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We describe a new scheme to interconvert stationary and photonic qubits which is based on indirect qubit-
light interactions mediated by a mechanical resonator. This approach does not rely on the specific optical
response of the qubit and thereby enables optical quantum interfaces for a wide range of solid state spin and
charge based systems. We discuss the implementation of state transfer protocols between distant nodes of a
quantum network and show that high transfer fidelities can be achieved under realistic experimental conditions.
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Many quantum information applications rely on efficient
ways to distribute quantum states either within a large
computing architecture or over long distances for quantum
communication. For this purpose optical “flying” qubits
play a unique role and the ability to interconvert ‘“‘station-
ary” qubits and photons is a key element in quantum
computing and quantum communication architectures.
Light-matter interfaces and state transfer protocols have
been proposed and first implemented with atomic systems
using cavity QED [1,2]. In light of the remarkable progress
in nanoengineered solid state quantum systems, the chal-
lenge is now to develop equivalent optical interfaces
for a broad range of solid state spin [3] and charge [4,5]
based qubits. A promising avenue towards this goal is
provided by optonanomechanics [6—8], where a nanoscale
mechanical oscillator can be coherently coupled to light.
As described below, this provides a natural setting for
an optomechanical transducer (OMT), where indirect
qubit-photon interactions are mediated by vibrations of a
macroscopic mechanical device.

The setup of Fig. 1 describes a quantum network where
the nodes are represented by solid state qubits and the
quantum channel by an optical fiber. The qubits are en-
coded in electronic spin or charge degrees of freedom and
coupled to the motion of a mechanical beam via magnetic
[9,10] or electrostatic forces [11,12]. At the same time the
resonator interacts with the evanescent field of a toroidal
microcavity as recently demonstrated by Anetsberger et al.
[6]. Excitations from the qubit can be transferred to the
mechanical oscillator and then mapped onto a traveling
photon in a process which does not rely on optical proper-
ties of the qubit and allows the qubit to be spatially
separated from the light field. Therefore, this scheme is
suited for various solid state spin, charge, or superconduct-
ing qubits which do not interact coherently with light and
provides a basic building block for many optical quantum
communication applications.
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A fundamental task in optical quantum networks is the
implementation of a state transfer protocol (a|0); +
B11))10); — 10);(«|0); + BI1);) between two remote qu-
bits i and j. This is achieved by converting the qubit state
[1); into a photon via the OMT which then propagates
along the fiber and is reabsorbed at the second node. As
first outlined in atomic cavity QED [1], the theory of
cascaded quantum systems [13] provides a natural frame-
work to describe these processes and in the case of atomic
qubits can be used to identify a set of laser control pulses
which achieve a state transfer with unit fidelity. Here we
show that OMTs allow us to generalize these ideas for a
much broader range of qubits.

Model.—We model the setup shown in Fig. 1(a) by a
Hamiltonian H =YV | H! . + Hg,, where H! .. de-
scribes the dynamics of node i and Hy;, accounts for the
coupling between the cavities and the fiber. Following
previous work [8,9,11] we obtain for each node (7 = 1)
fge = Hi + %(ai_bj + ol b,) + w,bib; + Alcle,

node
+(Giel + Giep)(b; + b)), 1)

where UL are Pauli operators for the qubit i, and b; and c;
the bosonic operators for the resonator and the cavity
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FIG. 1 (color online). (a) A quantum network where spin or
charge based qubits and photons are coupled by an optomechan-
ical transducer (OMT). (b) At each node the OMT mediates
coherent coupling between the qubit and photons in the fiber, but
also adds noise and loss channels in form of mechanical dis-
sipation (I'y,) and intrinsic cavity decay (k). See text for details.
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modes, respectively. In Eq. (1) H}, = w},0./2 where |, is
the tunable qubit splitting, @, is the mechanical vibration
frequency and A characterizes the strength of the qubit-
resonator coupling which can be of magnetic [9] or electro-
static origin [11]. The last term in Eq. (1) describes the
linearized optomechanical (OM) interactions for a driven
cavity mode [8]. Here, G; = a;g( is the enhanced OM
coupling for a mean cavity field amplitude «; and
go = ap(dw./dx) is the shift of the cavity frequency w,
associated with the mechanical zero point oscillation aj.
For each node the coupling G; and the detuning AL =
o, — w; —2|G;|*/w, can be controlled by the strength
and the frequency w; of local driving fields. Note that the
parallel beam orientation as in Fig. 1 causes negligible
scattering between right and left circulating modes [6]
which allows us to consider a single cavity mode only.
We assume that the laser-driven cavity modes couple
dominantly to the right propagating field in the fiber,

fr(t2) == 8 fue 0w, where [f,, f1,]=

6((1) - 0)/). Then, Hfib = i\/szzi(C?fR(t, Zi) - H.C.),
where 2k, is the decay rate into the fiber and z; < z;4
are the cavity positions along the fiber. For each node we
define in- and outfields f;,(r) = fr(t,z; + 07) and
Foui(t) = fr(t, z; + 07) and model the resulting dissipa-
tive dynamics by quantum Langevin equations

¢ =I[H} o ci]1— KC; = 3|2 fin (1) =20 fo,: (1), (2)

together with the relation foy (1) = fin; (1) + 2k7¢;(2).
For the first cavity, fi, () is a 8-correlated noise operator
acting on the vacuum state while the input for the succes-
sive cavities is determined by the relation f;,;(r) =
Sfoui—1(t — (z; — z;—1)/c). In Eq. (2) we have introduced
a total decay rate k = ko + k; and the vacuum noise
operators fg;(f) to account for an intrinsic cavity loss
rate k. We must also include damping of the resonator
modes which for a mechanical quality factor Q,, = @,/ ¥,
is described by the Langevin equations

bi = ilHygger b] = 200, = i) ()

Here, (f;r(t)fj(t’)) = Ny,6,;;6(¢ — ') and for temperatures
T > hw,/kg we identify below I'y, = v,,Ny, = kzT/hQ,,
as the relevant mechanical decoherence rate.

Equations (1)—(3) describe a cascaded quantum network
[13] where at each node the OM system acts as a linear
transducer between the fiber in- and outfields, the qubit
state as well as thermal noise [see Fig. 1(b)]. In the absence
of the qubits mechanical excitations of the OMT are con-
verted into photons in the fiber with a rate y,, =
min{|G,*k/(k*> + (AL — w,)?), k/2}. This rate is given
by the smallest real part of the eigenvalues of the linear
system (2) and (3) for A — 0 and is equivalent to the OM
cooling rate in the weak and strong coupling regime [14].
To proceed, we focus on the experimentally relevant

regime A <K 7y,,, where we can adiabatically eliminate
the fast dynamics of the coupled OM degrees of freedom.
As a result we obtain a master equation for the reduced
qubit density operator p [15], which we display here for
the relevant case of two qubits:

p=—i(Hyp — pHly) + SpSt + Logie(p). (4

Here, Hep = Y ,H —iJ(0lo? —olo?) —1i8tS is
an effective (non-Hermitian) Hamiltonian and the collec-
tive jump operator S = ¥ ;4/nL; o accounts for dissipa-
tion due to photons lost through the fiber. Further,
1 = K/« and the decay rates I'; = 2Re{S;;(w,)} as well
as the photon mediated qubit-qubit coupling Ji, =
1S51(w,)| = ny/T',I'; are given by the spectrum S;;(w) =
ATZ [ dr((bi(7), b.;f (0)pe’™, where the resonator equilib-
rium correlation functions <b,-(7')b;r(0)>0 follow from the
linear Langevin equations (2) and (3) in the limit A — 0.
The last term in Eq. (4) summarizes all decoherence pro-
cesses in the system and can be written as L, .(p) =
LY TN, [p, 0. 1] + He) + Ly (p). Here, Ly (p) =
(1- n)zi%(2a’;pa"+ —{o', o, p}) accounts for photon
losses while other noise sources discussed below are de-
scribed by effective thermal occupation numbers N; =
(A%/2T'))Re [¥ dT(b;r (7)b;(0))pe 4. Since coherent pro-
cesses occur on a time scale I';'! the parameters N; and
(1 — m) quantify the imperfections of the system. Note that
in Eq. (4) we have absorbed a small shift of the qubit
frequencies into the !, and phases 6, into the qubit
operators, e!’ig’. — ¢, to obtain real J;,.

Discussion.—The first two terms in Eq. (4) represent the
dynamics of an ideal cascaded qubit network [1,13]. The
coherent and incoherent dynamics of the system is fully
determined by the effective decay rates I';, which for
Ym <K Yop can be approximated by

/\2|Gi|2K/2

I ~ - - - - .
UG+ (L= o))~ 0,7+ K]~ @,

(&)

For Al = w, exact values for I'; are plotted in Fig. 2(a) as a
function of |G;| and w g Its behavior reflects the excitation
spectrum of the coupled OM modes at the qubit frequency
w,.For |G;| < k/2 we have a single resonance at w, = w,
of width v, = |G;|*/«. For larger |G;| a mode splitting
occurs and two resonances of width vy, ~ /2 appear at

o+ =l +2|Glo, [14].

By adiabatically adjusting different OM parameters the
qubit decay rate can be tuned within a wide range I';,, =<
Ly(1) = A2/(2y,p) < K, with a small residual decay I’y <
v due to mechanical damping [15]. Hence, this setup is
analogous to the cavity QED setting of Ref. [1] and similar
arguments can be used to determine optimal control pulses
for state transfer protocols. We illustrate this for two nodes
where we demand that under ideal conditions £, . = 0,
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FIG. 2 (color online). (a) Effective single-qubit decay I" as a
function of G and w, for the parameters «; = 0.05wg, k) =
v, = 0, with cavity and resonator being in resonance (A, =
wg) at G = 1.5k;. The dotted line indicates the control pulse
shown in (c). (b) Pulse shapes for I'; ,(r) which implement a
perfect state transfer w,(r;) =1 as described in the text.
(c) Control pulses for G,(z) which generate the I'; ,(r) shown
in (b). The dashed lines indicate the corresponding noise terms

which appear in L, .. The parameters used for this plot are

wi? = og — 1.5z, I'y,/k; = 0.01 and all others as in (a).

n =1 the system remains in a pure two-qubit state
| (1)) = «|00) + B(v,(1)|10) + v,(£)|01)) for all times.
This is guaranteed by imposing the dark-state condition
SOl () = (Tl +YTr(o2)ly (1)) =0 which
together with the evolution of | /(7)) under H g determines
a set of optimal pulse shapes I'; ,(7) [1]. A specific example
of time-symmetric pulses I',(r) = I';(—¢) is shown in
Fig. 2(b), where I'i(f =t —1;/2) = [yexp(—c)/(1 —
Loy /4cErf(\/cD)). Here, Iy =T(r=1;/2) and ¢ >
7I'§/4 are used to adjust the pulse such that |v,(¢/)* <
1072 at the final time tr. Figure 2(c) finally shows the
corresponding control pulses G ,() obtained via Eq. (5)
which can be used to actually implement the transfer
protocol by adjusting the driving strength for each cavity.
Alternatively, we can identify a similar control pulse for
AY%(7) and vary the cavity frequencies w'.(¢) [16]. In both
cases the mutual dependence of G; and A% must be taken
into account and tuning the qubit frequencies ensures that
8(t) = w(t) — wl(t) + 6,() — 6,() = 0, V1.

Noise.—Under realistic conditions the OMT adds noise
to the system which is characterized by N; = Ny ; + Neyge.i-
Here, N, ; is defined below and N;; accounts for noise
which is generated locally by each OM system,

Iy &2+ (AL — a)fl)2

eGP

K>+ (AL — w2)2
4AL ),

(6)

The contribution ~T, arises from thermal excitations of
the mechanical mode while the second term results from
Stokes scattering events due to energy nonconserving
terms as G;bicl in Hi_ ... On resonance, ie., Al = o,
and w, ~ w., Eq. (6) is similar (but not identical) to the
final occupation number in OM cooling experiments
[17,18]. Therefore, the requirements for ground state

cooling, namely I'y,/y,, << 1 and sideband resolved con-
ditions G, k K w,, are, in addition to 1 — n < 1, also
sufficient to realize a low noise OMT with Ny < 1. For
multiple nodes, noise photons generated at one node can
propagate along the fiber and affect successive nodes,
which is described by N, ;. For two nodes this leads to
a small asymmetry between N,(¢) and N,(z) as shown in
Fig. 2(c), but in a larger network the scaling N ,g.; ~ (i —
1)N, can limit the number of active nodes. This problem
can be avoided by activating individual nodes selectively
and one possible scheme to achieve this is outlined below.

To study the quantum state transfer [ig);|0), —
|0), |4 ¢), under realistic conditions we numerically simu-
late the full master equation (4) for the control pulses
described in Fig. 2. The resulting state transfer fidelity
F = (olTr{p(t)} o) averaged over all input states
|y) is plotted in Fig. 3(a) for an ideal qubit and in
Fig. 3(b) for qubits with a finite dephasing time 7,. For
small infidelities the results can be summarized as

2 Ko 'y K2 K
~]l—--—-C——-0C——C—5—
F 3 K "k w2 AT,

(D

r

where individual errors arise from intrinsic cavity losses,
mechanical noise, Stokes scattering, and the qubit dephas-
ing, respectively. The numerical coefficients C; ~ O(1)
(see Fig. 3) depend on the specific control pulse and can
be optimized for a given set of experimental parameters.
Example.—We consider a microtoroidal cavity with
a diameter d =20 um coupled to a doubly clamped
SiN beam of dimensions (I, w, ) = (15, 0.05, 0.05) wm.
Optical quality factors of Q. = 2 X 10° [2,19] correspond
to ko/27 = 50 kHz and «;/2m =~ 1-5 MHz can be ad-
justed by the cavity-fiber separation. Depending on the
tensile stress the first excited mechanical mode has a
frequency of w, /27 = 5-50 MHz and a zero point motion
ag = (1.6 — 0.6) X 10~ 13 m, respectively. At T =100 mK
a mechanical quality factor of Q,, ~ 2 X 10° corresponds
to I'y,/27 ~ 10 kHz and for these parameters the condi-
tions I'y, kg < k < w, for a high quality OMT are

a)

0.1
K/LA)R 0.2

FIG. 3 (color online). (a) State transfer fidelity obtained from a
numerical simulation of Eq. (4) for the control pulses shown in
Fig. 2 and k, = 0. (b) The same plot for I'j, = 0 but including an
exponential loss of qubit coherence ~e /7> during the transfer.
From these two plots we extract the numerical coefficients
C; =4, C, = 1.4, and C; = 7.5, which appear in the approxi-
mate expression of F given in Eq. (7).
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FIG. 4 (color online). Scalable quantum networks based on
multimode OM transducers. At each node the three cavities are
modeled by H, = Y3_, A,clc, + J(cles + Hee) where J is
the tunneling coupling of mode c3 with ¢, = (¢; + ¢;)/ V2.
The driving field applied through the “‘control fiber” excites
the asymmetric mode ¢, = (¢; — ¢,)/~/2 such that for A} = A,
we obtain {c;) = —(c¢,) = a and {c;) = 0. The motion of the
resonator modulates A and induces a linearized OM coupling as
given in Eq. (1) with the empty mode ¢ = (¢, + ¢3)/~/2.
Thereby, laser noise from the control fields does not affect the
quantum channel and nodes can be selectively activated. The
direction of the driving field is used to send photons into differ-
ent directions to connect any two nodes of a large network.

satisfied. For electronic spin qubits dephasing times ap-
proaching 7, = 10 ms have been demonstrated [20] and
following Ref. [9] we estimate a magnetic coupling
strength of A/27 = 50 kHz. For superconducting charge
qubits the electrostatic coupling can be substantially
stronger, A/27 =~ 5 MHz [12], while in current experi-
ments 7, = 2 us [21]. The effective qubit splitting w, ~
w, required for the control pulse described in Fig. 2 can be
engineered using microwave-assisted qubit-resonator cou-
pling schemes [9,11]. By choosing (k, w,) = 27 X
(1,5) MHz for the spin and (k, w,) = 27 X (5, 50) MHz
for the charge qubit we obtain in both cases F = 0.85.
This shows that state transfer fidelities F > 2/3 required
for quantum communication [22] can be achieved with
present technology. Near unit fidelities F = 0.95-0.99
can be expected from further optimizations of the system
design and control pulses, or from communication proto-
cols which, e.g., correct for photon loss errors [23].

In conclusion, we have described a universal approach
for coherent light-matter interfaces based on OM trans-
ducers. In Fig. 4 we outline the concept of a multimode
OM transducer using interference to separate the control
fields from the quantum channel. This enables selective
activation of individual nodes to realize large scale solid
state or hybrid quantum networks. Beyond quantum com-
munication, various other applications for OMTs can be
considered such as new approaches to engineer single
photon nonlinearites as well as optical readout and quan-
tum measurement applications for optically nonactive
quantum systems.
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