiffiffiffiffiffi
2π

ω

r �
kzðet þ elÞ þ

Ω
ω0

k2

kz
el

−
ω

ω0
el · k
kz

qþ ð� � �Þez
�
uzeiðkþqÞ·r; ðC7Þ

where the dots replace the out-of-plane component. Note
that when evaluating the action of the optomechanical
interaction operator Eq. (B3), in the last term describing the
layer rotation we used rotu ¼ 2ð∂uz=∂y;−∂uz=∂x; 0Þ. The
factor 2 arises from the contribution of ∂uα=∂z (α ¼ x, y)
that are nonzero even though uα ¼ 0 at z ¼ 0.
Finally, we calculate the backward and forward photon

scattering amplitudes:

R→ð↩Þ ¼ i
ω0

k0z
uz

Z
½ΠAω0;−k0 · Λðω0;ωÞAω;k

∓ Λð−ω;−ω0ÞAω0;−k ·ΠAω;k�dz: ðC8Þ

We make use of Eqs. (C6) and (C7) and take into account
that for the photon incident from z → þ∞, the in-plane
components of ΛA have opposite signs, while ΠA is the
same. Finally, we obtain

R→ð↩Þ

¼i

ffiffiffiffiffi
ω0

ω

r
uz

��
r0se0tþ

ω02

k0z2
r0pe0l

�
·

�
kzðetþelÞþ

el ·k
kz

�
k−

ω

ω0k
0
��

�kz
k0z

�
k0zðe0tþe0lÞþ

e0l ·k
0

k0z

�
k0−

ω0

ω
k

��
·

�
rsetþ

ω2

k2z
rpel

��
;

ðC9Þ

where the quantities without (with) a prime refer to the
initial (scattered) photon. Multiplying the result by the
factor

ffiffiffiffiffiffiffiffiffiffiffi
ω0=ω

p
to relate electric fields rather than the photon

amplitudes and considering e and e0 that represent s and p
polarizations, we recover Eq. (8) of the main text.

APPENDIX D: OPTOMECHANICAL
SELF-ENERGY CORRECTION

The optical excitation of the optomechanical system
leads to modification of the mechanical motion properties.
The modification can be described by the self-energy
correction to particle vibration frequency Ωr due to the
processes where the vibration quantum is converted to an
anti-Stokes or Stokes photon and then converted back; see
upper four diagrams in Fig. 10. For the sake of simplicity,
we disregard here the light polarization and consider the

(aS-out) (aS-in)

(S-out) (S-in)

(2-out) (2-in)

FIG. 10. Diagrammatic representation for the optomechanical
correction to the mechanical motion self-energy. Star stands for
the optical pump. In the four upper diagrams, the solid dot
denotes the first-order optomechanical interaction, Eq. (B3). In
the four lower diagrams, the solid dot represents the second-order
optomechanical interaction described by Λð2Þ ¼ −juj2k2, where
k is the wave vector of the involved photon, and u is the
displacement.

OPTOMECHANICAL KERKER EFFECT PHYS. REV. X 9, 011008 (2019)

011008-11



scalar problem. The optomechanical interaction vortex is
then limited to the first term of Eq. (B3). The contributions
to self-energy assume the form

ΣaS-out ¼ −ω2
0juj2Pðω0 þΩÞjA0j2;

ΣS-out ¼ −ω2
0juj2P�ðω0 −ΩÞjA0j2;

ΣaS-in ¼ juj2jPðω0Þj2jA0j2
Z

4πk2

ðω0 þ Ωþ i0Þ2 − k2
dk
2π

;

ΣS-in ¼ juj2jPðω0Þj2jA0j2
Z

4πk2

ðω −Ω − i0Þ2 − k2
dk
2π

:

ðD1Þ

Additionally, the second-order optomechanical interaction,
that corresponds to simultaneous vibration absorption
and emission, should be taken into account. The processes
featuring such interaction are depicted as the four lower
diagrams in Fig. 10 and yield the self-energy corrections

Σ2-out ¼ −2juj2jPðω0Þj2jA0j2Re
Z

4πk2

ðω0 þ i0Þ2 − k2
dk
2π

;

Σ2-in ¼ 2ω2
0juA0j2RePðω0Þ: ðD2Þ

We sum up all the above contributions, express the result
via the reflection coefficient rðωÞ ¼ 2πiPðωÞ=ω, take
into account the vibration quanta normalization juj2¼
1=ð2mΩrÞ and obtain Eq. (12) of the main text.
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