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Optomechanical synchronization across multi-
octave frequency spans
Caique C. Rodrigues 1,2, Cauê M. Kersul 1,2, André G. Primo1,2, Michal Lipson 3,4,

Thiago P. Mayer Alegre 1,2 & Gustavo S. Wiederhecker 1,2✉

Experimental exploration of synchronization in scalable oscillator microsystems has unfolded

a deeper understanding of networks, collective phenomena, and signal processing. Cavity

optomechanical devices have played an important role in this scenario, with the perspective

of bridging optical and radio frequencies through nonlinear classical and quantum synchro-

nization concepts. In its simplest form, synchronization occurs when an oscillator is entrained

by a signal with frequency nearby the oscillator’s tone, and becomes increasingly challenging

as their frequency detuning increases. Here, we experimentally demonstrate entrainment of a

silicon-nitride optomechanical oscillator driven up to the fourth harmonic of its 32MHz

fundamental frequency. Exploring this effect, we also experimentally demonstrate a purely

optomechanical RF frequency divider, where we performed frequency division up to a 4:1

ratio, i.e., from 128MHz to 32MHz. Further developments could harness these effects

towards frequency synthesizers, phase-sensitive amplification and nonlinear sensing.
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S
ynchronization lies at the core of time keeping and under-
pins a vast class of natural phenomena, from life cycles to
precision measurements1. In a nutshell, synchronization

occurs when an oscillatory system has its bare frequency entrained
by a weak external signal, which may have a slightly different
tempo. Since its observation by Huygens in the 17th century, the
synchronization of widely distinct systems has been shown to share
remarkably universal features1,2, fostering its exploration across
many disciplines3–5. With the recent convergence among optical,
mechanical and electrical waves using scalable microfabrication
technologies, synchronization has emerged as a powerful tool
targeted not only at technological applications, such as phase-lock
loops in radio-based communications6–8, but also at developing
the fundamentals of chaotic systems9, injection locking10–12,
electro and optomechanical devices13–20, nonlinear dynamics21–26,
network coupling27–30, and quantum synchronization31–36.

Most synchronization realizations occur when the oscillation
frequencies involved are barely dissimilar. This is usually the
case because most oscillators rely on an underlying frequency-
selective resonant response, e.g., mechanical, electrical, or
optical resonance, which drastically suppresses off-resonant
excitations. Despite the weak response to such nonresonant
signals, oscillators with a strong nonlinearity may also syn-
chronize when the ratio between external driving frequency
(Ωd) and the oscillation frequency (Ω0) is close to a rational
number ρ= p/q called winding number37, i.e., the ratio Ωd/
Ω0= p/q with p, q being coprime integers. Indeed, higher-order
p:q synchronization features have been experimentally observed
in a variety of nonlinear systems, from Van der Pol’s neon-bulb
oscillator38 to modern spin-torque oscillators39–41, micro-
electro-mechanical systems42–47, delay-coupled lasers9,48,
nuclear magnetic resonance laser49, and on-chip optical para-
metric oscillators50. These higher-order synchronization
demonstrations are of major importance in radio-frequency
(RF) division applications, which often demand low-power
consumption and wide-band operation51–53.

Within optomechanical devices, although seminal work has
revealed that high-order synchronization is possible, its full
strength is yet to be developed, potentially impacting the bridge
between optical and RF signals54 or enabling role in
quantum33,55,56 and classical devices20,57. For instance, the first
optomechanical injection-locking demonstration by Hossein-
Zadeh et al.58 showed evidence of synchronization at Ωd= 2Ω0,
while59,60 demonstrated synchronization at subharmonics and

the second harmonic in an on-fiber optomechanical cavity
oscillator based on thermal effects. Theoretical work has sug-
gested weak signatures of higher-order synchronization in opto-
mechanical cavities61.

Here, we experimentally demonstrate the entrainment of a
silicon-nitride optomechanical oscillator (OMO) by an external
signal up to two octaves away from its oscillation frequency.
Furthermore, the OMO operates in the intriguing regime where
higher-order synchronization (p > q) is actually stronger than
the trivial 1:1 case, as determined by the degree of nonlinearity
set by the laser frequency and intensity. Finally, we explore this
regime to experimentally demonstrate a purely optomechanical
radio-frequency divider with a phase noise performance better
than the 1:1 locking regime. Our results open a route for
exploring and engineering nonlinear synchronization in opto-
mechanical oscillators62, phase-sensitive amplification63,64,
nonlinear sensing65, and collective dynamics of emerging
oscillator arrays30,66,67.

Results and discussion
The general structure of optomechanical oscillators dynamic can
be represented by the feedback diagram shown in Fig. 1a. The
optical force driving the mechanical mode depends nonlinearly
on the displacement, x(t). Thus, the Lorentzian shape of the
optical resonance provides a unique route to tailor the degree of
nonlinearity of the optical force, defining how different harmo-
nics of the mechanical oscillation are excited during the optical-
to-mechanical transduction.

To establish synchronization, we apply a weak intensity mod-
ulation to the optical driving power, PinðtÞ ¼ P0 1þ ε sin Ωdt

� �� �
,

where P0 is the continuous-wave average power and ε (≪ 1) is the
modulation depth. In the unresolved sideband regime, where Ω0 is
smaller than the optical linewidth κ, the essence of the feedback
loop of Fig. 1a is captured by introducing a delayed mechanical
response xðtÞ ! exðt � τÞ, where ex is a normalized dimensionless
displacement (details in the Supplementary Note 5). The optical
force can then be efficiently written as a power series in exðt � τÞ,

FoptðtÞ ¼ f opt 1þ ε sin Ωdt
� �� �

∑
1

n¼0
Fnexn t � τð Þ; ð1Þ

whose strength depends not only on the overall optical force
strength, fopt, but also on the dimensionless coefficients Fn, which
dictates the intensity of the nonlinearity and their detuning
dependence, as shown in Fig. 1b. Important optomechanical
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Fig. 1 High-harmonic response of optomechanical oscillators. a Optomechanical oscillator feedback diagram. The mechanical degree of freedom, x(t), is

initially in equilibrium with the thermal Brownian noise bath, but when a continuous-wave laser excites the optical field within the optical resonator, a(t),

the optical phase is imparted by the mechanical motion and transduced—via the optical resonance—to fluctuations on the optical energy. Due to radiation-

pressure forces, the mechanical oscillator experiences a feedback (back-action) force that impacts its dynamics; b Optical force components as function of

the optical detuning Δx=ωl−ω0−Gx0 shown in Eq. (1) (details in the Supplementary Note 5); c Arnold tongues in the ε−Ωd space illustrating 1:1 and 2:1

entrainment.
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properties, such as optical cooling/amplification or spring
effect55,68, are described by considering up to the first-order term
F1 in Eq. (1). The modulation depth-dependent terms (∝ ε) enable
the injection-locking and synchronization of the OMO to an
external drive. While F0 and F1 hardly provide new insights into
synchronization properties, the quadratic and cubic terms (F2 and
F3) highlight a key aspect explored in this work: nonlinear syn-
chronization properties can be adjusted with an easily accessible
parameter, the optical detuning, which significantly changes their
relative strengths, as shown in Fig. 1b.

The impact of these nonlinearities in the synchronization
dynamics can be cast into the well-known Adler’s model, which
describes the slowly varying phase dynamics of an oscillator
perturbed by a weak external drive61,69. Indeed, we show in
“Methods” that the Taylor-series description of Eq. (1) leads to an
effective Adler model when the optical modulation frequency is
tuned towards a chosen harmonic of the mechanical frequency.
Synchronization in this model arises when the perturbation
strength overcomes the frequency mismatch between the drive
and oscillator’s harmonics. As the external drive frequency Ωd is

swept around the oscillator harmonics, the synchronization
condition may still be satisfied and defines a region in a ε−Ωd

space known as Arnold tongues (ATs)1, illustrated in Fig. 1c.
Such response to higher harmonics could be readily explored for
radio-frequency division, as we experimentally demonstrate for
divisions ratio 2:1, 3:1 and 4:1, the same orders of the measured
Arnold tongues maps.

To experimentally assess high-order synchronization and
measure the ATs, it is important to harness the nonlinear response
of an OMO. We achieve this control by employing a dual-disk
optomechanical cavity based on silicon-nitride70,71, as shown
schematically in Fig. 2a. This cavity supports a relatively low
frequency (Ωm/2π= 31.86MHz) and high-quality factor
mechanical mode (Qm= 1250)72, which is coupled to a
transverse-electric optical mode (Qopt= 1.6 × 105 at a wavelength
λ ≈ 1556 nm) with an optomechanical coupling rate g0/
2π= 16.2 kHz. The experimental setup, shown in Fig. 2b, essen-
tially consists of an intensity-modulated external cavity tunable
laser that is coupled to the optomechanical cavity using a tapered
fiber70. The output light is analyzed with an oscilloscope and an
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Fig. 2 Experimental demonstration of multi-octave synchronization. a Illustration of the silicon nitride dual-disk optomechanical cavity used in the

experiment. The inset shows the simulated flapping mechanical mode displacement profile ∣u∣; b Schematic of the experimental setup used; TL is the

tunable laser source; λ-Ref: acetylene gas cell and a Mach-Zehnder interferometer as a reference in frequency; EOM: electro-optic modulator; RFG: radio-

frequency generator; ESA: electrical spectrum analyzer; PM: power meter; OSC: oscilloscope; cMagnitude of the fast-Fourier transform of the OMO output

signal (inset); d–g Time-trace of the OMO output entrained at p= 1 (d) until p= 4 (at g). A RF injection power of −10 dBm (ε≈ 4%) was used; h–k RF

spectrograms measured as the RF drive frequency sweeps from lower to higher frequencies around each OMO harmonic, p= 1 (h) until p= 4 (at k), for an

injection RF power of −10 dBm. The vertical RF frequency axis is always centered at the mechanical oscillation frequency Ω0/2π= 32 MHz and increases

from top to bottom, as the symbols minus and plus from h) suggests. The same is true for the horizontal axis, in which the RF drive frequency increases

from the left to the right; l–o Measured Arnold tongues corresponding to each harmonic, obtained by stacking horizontal linecuts along the dashed black

line shown in h–k. The purple curves are the simulated ATs and the color scale of each plot matches the grayscale range shown in the right.
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electrical spectrum analyzer (ESA) that reveals the dynamics of the
oscillator while monitoring the optical transmission.

To transition this optomechanical cavity into an OMO we
raise the pump power to P0= 480 μW and fine-tune its wave-
length such that the detuning between the laser frequency and
the cavity resonance corresponds to Δx= 0.35κ (Δx/2π ≈ 408
MHz), which is inferred by monitoring the optical transmission.
A typical OMO free-running output signal and the corre-
sponding Fourier transform are shown in Fig. 2c, revealing the
mildly nonlinear characteristic with a few noticeable harmonics.
Interestingly, at this detuning, both the F0 and F1 terms in Eq. (1)
are of similar strength (see Fig. 1b), suggesting that the nonlinear
response to an injection signal should be readily observed. To
observe injection-locking, the laser intensity modulation is acti-
vated, and the modulation frequency is swept around the OMO
fundamental frequency or its harmonics (p= 1−4 and q= 1).
The time-traces in Fig. 2d–g are captured with the injection
signal frequency being precisely matched to each harmonic using
a RF power of −10 dBm. As the RF driving frequency is detuned
from each harmonic, the OMO response is monitored through
the RF spectrum centered around the fundamental frequency Ω0/
2π, as shown in the density plots of Fig. 2h–k. At the left-hand
side of these plots, the RF tone is far away from the OMO
harmonics and do not synchronize, thus, both oscillator and
drive frequencies appear as distinct peaks, accompanied by
nonlinear mixing products typical of driven oscillators42. When
the RF tone approaches a harmonic, a clear transition occurs and
a single RF peak emerges, which is one major signature of syn-
chronization. The first striking feature is the observation of
strong synchronization for all the driving harmonics, a phe-
nomenon that has not been reported in optomechanical systems.
Second, and most important, the width of the synchronization
region for p= 2 and p= 4 are larger than the fundamental
harmonic (p= 1). It is also remarkable that the
p= 3 synchronization window is relatively small, counterposing
the hierarchy among harmonics.

To map the synchronization window into Arnold tongues and
understand the role played by the optical modulation depth, we
performed the measurements shown in Fig. 2h–k for a range of
RF powers, and built the ATs shown in Fig. 2l–o. The colored
regions indicate a synchronized state and were obtained by
stacking RF spectral slices along the OMO frequency, given by the
horizontal dashed-lines in Fig. 2h–k. It is worth pointing out that
the highest RF power (−6 dBm) corresponds to a modulation
depth ε ≈ 6%, ensuring a weak perturbation regime. Although the
existence of higher order tongues could be anticipated by quali-
tative analysis of the nonlinear terms in Eq. (1), further theore-
tical analysis is necessary to precisely picture their nature.

To study the observed AT behavior, we perform numerical
simulations of the exact coupled equations describing both the
mechanical and optical dynamics, and the resulting simulated
Arnold tongues boundaries are shown in Fig. 3a. Despite the
specific parameters that influence the precise behavior of the
optomechanical limit cycles61, such as optical detuning, opto-
mechanical coupling, and optical/mechanical linewidths, a good
agreement is observed between the measured and simulated
tongues. Such agreement suggests that the observed features are
indeed dominated by the optomechanical interaction itself, in
contrast to silicon optomechanical devices where thermal and
charge carrier effects strongly influence the self-sustaining oscil-
lator dynamics19,73. Although the numerical model is useful for
confirming the optomechanical nature of the observed effects, it
hardly provides any analytical insight on the origins of the
observed synchronization effects.

We obtain further insight by approximating the optical force as
a delayed power series, as suggested in Eq. (1). This analysis

allows exploring the synchronization role of each nonlinear
component Fn in Eq. (1) and elucidates the underlying structure
of high-harmonic synchronization. The nonlinear components
that are not proportional to the driving signal define a “forced
Van der Pol-Duffing oscillator” responsible for the oscillator limit
cycle observed in Fig. 2c.

The synchronization dynamics is related to the terms pro-
portional to the RF driving signal (∝ ε). However, in addition to
the usual non-parametric excitation (∝ εF0), the injection signal
also contributes to time-dependent coefficients in the mechanical
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tongue at Δx≈ 0.43κ for the parameters used. These maps were simulated

using ε= 5% and the black-dashed line is the mechanical oscillation

frequency f0, which increases with Δx because of the optical spring effect; g

Measured fractional synchronization threshold, indicated as blue dots, to
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tongues shown are illustrations (see Supplementary Note 2 for actual data).
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oscillator dynamical equation. Physically, these time-varying
coefficients indicate that the external signal modulates the oscil-
lator’s frequency and damping properties, leading to linear
(∝ εF1) and nonlinear (∝ εF2,3) parametric resonance effects, a
situation resembling the dynamics of a nonlinear Mathieu
equation71,74.

By neglecting all but one time-dependent term in the numer-
ical simulations, we could identify how each harmonic (p= 1–4)
is related to the force expansion coefficients shown in Fig. 1b. The
resulting map is shown in Fig. 3b, where each boundary was
simulated considering only one parametric term, while all the
others were set to zero. The resemblance with the full model
simulation at Fig. 3a is remarkable. This analysis reveals that each
εFp−1 term in the force expansion is the leading contribution to
the p:1 AT, for all measured harmonics. For instance, as the p= 3
entrainment occurs due to the εF2 parametric term, the thinner
tongue observed in Fig. 2n is explained by the negligible value for
F2 at this detuning. Interestingly, although quadratic force terms
like F2x2 are often ignored in nonlinear mechanical oscillators (as
they arise from an asymmetric elastic potential energy), here, they
emerge naturally from the Lorentzian shape of the optical mode
and can be tuned with the optical detuning. Another interesting
feature, present both in the analytical and numerical model, is the
presence of a cusp in the 1:1 tongue at −16 dBm RF power.
Although we verified that such a feature occurs due to an
amplitude bifurcation using the analytical model (see Supple-
mentary Note 8), the cusp was not observed in the
experimental trace.

The insights brought by our semi-analytical model suggest that
tunable Arnold tongues should be feasible. In Fig. 3c–f we show a
full numerical simulation of the ATs as a function the optical
detuning, confirming this possibility. In particular, a complete
suppression of p= 3 tongue is attainable (Fig. 3e). Such rich
response to higher harmonic excitation led us to verify whether
our OMO could also respond to fractional frequency excitation,
i.e., where p/q is not an integer number. These experimental
results are summarized in Fig. 3g but the full map can be found in
Supplementary Note 2 for various subharmonics of the
mechanical frequency, revealing terms of the famous Farey
sequence known in number theory37. Note, however, that the
injection signal power required to observe fractional tongues was
substantially larger, with some fractions (e.g., 4/5) requiring a full
modulation, which is beyond the reach of our semi-analytical
approximations (ε ≈ 100%).

Optomechanical frequency division. An important aspect often
praised when investigating synchronization and injection-locking
phenomena is the reduction of phase noise (PN) in free-running
oscillators. While optomechanical oscillator’s phase noise (PN)
has been previously explored15,58,67,73,75, its characteristics under
high harmonic injection are not known. In Fig. 4a we show the
measured PN at the fundamental oscillator’s frequency for the
free-running OMO and injection-locked at the harmonics
p= 1−4 (see “Methods” for details). The PN curves were taken
using a constant RF power of −7 dBm (ε ≈ 5.5%) for all harmo-
nics. The general behavior of the free-running OMO PN has been
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discussed previously75 and it is influenced by various noise
sources, such as flicker, thermomechanical, and amplitude-to-
phase conversion76. When injection locked at p= 1 (green curve),
the PN performance improves significantly, and the PN of the
higher harmonics are surprisingly low, despite that the same
modulation depth was employed. Indeed, the p= 2 injection
offers an improvement over the trivial p= 1 case, p= 3 is slightly
deteriorated, and p= 4 PN suffers a significant penalty of 10 dBc/
Hz at small offset frequencies, however, it still preserves the low-
frequency PN plateau, characteristic of injection-locked oscilla-
tors. To investigate the RF power dependence of each harmonic,
PN curves were measured over a range of RF powers, shown in
Fig. 4b for the 4:1 case. The transition to a low-frequency PN
plateau (around −7 dBm) observed in Fig. 4b also occurs for
other harmonics, albeit at lower injection powers, showing that
very low PN levels can be achieved at the expense of higher RF
power levels (see Supplementary Note 3 for other harmonics). In
particular, while the 1:1 PN of Fig. 4a reaches −80 dBc/Hz at
−7 dBm, the 4:1 PN of Fig. 4b requires −1 dBm to reach
−80 dBc/Hz, still corresponding to a moderate modulation depth
of 11%. A qualitative understanding of the observed PN behavior
can be cast upon previous investigations in the context of
superharmonic injection-locking7,77–79. When the injection-
signal PN is negligible, the phase-noise of a superharmonic
injected oscillator is written as

LoutðΩÞ ¼
LfreeðΩÞ

1þ ðΔΩn=ΩÞ
2cos2θ

; ð2Þ

where LfreeðΩÞ is the free-running OMO PN spectra, i.e., the

black curve of Fig. 4a; ΔΩn is the locking range (AT width) for
each harmonic; θ is the phase offset between the injection signal
and the OMO. Apart from the phase offset θ, the AT width
determines the locking range and is often associated with good
phase noise performance.

Indeed, the wider lock range ΔΩ2 observed for the 2:1
injection is associated with a better PN. For the 3:1 and 4:1 PNs
cases, however, the trend is not as clear. While the phase-noise
is reduced as the lock-range increases (due to higher injection
power), the 4:1 PN shown in Fig. 4a is not lower than the 3:1
injection, despite the wider 4:1 tongue. Although it is not clear
all the factors contributing to this discrepancy, we verified in
numerical simulations that the phase-offset θ varies among
harmonics and could partially contribute to the observed
mismatch. One unique factor contributing to these phase offsets
in nonlinear oscillators is the strong frequency pulling80,81 that
distinctively shifts the bare OMO frequency for each harmonic.
Indeed, we can notice in the injection maps of Fig. 2h–k that
the locking frequency loci are not symmetric relative to the
OMO frequency. For example, Fig. 2o is shifted towards lower
frequencies, while Fig. 2m shifts toward higher frequencies.
Such shifts are also anticipated by our semi-analytical
model and can be traced back to the effective perturbation
strength and frequency mismatch in Adler’s model (see
“Methods”). These nonlinearities also highlight the weakness
of neglecting the amplitude-phase coupling in the PN modeling
of OMOs.

Another feature that supports the amplitude-phase coupling
effects in the PN spectrum, which is not readily captured by the
simple model leading to Eq. (2), is the presence of the sidebands
appearing in Fig. 4a between 20 and 60 kHz. In contrast to the
fixed-frequency satellite peaks at 150 kHz, which are caused by
parametric mixing with a spurious mechanical mode, these peaks
are intrinsic to the nonlinear locking dynamics of OMOs. These
sidebands were discussed by Bagheri et al.20 and attributed to the
coupling between phase and amplitude dynamics that are

intrinsic to OMOs. Based upon our amplitude-phase model
leading to the effective Adler equations (Eq. (4)), we derive a
quantitative model, in similarity to spin-torque oscillators40,
which predicts both frequency splitting and linewidth of these
sidebands. Despite the various approximations necessary, the
fitted model agrees remarkably well with the experimental data, as
shown in blue/red curves in Fig. 4c, d.

In the context of higher-order synchronization, the demon-
strated phase-noise performance could be explored towards
injection-locked superharmonic frequency dividers7,8, which
generate radio-frequency signals at a fraction of a higher
frequency reference. Despite the low power-consumption
advantage of injection-locked dividers, compared to other
technologies, such as regenerative and parametric dividers8,
they often suffer from a narrow lock range. While OMOs offer
intrinsically narrower lock ranges compared to electronic
injection dividers8, the wide Arnold tongues reported in Fig. 3
suggest that a robust OMO frequency division is feasible.
Exploring this strong response to higher harmonics, the
experimental schematic of Fig. 4e was implemented to perform
the demonstration of an optomechanical frequency division. A
low-pass RF filter (48 MHz cutoff, MiniCircuits SLP-50+)
rejects the higher-harmonics generated by the injection-locked
OMO and delivers an output signal at a fraction of the injected
reference, f0/N.

The measured frequency-divided signals for 2:1, 3:1, and 4:1
locking for a RF power of 0 dBm are shown in Fig. 4f. The worst
PN performance, obtained in the divide-by-4 case, is better than
−70 dBc/Hz and can be significantly improved at higher RF
powers, as shown in the red-tone traces in Fig. 4b. Further
improvement in phase-noise could be achieved by using devices
with higher mechanical quality factor and stronger optical driving
power, for instance, double-disk optomechanical devices with
mechanical quality factors exceeding 104 and driven at larger
amplitudes (using higher optical power) could exhibit a further
PN reduction of 30 dB (see Supplementary Note 3). These results
show that OMO-based frequency dividers can be readily derived
from the observed higher-order synchronization. Although there
is room for improvement in optomechanical frequency dividers,
its ability to generate frequency references in the optical domain
could be explored in experiments requiring optical synchroniza-
tion, such as radio antenna telescopes82, optical frequency
combs50, or coherently linking arrays of optomechanical
oscillators with distinct frequencies67. Given the current state-
of-the-art in hybrid integration83 and electro-optical conversion
in photonic circuits73, the demonstrated divider could still ensure
the low power consumption expected for injection locking
frequency division.

We have experimentally demonstrated an optomechanical
oscillator entrained by high-order harmonics and its applica-
tion as a purely optomechanical frequency division. The wider
locking range observed for the higher harmonics, and its
theoretical mapping to each nonlinear term in the oscillator
dynamics, open new routes to control nonlinear synchroniza-
tion phenomena in optomechanical oscillators, including the
tailoring of the nonlinear response through the laser-cavity
detuning and frequency synthesizers optomechanical devices.
Furthermore, the importance of nonlinear parametric effects
could also significantly impact phase-sensitive amplification84

and nonlinear sensing65 with optomechanical devices. The
demonstrated entrainment should also enable novel configura-
tions for coupling and controlling optomechanical arrays based
on dissimilar resonators. The demonstration of locking at
fractional harmonics could also be a starting point for further
nonlinear dynamics investigations within an optomechanical
platform.
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Methods
Optical energy. The optical energy dependence on the laser-cavity detuning and
mechanical displacement is given by,

aj j2 ¼ κe
ðΔ� GxÞ2 þ κ2=4

Pin; ð3Þ

in which two key parameters that will enable the tuning of the OMO nonlinear
response arise: the input laser power, Pin, and the bare optical detuning, Δ=ωl−ω0,
between the pump laser (ωl) and optical mode (ω0) frequencies; x is the mechanical
mode amplitude, G= ∂ω/∂x is the optomechanical pulling-parameter, κ is the optical
mode linewidth and κe is the external coupling to the bus waveguide3.

Effective Adler model. By employing the Krylov–Bogoliubov–Mitropolsky time-
averaging method85 at the mechanical oscillator equation, an effective Adler’s
equation may be derived (details in the Supplementary Note 6),

_Φ ¼ νðρÞ þ ε
ΔΩðρÞ

2
sin ρΦ

� �
: ð4Þ

where Φ is the mechanical oscillator phase correction and _Φ denote its time
derivative; ν(ρ) is the mean correction of Ω0 and ΔΩ(ρ) is the size of the syn-
chronization window at a particular harmonic ρ= p/q. Although many approx-
imations must be carried on, this analysis relates the Taylor series coefficients in
Eq. (1) with the coefficients ν(ρ) and ΔΩ(ρ) in the effective Adler’s model Eq. (4),
providing a quantitative description of the width hierarchy among the
measured ATs.

Experimental setup. A full schematic of the experimental setup is shown in
Supplementary Note 1, along with optical and mechanical characterization of the
bare resonator data. The optical transmission and the RF spectral measurements
for the bare resonator properties were taken at low pump powers (<50 μW). The
laser wavelength and detuning are accurately monitored using a Mach-Zehnder
Interferometer and a HCN gas cell. The cavity is inside a vacuum chamber with
pressure of approximately 0.1 mbar and at room temperature. Finally, the trans-
duced signal goes to two detectors: a power meter (PM) that will track the optical
mode and a fast photodetector (NewFocus 1617AC Balanced Photodetector) with
800-MHz bandwidth whose electrical output feeds both the electric-spectrum
analyzer (ESA, Keysight N9030A) and oscilloscope (OSC, DSO9254A). The phase-
noise measurements were performed in the spectral domain using the ESA N9030A
phase-noise measurement application (N9068A). There was also a feedback loop
between the PM and the TL to lock the signal, preventing the optical resonance to
drift due to unwanted external perturbations.

Phase noise. To derive the approximate expression for the phase noise (Eq. (2)),
we must start from the general PN expression7,77,

LoutðΩÞ ¼
ðΔΩn=nÞ

2
LinjðΩÞcos2θ þΩ2

LfreeðΩÞ
ΔΩ2

ncos
2θ þ Ω2 : ð5Þ

Since the injection-locking signal is derived from a stable RF frequency source
(Agilent PSG E8251), LinjðΩÞ, the injection signal PN spectra are orders of

magnitude smaller than LfreeðΩÞ, and then LinjðΩÞ=LfreeðΩÞ ! 0 results in Eq.

(2). The modulation depth as a function of the RF power is given by
ε ¼ π

ffiffiffiffiffiffiffiffiffiffi
PRFR

p
=Vπ , where R= 50Ω and Vπ= 5.5 V is the optical modulator

parameter. The phase angle is given by θ ¼ arcsin ðΩ0 �Ωd=nÞ=ΔΩn

� �
. A more

detailed analysis is given in Supplementary Note 3 where we show the measured
phase noise as a function of the RF power for all the harmonics.

Simulations. The acquired data were compared with numerical simulations using
Julia language together with well-known and powerful packages like Differential
Equations.jl, DSP.jl and Sundials.jl. As we are dealing with a stiff system, i.e., there is
more than one relevant natural time scale that differ by many orders of magnitude,
solvers available in Julia offer a better performance. We simulate the system for a range
of modulation depths ε while the RF signal sweeps around a set of chosen p:q region,
revealing the nature of synchronization. With the obtained time trace, we then locally
Fourier transformed the data to construct the spectrogram. A detailed discussion on
the numerical simulation is available at Supplementary Note 4. The mechanical mode
effective mass and the zero point fluctuation were obtained from COMSOL Multi-
physics finite element simulations, meff= 101.82 pg, xzpf= 1.536 fm, leading to an
optomechanical pulling parameters G/2π= (g0/2π)/xzpf= 10.546GHz/nm.

Data availability
Further data supporting the findings of this study are openly available at Zenodo at

https://doi.org/10.5281/zenodo.4737381.
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