
Oracle Estimation of a Change Point in High

Dimensional Quantile Regression∗

Sokbae Lee†, Yuan Liao‡, Myung Hwan Seo§, and Youngki Shin¶

15 November 2016

Abstract

In this paper, we consider a high-dimensional quantile regression model where the
sparsity structure may differ between two sub-populations. We develop ℓ1-penalized
estimators of both regression coefficients and the threshold parameter. Our penalized
estimators not only select covariates but also discriminate between a model with ho-
mogeneous sparsity and a model with a change point. As a result, it is not necessary to
know or pretest whether the change point is present, or where it occurs. Our estimator
of the change point achieves an oracle property in the sense that its asymptotic distri-
bution is the same as if the unknown active sets of regression coefficients were known.
Importantly, we establish this oracle property without a perfect covariate selection,
thereby avoiding the need for the minimum level condition on the signals of active co-
variates. Dealing with high-dimensional quantile regression with an unknown change
point calls for a new proof technique since the quantile loss function is non-smooth
and furthermore the corresponding objective function is non-convex with respect to
the change point. The technique developed in this paper is applicable to a general M-
estimation framework with a change point, which may be of independent interest. The
proposed methods are then illustrated via Monte Carlo experiments and an application
to tipping in the dynamics of racial segregation.

Keywords: Variable selection, high-dimensional M-estimation, sparsity, LASSO, SCAD

∗We would like to thank Bernd Fitzenberger, an editor, an associate editor, and three anonymous referees
for helpful comments. This work was supported in part by Promising-Pioneering Researcher Program through
Seoul National University, by the European Research Council (ERC-2014-CoG-646917-ROMIA), and by the
Research and Scholarship Award grant of University of Maryland.

†Department of Economics, Columbia University, 1022 International Affairs Building 420 West 118th
Street, New York, NY 10027, USA; Institute for Fiscal Studies, 7 Ridgmount Street, London, WC1E 7AE,
UK. Email: sl3841@columbia.edu.

‡Department of Economics, Rutgers University, 75 Hamilton Street, New Brunswick, NJ 08901, USA.
Email: yuan.liao@rutgers.edu.

§Department of Economics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic
of Korea. Email: myunghseo@snu.ac.kr.

¶Economics Discipline Group, University of Technology Sydney, PO Box 123, Broadway NSW 2007,
Australia. Email: yshin12@gmail.com

1

ar
X

iv
:1

60
3.

00
23

5v
2 

 [
st

at
.M

E
] 

 1
6 

D
ec

 2
01

6



1 Introduction

In this paper, we consider a high-dimensional quantile regression model where the sparsity

structure (e.g., identities and effects of contributing regressors) may differ between two sub-

populations, thereby allowing for a possible change point in the model. Let Y ∈ R be a

response variable, Q ∈ R be a scalar random variable that determines a possible change

point, and X ∈ R
p be a p-dimensional vector of covariates. Here, Q can be a component of

X, and p is potentially much larger than the sample size n. Specifically, high-dimensional

quantile regression with a change point is modelled as follows:

Y = XTβ0 +XT δ01{Q > τ0}+ U, (1.1)

where (βT
0 , δ

T
0 , τ0) is a vector of unknown parameters and the regression error U satisfies

P(U ≤ 0|X,Q) = γ for some known γ ∈ (0, 1). Unlike mean regression, quantile regression

analyzes the effects of active regressors on different parts of the conditional distribution of

a response variable. Therefore, it allows the sparsity patterns to differ at different quantiles

and also handles heterogeneity due to either heteroskedastic variance or other forms of non-

location-scale covariate effects. By taking into account a possible change point in the model,

we provide a more realistic picture of the sparsity patterns. For instance, when analyzing

high-dimensional gene expression data, the identities of contributing genes may depend on

the environmental or demographical variables (e.g., exposed temperature, age or weights).

Our paper is closely related to the literature on models with unknown change points

(e.g., Tong (1990), Chan (1993), Hansen (1996, 2000), Pons (2003), Kosorok and Song

(2007), Seijo and Sen (2011a,b) and Li and Ling (2012) among many others). Recent papers

on change points under high-dimensional setups include Enikeeva and Harchaoui (2013);

Chan et al. (2014), Frick et al. (2014), Cho and Fryzlewicz (2015), Chan et al. (2016), Callot

et al. (2016), and Lee et al. (2016) among others; however, none of these papers consider

a change point in high-dimensional quantile regression. The literature on high-dimensional
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quantile regression includes Belloni and Chernozhukov (2011), Bradic et al. (2011), Wang

et al. (2012), Wang (2013), and Fan et al. (2014) among others. All the aforementioned

papers on quantile regression are under the homogeneous sparsity framework (equivalently,

assuming that δ0 = 0 in (1.1)). Ciuperca (2013) considers penalized estimation of a quantile

regression model with breaks, but the corresponding analysis is restricted to the case when

p is small.

In this paper, we consider estimating regression coefficients α0 ≡ (βT
0 , δ

T
0 )

T as well as

the threshold parameter τ0 and selecting the contributing regressors based on ℓ1-penalized

estimators. One of the strengths of our proposed procedure is that it does not require to

know or pretest whether δ0 = 0 or not, that is, whether the population’s sparsity structure

and covariate effects are invariant or not. In other words, we do not need to know whether

the threshold τ0 is present in the model.

For a sparse vector v ∈ R
p, we denote the active set of v as J(v) ≡ {j : vj 6= 0}. One of

the main contributions of this paper is that our proposed estimator of τ0 achieves an oracle

property in the sense that its asymptotic distribution is the same as if the unknown active

sets J(β0) and J(δ0) were known. Importantly, we establish this oracle property without

assuming a perfect covariate selection, thereby avoiding the need for the minimum level

condition on the signals of active covariates.

The proposed estimation method in this paper consists of three main steps: in the first

step, we obtain the initial estimators of α0 and τ0, whose rates of convergence may be

suboptimal; in the second step, we re-estimate τ0 to obtain an improved estimator of τ0

that converges at the rate of OP (n
−1) and achieves the oracle property mentioned above;

in the third step, using the second step estimator of τ0, we update the estimator of α0.

In particular, we propose two alternative estimators of α0, depending on the purpose of

estimation (prediction vs. variable selection).

The most closely related work is Lee et al. (2016). However, there are several important

differences: first, Lee et al. (2016) consider a high-dimensional mean regression model with a
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homoskedastic normal error and with deterministic covariates; second, their method consists

of one-step least squares estimation with an ℓ1 penalty; third, they derive non-asymptotic

oracle inequalities similar to those in Bickel et al. (2009) but do not provide any distribu-

tional result on the estimator of the change point. Compared to Lee et al. (2016), dealing

with high-dimensional quantile regression with an unknown change point calls for a new

proof technique since the quantile loss function is different from the least squares objec-

tive function and is non-smooth. In addition, we allow for heteroskesdastic and non-normal

regression errors and stochastic covariates. These changes coupled with the fact that the

quantile regression objective function is non-convex with respect to the threshold parame-

ter τ0 raise new challenges. It requires careful derivation and multiple estimation steps to

establish the oracle property for the estimator of τ0 and also to obtain desirable properties

of the estimator of α0. The technique developed in this paper is applicable to a general

M-estimation framework with a change point, which may be of independent interest.

One particular application of (1.1) comes from tipping in the racial segregation in social

sciences (see, e.g. Card et al., 2008). The empirical question addressed in Card et al. (2008) is

whether and the extent to which the neighborhood’s white population decreases substantially

when the minority share in the area exceeds a tipping point (or change point). In Section 7,

we use the US Census tract dataset constructed by Card et al. (2008) and confirm that the

tipping exists in the neighborhoods of Chicago.

The remainder of the paper is organized as follows. Section 2 provides an informal de-

scription of our estimation methodology. In Section 3, we derive the consistency of the

estimators in terms of the excess risk. Further asymptotic properties of the proposed es-

timators are given in Sections 4 and 5. In Section 6, we present the results of extensive

Monte Carlo experiments. Section 7 illustrates the usefulness of our method by applying

it to tipping in the racial segregation. Section 8 concludes and Appendix A describes in

detail regarding how to construct the confidence interval for τ0. In Appendix B, we provide

a set of regularity assumptions to derive asymptotic properties of the proposed estimators
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in Sections 4 and 5. Online supplements are comprised of 6 appendices for all the proofs as

well as additional theoretical and numerical results that are left out for the brevity of the

paper.

Notation. Throughout the paper, we use |v|q for the ℓq norm for a vector v with

q = 0, 1, 2. We use |v|∞ to denote the sup norm. For two sequences of positive real numbers

an and bn, we write an ≪ bn and equivalently bn ≫ an if an = o(bn). If there exists a

positive finite constant c such that an = c ·bn, then we write an ∝ bn. Let λmin(A) denote the

minimum eigenvalue of a matrix A. We use w.p.a.1 to mean “with probability approaching

one.” We write θ0 ≡ β0 + δ0. For a 2p dimensional vector α, let αJ and αJc denote its

subvectors formed by indices in J(α0) and {1, ..., 2p} \ J(α0), respectively. Likewise, let

XJ(τ) denote the subvector of X(τ) ≡ (XT , XT1{Q > τ})T whose indices are in J(α0). The

true parameter vectors β0, δ0 and θ0 (except τ0) are implicitly indexed by the sample size n,

and we allow that the dimensions of J(β0), J(δ0) and J(θ0) can go to infinity as n → ∞. For

simplicity, we omit their dependence on n in our notation. We also use the terms ‘change

point’ and ‘threshold’ interchangeably throughout the paper.

2 Estimators

2.1 Definitions

In this section, we describe our estimation method. We take the check function approach

of Koenker and Bassett (1978). Let ρ(t1, t2) ≡ (t1 − t2)(γ − 1{t1 − t2 ≤ 0}) denote the loss

function for quantile regression. Let A and T denote the parameter spaces for α0 ≡ (βT
0 , δ

T
0 )

T

and τ0, respectively. For each α ≡ (β, δ) ∈ A and τ ∈ T , we write XTβ +XT δ1{Q > τ} =

X(τ)Tα with the shorthand notation that X(τ) ≡ (XT , XT1{Q > τ})T . We suppose that

the vector of true parameters is defined as the minimizer of the expected loss:

(α0, τ0) = argmin
α∈A,τ∈T

E
[
ρ(Y,X(τ)Tα)

]
. (2.1)
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By construction, τ0 is not unique when δ0 = 0. However, if δ0 = 0, then the model reduces to

the linear quantile regression model in which β0 is identifiable under the standard assump-

tions. In Appendix C.1, we provide sufficient conditions under which α0 and τ0 are identified

when δ0 6= 0.

Suppose we observe independent and identically distributed samples {Yi, Xi, Qi}i≤n. Let

Xi(τ) and Xij (τ) denote the i-th realization of X(τ) and j-th element of Xi (τ) , respectively,

i = 1, . . . , n and j = 1, . . . , 2p, so that Xij(τ) ≡ Xij if j ≤ p and Xij(τ) ≡ Xi,j−p1{Qi > τ}

otherwise. Define

Rn(α, τ) ≡
1

n

n∑

i=1

ρ(Yi, Xi(τ)
Tα) =

1

n

n∑

i=1

ρ(Yi, X
T
i β +XT

i δ1{Qi > τ}).

In addition, let Dj(τ) ≡ {n−1
∑n

i=1 Xij(τ)
2}1/2, j = 1, . . . , 2p.

We describe the main steps of our ℓ1-penalized estimation method. For some tuning

parameter κn, define:

Step 1: (ᾰ, τ̆) = argminα∈A,τ∈T Rn(α, τ) + κn

2p∑

j=1

Dj(τ)|αj|. (2.2)

This step produces an initial estimator (ᾰ, τ̆). The tuning parameter κn is required to satisfy

κn ∝ (log p)(log n)

√
log p

n
. (2.3)

Note that we take κn that converges to zero at a rate slower than the standard (log p/n)1/2

rate in the literature. This modified rate of κn is useful in our context to deal with an

unknown τ0. A data-dependent method of choosing κn is discussed in Section 2.3.

Remark 2.1. Define dj ≡ ( 1
n

∑n
i=1 X

2
ij)

1/2 and dj(τ) ≡ ( 1
n

∑n
i=1 X

2
ij1{Qi > τ})1/2. Note

that
∑2p

j=1 Dj(τ)|αj| =
∑p

j=1 dj|βj| +
∑p

j=1 dj(τ)|δj|, so that the weight Dj(τ) adequately

balances the regressors; the weight dj regarding |βj| does not depend on τ , while the weight

dj(τ) with respect to |δj| does, which takes into account the effect of the threshold τ on the
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parameter change δ.

Remark 2.2. The computational cost in Step 1 is the multiple of grid points to the compu-

tational time of estimating the linear quantile model with an ℓ1 penalty, which is solvable in

polynomial time (see e.g. Belloni and Chernozhukov (2011) and Koenker and Mizera (2014)

among others).

The main purpose of the first step is to obtain an initial estimator of α0. The achieved

convergence rates of this step might be suboptimal due to the uniform control of the score

functions over the space T of the unknown τ0.

In the second step, we introduce our improved estimator of the change point τ0. It does

not use a penalty term, while using the first step estimator of α0. Define:

Step 2: τ̂ = argmin
τ∈T

Rn(ᾰ, τ), (2.4)

where ᾰ is the first step estimator of α0 in (2.2). In Section 4, we show that when τ0 is

identifiable, τ̂ is consistent for τ0 at a rate of n−1. Furthermore, we obtain the limiting

distribution of n(τ̂ − τ0), and establish conditions under which its asymptotic distribution is

the same as if the true α0 were known, without a perfect model selection on α0, nor assuming

the minimum signal condition on the nonzero elements of α0.

In the third step, we update the Lasso estimator of α0 using a different value of the penal-

ization tuning parameter and the second step estimator of τ0. In particular, we recommend

two different estimators of α0 : one for the prediction and the other for the variable selection,

serving for different purposes of practitioners. For two different tuning parameters ωn and
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µn whose rates will be specified later by (2.7) and (4.1), define:

Step 3a (for prediction):

α̂ = argminα∈ARn(α, τ̂) + ωn

2p∑

j=1

Dj(τ̂)|αj|, (2.5)

Step 3b (for variable selection):

α̃ = argminα∈ARn(α, τ̂) + µn

2p∑

j=1

wjDj(τ̂)|αj|, (2.6)

where τ̂ is the second step estimator of τ0 in (2.4), and the “signal-adaptive” weight wj in

(2.6), motivated by the local linear approximation of the SCAD penalties (Fan and Li, 2001;

Zou and Li, 2008), is calculated based on the Step 3a estimator α̂ from (2.5):

wj ≡





1, |α̂j| < µn

0, |α̂j| > aµn

aµn−|α̂j |
µn(a−1)

µn ≤ |α̂j| ≤ aµn.

Here a > 1 is some prescribed constant, and a = 3.7 is often used in the literature. We take

this as our choice of a.

Remark 2.3. For α̂ in (2.5), we set ωn to converge to zero at a rate of (log(p ∨ n)/n)1/2:

ωn ∝
√

log(p ∨ n)

n
, (2.7)

which is a more standard rate compared to κn in (2.3)). Therefore, the estimator α̂ converges

in probability to α0 faster than ᾰ. In addition, µn in (2.6) is chosen to be slightly larger

than ωn for the purpose of the variable selection. A data-dependent method of choosing ωn

as well as µn is discussed in Section 2.3. In Sections 4 and 5, we establish conditions under

which α̂ achieves the (minimax) optimal rate of convergence in probability for α0 regardless
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of the identifiability of τ0.

Remark 2.4. It is well known in linear models without the presence of an unknown τ0

(see, e.g. Bühlmann and van de Geer (2011)) that the Lasso estimator may not perform

well for the purpose of the variable selection. The estimator α̃ defined in Step 3b uses an

entry-adaptive weight wj that corrects the shrinkage bias, and possesses similar merits of

the asymptotic unbiasedness of the SCAD penalty. Therefore, we recommend α̂ for the

prediction; while suggesting α̃ for the variable selection.

Remark 2.5. Note that the objective function is non-convex with respect to τ in the first and

second steps. However, the proposed estimators can be calculated efficiently using existing

algorithms, and we describe the computation algorithms in Section 2.3.

Remark 2.6. Step 2 can be repeated using the updated estimator of α0 in Step 3. Anal-

ogously, Step 3 can be iterated after that. This would give asymptotically equivalent es-

timators but might improve the finite-sample performance especially when p is very large.

Repeating Step 2 might be useful especially when δ̆ = 0 in the first step. In this case, there

is no unique τ̂ in Step 2. So, we skip the second step by setting τ̂ = τ̆ and move to the third

step directly. If a preferred estimator of δ0 in the third step (either δ̂ or δ̃), depending on

the estimation purpose, is different from zero, we could go back to Step 2 and re-estimate

τ0. If the third step estimator of δ0 is also zero, then we conclude that there is no change

point and disregard the first-step estimator τ̆ since τ0 is not identifiable in this case.

2.2 Comparison of Estimators in Step 3

Step 3 defines two estimators for α0. In this subsection we briefly explain their major dif-

ferences and purposes. Step 3b is particularly useful when the variable selection consistency

is the main objective, yet it often requires the minimum signal condition (minα0j 6=0 |α0j|

is well separated from zero). In contrast, Step 3a does not require the minimum signal

condition, and is recommended for prediction purposes. More specifically:
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1. If the minimum signal condition (5.1) indeed holds, a perfect variable selection (variable

selection consistency) is possible. Indeed, thanks to the signal-adaptive weights, the

estimator of Step 3b introduces little shrinkage biases. As a result, we show in Theorem

4.5 that under very mild conditions, this estimator achieves the variable selection

consistency. In contrast, Step 3a does not use signal-adaptive weights. In order to

achieve the variable selection consistency, it has to rely on much stronger conditions

on the design matrix (i.e., the irrepresentable condition of Zhao and Yu (2006)) so as to

“balance out” the effects of shrinkage biases, and is less adaptive to correlated designs.

2. In the presence of the minimum signal condition, not only does Step 3b achieve the

variable selection consistency, it also has a better rate of convergence than Step 3a

(Theorem 4.5). The faster rate of convergence is built on the variable selection con-

sistency, and is still a consequence of the signal-adaptive weights. Intuitively, nonzero

elements of α0 are easier to identify and estimate when the signal is strong. Such a

phenomenon has been observed in the literature; see, e.g., Fan and Lv (2011) and many

papers on variable selections using “folded-concave” penalizations.

3. In the absence of the minimum signal condition, neither method can achieve variable

selection consistency. However, it is not a requirement for the prediction purpose. In

this case, we recommend the estimator of Step 3a, because it achieves a fast (minimax)

rate of convergence (Theorem 4.4), which is useful for predictions.

4. Finally, we show in Theorem 4.7 that without the minimum signal condition, Step

3b, with the signal-adaptive weights, does not perform badly, in the sense that it still

results in estimation and prediction consistency. However, the rate of convergence is

slower than that of Step 3a.

10



2.3 Tuning parameter selection

In this subsection, we provide details on how to choose tuning parameters in applications.

Recall that our procedure involves three tuning parameters in the penalization: (1) κn in

Step 1 ought to dominate the score function uniformly over the range of τ , and hence should

be slightly larger than the others; (2) ωn is used in Step 3a for the prediction, and (3) µn in

Step 3b for the variable selection should be larger than ωn. Note that the tuning parameters

in both Steps 3a and 3b are similar to those of the existing literature since the change point

τ̂ has been estimated.

We build on the data-dependent selection method in Belloni and Chernozhukov (2011).

Define

Λ(τ) := max
1≤j≤2p

∣∣∣∣∣
1

n

n∑

i=1

Xij(τ) (γ − 1{Ui ≤ γ})
Dj(τ)

∣∣∣∣∣ , (2.8)

where Ui is simulated from the i.i.d. uniform distribution on the interval [0, 1]; γ is the

quantile of interest (e.g. γ = 0.5 for median regression). Note that Λ(τ) is a stochastic

process indexed by τ . Let Λ1−ǫ∗ be the (1− ǫ∗)-quantile of supτ∈T Λ(τ), where ǫ∗ is a small

positive constant that will be selected by a user. Then, we select the tuning parameter in

Step 1 by κn = c1 · Λ1−ǫ∗ . Similarly, let Λ1−ǫ∗(τ̂) be the (1− ǫ∗)-quantile of Λ(τ̂), where τ̂ is

chosen in Step 2. We select ωn and µn in Step 3 by ωn = c1 · Λ1−ǫ∗(τ̂) and µn = c2 · ωn. It

is also necessary to choose T in applications. In our Monte Carlo experiments in Section 6,

we take T to be the interval from the 15th percentile to the 85th percentile of the empirical

distribution of the threshold variable Qi. For example, Hansen (1996) employed the same

range in his application to U.S. GNP dynamics.

Based on the suggestions of Belloni and Chernozhukov (2011) and some preliminary

simulations, we choose to set c1 = 1.1, c2 = log log n, and ǫ∗ = 0.1. In addition, recall that

we set a = 3.7 when calculating the SCAD weights wj in Step 3b following the convention

in the literature (e.g. Fan and Li (2001) and Loh and Wainwright (2013)). In Step 1, we
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first solve the lasso problem for α given each grid point of τ ∈ T . Then, we choose τ̆ and

the corresponding ᾰ(τ̆) that minimize the objective function. Step 2 can be solved simply

by the grid search. Step 3 is a standard lasso quantile regression estimation given τ̂ , whose

numerical implementation is well established. We use the rq() function of the R ‘quantreg’

package with the method = "lasso" in each implementation of the standard lasso quantile

regression estimation (Koenker, 2016).

3 Risk Consistency

Given the loss function ρ(t1, t2) ≡ (t1− t2)(γ− 1{t1− t2 ≤ 0}) for the quantile regression

model, define the excess risk to be

R(α, τ) ≡ Eρ(Y,X(τ)Tα)− Eρ(Y,X(τ0)
Tα0). (3.1)

By the definition of (α0, τ0) in (2.1), we have that R(α, τ) ≥ 0 for any α ∈ A and τ ∈ T .

What we mean by the “risk consistency” here is that the excess risk converges in probabil-

ity to zero for the proposed estimators. The other asymptotic properties of the proposed

estimators will be presented in Sections 4 and 5.

In this section, we begin by stating regularity conditions that are needed to develop our

first theoretical result. Recall that Xij denotes the jth element of Xi.

Assumption 1 (Setting). (i) The data {(Yi, Xi, Qi)}ni=1 are independent and identically

distributed. Furthermore, for all j and every integer m ≥ 1, there is a constant K1 < ∞

such that E |Xij|m ≤ m!
2
Km−2

1 .

(ii) P(τ1 < Q ≤ τ2) ≤ K2(τ2 − τ1) for any τ1 < τ2 and some constant K2 < ∞.

(iii) α0 ∈ A ≡ {α : |α|∞ ≤ M1} for some constant M1 < ∞, and τ0 ∈ T ≡ [τ , τ ]. Further-
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more, the probability of {Q < τ} and that of {Q > τ} are strictly positive, and

sup
j≤p

sup
τ∈T

E[X2
ij|Q = τ ] < ∞.

(iv) There exist universal constants D > 0 and D > 0 such that w.p.a.1,

0 < D ≤ min
j≤2p

inf
τ∈T

Dj(τ) ≤ max
j≤2p

sup
τ∈T

Dj(τ) ≤ D < ∞.

(v) E

[(
XT δ0

)2 |Q = τ
]
≤ M2|δ0|22 for all τ ∈ T and for some constant M2 satisfying

0 < M2 < ∞.

In addition to the random sampling assumption, condition (i) imposes mild moment

restrictions on X. Condition (ii) imposes a weak restriction that the probability that Q ∈

(τ1, τ2] is bounded by a constant times (τ2 − τ1). Condition (iii) assumes that the parameter

space is compact and that the support of Q is strictly larger than T . These conditions

are standard in the literature on change-point and threshold models (e.g., Seijo and Sen

(2011a,b)). Condition (iii) also assumes that the conditional expectation of E[X2
ij|Q = ·]

is bounded on T uniformly in j. Condition (iv) requires that each regressor be of the

same magnitude uniformly over the threshold τ . As the data-dependent weights Dj(τ) are

the sample second moments of the regressors, it is not stringent to assume them to be

bounded away from both zero and infinity. Condition (v) puts some weak upper bound on

E[
(
XT δ0

)2 |Q = τ ] for all τ ∈ T when δ0 6= 0. A simple sufficient condition for condition (v)

is that the eigenvalues of E[XJ(δ0)X
T
J(δ0)

|Q = τ ] are bounded uniformly in τ , where XJ(δ0)

denotes the subvector of X corresponding to the nonzero components of δ0.

Throughout the paper, we let s ≡ |J(α0)|0, namely the cardinality of J(α0). We allow

that s → ∞ as n → ∞ and will give precise regularity conditions regarding its growth rates.

The following theorem is concerned about the convergence of R(ᾰ, τ̆) with the first step

estimator.
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Theorem 3.1 (Risk Consistency). Let Assumption 1 hold. Suppose that the tuning param-

eter κn satisfies (2.3). Then, R(ᾰ, τ̆) = OP (κns) .

Note that Theorem 3.1 holds regardless of the identifiability of τ0 (that is, whether δ0 = 0

or not). In addition, the rate OP (κns) is achieved regardless of whether κns converges, and

we have the risk consistency if κns → 0 as n → ∞. The restriction on s is slightly stronger

than that of the standard result s = o(
√

n/ log p) in the literature for the M-estimation (see,

e.g. van de Geer (2008) and Chapter 6.6 of Bühlmann and van de Geer (2011)) since the

objective function ρ(Y,X(τ)Tα) is non-convex in τ , due to the unknown change-point.

Remark 3.1. The extra logarithmic factor (log p)(log n) in the definition of κn (see (2.3))

is due to the existence of the unknown and possibly non-identifiable threshold parameter

τ0. In fact, an inspection of the proof of Theorem 3.1 reveals that it suffices to assume that

κn satisfies κn ≫ log2(p/s)[log(np)/n]
1/2. The term log2(p/s) and the additional (log n)1/2

term inside the brackets are needed to establish the stochastic equicontinuity of the empirical

process

νn (α, τ) ≡
1

n

n∑

i=1

[
ρ
(
Yi, Xi (τ)

T α
)
− Eρ

(
Y,X (τ)T α

)]

uniformly over (α, τ) ∈ A× T .

In Appendix C.2, we show that an improved rate of convergence, OP (ωns), is possible

for the excess risk by taking the second and third steps of estimation.

4 Asymptotic Properties: Case I. δ0 6= 0

Sections 4 and 5 provide asymptotic properties of the proposed estimators. In Appendix

B, we list a set of assumptions that are needed to derive these properties, in addition to

Assumption 1. We first establish the consistency of τ̆ for τ0.

Theorem 4.1 (Consistency of τ̆). Let Assumptions 1, 2, 5, and 6 hold. Furthermore, assume

that κns = o(1). Then, τ̆
P−→ τ0.
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The following theorem presents the rates of convergence for the first step estimators of

α0 and τ0. Recall that κn is the first-step penalization tuning parameter that satisfies (2.3).

Theorem 4.2 (Rates of Convergence When δ0 6= 0). Suppose that κns
2 log p = o(1). Then

under Assumptions 1-6, we have:

|ᾰ− α0|1 = OP (κns), R(ᾰ, τ̆) = OP (κ
2
ns), and |τ̆ − τ0| = OP (κ

2
ns).

In Theorem 3.1, we have that R(ᾰ, τ̆) = OP (κns) . The improved rate of convergence for

R(ᾰ, τ̆) in Theorem 4.2 is due to additional assumptions (in particular, compatibility condi-

tions in Assumption 3 among others). It is worth noting that τ̆ converges to τ0 faster than the

standard parametric rate of n−1/2, as long as s2(log p)6(log n)4 = o(n). The main reason for

such super-consistency is that the objective function behaves locally linearly around τ0 with

a kink at τ0, unlike in the regular estimation problem where the objective function behaves

locally quadratically around the true parameter value. Moreover, the achieved convergence

rate for ᾰ is nearly minimax optimal, with an additional factor (log p)(log n) compared to

the rate of regular Lasso estimation (e.g., Bickel et al. (2009); Raskutti et al. (2011)). This

factor arises due to the unknown change-point τ0. We will improve the rates of convergence

for both τ0 and α0 further by taking the second and third steps of estimation.

Recall that the second-step estimator of τ0 is defined as

τ̂ = argmin
τ∈T

Rn(ᾰ, τ),

where ᾰ is the first step estimator of α0 in (2.2). Consider an oracle case for which α in

Rn(α, τ) is fixed at α0. Let R
∗
n (τ) = Rn (α0, τ) and

τ̃ = argmin
τ∈T

R∗
n (τ) .

We now give one of the main results of this paper.
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Theorem 4.3 (Oracle Estimation of τ0). Let Assumptions 1-6 hold. Furthermore, suppose

that κns
2 log p = o(1). Then, we have that

τ̂ − τ̃ = oP
(
n−1
)
.

Furthermore, n (τ̂ − τ0) converges in distribution to the smallest minimizer of a compound

Poisson process, which is given by

M (h) ≡
N1(−h)∑

i=1

ρ1i1 {h < 0}+
N2(h)∑

i=1

ρ2i1 {h ≥ 0} ,

where N1 and N2 are Poisson processes with the same jump rate fQ (τ0), and {ρ1i} and

{ρ2i} are two sequences of independent and identically distributed random variables. The

distributions of ρ1i and ρ2i, respectively, are identical to the conditional distributions of

ρ̇
(
Ui −XT

i δ0
)
−ρ̇ (Ui) and ρ̇

(
Ui +XT

i δ0
)
−ρ̇ (Ui) given Qi = τ0, where ρ̇ (t) ≡ t (γ − 1 {t ≤ 0})

and Ui ≡ Yi−XT
i β0−XT

i δ01 {Qi > τ0} for each i = 1, . . . , n. Here, N1, N2, {ρ1i} and {ρ2i}

are mutually independent.

The first conclusion of Theorem 4.3 establishes that the second step estimator of τ0 is

an oracle estimator in the sense that it is asymptotically equivalent to the infeasible, oracle

estimator τ̃ . As emphasized in the introduction, the oracle property is obtained without

relying on the perfect model selection in the first step nor on the existence of the minimum

signal condition on active covariates. The second conclusion of Theorem 4.3 follows from

combining well-known weak convergence results in the literature (see e.g. Pons (2003);

Kosorok and Song (2007); Lee and Seo (2008)) with the argmax continuous mapping theorem

by Seijo and Sen (2011b).

Remark 4.1. Li and Ling (2012) propose a numerical approach for constructing a confidence

interval by simulating a compound Poisson process in the context of least squares estimation.

We adopt their approach to simulate the compound Poisson process for quantile regression.
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See Appendix A for a detailed description of how to construct a confidence interval for τ0.

We now consider the Step 3a estimator of α0 defined in (2.5). Recall that ωn is the Step

3a penalization tuning parameter that satisfies (2.7).

Theorem 4.4 (Improved Rates of Convergence When δ0 6= 0). Suppose that κns
2 log p =

o(1). Then under Assumptions 1-6,

|α̂− α0|1 = OP (ωns) and R(α̂, τ̂) = OP (ω
2
ns).

Theorem 4.4 shows that the estimator α̂ defined in Step 3a achieves the optimal rate of

convergence in terms of prediction and estimation. In other words, when ωn is proportional

to {log(p ∨ n)/n}1/2 in equation (2.7) and p is larger than n, it obtains the minimax rates

as in e.g., Raskutti et al. (2011).

As we mentioned in Section 2, the Step 3b estimator of α0 has the purpose of the variable

selection. The nonzero components of α̃ are expected to identify contributing regressors.

Partition α̃ = (α̃J , α̃Jc) such that α̃J = (α̃j : j ∈ J(α0)) and α̃Jc = (α̃j : j /∈ J(α0)). Note

that α̃J consists of the estimators of β0J and δ0J , whereas α̃Jc consists of the estimators of

all the zero components of β0 and δ0. Let α
(j)
0J denote the j-th element of α0J .

We now establish conditions under which the estimator α̃ defined in Step 3b has the

change-point-oracle properties, meaning that it achieves the variable selection consistency

and has the limiting distributions as though the identities of the important regressors and

the location of the change point were known.

Theorem 4.5 (Variable Selection When δ0 6= 0). Suppose that κns
2 log p = o(1), s4 log s =

o(n), and

ωn + s

√
log s

n
≪ µn ≪ min

j∈J(α0)
|α(j)

0J |. (4.1)
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Then under Assumptions 1-6, we have: (i)

|α̃J − α0J |2 = OP

(√
s log s

n

)
, |α̃J − α0J |1 = OP

(
s

√
log s

n

)
,

(ii)

P (α̃Jc = 0) → 1,

and (iii)

R(α̃, τ̂) = OP

(
µns

√
log s

n

)
.

We see that (4.1) provides a condition on the strength of the signal via minj∈J(α0) |α
(j)
0J |,

and the tuning parameter in Step 3b should satisfy ωn ≪ µn and s2 log s/n ≪ µ2
n. Hence

the variable selection consistency demands a larger tuning parameter than in Step 3a.

To conduct statistical inference, we now discuss the asymptotic distribution of α̃J . Define

α̂∗
J ≡ argminαJ

R∗
n (αJ , τ0). Note that the asymptotic distribution for α̂∗

J corresponds to an

oracle case that we know τ0 as well as the true active set J(α0) a priori. The limiting

distribution of α̃J is the same as that of α̂∗
J . Hence, we call this result the change-point-

oracle property of the Step 3b estimator and the following theorem establishes this property.

Theorem 4.6 (Change-Point-Oracle Properties). Suppose that all the conditions imposed

in Theorem 4.5 are satisfied. Furthermore, assume that ∂
∂α
E
[
ρ
(
Y,XTα

)
|Q = t

]
exists for

all t in a neighborhood of τ0 and all its elements are continuous and bounded, and that

s3(log s)(log n) = o (n). Then, we have that α̃J = α̂∗
J + oP (n

−1/2).

Since the sparsity index (s) grows at a rate slower than the sample size (n), it is straight-

forward to establish the asymptotic normality of a linear transformation of α̃J , i.e., Lα̃J ,

where L : Rs → R with |L|2 = 1, by combing the existing results on quantile regression with

parameters of increasing dimension (see, e.g. He and Shao (2000)) with Theorem 4.6.

Remark 4.2. Without the condition on the strength of minimal signals, it may not be possi-

ble to achieve the variable selection consistency or establish change-point-oracle properties.
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However, the following theorem shows that the SCAD-weighted penalized estimation can

still achieve a satisfactory rate of convergence in estimation of α0 without the condition that

µn ≪ minj∈J(α0) |α
(j)
0J |. Yet, the rates of convergence are slower than those of Theorem 4.5.

Theorem 4.7 (Satisfactory Rates Without Minimum Signal Condition). Assume that As-

sumptions 1-6 hold. Suppose that κns
2 log p = o(1) and ωn ≪ µn. Then, without the lower

bound requirement on minj∈J(α0) |α
(j)
0J |, we have that |α̃ − α0|1 = OP (µns) . In addition,

R(α̃, τ̂) = OP (µ
2
ns).

5 Asymptotic Properties: Case II. δ0 = 0

In this section, we show that our estimators have desirable results even if there is no

change point in the true model. The case of δ0 = 0 corresponds to the high-dimensional linear

quantile regression model. Since XTβ0+XT δ01{Q > τ0} = XTβ0, τ0 is non-identifiable, and

there is no structural change on the coefficient. But a new analysis different from that of

the standard high-dimensional model is still required because in practice we do not know

whether δ0 = 0 or not. Thus, the proposed estimation method still estimates τ0 to account

for possible structural changes. The following results show that in this case, the first step

estimator of α0 will asymptotically behave as if δ0 = 0 were a priori known.

Theorem 5.1 (Rates of Convergence When δ0 = 0). Suppose that κns = o(1). Then under

Assumptions 1-4, we have that

|ᾰ− α0|1 = OP (κns) and R(ᾰ, τ̆) = OP (κ
2
ns).

The results obtained in Theorem 5.1 combined with those obtained in Theorem 4.2 imply

that the first step estimatior performs equally well in terms of rates of convergence for both

the ℓ1 loss for ᾰ and the excess risk regardless of the existence of the threshold effect. It is

straightforward to obtain an improved rate result for the Step 3a estimator, equivalent to
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Theorem 4.4 under Assumptions 1-4. We omit the details for brevity.

We now give a result that is similar to Theorem 4.5 and Theorem 4.7.

Theorem 5.2 (Variable Selection When δ0 = 0). Suppose that κns = o(1), s4 log s = o(n),

ωn + s
√

log s
n

≪ µn, and Assumptions 1-4 hold. We have:

(i) If the minimum signal condition holds:

µn = o

(
min

j∈J(α0)
|α(j)

0J |
)
, (5.1)

then
∣∣∣β̃J − β0J

∣∣∣
2
= OP

(√
s log s

n

)
,
∣∣∣β̃J − β0J

∣∣∣
1
= OP

(
s

√
log s

n

)
,

P (β̃Jc = 0) → 1, P (δ̃ = 0) → 1, and R(α̃, τ̂) = OP

(
µns

√
log s

n

)
.

(ii) Without the minimum signal condition (5.1), we have:

R(α̃, τ̂) = OP (µ
2
ns), |α̃− α0|1 = OP (sµn).

Theorem 5.2 demonstrates that when there is in fact no change point, our estimator for

δ0 is exactly zero with a high probability. Therefore, the estimator can also be used as a

diagnostic tool to check whether there exists any change point. Results similar to Theorems

4.6 can be established straightforwardly as well; however, their details are omitted for brevity.

6 Monte Carlo Experiments

In this section we provide the results of Monte Carlo experiments. The baseline model

is based on the following data generating process: for i = 1, . . . , n,

Yi = X ′
i(β0 + ξ10Ui) + 1{Qi > τ0}X ′

i(δ0 + ξ20Ui), (6.1)
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where Ui follows N(0, 0.52), and Qi follows the uniform distribution on the interval [0, 1].

The p-dimensional covariate Xi is composed of a constant and Zi, i.e. X := (1, ZT
i )

T , where

Zi follows the multivariate normal distribution N(0,Σ) with a covariance matrix Σij =

(1/2)|i−j|. Here, the variables Ui, Qi and Zi are independent of each other. Note that the

conditional γ-quantile of Yi given (Xi, Qi) has the form:

Quantγ(Yi|Xi, Qi) = X ′
iβγ + 1{Qi < τ0}X ′

iδγ, (6.2)

where βγ = β0 + ξ10 ·Quantγ(U) and δγ = δ0 + ξ20 ·Quantγ(U).

We consider three quantile regression models with γ = 0.25, 0.5, and 0.75. The p-

dimensional parameters β0, δ0, ξ10, and ξ20 are set to β0 = (0, Quant0.75(U) ≈ 0.34, 0, . . . , 0),

δ0 = (0, 1, 0, . . . , 0), ξ10 = (0, 1, 0, . . . , 0), and ξ20 = (0, 0, 0, . . . , 0), respectively. Because

of the heteroskedasticity, the true parameter value βγ at each quantile is β0.25 = (0, . . . , 0),

β0.5 = (0, 0.34, . . . , 0), and β0.75 = (0, 0.68, . . . , 0). Note that nonzero coefficients are different

between when γ = 0.25 and when γ = 0.5 or γ = 0.75.

We set the change point parameter τ0 = 0.5 unless it is specified differently. The sample

sizes are set to n = 200 and 400. The dimension of Xi is set to p = 250. Note that we

have 500 regressors in total. The change point τ is estimated over grid points of the sample

observations {Qi}, where the range is limited to those between the 0.15-quantile and the

0.85-quantile. We conduct 1,000 replications of each design.

We compare estimation results of each step. To assess the performance of our estimators,

we also compare the results with two “oracle estimators”. Specifically, Oracle 1 knows the

true active set J(αγ) and the change point parameter τ0, and Oracle 2 knows only J(αγ).

The threshold parameter τ0 is re-estimated in Steps 3a and 3b using updated estimates of

αγ.

Tables 1–3 summarize the simulation results. We abuse notation slightly and denote all

estimators by (α̂, τ̂). They would be understood as (ᾰ, τ̆) in Step 1, τ̂ in Step 2, and so on.
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Table 1: Baseline Model: γ = 0.25
Excess Risk E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop.

n = 200
Oracle 1 0.004 NA 0.005 ( NA / NA ) 0.203 NA NA NA
Oracle 2 0.013 NA 0.005 ( NA / NA ) 0.434 0.012 0.925 NA
Step 1 0.032 4.266 0.433 ( 0.389 / 0.044) 0.727 0.013 0.943 0.032
Step 2 0.032 NA NA ( NA / NA ) 0.705 0.012 0.952 NA
Step 3a 0.031 4.249 0.413 ( 0.370 / 0.043) 0.691 0.012 0.951 0.032
Step 3b 0.022 1.173 0.281 ( 0.221 / 0.060) 0.556 0.012 0.928 0.686
n = 400
Oracle 1 0.002 NA 0.003 ( NA / NA ) 0.145 NA NA NA
Oracle 2 0.006 NA 0.003 ( NA / NA ) 0.313 0.005 0.958 NA
Step 1 0.017 4.352 0.214 ( 0.193 / 0.021) 0.502 0.006 0.959 0.035
Step 2 0.018 NA NA ( NA / NA ) 0.495 0.006 0.969 NA
Step 3a 0.015 4.361 0.207 ( 0.186 / 0.021) 0.486 0.006 0.961 0.031
Step 3b 0.009 1.176 0.062 ( 0.048 / 0.014) 0.315 0.005 0.955 0.816
Note: Oracle 1 knows both J(αγ) and τ0 and Oracle 2 knows only J(αγ). Expectation (E) is calculated by
the average of 1,000 iterations in each design. Note that J(αγ) = 1. ‘NA’ denotes ‘Not Available’ as the
parameter is not estimated in the step. The estimation results for τ at the rows of Step 3a and Step 3b are
based on the re-estimation of τ given estimates from Step 3a (α̂) and Step 3b (α̃).

Table 2: Baseline Model: γ = 0.5
Excess Risk E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop.

n = 200
Oracle 1 0.008 NA 0.012 ( NA / NA ) 0.288 NA NA NA
Oracle 2 0.018 NA 0.012 ( NA / NA ) 0.465 0.011 0.948 NA
Step 1 0.040 5.731 0.279 ( 0.245 / 0.034) 0.723 0.011 0.950 0.015
Step 2 0.036 NA NA ( NA / NA ) 0.729 0.011 0.946 NA
Step 3a 0.039 5.776 0.272 ( 0.239 / 0.033) 0.717 0.011 0.947 0.017
Step 3b 0.040 2.364 0.182 ( 0.155 / 0.027) 0.702 0.011 0.929 0.428
n = 400
Oracle 1 0.004 NA 0.006 ( NA / NA ) 0.201 NA NA NA
Oracle 2 0.008 NA 0.006 ( NA / NA ) 0.337 0.005 0.956 NA
Step 1 0.022 6.055 0.144 ( 0.128 / 0.017) 0.512 0.005 0.953 0.020
Step 2 0.020 NA NA ( NA / NA ) 0.509 0.005 0.950 NA
Step 3a 0.019 6.056 0.142 ( 0.126 / 0.017) 0.517 0.005 0.947 0.020
Step 3b 0.018 2.250 0.061 ( 0.054 / 0.007) 0.460 0.005 0.949 0.649
Note: J(αγ) = 2. See the note below Table 1 for other notation.
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Table 3: Baseline Model: γ = 0.75
Excess Risk E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop.

n = 200
Oracle 1 0.008 NA 0.015 ( NA / NA ) 0.324 NA NA NA
Oracle 2 0.016 NA 0.015 ( NA / NA ) 0.508 0.011 0.941 NA
Step 1 0.043 6.056 0.352 ( 0.310 / 0.042 ) 0.769 0.012 0.930 0.024
Step 2 0.036 NA NA ( NA / NA ) 0.787 0.013 0.911 NA
Step 3a 0.036 6.045 0.349 ( 0.308 / 0.042 ) 0.782 0.013 0.911 0.024
Step 3b 0.029 2.160 0.232 ( 0.188 / 0.044 ) 0.629 0.012 0.925 0.688
n = 400
Oracle 1 0.004 NA 0.007 ( NA / NA ) 0.218 NA NA NA
Oracle 2 0.008 NA 0.007 ( NA / NA ) 0.354 0.005 0.952 NA
Step 1 0.018 6.007 0.169 ( 0.150 / 0.020) 0.538 0.005 0.962 0.013
Step 2 0.019 NA NA ( NA / NA ) 0.571 0.005 0.944 NA
Step 3a 0.019 6.032 0.169 ( 0.149 / 0.020) 0.548 0.005 0.942 0.016
Step 3b 0.010 2.128 0.052 (0.041 / 0.011) 0.367 0.005 0.953 0.860
Note: J(αγ) = 2. See the note below Table 1 for other notation.

We report the excess risk, the average number of parameters selected, E[J(α̂)], and the sum

of the mean squared error of α̂ (α̂J0 / α̂Jc
0
). For each sample, the excess risk is calculated

by the simulation, S−1
∑S

s=1

[
ρ(Ys, X

T
s (τ̂)α̂)− ρ(Ys, X

T
s (τ0)α0)

]
, where S = 10,000 is the

number of simulations; then we report the average value of 1,000 replications. Similarly, we

also calculate prediction errors by the simulation,
(
S−1

∑S
s=1

(
XT

s (τ̂)α̂−XT
s (τ0)αγ

)2)1/2
,

and report the average value.

We also report the root-mean-squared error (RMSE) and the coverage probability of the

95% confidence interval of τ̂ (C. Prob. of τ̂). The confidence intervals for τ0 are calculated

by simulating the two-sided compound Poisson process in Theorem 4.3 by adopting the

approach proposed by Li and Ling (2012). The details are provided in Section A. Li and

Ling (2012) showed that it is valid to simulate the compound poisson process by simulating

the poisson process and the compounding factors from empirical distributions separately

in the context of least squares estimation. We build on their suggestion and modify their

procedure to quantile regression. We did not prove a formal justification for our procedure

in this paper; however, it seems working well in simulations. It is an interesting topic for

future research.

Note that the root-mean-squared error of τ̂ and the coverage probability of the confidence
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interval at the rows of Step 3a and Step 3b in the tables are estimation results of updated

τ̂ : we re-estimate τ as in Step 2 using (Ûi, α̂) and (Ũi, α̃) from Step 3a and Step 3b instead

of (Ŭi, ᾰ). Finally, we also report the oracle proportion (Oracle Prop.), namely the ratio of

the correct model selection out of 1,000 replications.

Overall, the simulation results confirm the asymptotic theory developed in the previous

sections. First, these results show the advantage of quantile regression models over the

existing mean regression models with a change point, e.g. Lee et al. (2016). The proposed

estimator (Step 3b) selects different nonzero coefficients at different quantile levels. The

estimator in Lee et al. (2016) cannot detect these heterogeneous models. In general the

proposed estimators show better performance for heteroskedastic designs and for the fat-tail

error distributions as will be discussed in detail below. Second, when we look at the finite

sample performance of the proposed estimators in Step 3, their prediction errors are within

a reasonable bound from those of Oracles 1 and 2. Recall that we estimate models with

250 times or 500 times more regressors in each design. Third, the root-mean-squared error

of τ̂ decreases quickly and confirms the super-consistency result of τ̂ . Fourth, the coverage

probabilities of the confidence interval are close to 95%, especially when n = 400. Thus,

we recommend practitioners to use τ̂ in Step 2 or the re-estimated version of it based on

the estimates from Step 3a or Step 3b. Finally, the oracle proportion of Step 3b is quite

satisfactory and confirms our results in model selection consistency.

6.1 Comparison with Mean Regression with a Change Point

Table 4 compares the performance of the proposed estimator with that of the mean

regression method in Lee et al. (2016). For the purpose of direct comparison between mean

and median regression models, the tuning parameter λ is fixed to be the same as that in

Step 1 from median regression. We consider three different simulation designs at γ = 0.5

with n = 200. The first model is a homoskedastic model by setting ξ01 = (1, 0, . . . , 0) in the

baseline design. The second model is the same as the heteroskedastic median regression in
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Table 2. The third model is a fat-tail model, where Ui follows a Cauchy distribution with

a scale parameter 0.25 while keeping the heteroskedastic design as the second model. The

mean regression method shows slight over-selection but its performance looks reasonable

in the homoskedastic model. However, the method in Lee et al. (2016) is not robust to

the heteroskedastic errors, which we can observe in Panel B of Table 4. Furthermore, it

cannot detect different nonzero coefficients at different quantile levels while the quantile

method shows such a result in Table 1. Finally, the quantile method works well when the

error distribution follows a Cauchy distribution in Panel C of Table 4. However, the mean

regression method performs poorly with a Cauchy error distribution as the conditional mean

function is not well-defined in this case.

Table 4: Comparison between mean and median regression models with a change point

Panel A—Homoskedastic Model: γ = 0.5 and n = 200
E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ Oracle Prop.

Oracle 1 NA 0.000 (NA / NA) 0.056 NA NA
Oracle 2 NA 0.000 (NA / NA) 0.199 0.003 NA
Step 1 5.919 0.011 ( 0.010 / 0.001) 0.259 0.003 0.026
Step 2 NA NA (NA / NA) 0.248 0.003 NA
Step 3a 5.900 0.011 ( 0.010 / 0.001) 0.257 0.003 0.024
Step 3b 2.001 0.001 ( 0.001 / 0.000) 0.213 0.003 0.999
Mean Reg 8.162 0.010 (0.008 / 0.001) 0.256 0.003 0.000

Panel B—Heteroskedastic Model: γ = 0.5 and n = 200
E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ Oracle Prop.

Oracle 1 NA 0.012 ( NA / NA ) 0.288 NA NA
Oracle 2 NA 0.012 ( NA / NA ) 0.465 0.011 NA
Step 1 5.731 0.279 ( 0.245 / 0.034) 0.723 0.011 0.015
Step 2 NA NA ( NA / NA ) 0.729 0.011 NA
Step 3a 5.776 0.272 ( 0.239 / 0.033) 0.717 0.011 0.017
Step 3b 2.364 0.182 ( 0.155 / 0.027) 0.702 0.011 0.428
Mean Reg 93.550 2.537 ( 0.326 / 2.211 ) 1.572 0.011 0.000

Panel C—Fat-tail Model: γ = 0.5, Ui ∼ Cauchy(0.25) and n = 200
E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ Oracle Prop.

Oracle 1 NA 0.005( NA / NA ) 0.185 NA NA
Oracle 2 NA 0.005( NA / NA ) 0.392 0.011 NA
Step 1 5.843 0.148 ( 0.131 / 0.017) 0.566 0.011 0.022
Step 2 NA NA ( NA / NA ) 0.576 0.011 NA
Step 3a 5.806 0.143 ( 0.126 / 0.017) 0.575 0.011 0.019
Step 3b 2.582 0.074 ( 0.066 / 0.008) 0.575 0.011 0.483
Mean Reg 218.991 5.55× 106 ( 5.45× 103 / 5.50× 106 ) 137.985 0.221 0.000
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6.2 When There Is No Change Point

Table 5 shows the performance of the estimator when there does not exist any change

point. We use the baseline design with γ = 0.75 and set δ = (0, . . . , 0). As we are interested

in the performance of δ̂, we report the average number of parameters selected in δ̂, the MSE

of δ̂, and the proportion of detecting no-change point (No-change Prop.). As predicted by

the theory, all measures on δ̂ indicate that the estimator (Step 3b) detects no-change point

models quite well. Both E[J(δ̂)] and MSE of δ̂ are quite low and no-change proportion

is high. We can also observe much improvement in these measure when the sample size

increases from n = 200 to n = 400.

Table 5: No Change Point: γ = 0.75, δγ = 0
Excess Risk E[J(α̂)] E[J(δ̂)] MSE of α̂ MSE of δ̂ Pred. Er. No-change Prop. Oracle Prop.

n = 200
Oracle 1 0.004 NA NA 0.002 NA 0.196 NA NA
Oracle 2 0.004 NA NA 0.002 NA 0.196 NA NA
Step 1 0.030 4.796 1.149 0.228 0.006 0.618 0.221 0.008
Step 2 0.024 NA NA NA NA 0.617 NA NA
Step 3a 0.026 4.915 1.309 0.226 0.008 0.602 0.142 0.008
Step 3b 0.017 1.520 0.334 0.178 0.007 0.436 0.722 0.541
n = 400
Oracle 1 0.002 NA NA 0.001 NA 0.143 NA NA
Oracle 2 0.002 NA NA 0.001 NA 0.143 NA NA
Step 1 0.015 4.933 1.137 0.126 0.003 0.451 0.223 0.013
Step 2 0.014 NA NA NA NA 0.449 NA NA
Step 3a 0.015 5.042 1.301 0.124 0.004 0.440 0.123 0.010
Step 3b 0.005 1.208 0.141 0.037 0.002 0.197 0.867 0.805
Note: J(αγ) = 1 and J(δγ) = 0.

6.3 When the Minimal Signal in δ is Low

In this subsection, we consider the case when the model contains low minimal signals

in δ. Specifically, we consider the median regression model and set β0.5 = (0, 0.34, 0, . . . , 0)

and δ0.5 = (0, 1, 1/2, 1/4, 1/8, 1/16, 0 . . . , 0). Table 6 reports simulation results in this design.

Note that the simulation design in Table 6 is the same as that reported in Table 2 except

that δ0.5 = (0, 1, 0 . . . , 0) in Table 2. Therefore, we may view that the simulation design in

Table 2 satisfies the minimum signal condition, whereas that of this subsection does not.
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The simulation results in Table 6 are consistent with asymptotic theory in Section 4 and

remarks in Section 2.2 comparing estimators in step 3. The step 3b estimator performs better

than the step 3a estimator in Table 2, but it performs worse in Table 6. Also note that the

oracle proportion is zero for the step 3b estimator, which is expected given low signals in

coefficients. Finally, it is important to note that the performance of the estimators of τ0 is

good in terms of the MSE in the presence of low signals in δ. The coverage probability of

the confidence interval is much higher than the nominal level, which was not observed in

previous simulations. Since the MSE and coverage probability between the infeasible oracle

2 estimator and other estimators are very similar, we interpret that the over-coverage result

is not driven by high-dimensionality of regressors and variable selection. Perhaps this is due

to a larger number of coefficients to estimate for the oracle 2 estimator, compared to Table

2.

Table 6: When the minimal signal in δ is low
Excess Risk E[J0(α̂)] MSE of α̂ (α̂J0

/ α̂Jc

0
) Pred. Er. MSE of τ̂ C. Prob. of τ̂ Oracle Prop

n = 200
Oracle 1 0.024 NA 0.729 (NA / NA ) 0.522 NA NA NA
Oracle 2 0.037 NA 0.729 (NA / NA ) 0.816 0.004 0.995 NA
Step 1 0.054 9.949 0.517 (0.414 / 0.104) 0.946 0.004 0.995 0.000
Step 2 0.054 NA NA (NA / NA ) 0.949 0.004 0.992 NA
Step 3a 0.056 9.923 0.517 ( 0.414 / 0.104) 0.903 0.004 0.991 0.000
Step 3b 0.062 3.327 1.293 ( 1.174 / 0.119) 1.002 0.004 0.990 0.000
n = 400
Oracle 1 0.012 NA 0.339 (NA / NA ) 0.365 NA NA NA
Oracle 2 0.017 NA 0.339 (NA / NA ) 0.522 0.002 0.999 NA
Step 1 0.029 11.058 0.333 (0.275 / 0.058) 0.647 0.002 1.000 0.000
Step 2 0.029 NA NA (NA / NA ) 0.694 0.002 0.997 NA
Step 3a 0.027 11.067 0.332 (0.274 / 0.058) 0.678 0.002 0.998 0.000
Step 3b 0.032 3.574 0.648 ( 0.585 / 0.063) 0.691 0.002 0.999 0.000

6.4 Additional Simulation Results

We have carried out additional Monte Carlo experiments. For the sake of brevity, we

only report main findings here and show full results in the appendices. In Appendix F,

we report simulation results when the change point τ0 and the distribution of Qi vary. In

particular, we consider three different distributions of Qi: Uniform[0, 1], N(0, 1), and χ2(1).
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The change point parameter τ0 varies over 0.3, 0.4, . . . , 0.7 quantiles of each Qi distribution.

We find that the performance of τ̂ measured by the root-mean-squared error depends on

the density of Qi distribution, as is expected from asymptotic theory. For instance, it is

quite uniform over different τ0 when Qi follows Uniform[0, 1]. However, when Qi follows

N(0, 1) or χ2(1), it performs better when τ0 is located at a point with a higher density of

Qi distribution. Sensitivity analyses provided in Appendix G show that the main simulation

results are robust when we make changes over the range between −15% and +15% of the

suggested tuning parameter values.

In summary, the proposed estimation procedure works well in finite samples and confirms

the theoretical results developed earlier. The simulation studies show some advantages of

the proposed estimator over the existing mean regression method, e.g. Lee et al. (2016). It

also detects no-change-point models well without any pre-test. The main qualitative results

are not sensitive to different simulation designs on τ0 and Qi as well as to some variation on

tuning parameter values.

7 Estimating a Change Point in Racial Segregation

As an empirical illustration, we investigate the existence of tipping in the dynamics of

racial segregation using the dataset constructed by Card et al. (2008). They show that the

neighborhood’s white population decreases substantially when the minority share in the area

exceeds a tipping point (or threshold point), using U.S. Census tract-level data. Lee et al.

(2011) develop a test for the existence of threshold effects and apply their test to this dataset.

Different from these existing studies, we consider a high-dimensional setup by allowing both

possibly highly nonlinear effects of the main covariate (minority share in the neighborhood)

and possibly higher-order interactions between additional covariates.

We build on the specifications used in Card et al. (2008) and Lee et al. (2011) to choose
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the following median regression with a constant shift due to the tipping effect:

Yi = g0(Qi) + δ01{Qi > τ0}+X ′
iβ0 + Ui, (7.1)

where for census tract i, the dependent variable Yi is the ten-year change in the neighbor-

hood’s white population, Qi is the base-year minority share in the neighborhood, and Xi is

a vector of six tract-level control variables and their various interactions depending on the

model specification. Both Yi and Qi are in percentage terms. The basic six variables in Xi

include the unemployment rate, the log of mean family income, the fractions of single-unit,

vacant, and renter-occupied housing units, and the fraction of workers who use public trans-

port to travel to work. The function g(·) is approximated by the cubic b-splines with 15

knots over equi-quantile locations, so the degrees of freedom are 19 including an intercept

term. In our empirical illustration, we use the census-tract-level sample of Chicago whose

base year is 1980.

In the first set of models, we consider possible interactions among the six tract-level con-

trol variables up to six-way interactions. Specifically, the vector X in the six-way interactions

will be composed of the following 63 regressors,

{X(1), . . . , X(6), X(1)X(2), . . . , X(5)X(6), . . . , X(1)X(2)X(3)X(4)X(5)X(6)},

where X(j) is the j-th element among those tract-level control variables. Note that the lower

order interaction vector (e.g. two-way or three-way) is nested by the higher order interaction

vector (e.g. three-way or four-way). The total number of regressors varies from 26 (19 from

b-splines, 6 from Xi and 1{Qi > τ}) when there is no interaction to 83 when there are full

six-way interactions. In the next set of models, we add the square of each tract-level control

variable and generate similar interactions up to six. In this case the total number of regressors

varies from 32 to 2,529. For example, the number of regressors in the largest model consists of

#(b-spline basis) + #(indicator function) + #(interactions up to six-way out of 12) = 19 +
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1 +
∑6

k=1

(
12
k

)
= 2, 529. This number is much larger than the sample size (n = 1, 813).

Table 7 summarizes the estimation results at the 0.25, 0.5, and 0.75 quantiles, respec-

tively. We report the total number of regressors in each model and the number of selected

regressors in Step 3b. The change point τ is estimated by the grid search over 591 equi-

spaced points in [1, 60]. The lower bound value 1% corresponds to the 1.6 sample percentile

of Qi and the upper bound value 60%, which is about the upper sample quartile of Qi, is the

same as one used in Card et al. (2008). In this empirical example, we report the estimates

of τ0 and the confidence intervals updated after Step 3b (that is, τ is re-estimated using the

estimates of α0 in Step 3b). If this estimate is different from the previous one in Step 2, then

we repeat Step 3b and Step 2 until it converges.

The estimation results suggest several interesting points. First, at each quantile, the

proposed method selects sparse representations in all model specifications even when the

number of regressors is relatively large. Furthermore, the number of selected regressors does

not grow rapidly when we increase the number of possible covariates. It seems that the set

of selected covariates overlaps across different dictionaries at each quantile. See Appendix H

for details on selected regressors. Second, the estimation results are different across different

quantiles, indicating that there may exist heterogeneity in this application. The confidence

intervals for τ0 at the 0.25 quantile are quite tight in all cases and they provide convincing

evidence of the tipping effect. If we look at the case of six-way interactions with 12 control

variables, the estimated tipping point is 5.65% and the estimated jump size is −5.50%.

However, this strong tipping effect becomes weaker at the 0.50 and 0.75 quantiles as shown

either by wider confidence intervals or by the zero jump size, i.e. δ̂ = 0.

We now compare the estimation results from quantile regression with those from mean

regression, which are reported in Table 8 (full estimation results are in Appendix H). We

show two kinds of mean regression estimates: one with the untrimmed original data and the

other with the trimmed data for which we drop top and bottom 5% observations based on

{Yi}. The estimated tipping points are the same between the two datasets but the estimated
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Table 7: Estimation Results from Quantile Regression

No. of Reg.
No. of Selected

τ̂ CI for τ0 δ̂
Reg. in Step 3b

γ = 0.25
6 control variables
No Interaction 26 17 5.65 [4.75, 6.17] -4.07
Two-way Interaction 41 20 2.35 [1.00, 4.44] -1.82
Three-way Interaction 61 24 2.35 [1.00, 4.15] -2.19
Four-way Interaction 76 21 5.65 [4.69, 6.08] -5.50
Five-way Interaction 82 22 2.45 [1.00, 4.93] -1.55
Six-way Interaction 83 22 2.45 [1.00, 4.75] -1.55
12 control variables
No Interaction 32 17 5.65 [4.75, 6.17] -4.07
Two-way Interaction 98 18 5.25 [3.55, 6.09] -3.40
Three-way Interaction 318 22 5.25 [3.63, 5.94] -3.61
Four-way Interaction 813 26 5.25 [3.79, 5.97] -3.53
Five-way Interaction 1605 27 5.25 [4.57, 5.65] -5.37
Six-way Interaction 2529 28 5.65 [4.96, 6.06] -5.50

γ = 0.50
6 control variables
No Interaction 26 15 5.65 [1.67, 11.85] -2.24
Two-way Interaction 41 17 5.05 [2.25, 7.46] -2.63
Three-way Interaction 61 20 5.25 [4.22, 6.38] -4.15
Four-way Interaction 76 19 5.05 [3.60, 7.00] -3.14
Five-way Interaction 82 20 5.05 [1.23, 9.16] -1.90
Six-way Interaction 83 20 5.05 [1.33, 9.39] -1.90
12 control variables
No Interaction 32 16 1.95 [0.77, 4.61] -3.69
Two-way Interaction 98 21 6.75 [1.00, 45.57] 0.48
Three-way Interaction 318 25 4.05 [1.00, 13.15] -0.97
Four-way Interaction 813 27 3.65 [1.00, 15.91] -0.56
Five-way Interaction 1605 29 3.25 [1.00, 13.16] -0.68
Six-way Interaction 2529 28 3.25 [1.00, 11.67] -0.74

γ = 0.75
6 control variables
No Interaction 26 15 10.05 [9.37, 11.29] -10.62
Two-way Interaction 41 14 NA NA 0.00
Three-way Interaction 61 21 NA NA 0.00
Four-way Interaction 76 18 NA NA 0.00
Five-way Interaction 82 18 NA NA 0.00
Six-way Interaction 83 18 NA NA 0.00
12 control variables
No Interaction 32 14 10.05 [8.44, 11.94] -7.14
Two-way Interaction 98 20 NA NA 0.00
Three-way Interaction 318 21 NA NA 0.00
Four-way Interaction 813 25 NA NA 0.00
Five-way Interaction 1605 28 NA NA 0.00
Six-way Interaction 2529 24 NA NA 0.00

Note: The sample size is n = 1, 813. The parameter τ0 is estimated by the grid search on the 591 equi-spaced
points over [1, 60]. Both τ̂ and the 95% confidence interval are based on re-estimation after Step 3b: that

is, τ is estimated again using (Ũi, α̃) from Step 3b.
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Table 8: Estimation Results from Mean Regression

No. of Reg.
No. of

τ̂ δ̂
Selected Reg.

6 Control Variables, Six-way Interaction
Untrimmed 83 50 3.25 -16.14
Trimmed 83 41 3.25 -6.53

12 Control Variables, Six-way Interaction
Untrimmed 2529 142 3.25 -15.55
Trimmed 2529 107 3.25 -5.19
Note: The sample size of the untrimmed original data is n = 1, 813. The trimmed data drop top and
bottom 5% observations based on {Yi} and the sample sizes decreases to n = 1, 626. The parameter τ0 is
estimated by the grid search on the 591 equi-spaced points over [1, 60]. As in the simulation studies, the
tuning parameters are set from Step 1 in median regression.

jump size is much larger with the original data. Figure 1 shows the fitted values over Qi at

the sample mean of the six basic covariates. They are from the model of six-way interactions

with 12 control variables and the vertical line indicates the location of a tipping point.

The left panel of Figure 1 compares the results between the mean and median regression

results (without trimming the data) and the right panel shows the the interquartile range

of the conditional distribution of Yi as a function of Qi given other regressors. It can be

seen that the mean regression estimates are much more volatile around the tipping point

than the median regression estimates, although the estimated tipping point is the same. In

Figure 2, we compare the mean regression estimates with and without trimming. Removing

observations with top and bottom 5% Yi’s stablize the estimates, thus demonstrating that

the median regression estimates have the built-in feature that they are more stable with

outliers of Yi than the mean estimates. Finally, looking at the right panel of Figure 1, we

can see that the 25 percentile of the conditional distribution drops at the tipping point of

5.65% but no such change at the 75% quantile. This shows that the quantile regression

estimates can provide insights into distributional threshold effects in racial segregation.

In summary, this empirical example shows that the proposed method works well in the

real empirical setup and is robust to outliers compared to the mean regression approach.

The estimation results also confirm that there exists a tipping point in the racial segregation
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Figure 1: Estimation Results: 12 Control Variables and Six-way Interaction
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Figure 2: Estimation Results: Mean Regression with Untrimmed/Trimmed Data
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at the 0.25 quantile and that the tipping effect is heterogeneous over different quantiles.

8 Conclusions

In this paper, we have developed ℓ1-penalized estimators of a high-dimensional quantile

regression model with an unknown change point due to a covariate threshold. We have

shown among other things that our estimator of the change point achieves an oracle property

without relying on a perfect covariate selection, thereby avoiding the need for the minimum

level condition on the signals of active covariates. We have illustrated the usefulness of our

estimation methods via Monte Carlo experiments and an application to tipping in the racial

segregation.

In a recent working paper, Leonardi and Bühlmann (2016) consider a high-dimensional

mean regression model with multiple change points whose number may grow as the sample

size increases. They have proposed a binary search algorithm to choose the number of

change points. It is an important future research topic to develop a computationally efficient

algorithm to detect multiple changes for high-dimensional quantile regression models.
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Appendices

In Appendix A, we provide the algorithm of constructing the confidence interval for τ0.

In Appendix B, we provide a set of regularity assumptions to derive asymptotic properties of

the proposed estimators in Sections 4 and 5. In Appendix C, we provide sufficient conditions

for the identification of (α0, τ0) in (2.1) and show that an improved rate of convergence is

possible for the excess risk by taking the second and third steps of estimation. To prove

the theoretical results in the main text, we consider a general M-estimation framework that

includes quantile regression as a special case. We provide high-level regularity conditions on

the loss function in Appendix D. Under these conditions, we derive asymptotic properties and

then we verify all the high level assumptions for the quantile regression model in Appendix E.

Hence, our general results are of independent interest and can be applicable to other models,

for example logistic regression models. Appendices F and G provide additional simulation

results, and Appendix H gives additional results for the empirical example.

A The Algorithm of Constructing the Confidence In-

terval for τ0

The detailed algorithm for constructing the confidence interval based on the Step 2

estimator is as follows:

1. Simulate two independent Poisson processes N1(−h) for h < 0 and N2(h) for f > 0

with the same jump rate f̂Q(τ̂) over h ∈ [−Hn,Hn], where fQ(·) is the pdf of Q, n

is the sample size, and H > 0 is a large constant. For estimating fQ(·), we use the

kernel density estimator with a normal density kernel and the rule-of-thumb bandwidth,

1.06 ·min{s, (Q0.75 − Q0.25)/1.34} · n−1/5, where s is the standard deviation of Q and

Q0.75 − Q0.25 is the interquartile range of Q. A Poisson process N(h) is generated by

the following algorithm:
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(a) Set h = 0 and k = 0.

(b) Generate ǫ from the uniform distribution on [0, 1].

(c) h = h+ [−(1/f̂Q(τ̂)) log(ǫ)].

(d) If h > nH, then stop and goto Step (f). Otherwise, set k = k + 1 and hk = h.

(e) Repeat Steps (b)–(d).

(f) The algorithm generates {hk} for k = 1, . . . , K. Transform it into the Poisson

process N(h) ≡∑K
k=1 1{hk ≤ h} for h ∈ [0, nH].

2. Using the residuals {Ŭi} and the estimate δ̆ from Step 1, simulate ρ1j for j = 1, . . . , N1(−h)

from the empirical distribution of {ρ̇(Ŭi − XT
i δ̆) − ρ̇(Ŭi)}i≤n; simulate ρ2j for j =

1, . . . , N2(h) from the empirical distribution of {ρ̇(Ŭi +XT
i δ̆)− ρ̇(Ŭi)}i≤n. Here ρ̇ (t) ≡

t (γ − 1 {t ≤ 0}) is the check function as defined in Section 4.

3. Recall that

M (h) ≡
N1(−h)∑

i=1

ρ1i1 {h < 0}+
N2(h)∑

i=1

ρ2i1 {h ≥ 0}

from Section 4. Construct the function M(·) for h ∈ [−Hn,Hn] using values from

Steps 1–3 above. Find the smallest minimizer h of M(·).

4. Repeat Steps 1–4 above and generate {h1, . . . , hB}.

5. Construct the 95% confidence interval of τ̂ from the empirical distribution of {hb} by

[τ̂ + h0.025/n, τ̂ + h0.975/n], where h0.025 and h0.975 are 2.5 and 97.5 percentiles of {hb},

respectively.

It is straightforward to modify the algorithm above for the confidence intervals with Step

3a and Step 3b estimators. We set H = 0.5, and B = 1, 000 in this simulation studies.

B Assumptions for Oracle Properties

In this section, we list a set of assumptions that will be useful to derive asymptotic

properties of the proposed estimators in Sections 4 and 5. In the following, we divide our
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discussions into two important cases: (i) δ0 6= 0 and τ0 is identified, and (ii) δ0 = 0 and thus

τ0 is not identified. The asymptotic properties are derived under both cases. Note that such

a distinction is only needed for presenting our theoretical results. In practice, we do not

need to know whether δ0 = 0 or not.

Assumption 2 (Underlying Distribution). (i) The conditional distribution Y |X,Q has

a continuously differentiable density function fY |X,Q(y|x, q) with respect to y, whose

derivative is denoted by f̃Y |X,Q(y|x, q).

(ii) There are constants C1, C2 > 0 such that for all (y, x, q) in the support of (Y,X,Q),

|f̃Y |X,Q(y|x, q)| ≤ C1, fY |X,Q(x(τ0)
Tα0|x, q) ≥ C2.

(iii) When δ0 6= 0, Γ(τ, α0) is positive definite uniformly in a neighborhood of τ0, where

Γ(τ, α0) ≡
∂2
E[ρ(Y,XJ(τ)

Tα0J)]

∂αJ∂αT
J

= E[XJ(τ)XJ(τ)
TfY |X,Q(X(τ)Tα0|X,Q)].

When δ0 = 0, the matrix E[XJ(β0)X
T
J(β0)

fY |X,Q(X
T
J(β0)

β0J(β0)|X,Q)] is positive definite.

Conditions (i) and (ii) are standard assumptions for quantile regression models. To follow

the notation in condition (iii), recall that αJ denotes the subvector of α whose indices are in

J(α0). Expressions XJ(τ), XJ(β0), α0J and β0J(β0) can be understood similarly. Condition

(iii) is a weak condition that imposes non-singularity of the Hessian matrix of the population

objective function uniformly in a neighborhood of τ0 in case of δ0 6= 0. This condition reduces

to the usual non-singularity condition when δ0 = 0.

B.1 Compatibility Conditions

We now make an assumption that is an extension of the well-known compatibility con-

dition (see Bühlmann and van de Geer (2011), Chapter 6). In particular, the following
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condition is a uniform-in-τ version of the compatibility condition. Recall that for a 2p di-

mensional vector α, we use αJ and αJc to denote its subvectors formed by indices in J(α0)

and {1, ..., 2p} \ J(α0), respectively.

Assumption 3 (Compatibility Condition). (i) When δ0 6= 0, there is a neighborhood

T0 ⊂ T of τ0, and a constant φ > 0 such that for all τ ∈ T0 and all α ∈ R
2p sat-

isfying |αJc |1 ≤ 5|αJ |1,

φ|αJ |21 ≤ sαT
E[X(τ)X(τ)T ]α. (B.1)

(ii) When δ0 = 0, there is a constant φ > 0 such that for all τ ∈ T and all α ∈ R
2p

satisfying |αJc |1 ≤ 4|αJ |1,

φ|αJ |21 ≤ sαT
E[X(τ)X(τ)T ]α. (B.2)

Assumption 3 requires that the compatibility condition hold uniformly in τ over a neigh-

bourhood of τ0 when δ0 6= 0 and over the entire parameter space T when δ0 = 0. Note

that this assumption is imposed on the population covariance matrix E[X(τ)X(τ)T ]; thus, a

simple sufficient condition of Assumption 3 is that the smallest eigenvalue of E[X(τ)X(τ)T ]

is bounded away from zero uniformly in τ . Even if p > n, the population covariance can still

be strictly positive definite while the sample covariance is not.

B.2 Restricted Nonlinearity Conditions

In this subsection, we make an assumption called a restricted nonlinear condition to deal

with the quantile loss function. We extend condition D.4 in Belloni and Chernozhukov (2011)

to accommodate the possible existence of the unknown threshold in our model (specifically, a

uniform-in-τ version of the restricted nonlinear condition as in the compatibility condition).

Note that when Q ≤ τ0, X(τ0)
Tα0 = XTβ0, while when Q > τ0, X(τ0)

Tα0 = XT θ0,

where θ0 ≡ β0 + δ0. Hence we define the “prediction balls” with radius r and corresponding
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centers as follows:

B(β0, r) = {β ∈ B ⊂ R
p : E[(XT (β − β0))

21{Q ≤ τ0}] ≤ r2},

G(θ0, r) = {θ ∈ G ⊂ R
p : E[(XT (θ − θ0))

21{Q > τ0}] ≤ r2},
(B.3)

where B and G are parameter spaces for β0 and θ0, respectively. To deal with the case that

δ0 = 0, we also define

B̃(β0, r, τ) = {β ∈ B ⊂ R
p : E[(XT (β − β0))

21 {Q ≤ τ}] ≤ r2},

G̃(β0, r, τ) = {θ ∈ G ⊂ R
p : E[(XT (θ − β0))

21 {Q > τ}] ≤ r2}.
(B.4)

Assumption 4 (Restricted Nonlinearity). The following holds for the constants C1 and C2

defined in Assumption 2 (ii).

(i) When δ0 6= 0, there exists a constant r∗QR > 0 such that

inf
β∈B(β0,r∗QR),β 6=β0

E[|XT (β − β0)|21{Q ≤ τ0}]3/2
E[|XT (β − β0)|31{Q ≤ τ0}]

≥ r∗QR

2C1

3C2

> 0 (B.5)

and that

inf
θ∈G(θ0,r∗QR),θ 6=θ0

E[|XT (θ − θ0)|21{Q > τ0}]3/2
E[|XT (θ − θ0)|31{Q > τ0}]

≥ r∗QR

2C1

3C2

> 0. (B.6)

(ii) When δ0 = 0, there exists a constant r∗QR > 0 such that

inf
τ∈T

inf
β∈B̃(β0,r∗QR,τ),β 6=β0

E[|XT (β − β0)|21{Q ≤ τ}]3/2
E[|XT (β − β0)|31{Q ≤ τ}] ≥ r∗QR

2C1

3C2

> 0 (B.7)

and that

inf
τ∈T

inf
θ∈G̃(β0,r∗QR,τ),β 6=β0

E[|XT (θ − θ0)|21{Q > τ}]3/2
E[|XT (θ − θ0)|31{Q > τ}] ≥ r∗QR

2C1

3C2

> 0. (B.8)
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Remark B.1. As pointed out by Belloni and Chernozhukov (2011), if XT c follows a log-

concave distribution conditional on Q for any nonzero c (e.g. if the distribution of X is

multivariate normal), then Theorem 5.22 of Lovász and Vempala (2007) and the Hölder

inequality imply that for all α ∈ A,

E[|X(τ0)
T (α− α0)|3|Q] ≤ 6

{
E[{X(τ0)

T (α− α0)}2|Q]
}3/2

,

which provides a sufficient condition for Assumption 4. On the other hand, this assumption

can hold more generally since equations (B.5)-(B.8) in Assumption 4 need to hold only locally

around true parameters α0.

B.3 Additional Assumptions When δ0 6= 0

We first describe the additional conditions on the distribution of (X,Q).

Assumption 5 (Additional Conditions on the Distribution of (X,Q)). Assume δ0 6= 0. In

addition, there exists a neighborhood T0 ⊂ T of τ0 that satisfies the following.

(i) Q has a density function fQ(·) that is continuous and bounded away from zero on T0.

(ii) Let X̃ denote all the components of X excluding Q in case that Q is an element of

X. The conditional distribution of Q given X̃ has a density function fQ|X̃(q|x̃) that is

bounded uniformly in both q ∈ T0 and x̃.

(iii) There exists M3 > 0 such that M−1
3 ≤ E[(XT δ0)

2|Q = τ ] ≤ M3 for all τ ∈ T0.

Condition (i) implies that P {|Q− τ0| < ε} > 0 for any ε > 0, and condition (ii) requires

that the conditional density of Q given X̃ be uniformly bounded. When τ0 is identified,

we require δ0 to be considerably different from zero. This requirement is given in condition

(iii). Note that this condition is concerned with E[
(
XT δ0

)2 |Q = τ ], which is an important

quantity to develop asymptotic results when δ0 6= 0. Note that condition (iii) is a local
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condition with respect to τ in the sense that it has to hold only locally in a neighborhood

of τ0.

The following additional moment conditions are useful to derive our theoretical results.

Assumption 6 (Moment Bounds). (i) There exist finite positive constants C̃ and r such

that for all β ∈ B(β0, r) and for any θ ∈ G(θ0, r),

E[|XT (β − β0)|1{Q > τ0}] ≤ C̃ E[|XT (β − β0)|1{Q ≤ τ0}],

E[|XT (θ − θ0)|1{Q ≤ τ0}] ≤ C̃ E[|XT (θ − θ0)|1{Q > τ0}].

(ii) There exist finite positive constants M, r and the neighborhood T0 of τ0 such that

E
[
(XT [(θ − β)− (θ0 − β0)])

2
∣∣Q = τ

]
≤ M,

E[|XT (β − β0)|
∣∣Q = τ ] ≤ M,

E[|XT (θ − θ0)|
∣∣Q = τ ] ≤ M,

sup
τ∈T0:τ>τ0

E

[
|XT (β − β0)|

1{τ0 < Q ≤ τ}
(τ − τ0)

]
≤ ME[|XT (β − β0)|1{Q ≤ τ0}],

sup
τ∈T0:τ<τ0

E

[
|XT (θ − θ0)|

1{τ < Q ≤ τ0}
(τ0 − τ)

]
≤ ME[|XT (θ − θ0)|1{Q > τ0}],

uniformly in β ∈ B(β0, r), θ ∈ G(θ0, r) and τ ∈ T0.

Remark B.2. Condition (i) requires that Q have non-negligible support on both sides

of τ0. This condition can be viewed as a rank condition for identification of α0. In the

standard threshold model with a fixed dimension, our condition is trivially satisfied by the

rank condition such that both E[XXT1{Q ≤ τ0}] and E[XXT1{Q > τ0}] are positive

definite (see e.g. Chan (1993) or Hansen (2000)). If the rank condition fails, the regression

coefficient may not be identified and thus affecting the identification of the change point. In

the high-dimensional setup, it is undesirable to impose the same rank condition due to the

high-dimensionality. Instead, we replace it with condition (i). Condition (ii) requires the
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boundedness and certain smoothness of the conditional expectation functions E[(XT [(θ −

β)− (θ0 − β0)])
2
∣∣Q = τ ], E[|XT (β − β0)|

∣∣Q = τ ], and E[|XT (θ − θ0)|
∣∣Q = τ ], and prohibits

degeneracy in one regime. The last two inequalities in condition (ii) are satisfied if

E
[∣∣XTβ

∣∣ |Q = τ
]

E [|XTβ|] ≤ M

for all τ ∈ T0 and for all β satisfying 0 < E
∣∣XTβ

∣∣ ≤ c for some small c > 0.

C Additional Theoretical Results

In this part of the appendix, we consider the identification of (α0, τ0) in (2.1) and show

that an improved rate of convergence is possible for the excess risk by taking the second and

third steps of estimation.

C.1 Identification

The following theorem establishes the identification of (α0, τ0) in (2.1).

Theorem C.1 (Identification). (i) Assume that δ0 6= 0 and that the γ-th conditional

quantile of Y given X and Q is uniquely given as

QuantileY |X,Q(τ |X = x,Q = q) = xTβ0 + xT δ01{q > τ0}. (C.1)

(ii) The distribution of Q is absolutely continuous with respect to Lebesgue measure.

(iii) τ0 ∈ T ≡ [τ , τ ], which is contained in a strict interior of the support of Q.

(iv) For any τ1 ∈ T satisfying τ1 < τ0, we have that P (τ1 < Q ≤ τ0) > 0; for any τ2 ∈ T

satisfying τ2 > τ0, P (τ0 < Q ≤ τ2) > 0.

(v) For every τ ∈ T , we have that infq∈[τ ,τ̄ ] λmin{E(X(τ)X(τ)T |Q = q)} > 0, where X(τ) ≡

(XT , XT1{Q > τ})T .
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(vi) infq∈[τ ,τ̄ ] E((X
T δ0)

2|Q = q) > 0.

Then (α0, τ0) is identified.

Theorem C.1 establishes sufficient conditions under which α0 and τ0 are identified. Con-

ditions (i)-(v) in Theorem C.1 are standard. The non-singularity condition (v) is uniform

in τ ∈ T and can be viewed as a natural extension of the usual rank condition in the linear

model. Condition (vi) is a condition that imposes that the model is well separated from the

case that there is no change point in the model.

Proof of Theorem C.1. Since the conditional quantile function is uniquely given as (C.1), it

suffices to show that

X (τ)T α = X (τ0)
′ α0 a.s. ⇐⇒ α = α0 and τ = τ0.

To begin with, write, assuming τ ≤ τ0,

D (α, τ) ≡ X (τ)T α−X (τ0)
T α0

= XT (β − β0) +XT (δ − δ0) 1 {Q > τ}+XT δ01 {τ < Q ≤ τ0} .
(C.2)

Now suppose D (α, τ) in (C.2) is zero a.s. Then, it is also zero on the following event E:

E ≡ {1{τ < Q ≤ τ0} = 0} = {Q /∈ (τ, τ0]}. (C.3)

on the other hand, P (E) > 0 because P (E) = P (Q /∈ (τ, τ0]) ≥ P (Q > τ0) > 0. However, on

event E,

D (α, τ) = XT (β − β0) +XT (δ − δ0) 1 {Q > τ} = 0 a.s.

Thus, we have that

X(τ)T (α− α0)1E = 0 a.s.
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This is equivalent to

E{[X(τ)T (α− α0)]
21E} = E{E([X(τ)T (α− α0)]

2|Q)1E} = 0.

However, we have that

0 = E{E([X(τ)T (α− α0)]
2|Q)1E}

≥ inf
q∈[τ ,τ̄ ]

E{[X(τ)T (α− α0)]
2|Q = q}P (E)

≥ inf
q∈[τ ,τ̄ ]

λmin{E(X(τ)X(τ)T |Q = q)}P (E)‖α− α0‖22.

This result combined with (C.2) implies that

XT δ01 {τ < Q ≤ τ0} = 0 a.s.

This also implies that

0 = E[(XT δ0)
21{τ < Q ≤ τ0}]

= E{1{τ < Q ≤ τ0}E((XT δ0)
2|Q)}

≥ inf
q∈[τ ,τ̄ ]

E((XT δ0)
2|Q = q)P (τ < Q ≤ τ0).

Since it is assumed that infq∈[τ ,τ̄ ] E((X
T δ0)

2|Q = q) > 0, thus P (τ < Q ≤ τ0) = 0. However,

we also assume that P (τ < Q ≤ τ0) > 0 if τ < τ0. Hence we must have τ = τ0.

Now consider the other case, that is τ < τ0. In this case, we have that

D (α, τ) = XT (β − β0) +XT (δ − δ0) 1 {Q > τ}+XT δ01 {τ0 < Q ≤ τ} . (C.4)
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Hence, in this case, modifying the definition of E in (C.3) to be

E ≡ {1 {τ0 < Q ≤ τ} = 0} = {Q /∈ (τ0, τ ]}.

and proceeding the arguments identical to those above gives the desired result.

C.2 Improved Risk Consistency

The following theorem shows that an improved rate of convergence is possible for the

excess risk by taking the second and third steps of estimation. Recall that

ωn ∝
√

log(p ∨ n)

n
.

Theorem C.2 (Improved Risk Consistency). Let Assumption 1 hold. In addition, assume

that |τ̂ − τ0| = OP (n
−1) when δ0 6= 0. Then, whether δ0 = 0 or not,

R (α̂, τ̂) = OP (ωns) .

The proof of this theorem is given in Appendix E.3. For the sake of not introducing

additional assumptions in this section, we have assumed in Theorem C.2 that |τ̂ − τ0| =

OP (n
−1) when τ0 is identifiable. Its formal statement is given by Theorem 4.3 in Section 4.

Remark C.1. As in Theorem 3.1, the risk consistency part of Theorem C.2 holds whether

or not δ0 = 0. We obtain the improved rate of convergence in probability for the excess risk

by combining the fact that our objective function is convex with respect to α given each τ

with the second-step estimation results that (i) if δ 6= 0, then τ̂ is within a shrinking local

neighborhood of τ0, and (ii) when δ0 = 0, τ̂ does not affect the excess risk in the sense that

R (α0, τ) = 0 for all τ ∈ T .
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D Regularity conditions on the general loss function

Let Y be a scalar variable of outcome and X be a vector of p-dimensional observed

characteristics. Suppose there is an observable scalar variable Q such that the conditional

distribution of Y or some feature of that (given X) depends on:

XTβ01{Q ≤ τ0}+XT θ01{Q > τ0} = XTβ0 +XT δ01{Q > τ0},

where δ0 = θ0 − β0. Let ρ : R × R → R
+ be a loss function under consideration, whose

analytical form is clear in specific models. Suppose the true parameters are defined as the

minimizer of the expected loss:

(β0, δ0, τ0) ≡ argmin
(β,δ)∈A,τ∈T

E
[
ρ(Y,XTβ +XT δ1{Q > τ})

]
, (D.1)

where A and T denote the parameter spaces for (β0, δ0) and τ0. Here β represents the

components of “baseline parameters”, while δ represents the structural changes; τ is the

change point value where the structural changes occur, if any. By construction, τ0 is not

unique when δ0 = 0. For each (β, δ) ∈ A and τ ∈ T , define 2p× 1 vectors:

α ≡ (βT , δT )T , X(τ) ≡ (XT , XT1{Q > τ})T .

Then XTβ + XT δ1{Q > τ} = X(τ)Tα, and by letting α0 ≡ (βT
0 , δ

T
0 )

T , we can write (D.1)

more compactly as:

(α0, τ0) = argmin
α∈A,τ∈T

E
[
ρ(Y,X(τ)Tα)

]
. (D.2)

In quantile regression models, for a given quantile γ ∈ (0, 1), recall that

ρ(t1, t2) = (t1 − t2)(γ − 1{t1 − t2 ≤ 0}).
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D.1 When δ0 6= 0 and τ0 is identified

For a constant η > 0, define

r1(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)

≥ ηE[(XT (β − β0))
21{Q ≤ τ0}] for all β ∈ B(β0, r)

}

and

r2(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ0}

)

≥ ηE[(XT (θ − θ0))
21{Q > τ0}] for all θ ∈ G(θ0, r)

}
,

where B(β0, r) and G(θ0, r) are defined in (B.3). Note that r1(η) and r2(η) are the maximal

radii over which the excess risk can be bounded below by the quadratic loss on {Q ≤ τ0}

and {Q > τ0}, respectively.

Assumption 7. (i) Let Y denote the support of Y . There is a Liptschitz constant L > 0

such that for all y ∈ Y, ρ(y, ·) is convex, and

|ρ(y, t1)− ρ(y, t2)| ≤ L|t1 − t2|, ∀t1, t2 ∈ R.

(ii) For all α ∈ A, almost surely,

E
[
ρ(Y,X(τ0)

Tα)− ρ(Y,X(τ0)
Tα0)|Q

]
≥ 0.

(iii) There exist constants η∗ > 0 and r∗ > 0 such that r1(η
∗) ≥ r∗ and r2(η

∗) ≥ r∗.
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(iv) There is a constant c0 > 0 such that for all τ ∈ T0,

E
[(
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

))
1 {τ < Q ≤ τ0}

]
≥ c0E

[
(XT (β0 − θ0))

2 1 {τ < Q ≤ τ0}
]
,

E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
≥ c0E

[
(XT (β0 − θ0))

2 1 {τ0 < Q ≤ τ}
]
.

We focus on a convex Lipchitz loss function, which is assumed in condition (i). It might

be possible to weaken the convexity to a “restricted strong convexity condition” as in Loh and

Wainwright (2013). For simplicity, we focus on the case of a convex loss, which is satisfied

for quantile regression. However, unlike the framework of M-estimation in Negahban et al.

(2012) and Loh and Wainwright (2013), we do allow ρ(t1, t2) to be non-differentiable, which

admits the quantile regression model as a special case.

Condition (iii) requires that the excess risk can be bounded below by a quadratic function

locally when τ is fixed at τ0, while condition (iv) is an analogous condition when α is fixed at

α0. conditions (iii) and (iv), combined with the convexity of ρ(Y, ·), helps us derive the rates

of convergence (in the ℓ1 norm) of the Lasso estimators of (α0, τ0). Furthermore, these two

conditions separate the conditions for α and τ , making them easier to interpret and verify.

Remark D.1. Condition (iii) of Assumption 7 is similar to the restricted nonlinear impact

(RNI) condition of Belloni and Chernozhukov (2011). One may consider an alternative

formulation as in van de Geer (2008) and Bühlmann and van de Geer (2011) (Chapter 6),

which is known as the margin condition. But the margin condition needs to be adjusted

to account for structural changes as in condition (iv). It would be an interesting future

research topic to develop a general theory of high-dimensional M-estimation with an unknown

sparsity-structural-change with general margin conditions.

Remark D.2. Assumptions 7 (iv) and 5 (iii) together imply that for all τ ∈ T0, there exists
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a constant c0 > 0 such that

∆1(τ) ≡ E
[(
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

))
1 {τ < Q ≤ τ0}

]
≥ c20P [τ < Q ≤ τ0] ,

∆2(τ) ≡ E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
≥ c20P [τ0 < Q ≤ τ ] .

(D.3)

Note that Assumption 7 (ii) implies that ∆1(τ) is monotonely non-increasing when τ < τ0,

and ∆2(τ) is monotonely non-decreasing when τ > τ0, respectively. Therefore, Assumptions

7 (ii), 7 (iv) and 5 (iii) all together imply that (D.3) holds for all τ in the T , not just in the

T0 since T is compact. Equation (D.3) plays an important role in achieving a super-efficient

convergence rate for τ0, since it states the presence of a kink in the expected loss and that

of a jump in the loss function at τ0.

We now move to the set of assumptions that are useful to deal with the Step 3b estimator.

Define

mj(τ, α) ≡
∂E[ρ(Y,X(τ)Tα)]

∂αj

, m(τ, α) ≡ (m1(τ, α), ...,m2p(τ, α))
T .

Also, let mJ(τ, α) ≡ (mj(τ, α) : j ∈ J(α0)).

Assumption 8. E[ρ(Y,X(τ)Tα)] is three times continuously differentiable with respect to

α, and there are constants c1, c2, L > 0 and a neighborhood T0 of τ0 such that the following

conditions hold: for all large n and all τ ∈ T0,

(i) there is Mn > 0, which may depend on the sample size n, such that

max
j≤2p

|mj(τ, α0)−mj(τ0, α0)| < Mn|τ − τ0|;

(ii) there is r > 0 such that for all β ∈ B(β0, r), θ ∈ G(θ0, r), α = (βT , θT − βT )T satisfies:

max
j≤2p

sup
τ∈T0

|mj(τ, α)−mj(τ, α0)| < L |α− α0|1 ;
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(iii) α0 is in the interior of the parameter space A, and

inf
τ∈T0

λmin

(
∂2
E[ρ(Y,XJ(τ)

Tα0J)]

∂αJ∂αT
J

)
> c1,

sup
|αJ−α0J |1<c2,

sup
τ∈T0

max
i,j,k∈J

∣∣∣∣
∂3
E[ρ(Y,XJ(τ)

TαJ)]

∂αi∂αj∂αk

∣∣∣∣ < L.

The score-condition in the population level is expressed by m(τ0, α0) = 0 since α0 is in

the interior of A by condition (iii). Conditions (i) and (ii) regulate the continuity of the score

m(τ, α), and condition (iii) assumes the higher-order differentiability of the expectation of

the loss function. Condition (i) requires the Lipschitz continuity of the score function with

respect to the threshold. The Lipschitz constant may grow with n, since it is assumed

uniformly over j ≤ 2p. In many examples, Mn in fact grows slowly; as a result, it does

not affect the asymptotic behavior of α̃. For quantile regression models, we will show that

Mn = Cs1/2 for some constant C > 0. Condition (ii) requires the local equicontinuity at α0

in the ℓ1 norm of the class

{mj(τ, α) : τ ∈ T0, j ≤ 2p}.

We now establish that Assumptions 7 and 8 are satisfied for quantile regression models.

Lemma D.1. Suppose that Assumptions 1 and 2 hold. Then Assumptions 7 and 8 are

satisfied by the loss function for the quantile regression model, with Mn = Cs1/2 for some

constant C > 0.

D.1.1 Proof of Lemma D.1

Verification of Assumption 7 (i). It is straightforward to show that the loss function for

quantile regression is convex and satisfies the Liptschitz condition.

Verification of Assumption 7 (ii). Note that ρ(Y, t) = hγ(Y − t), where hγ(t) = t(γ − 1{t ≤
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0}). By (B.3) of Belloni and Chernozhukov (2011),

hγ(w − v)− hγ(w) = −v(γ − 1{w ≤ 0}) +
∫ v

0

(1{w ≤ z} − 1{w ≤ 0})dz (D.4)

where w = Y −X(τ0)
Tα0 and v = X(τ0)

T (α− α0). Note that

E[v(γ − 1{w ≤ 0})|Q] = −E[X(τ0)
T (α− α0)(γ − 1{U ≤ 0})|Q] = 0,

since P(U ≤ 0|X,Q) = γ. Let FY |X,Q denote the CDF of the conditional distribution Y |X,Q.

Then

E
[
ρ(Y,X(τ0)

Tα)− ρ(Y,X(τ0)
Tα0)|Q

]

= E

[∫ X(τ0)T (α−α0)

0

(1{U ≤ z)− 1{U ≤ 0})dz
∣∣∣Q
]

= E

[∫ X(τ0)T (α−α0)

0

[FY |X,Q(X(τ0)
Tα0 + z|X,Q)− FY |X,Q(X(τ0)

Tα0|X,Q)]dz

∣∣∣∣Q
]

≥ 0,

where the last inequality follows immediately from the fact that FY |X,Q(·|X,Q) is the CDF.

Hence, we have verified Assumption 7 (ii).

Verification of Assumption 7 (iii). Following the arguments analogous those used in (B.4)

of Belloni and Chernozhukov (2011), the mean value expansion implies:

E
[
ρ(Y,X(τ0)

Tα)− ρ(Y,X(τ0)
Tα0)|Q

]

= E

{∫ X(τ0)T (α−α0)

0

[
zfY |X,Q(X(τ0)

Tα0|X,Q) +
z2

2
f̃Y |X,Q(X(τ0)

Tα0 + t|X,Q)

]
dz

∣∣∣∣Q
}

=
1

2
(α− α0)

T
E
[
X(τ0)X(τ0)

TfY |X,Q(X(τ0)
Tα0|X,Q)|Q

]
(α− α0)

+E

{∫ X(τ0)T (α−α0)

0

z2

2
f̃Y |X,Q(X(τ0)

Tα0 + t|X,Q)dz

∣∣∣∣Q
}
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for some intermediate value t between 0 and z. By condition (ii) of Assumption 2,

|f̃Y |X,Q(X(τ0)
Tα0 + t|X,Q)| ≤ C1 and fY |X,Q(X(τ0)

Tα0|X,Q) ≥ C2.

Hence, taking the expectation on {Q ≤ τ0} gives

E
[
ρ(Y,XTβ)− ρ(Y,XTβ0)1{Q ≤ τ0}

]

≥ C2

2
E[(XT (β − β0))

21{Q ≤ τ0}]−
C1

6
E[|XT (β − β0)|31{Q ≤ τ0}]

≥ C2

4
E[|XT (β − β0)|21{Q ≤ τ0}],

where the last inequality follows from

C2

4
E[|XT (β − β0)|21{Q ≤ τ0}] ≥

C1

6
E[|XT (β − β0)|31{Q ≤ τ0}]. (D.5)

To see why (D.5) holds, note that by (B.5), for any nonzero β ∈ B(β0, r
∗
QR),

E[|XT (β − β0)|21{Q ≤ τ0}]3/2
E[|XT (β − β0)|31{Q ≤ τ0}]

≥ r∗QR

2C1

3C2

≥ 2C1

3C2

E[|XT (β − β0)|21{Q ≤ τ0}]1/2,

which proves (D.5) immediately. Thus, we have shown that Assumption 7 (iii) holds for

r1(η) with η∗ = C2/4 and r∗ = r∗QR defined in (B.5) in Assumption 2. The case for r2(η) is

similar and hence is omitted.

Verification of Assumption 7 (iv). We again start from (D.4) but with different choices of

(w, v) such that w = Y −X(τ0)
Tα0 and v = XT δ0[1{Q ≤ τ0}−1{Q > τ0}]. Then arguments
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similar to those used in verifying Assumptions 7 (ii)-(iii) yield that for τ < τ0,

E
[
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

)
|Q = τ

]
(D.6)

= E

{∫ XT δ0

0

zfY |X,Q(X
Tβ0 + t|X,Q)dz

∣∣∣∣Q = τ

}
(D.7)

≥ E

{∫ ε̃(XT δ0)

0

zfY |X,Q(X
Tβ0 + t|X,Q)dz

∣∣∣∣Q = τ

}
(D.8)

≥ ε̃2C3

2
E
[
(XT δ0)

2|Q = τ
]
, (D.9)

where t is an intermediate value t between 0 and z. Thus, we have that

E
[(
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

))
1 {τ < Q ≤ τ0}

]
≥ ε̃2C3

2
E
[
(XT (β0 − θ0))

2 1 {τ < Q ≤ τ0}
]
.

The case that τ > τ0 is similar.

Verification of Assumption 8. Note that

mj(τ, α) = E[Xj(τ)(1{Y −X(τ)Tα ≤ 0} − γ)].
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Hence, mj(τ0, α0) = 0, for all j ≤ 2p. For condition (i) of Assumption 8, for all j ≤ 2p,

|mj(τ, α0)−mj(τ0, α0)|

= |EXj(τ)[1{Y ≤ X(τ)Tα0} − 1{Y ≤ X(τ0)
Tα0}]|

= |EXj(τ)[P(Y ≤ X(τ)Tα0|X,Q)− P(Y ≤ X(τ0)
Tα0|X,Q)]|

≤ CE|Xj(τ)||(X(τ)−X(τ0))
Tα0|

= CE|Xj(τ)||XT δ0(1{Q > τ} − 1{Q > τ0})|

≤ CE|Xj(τ)||XT δ0|(1{τ < Q < τ0}+ 1{τ0 < Q < τ})

≤ C(P(τ0 < Q < τ) + P(τ < Q < τ0)) sup
τ,τ ′∈T0

E(|Xj(τ)X
T δ0||Q = τ ′)

≤ C(P(τ0 < Q < τ) + P(τ < Q < τ0)) sup
τ,τ ′∈T0

[E(|Xj(τ)|2||Q = τ ′)]1/2[E(|XT δ0|2|Q = τ ′)]1/2

≤ CM2K2|δ0|2|τ0 − τ |

for some constant C, where the last inequality follows from conditions (ii), (iii) and (v)

of Assumption 1. Therefore, we have verified condition (i) of Assumption 8 with Mn =

CM2K2|δ0|2.

We now verify condition (ii) of Assumption 8. For all j and τ in a neighborhood of τ0,

|mj(τ, α)−mj(τ, α0)| = |EXj(τ)(1{Y ≤ X(τ)Tα} − 1{Y ≤ X(τ)Tα0})|

= |EXj(τ)(P(Y ≤ X(τ)Tα|X,Q)− P(Y ≤ X(τ)Tα0|X,Q))|

≤ CE|Xj(τ)||X(τ)T (α− α0)| ≤ C|α− α0|1 max
j≤2p,i≤2p

E|Xj(τ)Xi(τ)|,

which implies the result immediately in view of Assumption 1. Finally, it is straightforward

to verify condition (iii) using Assumption 2 (iii).

54



D.2 When δ0 = 0

We now consider the case when δ0 = 0. In this case, τ0 is not identifiable, and there is

actually no structural change in the sparsity. If α0 is in the interior of A, then m(τ, α0) = 0

for all τ ∈ T .

For a constant η > 0, define

r̃1(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ}

)

≥ ηE[(XT (β − β0))
21{Q ≤ τ}] for all β ∈ B̃(β0, r, τ) and for all τ ∈ T

}

and

r̃2(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

)]
1 {Q > τ}

)

≥ ηE[(XT (θ − β0))
21{Q > τ}] for all θ ∈ G̃(β0, r, τ) and for all τ ∈ T

}
,

where B̃(β0, r, τ) and G̃(β0, r, τ) are defined in (B.4).

Assumption 9. (i) Let Y denote the support of Y . There is a Liptschitz constant L > 0

such that for all y ∈ Y, ρ(y, ·) is convex, and

|ρ(y, t1)− ρ(y, t2)| ≤ L|t1 − t2|, ∀t1, t2 ∈ R.

(ii) For all α ∈ A and for all τ ∈ T , almost surely,

E[ρ(Y,X(τ)Tα)− ρ(Y,XTβ0)|Q] ≥ 0,

(iii) There exist constants η∗ > 0 and r∗ > 0 such that r̃1(η
∗) ≥ r∗ and r̃2(η

∗) ≥ r∗.

(iv) E[ρ(Y,X(τ)Tα)] is three times differentiable with respect to α, and there are universal

constants r > 0 and L > 0 such that for all β ∈ B̃(β0, r, τ), θ ∈ G̃(β0, r, τ), α =
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(βT , θT − βT )T satisfies:

max
j≤2p

|mj(τ, α)−mj(τ, α0)| < L |α− α0|1 .

for all large n and for all τ ∈ T .

(v) α0 is in the interior of the parameter space A, and there are constants c1 an c2 > 0

such that

λmin

(
∂2
E[ρ(Y,XT

J(β0)
β0J)]

∂βJ∂βT
J

)
> c1,

sup
|αJ−α0J |1<c2,

max
i,j,k∈J(β0)

∣∣∣∣∣
∂3
E[ρ(Y,XT

J(β0)
βJ)]

∂βi∂βj∂βk

∣∣∣∣∣ < L.

As in Lemma D.1, we now establish that Assumption 9 is satisfied for quantile regression

models when δ0 = 0.

Lemma D.2. Suppose that Assumptions 1 and 2 hold. Then Assumption 9 is satisfied.

D.2.1 Proof of Lemma D.2

Verification of Assumption 9 (i). This is the same as the verification of Assumption 7 (i).

Verification of Assumption 9 (ii). This can be verified exactly as in verification of Assump-

tion 7 (ii) with α0 = β0 now.

Verification of Assumption 9 (iii). By the arguments identical to those used to verify As-

sumption 7 (iii), we have that

E
[
ρ(Y,XTβ)− ρ(Y,XTβ0)1{Q ≤ τ}

]

≥ C2

2
E[(XT (β − β0))

21{Q ≤ τ}]− C1

6
E[|XT (β − β0)|31{Q ≤ τ}]

≥ C2

4
E[|XT (β − β0)|21{Q ≤ τ}],
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where the last inequality follows from (B.7). This proves the case for r̃1(η). The case for

r̃2(η) is similar and hence is omitted.

Verification of Assumptions 9 (iv) and (v). They can be verified similarly as in verification

of Assumption 8 in the proof of Lemma Lemma D.1. For all j and τ ∈ T ,

|mj(τ, α)−mj(τ, α0)| = |EXj(τ)(1{Y ≤ X(τ)Tα} − 1{Y ≤ X(τ)Tα0})|

= |EXj(τ)(P(Y ≤ X(τ)Tα|X,Q)− P(Y ≤ X(τ)Tα0|X,Q))|

≤ CE|Xj(τ)||X(τ)T (α− α0)| ≤ C|α− α0|1 max
j≤2p,i≤2p

E|Xj(τ)Xi(τ)|,

which implies condition 9 (iv) in view of Assumption 1. It is also straightforward to verify

condition 9 (v) using Assumption 2 (iii).

E Proofs of Theorems

Throughout the proofs, we define

νn (α, τ) ≡
1

n

n∑

i=1

[
ρ
(
Yi, Xi (τ)

T α
)
− Eρ

(
Y,X (τ)T α

)]
.

Without loss of generality let νn (αJ , τ) = n−1
∑n

i=1

[
ρ
(
Yi, XiJ (τ)

T αJ

)
− Eρ

(
Y,XJ (τ)

T αJ

)]
.

In this section, we suppose that Assumptions 7 and 8 hold when δ0 6= 0 and that As-

sumption 9 holds when δ0 = 0, respectively.

E.1 Useful Lemmas

For the positive constant K1 in Assumption 1 (i), define

cnp ≡
√

2 log (4np)

n
+

K1 log (4np)

n
.
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Let ⌈x⌉ denote the smallest integer greater than or equal to a real number x. The following

lemma bounds νn (α, τ).

Lemma E.1. For any positive sequences m1n and m2n, and any δ̃ ∈ (0, 1), there are con-

stants L1, L2 and L3 > 0 such that for an = L1cnpδ̃
−1, bn = L2cnp⌈log2 (m2n/m1n)⌉δ̃−1, and

cn = L3n
−1/2δ̃−1,

P

{
sup
τ∈T

sup
|α−α0|1≤m1n

|νn (α, τ)− νn (α0, τ)| ≥ anm1n

}
≤ δ̃, (E.1)

P

{
sup
τ∈T

sup
m1n≤|α−α0|1≤m2n

|νn (α, τ)− νn (α0, τ)|
|α− α0|1

≥ bn

}
≤ δ̃, (E.2)

and for any η > 0 and Tη = {τ ∈ T : |τ − τ0| ≤ η},

P

{
sup
τ∈Tη

|νn (α0, τ)− νn (α0, τ0)| ≥ cn|δ0|2
√
η

}
≤ δ̃. (E.3)

Proof of (E.1): Let ǫ1, ..., ǫn denote a Rademacher sequence, independent of {Yi, Xi, Qi}i≤n.

By the symmetrization theorem (see, for example, Theorem 14.3 of Bühlmann and van de

Geer (2011)) and then by the contraction theorem (see, for example, Theorem 14.4 of

Bühlmann and van de Geer (2011)),

E

(
sup
τ∈T

sup
|α−α0|1≤m1n

|νn (α, τ)− νn (α0, τ)|
)

≤ 2E

(
sup
τ∈T

sup
|α−α0|1≤m1n

∣∣∣∣∣
1

n

n∑

i=1

ǫi

[
ρ
(
Yi, Xi (τ)

T α
)
− ρ

(
Yi, Xi (τ)

T α0

)]∣∣∣∣∣

)

≤ 4LE

(
sup
τ∈T

sup
|α−α0|1≤m1n

∣∣∣∣∣
1

n

n∑

i=1

ǫiXi (τ)
T (α− α0)

∣∣∣∣∣

)
.
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Note that

sup
τ∈T

sup
|α−α0|1≤m1n

∣∣∣∣∣
1

n

n∑

i=1

ǫiXi (τ)
T (α− α0)

∣∣∣∣∣

= sup
τ∈T

sup
|α−α0|1≤m1n

∣∣∣∣∣

2p∑

j=1

(αj − α0j)
1

n

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣

≤ sup
|α−α0|1≤m1n

2p∑

j=1

|αj − α0j| sup
τ∈T

max
j≤2p

∣∣∣∣∣
1

n

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣

≤ m1n sup
τ∈T

max
j≤2p

∣∣∣∣∣
1

n

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣ .

(E.4)

For all L̃ > K1,

E

(
sup
τ∈T

max
j≤2p

∣∣∣∣∣

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣

)
≤(1) L̃ logE

[
exp

(
L̃−1 sup

τ∈T
max
j≤2p

∣∣∣∣∣

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣

)]

≤(2) L̃ logE

[
exp

(
L̃−1 max

τ∈{Q1,...,Qn}
max
j≤2p

∣∣∣∣∣

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣

)]

≤(3) L̃ log

[
4np exp

(
n

2(L̃2 − L̃K1)

)]
,

where inequality (1) follows from Jensen’s inequality, inequality (2) comes from the fact that

Xij (τ) is a step function with jump points on T ∩ {Q1, . . . , Qn}, and inequality (3) is by

Bernstein’s inequality for the exponential moment of an average (see, for example, Lemma

14.8 of Bühlmann and van de Geer (2011)), combined with the simple inequalities that

exp(|x|) ≤ exp(x) + exp(−x) and that exp(max1≤j≤J xj) ≤
∑J

j=1 exp(xj). Then it follows

that

E

(
sup
τ∈T

max
j≤2p

∣∣∣∣∣
1

n

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣

)
≤ L̃ log(4np)

n
+

1

2(L̃−K1)
= cnp, (E.5)

where the last equality follows by taking L̃ = K1 +
√
n/[2 log(4np)]. Thus, by Markov’s
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inequality,

P

{
sup
τ∈T

sup
|α−α0|1≤m1n

|νn (α, τ)− νn (α0, τ)| > anm1n

}
≤ (anm1n)

−1 4Lm1ncnp = δ̃,

where the last equality follows by setting L1 = 4L.

Proof of (E.2): Recall that ǫ1, ..., ǫn is a Rademacher sequence, independent of {Yi, Xi, Qi}i≤n.

Note that

E

(
sup
τ∈T

sup
m1n≤|α−α0|1≤m2n

|νn (α, τ)− νn (α0, τ)|
|α− α0|1

)

≤(1) 2E


sup

τ∈T
sup

m1n≤|α−α0|1≤m2n

∣∣∣∣∣∣
1

n

n∑

i=1

ǫi
ρ
(
Yi, Xi (τ)

T α
)
− ρ

(
Yi, Xi (τ)

T α0

)

|α− α0|1

∣∣∣∣∣∣




≤(2) 2
k∑

j=1

E


sup

τ∈T
sup

2j−1m1n≤|α−α0|1≤2jm1n

∣∣∣∣∣∣
1

n

n∑

i=1

ǫi
ρ
(
Yi, Xi (τ)

T α
)
− ρ

(
Yi, Xi (τ)

T α0

)

2j−1m1n

∣∣∣∣∣∣




≤(3) 4L
k∑

j=1

E

(
sup
τ∈T

sup
2j−1m1n≤|α−α0|1≤2jm1n

∣∣∣∣∣
1

n

n∑

i=1

ǫi
Xi (τ)

T (α− α0)

2j−1m1n

∣∣∣∣∣

)
,

where inequality (1) is by the symmetrization theorem, inequality (2) holds for some k ≡

⌈log2 (m2n/m1n)⌉, and inequality (3) follows from the contraction theorem.

Next, the identical arguments showing (E.4) yield

sup
2j−1m1n≤|α−α0|1≤2jm1n

∣∣∣∣∣
1

n

n∑

i=1

ǫi
Xi (τ)

T (α− α0)

2j−1m1n

∣∣∣∣∣ ≤ 2max
j≤2p

∣∣∣∣∣
1

n

n∑

i=1

ǫiXij (τ)

∣∣∣∣∣

uniformly in τ ∈ T . Then, as in the proof of (E.1), Bernstein’s and Markov’s inequalities

imply that

P

{
sup
τ∈T

sup
m1n≤|α−α0|1≤m2n

|νn (α, τ)− νn (α0, τ)|
|α− α0|1

> bn

}
≤ b−1

n 8Lkcnp = δ̃,

where the last equality follows by setting L2 = 8L.
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Proof of (E.3): As above, by the symmetrization and contraction theorems, we have that

E

(
sup
τ∈Tη

|νn (α0, τ)− νn (α0, τ0)|
)

≤ 2E

(
sup
τ∈Tη

∣∣∣∣∣
1

n

n∑

i=1

ǫi

[
ρ
(
Yi, Xi (τ)

T α0

)
− ρ

(
Yi, Xi (τ0)

T α0

)∣∣∣
])

≤ 4LE

(
sup
τ∈Tη

∣∣∣∣∣
1

n

n∑

i=1

ǫiX
T
i δ0 (1 {Qi > τ} − 1 {Qi > τ0})

∣∣∣∣∣

)

≤ 4LC1(M2|δ0|22K2η)
1/2

√
n

for some constant C1 < ∞, where the last inequality is due to Theorem 2.14.1 of van der Vaart

andWellner (1996) withM2 in Assumption 1 (v) andK2 in Assumption 1 (ii). Specifically, we

apply the second inequality of this theorem to the class F = {f(ǫ,X,Q, τ) = ǫXT δ0(1{Q >

τ}−1{Q > τ0}), τ ∈ Tη}. Note that F is a Vapnik-Cervonenkis class, which has a uniformly

bounded entropy integral and thus J(1,F) in their theorem is bounded, and that the L2

norm of the envelope |ǫiXT
i δ0|1{|Qi − τ0| < η} is proportional to the square root of the

length of Tη:

(E|ǫiXT
i δ0|21{|Qi − τ0| < η})1/2 ≤ (2M2|δ0|22K2η)

1/2.

This implies the last inequality with C1 being
√
2 times the entropy integral of the class F .

Then, by Markov’s inequality, we obtain (E.3) with L3 = 4LC1(M2K2)
1/2.

E.2 Proof of Theorem 3.1

Define D(τ) = diag(Dj(τ) : j ≤ 2p); and also let D0 = D (τ0) and D̆ = D (τ̆). It follows

from the definition of (ᾰ, τ̆) in (2.2) that

1

n

n∑

i=1

ρ(Yi, Xi(τ̆)
T ᾰ) + κn|D̆ᾰ|1 ≤

1

n

n∑

i=1

ρ(Yi, Xi(τ0)
Tα0) + κn|D0α0|1. (E.6)
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From (E.6) we obtain the following inequality

R(ᾰ, τ̆) ≤ [νn(α0, τ0)− νn(ᾰ, τ̆)] + κn|D0α0|1 − κn|D̆ᾰ|1

= [νn(α0, τ̆)− νn(ᾰ, τ̆)] + [νn(α0, τ0)− νn(α0, τ̆)] (E.7)

+κn

(
|D0α0|1 − |D̆ᾰ|1

)
.

Note that the second component [νn(α0, τ0)− νn(α0, τ̆)] = oP
[
(s/n)1/2 log n

]
due to (E.3)

of Lemma E.1 with taking Tη = T by choosing some sufficiently large η > 0. Thus, we

focus on the other two terms in the following discussion. We consider two cases respectively:

|ᾰ− α0|1 ≤ |α0|1 and |ᾰ− α0|1 > |α0|1.

Suppose that |ᾰ− α0|1 ≤ |α0|1 . Then,
∣∣∣D̆ᾰ

∣∣∣
1
≤
∣∣∣D̆ (ᾰ− α0)

∣∣∣
1
+
∣∣∣D̆α0

∣∣∣
1
≤ 2D̄ |α0|1 , and

∣∣∣κn

(
|D0α0|1 − |D̆ᾰ|1

)∣∣∣ ≤ 3κnD̄ |α0|1 .

Applying (E.1) in Lemma E.1 with m1n = |α0|1, we obtain

|νn(α0, τ̆)− νn(ᾰ, τ̆)| ≤ an |α0|1 ≤ κn |α0|1 w.p.a.1,

where the last inequality follows from the fact that an ≪ κn with κn satisfying (2.3). Thus,

the theorem follows in this case.

Now assume that |ᾰ− α0|1 > |α0|1. In this case, apply (E.2) of Lemma E.1 with m1n =

|α0|1 and m2n = 2M1p, where M1 is defined in Assumption 1(iii), to obtain

|νn(α0, τ̆)− νn(ᾰ, τ̆)|
|ᾰ− α0|1

≤ bn

with probability arbitrarily close to one for small enough δ̃. Since bn ≪ Dκn, we have

|νn(α0, τ̆)− νn(ᾰ, τ̆)| ≤ κnD |ᾰ− α0|1 ≤ κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

w.p.a.1.
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Therefore,

R(ᾰ, τ̆) + oP
(
n−1/2 log n

)
≤ κn

(
|D0α0|1 − |D̆ᾰ|1

)
+ κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

≤ κn

(
|D0α0|1 − |D̆ᾰJ |1

)
+ κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
,

where the last inequality follows from the fact that ᾰ − α0 = ᾰJC + (ᾰ− α0)J . Thus, the

theorem follows in this case as well.

E.3 Proof of Theorem C.2

Define

M∗ ≡ 4max
τ∈Tn

(
R (α0, τ) + 2ωnD̄ |α0|1

)
/(ωnD), (E.8)

where Tn ⊂ T will be specified below. For each τ , define

α̂(τ) = argminα∈ARn(α, τ) + ωn

2p∑

j=1

Dj(τ)|αj|. (E.9)

It follows from the definition of α̂(τ) in (E.9) that

1

n

n∑

i=1

ρ(Yi, Xi(τ)
T α̂(τ)) + ωn|D(τ)α̂(τ)|1 ≤

1

n

n∑

i=1

ρ(Yi, Xi(τ)
Tα0) + ωn|D(τ)α0|1. (E.10)

Next, let

t (τ) =
M∗

M∗ + |α̂ (τ)− α0|1

and ᾱ (τ) = t (τ) α̂ (τ) + (1− t (τ))α0. By construction, it follows that |ᾱ (τ)− α0|1 ≤ M∗.

And also note that

|ᾱ (τ)− α0|1 ≤ M∗/2 implies |α̂ (τ)− α0|1 ≤ M∗ (E.11)
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since ᾱ (τ)− α0 = t (τ) (α̂ (τ)− α0).

For each τ , (E.10) and the convexity of the following map

α 7→ 1

n

n∑

i=1

ρ(Yi, Xi(τ)
Tα) + ωn|D(τ)α|1

implies that

1

n

n∑

i=1

ρ(Yi, Xi(τ)
T ᾱ (τ)) + ωn|D(τ)ᾱ (τ) |1

≤ t (τ)

[
1

n

n∑

i=1

ρ(Yi, Xi(τ)
T α̂(τ)) + ωn|D(τ)α̂(τ)|1

]

+ [1− t (τ)]

[
1

n

n∑

i=1

ρ(Yi, Xi(τ)
Tα0) + ωn|D(τ)α0|1

]

≤
[
1

n

n∑

i=1

ρ(Yi, Xi(τ)
Tα0) + ωn|D(τ)α0|1

]
,

which in turn yields the following inequality

R(ᾱ(τ), τ) + ωn|D(τ)ᾱ(τ)|1 ≤ [νn(α0, τ)− νn(ᾱ(τ), τ)] +R(α0, τ) + ωn|D(τ)α0|1. (E.12)

Furthermore, by the triangle inequality, (E.12) can be written as

R(ᾱ(τ), τ) + ωnD |ᾱ(τ)− α0|1 ≤ [νn(α0, τ)− νn(ᾱ(τ), τ)] +R(α0, τ) + 2ωnD|α0|1. (E.13)

Now let ZM = supτ∈Tn
sup|α−α0|≤M |νn (α, τ)− νn (α0, τ)| for each M > 0. Then, by Lemma

E.1, ZM∗ = oP (ωnM
∗) by the simple fact that log(np) ≤ 2 log(n ∨ p). Thus, in view of the

definition of M∗ in (E.8), the following inequality holds w.p.a.1,

R(ᾱ(τ), τ) + ωnD |ᾱ(τ)− α0|1 ≤ ωnDM∗/2 (E.14)

uniformly in τ ∈ Tn.
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We can repeat the same arguments for α̂(τ) instead of ᾱ(τ) due to (E.11) and (E.14), to

obtain

R(α̂(τ), τ) + ωnD |α̂(τ)− α0|1 ≤ ωnDM∗ = O(ωns), w.p.a.1, (E.15)

uniformly in τ ∈ Tn. It remains to show that there exists a set Tn such that τ̂ ∈ Tn w.p.a.1

and the corresponding M∗ = O(s). We split the remaining part of the proof into two cases:

δ0 6= 0 and δ0 = 0.

(Case 1: δ0 6= 0)

Let

Tn =
{
τ : |τ − τ0| ≤ Cn−1 log log n

}

for some constant C > 0. Note that we assume that if δ0 6= 0, then

|τ̂ − τ0| = OP (n
−1),

which implies that τ̂ ∈ Tn w.p.a.1. Furthermore, note that

R (α0, τ) = E
([
ρ
(
Y,XT θ0

)
− ρ

(
Y,XTβ0

)]
1 {τ < Q ≤ τ0}

)

+ E
([
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
.

(E.16)

Combining the fact that the objective function is Liptschitz continuous by Assumptions 7

(i) with Assumption 1, we have that

sup
τ∈Tn

|R (α0, τ) | ≤ L sup
τ∈Tn

[
E
(
|XT δ0||1 {τ < Q ≤ τ0}

)
+ E

(
|XT δ0||1 {τ0 < Q ≤ τ}

) ]

= O
(
|δ0|1 n−1 log log n

)

= o
(
|δ0|1 ω2

n

)
.

Thus, M∗ = O (|α0|1) = O (s).
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(Case 2: δ0 = 0) Redefine M∗ with Tn = T as the maximum over the whole parameter

space for τ . Note that when δ0 = 0, we have that R (α0, τ) = 0 and M∗ = O (|α0|1) = O (s).

Therefore, the desired result follows immediately.

E.4 Proof of Theorem 4.1

Remark E.1. We first briefly provide the logic behind the proof of Theorem 4.1 here.

Note that for all α ≡ (βT , δT )T ∈ R
2p and θ ≡ β + δ, the excess risk has the following

decomposition: when τ1 < τ0,

R (α, τ1) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ1}

)

+ E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ0}

)

+ E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

)]
1 {τ1 < Q ≤ τ0}

)
,

(E.17)

and when τ2 > τ0,

R (α, τ2) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)

+ E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ2}

)

+ E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ2}

)
.

(E.18)

The key observations are that all the six terms in the above decompositions are non-negative,

and are stochastically negligible when taking α = ᾰ, and τ1 = τ̆ if τ̆ < τ0 or τ2 = τ̆ if τ̆ > τ0.

This follows from the risk consistency of R(ᾰ, τ̆). Then, the identification conditions for α0

and τ0 (Assumptions 7 (ii)-(iv)), along with Assumption 6 (i), are useful to show that the

risk consistency implies the consistency of τ̆ .

Proof of Theorem 4.1. Recall from (E.18) that for all α = (βT , δT )T ∈ R
2p and θ = β + δ,

the excess risk has the following decomposition: when τ > τ0,
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R (α, τ) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)

+ E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ}

)

+ E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
.

(E.19)

We split the proof into five steps.

Step 1: All the three terms on the right hand side (RHS) of (E.19) are nonnegative. As a

consequence, all the three terms on the RHS of (E.19) are bounded by R(α, τ).

Proof of Step 1. Step 1 is implied by the condition that E[ρ(Y,X(τ0)
Tα)−ρ(Y,X(τ0)

Tα0)|Q] ≥

0 a.s. for all α ∈ A. To see this, the first two terms are nonnegative by simply multiplying

E[ρ(Y,X(τ0)
Tα) − ρ(Y,X(τ0)

Tα0)|Q] ≥ 0 with 1{Q ≤ τ0} and 1{Q > τ} respectively. To

show that the third term is nonnegative for all β ∈ R
p and τ > τ0, set α = (β/2, β/2) in the

inequality 1{τ0 < Q ≤ τ}E[ρ(Y,X(τ0)
Tα)− ρ(Y,X(τ0)

Tα0)|Q] ≥ 0. Then we have that

1{τ0 < Q ≤ τ}E[ρ(Y,XT (β/2 + β/2))− ρ(Y,XT θ0)|Q] ≥ 0,

which yields the nonnegativeness of the third term.

Step 2: Let a ∨ b = max(a, b) and a ∧ b = min(a, b). Prove:

E
[
|XT (β − β0)|1{Q ≤ τ0}

]
≤ 1

η∗r∗
R(α, τ) ∨

[
1

η∗
R(α, τ)

]1/2
.

Proof of Step 2. Recall that

r1(η) ≡ sup
r

{
r : E

([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)

≥ ηE[(XT (β − β0))
21{Q ≤ τ0}] for all β ∈ B(β0, r)

}
.
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For notational simplicity, write

E[(XT (β − β0))
21{Q ≤ τ0}] ≡ ‖β − β0‖2q,

and

F (δ) ≡ E
([
ρ
(
Y,XT (β0 + δ)

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
.

Note that F (β − β0) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)
, and β ∈ B(β0, r) if and

only if ‖β − β0‖q ≤ r.

For any β, if ‖β − β0‖q ≤ r1(η
∗), then by the definition of r1(η

∗), we have:

F (β − β0) ≥ η∗E[(XT (β − β0))
21{Q ≤ τ0}].

If ‖β − β0‖q > r1(η
∗), let t = r1(η

∗)‖β − β0‖−1
q ∈ (0, 1). Since F (·) is convex, and F (0) = 0,

we have F (β − β0) ≥ t−1F (t(β − β0)). Moreover, define

β̌ = β0 + r1(η
∗)

β − β0

‖β − β0‖q
,

then ‖β̌ − β0‖q = r1(η
∗) and t(β − β0) = β̌ − β0. Hence still by the definition of r1(η

∗),

F (β − β0) ≥
1

t
F (β̌ − β0) ≥

η∗

t
E[(XT (β̌ − β0))

21{Q ≤ τ0}] = η∗r1(η
∗)‖β − β0‖q.

Therefore, by Assumption 7 (iii), and Step 1,

R(α, τ) ≥ E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ0}

)

≥ η∗E[(XT (β − β0))
21{Q ≤ τ0}] ∧ η∗r∗{E[(XT (β − β0))

21{Q ≤ τ0}]}1/2

≥ η∗
(
E
[
|XT (β − β0)|1{Q ≤ τ0}

])2 ∧ η∗r∗E
[
|XT (β − β0)|1{Q ≤ τ0}

]
,

where the last inequality follows from Jensen’s inequality.
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Step 3: For any r > 0, w.p.a.1, β̆ ∈ B(β0, r) and θ̆ ∈ G(θ0, r).

Proof of Step 3. Suppose that τ̆ > τ0. The proof of Step 2 implies that when τ > τ0,

E
[
(XT (β − β0))

21{Q ≤ τ0}
]
≤ R(α, τ)2

(η∗r∗)2
∨ R(α, τ)

η∗
.

For any r > 0, note that R(ᾰ, τ̆) = oP (1) implies that the event R(ᾰ, τ̆) < r2 holds w.p.a.1.

Therefore, we have shown that β̆ ∈ B(β0, r).

We now show that θ̆ ∈ G(θ0, r). When τ > τ0, we have that

R(α, τ) ≥(1) E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ}

)

= E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {Q > τ0}

)

− E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)

≥(2) η
∗
E
[
|XT (θ − θ0)|21{Q > τ0}

]
∧ η∗r∗

(
E
[
|XT (θ − θ0)|21{Q > τ0}

])1/2

− E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
,

where (1) is from (E.18) and (2) can be proved using arguments similar to those used in the

proof of Step 2. This implies that

E
[
(XT (θ − θ0))

21{Q > τ0}
]
≤ R̃(α, τ)2

(η∗r∗)2
∨ R̃(α, τ)

η∗
,

where R̃(α, τ) ≡ R(α, τ) + E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

)]
1 {τ0 < Q ≤ τ}

)
. Thus, it suffices

to show that R̃(ᾰ, τ̆) = oP (1) in order to establish that θ̆ ∈ G(θ0, r). Note that for some
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constant C > 0,

E
[
(ρ(Y,XT θ)− ρ(Y,XT θ0))1{τ0 < Q ≤ τ}

]

≤(1) LE
[
|XT (θ − θ0)|1{τ0 < Q ≤ τ}

]

≤(2) L|θ − θ0|1E
[
max
j≤p

|X̃j|1{τ0 < Q ≤ τ}
]
+ L|θ − θ0|1E [|Q|1{τ0 < Q ≤ τ}]

≤(3) L|θ − θ0|1E
[
max
j≤p

|X̃j| sup
x̃

P(τ0 < Q ≤ τ |X̃ = x̃)

]
+ L|θ − θ0|1E [|Q|1{τ0 < Q ≤ τ}]

≤(4) C(τ − τ0)|θ − θ0|1E
{[

max
j≤p

|X̃j|
]
+ 1

}
,

where (1) is by the Lipschitz continuity of ρ(Y, ·), (2) is from the fact that |XT (θ − θ0)| ≤

|θ − θ0|1(maxj≤p |X̃j| + |Q|), (3) is by taking the conditional probability, and (4) is from

Assumption 5 (ii).

By the expectation-form of the Bernstein inequality (Lemma 14.12 of Bühlmann and

van de Geer (2011)), E[maxj≤p |Xj|] ≤ K1 log(p+ 1) +
√
2 log(p+ 1). By (E.27), which will

be shown below, |θ̆ − θ0|1 = OP (s). Hence by (E.23) which will also be shown below, when

τ̆ > τ0,

|τ̆ − τ0||θ̆ − θ0|1E[max
j≤p

|Xj|] = OP (κns
2 log p) = oP (1).

Note that when τ̆ > τ0, the proofs of (E.23) and (E.27) do not require θ̆ ∈ G(θ0, r), so there

is no problem of applying them here. This implies that R̃(ᾰ, τ̆) = oP (1).

The same argument yields that w.p.a.1, θ̆ ∈ G(θ0, r) and β̆ ∈ B(β0, r) when τ̆ ≤ τ0; hence

it is omitted to avoid repetition.

Step 4: For any ǫ′ > 0 and any r > 0, there is an ε > 0 such that for all τ , β ∈ B(β0, r) and

θ ∈ G(θ0, r), R(α, τ) < ε implies |τ − τ0| < ǫ′.

Proof of Step 4. We first prove that, for any ǫ′ > 0, there is ε > 0 such that for all τ > τ0,

β ∈ B(β0, r) and θ ∈ G(θ0, r), R(α, τ) < ε implies that τ < τ0 + ǫ′.
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Suppose that R(α, τ) < ε. Applying the triangle inequality, for all β and τ > τ0,

E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]

≤
∣∣E
[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]∣∣

+
∣∣E
[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

]∣∣ .

(E.20)

First, note that the first term on the RHS of (E.20) is the third term on the RHS of (E.19),

hence is bounded by R(α, τ) < ε.

We now consider the second term on the RHS of (E.20). Assumption 6 (i) implies that

for all β ∈ B(β0, r) and θ ∈ G(θ0, r),

C∗
2E
[
|XTβ|1 {Q > τ0}

]
≤ E

[
|XTβ|1 {Q ≤ τ0}

]
≤ C∗

1E
[
|XTβ|1 {Q > τ0}

]
. (E.21)

It follows from the Lipschitz condition, Step 2, and Assumption 6 (i) that for all β ∈ B(β0, r),

∣∣E
[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

]∣∣ ≤ LE
[∣∣XT (β − β0)

∣∣ 1 {τ0 < Q ≤ τ}
]

≤ LE
[∣∣XT (β − β0)

∣∣ 1 {τ0 < Q}
]

≤ LC̃ E
[∣∣XT (β − β0)

∣∣ 1 {Q ≤ τ0}
]

≤ LC̃
{
ε/(η∗r∗) ∨

√
ε/η∗

}

≡ C(ε).

Thus, we have shown that (E.20) is bounded by C(ε) + ε.

For any ǫ′ > 0, it follows from Assumptions 7 (ii), 7 (iv) and 5 (iii) (see also Remark
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D.2) that there is a c > 0 such that if τ > τ0 + ǫ′,

cP (τ0 < Q ≤ τ0 + ǫ′) ≤ cP (τ0 < Q ≤ τ)

≤ E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]

≤ C(ε) + ε.

Since ε 7→ C(ε) + ε converges to zero as ε converges to zero, for a given ǫ′ > 0 choose a

sufficient small ε > 0 such that C(ε)+ ε < cP(τ0 < Q ≤ τ0+ ǫ′), so that the above inequality

cannot hold. Hence we infer that for this ε, when R(α, τ) < ε, we must have τ < τ0 + ǫ′.

By the same argument, if τ < τ0, then we must have τ > τ0 − ǫ′. Hence, R(α, τ) < ε

implies |τ − τ0| < ǫ′.

Step 5: τ̆
p−→ τ0.

Proof of Step 5. For the ε chosen in Step 4, consider the event {R(ᾰ, τ̆) < ε}, which occurs

w.p.a.1, due to Theorem 3.1. On this event, |τ̆ − τ0| < ǫ′ by Step 4. Because ǫ′ is taken

arbitrarily, we have proved the consistency of τ̆ .

E.5 Proof of Theorem 4.2

The proof consists of multiple steps. First, we obtain an intermediate convergence rate

for τ̆ based on the consistency of the risk and that of τ̆ . Second, we use the compatibility

condition to obtain a tighter bound.

Step 1: Let c̄0(δ0) ≡ c0 infτ∈T0 E[(X
T δ0)

2|Q = τ ], which is bounded away from zero and

bounded above due to Assumption 5 (iii). Then c̄0(δ0) |τ̆ − τ0| ≤ 4R (ᾰ, τ̆) w.p.a.1. As a

result, |τ̆ − τ0| = OP [κns/c̄0(δ0)].
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Proof of Step 1. For any τ0 < τ and τ ∈ T0, and any β ∈ B(β0, r), α = (β, δ) with arbitrary

δ, for some L,M > 0 which do not depend on β and τ,

∣∣E
(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

∣∣

≤(1) LE
[∣∣XT (β − β0)

∣∣ 1 {τ0 < Q ≤ τ}
]

≤(2) ML(τ − τ0)E
[∣∣XT (β − β0)

∣∣ 1 {Q ≤ τ0}
]

≤(3) ML(τ − τ0)
{
E

[(
XT (β − β0)

)2
1 {Q ≤ τ0}

]}1/2

≤(4) (ML(τ − τ0))
2 / (4η∗) + η∗E

[(
XT (β − β0)

)2
1 {Q ≤ τ0}

]

≤(5) (ML(τ − τ0))
2 / (4η∗) + E

[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ0}

]

≤(6) (ML(τ − τ0))
2 / (4η∗) +R(α, τ),

where (1) follows from the Lipschitz condition on the objective function, (2) is by Assumption

6 (ii), (3) is by Jensen’s inequality, (4) follows from the fact that uv ≤ v2/ (4c) + cu2 for any

c > 0, (5) is from Assumption 7 (iii), and (6) is from Step 1 in the proof of Theorem 4.1.

In addition,

∣∣E
[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {τ0 < Q ≤ τ}

]∣∣

≥(1) E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]

−
∣∣E
[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]∣∣

≥(2) E
[(
ρ
(
Y,XTβ0

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]
−R(α, τ)

≥(3) c0

{
inf
τ∈T0

E[(XT δ0)
2|Q = τ ]

}
(τ − τ0)−R(α, τ),

where (1) is by the triangular inequality, (2) is from (E.18), and (3) is by Assumption 7 (iv).

Therefore, we have established that there exists a constant C̃ > 0, independent of (α, τ),
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such that

c̄0(δ0)(τ − τ0) ≤ C̃(τ − τ0)
2 + 2R(α, τ). (E.22)

Note that when 0 < (τ − τ0) < c̄0(δ0)(2C̃)−1, (E.22) implies that

c̄0(δ0)(τ − τ0) ≤
c̄0(δ0)

2
(τ − τ0) + 2R(α, τ),

which in turn implies that τ−τ0 ≤ 4
c̄0(δ0)

R(α, τ). By the same argument, when−c̄0(δ0)(2C̃)−1 <

(τ−τ0) ≤ 0, we have τ0−τ ≤ 4
c̄0(δ0)

R(α, τ) for α = (β, δ), with any θ ∈ G(θ0, r) and arbitrary

β.

Hence when τ̆ > τ0, on the event β̆ ∈ B(β0, r), and τ̆ − τ0 < c̄0(δ0)(2C̃)−1, we have

τ̆ − τ0 ≤
4

c̄0(δ0)
R(ᾰ, τ̆). (E.23)

When τ̆ ≤ τ0, on the event θ̆ ∈ G(θ0, r), and τ0 − τ̆ < c̄0(δ0)(2C̃)−1, we have τ0 − τ̆ ≤
4

c̄0(δ0)
R(ᾰ, τ̆). Hence due to Step 3 in the proof of Theorem 4.1 and the consistency of τ̆ , we

have

|τ̆ − τ0| ≤
4

c̄0(δ0)
R (ᾰ, τ̆) w.p.a.1. (E.24)

This also implies |τ̆ − τ0| = OP [κns/c̄0(δ0)] in view of the proof of Theorem 3.1.

Step 2: Define ν1n (τ) ≡ νn (α0, τ)− νn (α0, τ0) and cα ≡ κn

(
|D0α0|1 −

∣∣∣D̆α0

∣∣∣
1

)
+ |ν1n (τ̆)|.

Then,

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ cα + 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

w.p.a.1. (E.25)

Proof of Step 2. Recall the following basic inequality in (E.7):

R(ᾰ, τ̆) ≤ [νn(α0, τ̆)− νn(ᾰ, τ̆)]− ν1n (τ̆) + κn

(
|D0α0|1 − |D̆ᾰ|1

)
. (E.26)
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Now applying Lemma E.1 to [νn(α0, τ̆)−νn(ᾰ, τ̆)] with an and bn replaced by an/2 and bn/2,

we can rewrite the basic inequality in (E.26) by

κn |D0α0|1 ≥ R (ᾰ, τ̆) + κn

∣∣∣D̆ᾰ
∣∣∣
1
− 1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
− |ν1n (τ̆)| w.p.a.1.

Now adding κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
on both sides of the inequality above and using the fact that

|α0j|1 − |ᾰj|1 + |(ᾰj − α0j)|1 = 0 for j /∈ J , we have that

κn

(
|D0α0|1 −

∣∣∣D̆α0

∣∣∣
1

)
+ |ν1n (τ̆)|+ 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

≥ R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

w.p.a.1.

Therefore, we have proved Step 2.

We prove the remaining part of the steps by considering two cases: (i) κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≤

cα; (ii) κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
> cα. We first consider Case (ii).

Step 3: Suppose that κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
> cα. Then

|τ̆ − τ0| = OP

[
κ2
ns/c̄0(δ0)

]
and |ᾰ− α0| = OP (κns) .

Proof of Step 3. By κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
> cα and the basic inequality (E.25) in Step 2,

6
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≥
∣∣∣D̆ (ᾰ− α0)

∣∣∣
1
=
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
+
∣∣∣D̆ (ᾰ− α0)Jc

∣∣∣
1
, (E.27)

which enables us to apply the compatibility condition in Assumption 3.
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Recall that ‖Z‖2 = (EZ2)1/2 for a random variable Z. Note that for s = |J(α0)|0,

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

≤(1) 3κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

≤(2) 3κnD̄
∥∥X(τ̆)T (ᾰ− α0)

∥∥
2

√
s/φ

≤(3)
9κ2

nD̄
2s

2c̃φ2
+

c̃

2

∥∥X(τ̆)T (ᾰ− α0)
∥∥2
2
,

(E.28)

where (1) is from the basic inequality (E.25) in Step 2, (2) is by the compatibility condition

(Assumption 3), and (3) is from the inequality that uv ≤ v2/(2c̃) + c̃u2/2 for any c̃ > 0.

We will show below in Step 4 that there is a constant C0 > 0 such that

∥∥X(τ̆)T (ᾰ− α0)
∥∥2
2
≤ C0R(ᾰ, τ̆) + C0c̄0(δ0)|τ̆ − τ0|, w.p.a.1. (E.29)

Recall that by (E.24), c̄0(δ0) |τ̆ − τ0| ≤ 4R (ᾰ, τ̆). Hence, (E.28) with c̃ = (5C0)
−1 implies

that

R (ᾰ, τ̆) + κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ 9κ2

nD̄
2s

c̃φ2
. (E.30)

By (E.30) and (E.24), |τ̆ − τ0| = OP [κ2
ns/c̄0(δ0)]. Also, by (E.30), |ᾰ− α0| = OP (κns) since

D(τ̆) ≥ D w.p.a.1 by Assumption 1 (iv).

Step 4: There is a constant C0 > 0 such that
∥∥X(τ̆)T (ᾰ− α0)

∥∥2
2
≤ C0R(ᾰ, τ̆)+C0c̄0(δ0)|τ̆−

τ0|, w.p.a.1.

Proof Step 4. Note that

∥∥X(τ)T (α− α0)
∥∥2
2
≤ 2

∥∥X(τ)Tα−X(τ0)
Tα
∥∥2
2

+ 4
∥∥X(τ0)

Tα−X(τ0)
Tα0

∥∥2
2
+ 4

∥∥X(τ0)
Tα0 −X(τ)Tα0

∥∥2
2
.

(E.31)

We bound the three terms on the right hand side of (E.31). When τ > τ0, there is a constant
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C1 > 0 such that

∥∥X(τ)Tα−X(τ0)
Tα
∥∥2
2

= E
[
(XT δ)21{τ0 ≤ Q < τ}

]

=

∫ τ

τ0

E
[
(XT δ)2

∣∣Q = t
]
dFQ(t)

≤ 2

∫ τ

τ0

E
[
(XT δ0)

2
∣∣Q = t

]
dFQ(t) + 2

∫ τ

τ0

E
[
(XT (δ − δ0))

2
∣∣Q = t

]
dFQ(t)

≤ C1c̄0(δ0)(τ − τ0),

where the last inequality is by Assumptions 1, 5 (ii), 5 (iii), and 6 (ii).

Similarly,
∥∥X(τ0)

Tα0 −X(τ)Tα0

∥∥2
2
= E

[
(XT δ0)

21{τ0 ≤ Q < τ}
]
≤ C1c̄0(δ0)(τ − τ0).

Hence, the first and third terms of the right hand side of of (E.31) are bounded by 6C1c̄0(δ0)(τ−

τ0).

To bound the second term, note that there exists a constant C2 > 0 such that

∥∥X(τ0)
Tα−X(τ0)

Tα0

∥∥2
2

=(1) E
[
(XT (θ − θ0))

21{Q > τ0}
]
+ E

[
(XT (β − β0))

21{Q ≤ τ0}
]

≤(2) (η
∗)−1

E
[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

))
1 {Q > τ0}

]

+ (η∗)−1
E
[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ0}

]

≤(3) (η
∗)−1R(α, τ) + (η∗)−1

E
[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

))
1 {τ0 < Q ≤ τ}

]

≤(4) (η
∗)−1R(α, τ) + (η∗)−1LE

[
|XT (θ − θ0)|1 {τ0 < Q ≤ τ}

]

=(5) (η
∗)−1R(α, τ) + (η∗)−1L

∫ τ

τ0

E
[
|XT (θ − θ0)|

∣∣Q = t
]
dFQ(t)

≤(6) (η
∗)−1R(α, τ) + C3(τ − τ0),

where (1) is simply an identity, (2) from Assumption 7 (iii), (3) is due to (E.19): namely,

E
[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XT θ0

))
1 {Q > τ}

]
+ E

[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ0}

]
≤ R(α, τ),

77



(4) is by the Lipschitz continuity of ρ(Y, ·), (5) is by rewriting the expectation term, and

(6) is by Assumptions 1 (ii) and 6 (ii). Therefore, we have shown that
∥∥X(τ)T (α− α0)

∥∥2
2
≤

C0R(α, τ) + C0c̄0(δ0)(τ − τ0) for some constant C0 > 0. The case of τ ≤ τ0 can be proved

using the same argument. Hence, setting τ = τ̆ , and α = ᾰ, we obtain the desired result.

Step 5: We now consider Case (i). Suppose that κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≤ cα. Then

|τ̆ − τ0| = OP

[
κ2
ns/c̄0(δ0)

]
and |ᾰ− α0| = OP (κns) .

Proof of Step 5. Recall that Xij is the jth element of Xi, where i ≤ n, j ≤ p. By Assumption

1 and Step 1,

sup
1≤j≤p

1

n

n∑

i=1

|Xij|2 |1 (Qi < τ̆)− 1 (Qi < τ0)| = OP [κns/c̄0(δ0)] .

By the mean value theorem,

κn

∣∣∣|D0α0|1 −
∣∣∣D̆α0

∣∣∣
1

∣∣∣

≤ κn

p∑

j=1

(
4

n

n∑

i=1

|Xij1 {Qi > τ}|2
)−1/2 ∣∣∣δ(j)0

∣∣∣ 1
n

n∑

i=1

|Xij|2 |1 {Qi > τ̆} − 1 {Qi > τ0}|

= OP

[
κ2
ns|J(δ0)|0/c̄0(δ0)

]
. (E.32)

Here, recall that τ is the right-end point of T and |J(δ0)|0 is the dimension of nonzero

elements of δ0.

Due to Step 1 and (E.3) in Lemma E.1,

|ν1n (τ̆)| = OP

[
|δ0|2√
c̄0(δ0)

(κns/n)
1/2

]
. (E.33)
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Thus, under Case (i), we have that, by (E.24), (E.25), (E.32), and (E.33),

c̄0(δ0)

4
|τ̆ − τ0| ≤

κn

2

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
+R (ᾰ, τ̆)

≤ 3κn

(
|D0α0|1 −

∣∣∣D̆α0

∣∣∣
1

)
+ 3 |ν1n (τ̆)|

= OP

(
κ2
ns

2
)
+OP

[
s1/2 (κns/n)

1/2
]
,

(E.34)

where the last equality uses the fact that |J(δ0)|0/c̄0(δ0) = O(s) and |δ0|2/
√

c̄0(δ0) = O(s1/2)

at most (both could be bounded in some cases).

Therefore, we now have an improved rate of convergence in probability for τ̆ from rn0,τ ≡

κns to rn1,τ ≡ [κ2
ns

2 + s1/2(κns/n)
1/2]. Repeating the arguments identical to those to prove

(E.32) and (E.33) yields that

κn

∣∣∣|D0α0|1 −
∣∣∣D̆α0

∣∣∣
1

∣∣∣ = OP [rn1,τκns] and |ν1n (τ̆)| = OP

[
s1/2 (rn1,τ/n)

1/2
]
.

Plugging these improved rates into (E.34) gives

c̄0(δ0) |τ̆ − τ0| = OP

(
κ3
ns

3
)
+OP

[
s1/2(κns)

3/2/n1/2
]
+OP

(
κns

3/2/n1/2
)
+OP

[
s3/4(κns)

1/4/n3/4
]

= OP

(
κ2
ns

3/2
)
+OP

[
s3/4(κns)

1/4/n3/4
]

≡ OP (rn2,τ ),

where the second equality comes from the fact that the first three terms are OP

(
κ2
ns

3/2
)
since

κns
3/2 = o(1), κnn/s → ∞, and κn

√
n → ∞ in view of the assumption that κns

2 log p = o(1).

Repeating the same arguments again with the further improved rate rn2,τ , we have that

|τ̆ − τ0| = OP

(
κ2
ns

5/4
)
+OP

[
s7/8(κns)

1/8/n7/8
]
≡ OP (rn3,τ ).
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Thus, repeating the same arguments k times yields

c̄0(δ0) |τ̆ − τ0| = OP

(
κ2
ns

1+2−k
)
+OP

[
s(2

k−1)/2k(κns)
1/2k/n(2k−1)/2k

]
≡ OP (rnk,τ ).

Then letting k → ∞ gives the desired result that c̄0(δ0) |τ̆ − τ0| = OP (κ2
ns). Finally, the

same iteration based on (E.34) gives
∣∣∣D̆ (ᾰ− α0)

∣∣∣ = oP (κns), which proves the desired result

since D(τ̆) ≥ D w.p.a.1 by Assumption 1 (iv).

E.6 Proof of Theorem 4.3

Proof of Theorem 4.3. The asymptotic property of τ̃ is well-known in the literature (see

Lemma E.3 below for its asymptotic distribution). Specifically, we can apply Theorem 3.4.1

of van der Vaart and Wellner (1996) (by defining the criterion Mn (·) ≡ R∗
n (·), Mn (·) ≡

ER∗
n (·) = R(α0, τ), the distance function d (τ, τ0) ≡ |τ − τ0|1/2, and φn (δ) ≡ δ) to char-

acterize the convergence rate of τ̃ , which results in the super-consistency in the sense that

τ̃ − τ0 = OP (n
−1). See e.g. Section 14.5 of Kosorok (2008).

Furthermore, it is worth noting that the same theorem also implies that if

[R∗
n (τ̂)−R∗

n (τ0)]− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0)] = OP (r
−2
n ) (E.35)

for some sequence rn satisfying r2nφn (r
−1
n ) ≤ √

n, then

rnd (τ̂ , τ0) = OP (1) .
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This is because

R∗
n (τ̂) = R∗

n (τ̂)− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0) +R∗
n (τ0)] + [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0) +R∗

n (τ0)]

≤(1) R
∗
n (τ̂)− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0) +R∗

n (τ0)] + [Rn (ᾰ, τ0)−Rn (ᾰ, τ0) +R∗
n (τ0)]

=(2) {[R∗
n (τ̂)−R∗

n (τ0)]− [Rn (ᾰ, τ̂)−Rn (ᾰ, τ0)]}+R∗
n (τ0)

=(3) OP

(
r−2
n

)
+R∗

n (τ0) ,

where inequality (1) uses the fact that τ̂ is a minimizer of Rn (ᾰ, τ), equality (2) follows since

Rn (ᾰ, τ0)−Rn (ᾰ, τ0) +R∗
n (τ0) = R∗

n (τ0), and equality (3) comes from (E.35).

Then, note that we can set r−2
n = ansn log(np) with sn = 1 and an = κns log n due to

Lemma E.2 and the rate of convergence ᾰ−α0 = OP (κns) given by Theorem 4.2. Next, we

will apply a chaining argument to obtain the convergence rate of τ̂ by repeatedly verifying

the condition R∗
n(τ̂) ≤ R∗

n(τ0) + OP (r
−2
n ), with an iteratively improved rate rn. Applying

Theorem 3.4.1 of van der Vaart and Wellner (1996) with rn = (an log(np))
−1/2 , we have

τ̂ − τ0 = OP (an log(np)) = OP (κns log n log(np)) .

Next, we reset sn = κns (log n)
2 log(np) and an = κns log n to apply Lemma E.2 again and

then Theorem 3.4.1 of van der Vaart and Wellner (1996) with rn = (snan log(np))
−1/2. It

follows that

τ̂ − τ0 = OP

(
[κns]

2 (log n)3 (log(np))2
)
.

In the next step, we set rn =
√
n since it should satisfy the constraint that r2nφn (r

−1
n ) ≤ √

n

as well. Then, we conclude that τ̂ = τ0 + OP (n−1). Furthermore, in view of Lemma

E.2, τ̂ = τ0 + OP (n−1) implies that the asymptotic distribution of n (τ̂ − τ0) is identical

to n (τ̃ − τ0) since each of them is characterized by the minimizer of the weak limit of

n (Rn (α, τ0 + tn−1)−Rn (α, τ0)) with α = ᾰ and α = α0, respectively. That is, the weak

limits of the processes are identical due to Lemma E.2. Therefore, we have proved the first
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conclusion of the theorem. Lemma E.3 establishes the second conclusion.

Lemma E.2. Suppose that α ∈ An ≡ {α =
(
βT , δT

)T
: |α− α0|1 ≤ Kan} and τ ∈ Tn ≡

{|τ − τ0| ≤ Ksn} for some K < ∞ and for some sequences an and sn as n → ∞. Then,

sup
α∈An,τ∈Tn

∣∣∣ {Rn (α, τ)−Rn (α, τ0)} − {Rn (α0, τ)−Rn (α0, τ0)}
∣∣∣ = OP [ansn log(np)] .

Proof of Lemma E.2. Noting that

ρ
(
Yi, X

T
i β +XT

i δ1 {Qi > τ}
)
= ρ

(
Yi, X

T
i β
)
1 {Qi ≤ τ}+ ρ

(
Yi, X

T
i β +XT

i δ
)
1 {Qi > τ} ,

we have, for τ > τ0,

Dn (α, τ) := {Rn (α, τ)−Rn (α, τ0)} − {Rn (α0, τ)−Rn (α0, τ0)}

=
1

n

n∑

i=1

[
ρ
(
Yi, X

T
i β
)
− ρ

(
Yi, X

T
i β0

)]
1 {τ0 < Qi ≤ τ}

− 1

n

n∑

i=1

[
ρ
(
Yi, X

T
i θ
)
− ρ

(
Yi, X

T
i θ0
)]

1 {τ0 < Qi ≤ τ}

=: Dn1 (α, τ)−Dn2 (α, τ) .

However, the Lipschitz property of ρ yields that

|Dn1 (α, τ)| =
∣∣∣∣∣
1

n

n∑

i=1

[
ρ
(
Yi, X

T
i β
)
− ρ

(
Yi, X

T
i β0

)]
1 {τ0 < Qi ≤ τ}

∣∣∣∣∣

≤ Lmax
i,j

|Xij| |β − β0|1
1

n

n∑

i=1

1 {τ0 < Qi ≤ τ}

= OP [log(np) · an · sn] uniformly in (α, τ) ∈ An × Tn,

where log(np) term comes from the Bernstein inequality and the sn term follows from the

fact that E
∣∣ 1
n

∑n
i=1 1 {τ0 < Qi ≤ τ}

∣∣ = E1 {τ0 < Qi ≤ τ} ≤ C ·Ksn due to the boundedness

of the density of Qi around τ0. The other term Dn2 (α, τ) can be bounded similarly. The
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case of τ < τ0 can be treated analogously and hence details are omitted.

Lemma E.3. We have that n (τ̃ − τ0) converges in distribution to the smallest minimizer of

a compound Poisson process defined in Theorem 4.3.

Proof of Lemma E.3. The convergence rate of τ̃ is standard as commented in the beginning

of the proof of Theorem 4.3 and thus details are omitted here. We present the characteriza-

tion of the asymptotic distribution for the given convergence rate n.

Recall that ρ (t, s) = ρ̇ (t− s) , where ρ̇ (t) = t (γ − 1 {t ≤ 0}). Note that

nR∗
n (τ)

=
n∑

i=1

ρ̇
(
Yi −XT

i β0 −XT
i δ01 {Qi > τ}

)
− ρ̇

(
Yi −XT

i β0 −XT
i δ01 {Qi > τ0}

)

=
n∑

i=1

[
ρ̇
(
Ui −XT

i δ0 (1 {Qi > τ} − 1 {Qi > τ0})
)
− ρ̇ (Ui)

]
(1 {τ < Qi ≤ τ0}+ 1 {τ0 < Qi ≤ τ})

=
n∑

i=1

[
ρ̇
(
Ui −XT

i δ0
)
− ρ̇ (Ui)

]
1 {τ < Qi ≤ τ0}

+
n∑

i=1

[
ρ̇
(
Ui +XT

i δ0
)
− ρ̇ (Ui)

]
1 {τ0 < Qi ≤ τ} .

Thus, the asymptotic distribution of n (τ̃ − τ0) is characterized by the smallest minimizer of

the weak limit of

Mn (h) =
n∑

i=1

ρ̇1i1

{
τ0 +

h

n
< Qi ≤ τ0

}
+

n∑

i=1

ρ̇2i1

{
τ0 < Qi ≤ τ0 +

h

n

}

for |h| ≤ K for some large K, where ρ̇1i ≡ ρ̇
(
Ui −XT

i δ0
)
− ρ̇ (Ui) and ρ̇2i ≡ ρ̇

(
Ui +XT

i δ0
)
−

ρ̇ (Ui). The weak limit of the empirical process Mn (·) is well developed in the literature, (see

e.g. Pons (2003); Kosorok and Song (2007); Lee and Seo (2008)) and the argmax continuous

mapping theorem by Seijo and Sen (2011b) yields the asymptotic distribution, namely the

smallest minimizer of a compound Poisson process, which is defined in Theorem 4.3.
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E.7 Proof of Theorem 4.4

Let D̂ ≡ D (τ̂). It follows from the definition of α̂ in (2.5) that

1

n

n∑

i=1

ρ(Yi, Xi(τ̂)
T α̂) + ωn|D̂α̂|1 ≤

1

n

n∑

i=1

ρ(Yi, Xi(τ̂)
Tα0) + ωn|D̂α0|1.

From this, we obtain the following inequality

R(α̂, τ̂) ≤ [νn(α0, τ̂)− νn(α̂, τ̂)] +R(α0, τ̂) + ωn|D̂α0|1 − ωn|D̂α̂|1. (E.36)

Now applying Lemma E.1 to [νn(α0, τ̂)− νn(α̂, τ̂)], we rewrite the basic inequality in (E.36)

by

ωn

∣∣∣D̂α0

∣∣∣
1
≥ R(α̂, τ̂) + ωn

∣∣∣D̂α̂
∣∣∣
1
− 1

2
ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
− |R(α0, τ̂)| w.p.a.1.

As before, adding ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
on both sides of the inequality above and using the fact

that |α0j|1 − |α̂j|1 + |(α̂j − α0j)|1 = 0 for j /∈ J , we have that

R (α̂, τ̂) +
1

2
ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
≤ |R(α0, τ̂)|+ 2ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1

w.p.a.1. (E.37)

As in the proof of Theorem 4.2, we consider two cases: (i) ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1
≤ |R(α0, τ̂)|;

(ii) ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1
> |R(α0, τ̂)|. We first consider case (ii). Recall that ‖Z‖2 = (EZ2)1/2

for a random variable Z. It follows from the compatibility condition (Assumption 3) and the

same arguments as in (E.28) that

ωn

∣∣∣D̂ (α̂− α0)J

∣∣∣
1
≤ ωnD̄

∥∥X(τ̂)T (α̂− α0)
∥∥
2

√
s/φ

≤ ω2
nD̄

2s

2c̃φ2
+

c̃

2

∥∥X(τ̂)T (α̂− α0)
∥∥2
2

(E.38)

for any c̃ > 0. Recall that c̄0(δ0) ≡ c0 infτ∈T0 E[(X
T δ0)

2|Q = τ ]. As in Step 5 of the proof of
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Theorem 4.2, there is a constant C0 > 0 such that

∥∥X(τ̂)T (α̂− α0)
∥∥2
2
≤ C0R(α̂, τ̂) + C0c̄0(δ0)|τ̂ − τ0|, (E.39)

w.p.a.1. Combining (E.37)-(E.39) with a sufficiently small c̃ yields

R (α̂, τ̂) + ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
≤ C

(
ω2
ns+ |τ̂ − τ0|

)
(E.40)

for some finite constant C > 0. Since |τ̂ − τ0| = OP (n
−1) by Theorem 4.3, the desired results

follow (E.40) immediately.

Now we consider case (i). In this case,

R (α̂, τ̂) +
1

2
ωn

∣∣∣D̂ (α̂− α0)
∣∣∣
1
≤ 3 |R(α0, τ̂)| . (E.41)

As shown in the proof of Theorem C.2, we have that

|R (α0, τ̂) | = OP

(
|δ0|1 n−1 log n

)
= OP

(
ω2
ns
)
. (E.42)

Therefore, we obtain the desired results in case (i) as well by combining (E.42) with (E.41).

E.8 Proof of Theorems 4.5

We write αJ be a subvector of α whose components’ indices are in J(α0). Define Q̄n(αJ) ≡

S̃n((αJ , 0)), so that

Q̄n(αJ) =
1

n

n∑

i=1

ρ(Yi, XiJ(τ̂)
TαJ) + µn

∑

j∈J(α0)

wjD̂j|αj|.
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For notational simplicity, here we write D̂j ≡ Dj(τ̂). When τ0 is identifiable, our argument

is conditional on

τ̂ ∈ Tn =
{
|τ − τ0| ≤ n−1 log n

}
, (E.43)

whose probability goes to 1 due to Theorem 4.3.

We first prove the following two lemmas. Define

ᾱJ ≡ argmin
αJ

Q̄n(αJ). (E.44)

Lemma E.4. Suppose that M2
n(log n)

2/(s log s) = o(n), s4 log s = o(n), s2 log n/ log s = o(n)

and τ̂ ∈ Tn if δ0 6= 0; suppose that s4 log s = o(n) and τ̂ is any value in T if δ0 = 0. Then

|ᾱJ − α0J |2 = OP

(√
s log s

n

)
.

Proof of Lemma E.4. Let kn =
√

s log s
n

. We first prove that for any ǫ > 0, there is Cǫ > 0,

with probability at least 1− ǫ,

inf
|αJ−α0J |2=Cǫkn

Q̄n(αJ) > Q̄n(α0J) (E.45)

Once this is proved, then by the continuity of Q̄n, there is a local minimizer of Q̄n(αJ) inside

B(α0J , Cǫkn) ≡ {αJ ∈ R
s : |α0J − αJ |2 ≤ Cǫkn}. Due to the convexity of Q̄n, such a local

minimizer is also global. We now prove (E.45).

Write

lJ(αJ) =
1

n

n∑

i=1

ρ(Yi, XiJ(τ̂)
TαJ), LJ(αJ , τ) = E[ρ(Y,XJ(τ)

TαJ)].
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Then for all |αJ − α0J |2 = Cǫkn,

Q̄n(αJ)− Q̄n(α0J)

= lJ(αJ)− lJ(α0J) +
∑

j∈J(α0)

wjµnD̂j(|αj| − |α0j|)

≥ LJ(αJ , τ̂)− LJ(α0J , τ̂)︸ ︷︷ ︸
(1)

− sup
|αJ−α0J |2≤Cδkn

|νn(αJ , τ̂)− νn(α0J , τ̂)|
︸ ︷︷ ︸

(2)

+
∑

j∈J(α0)

µnD̂jwj(|αj| − |α0j|)
︸ ︷︷ ︸

(3)

.

To analyze (1), note that |αJ − α0J |2 = Cǫkn and mJ(τ0, α0) = 0 and when δ0 = 0,

mJ(τ, α0J) is free of τ . Then there is c3 > 0,

LJ(αJ , τ̂)− LJ(α0J , τ̂)

≥ mJ(τ0, α0J)
T (αJ − α0J) + (αJ − α0J)

T ∂
2
E[ρ(Y,XJ(τ̂)

Tα0J)]

∂αJ∂αT
J

(αJ − α0J)

−|mJ(τ0, α0J)−mJ(τ̂ , α0J)|2|αJ − α0J |2 − c3|α0J − αJ |31
≥ λmin

(
∂2
E[ρ(Y,XJ(τ̂)

Tα0J)]

∂αJ∂αT
J

)
|αJ − α0J |22

−(|mJ(τ0, α0J)−mJ(τ̂ , α0J)|2)|αJ − α0J |2 − c3s
3/2|α0J − αJ |32

≥ c1C
2
ǫ k

2
n − (|mJ(τ0, α0J)−mJ(τ̂ , α0J)|2)Cǫkn − c3s

3/2C3
δ k

3
n

≥ Cǫkn(c1Cǫkn −Mnn
−1 log n− c3s

3/2C2
ǫ k

2
n) ≥ c1C

2
δ k

2
n/3,

where the last inequality follows fromMnn
−1 log n < 1/3c1Cǫkn and c3s

3/2C2
ǫ k

2
n < 1/3c1Cǫkn.

These follow from the conditions M2
n(log n)

2/(s log s) = o(n) and s4 log s = o(n).

To analyze (2), by the symmetrization theorem and the contraction theorem (see, for ex-

ample, Theorems 14.3 and 14.4 of Bühlmann and van de Geer (2011)), there is a Rademacher

sequence ǫ1, ..., ǫn independent of {Yi, Xi, Qi}i≤n such that (note that when δ0 = 0, αJ = βJ ,

νn (αJ , τ) ≡
1

n

n∑

i=1

[
ρ
(
Yi, X

T
J(β0)i

βJ

)
− Eρ

(
Y,XT

J(β0)
βJ

)]
,
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which is free of τ)

Vn = E

(
sup
τ∈Tn

sup
|αJ−α0J |2≤Cǫkn

|νn(αJ , τ)− νn(α0J , τ)|
)

≤ 2E

(
sup
τ∈Tn

sup
|αJ−α0J |2≤Cǫkn

∣∣∣∣∣
1

n

n∑

i=1

ǫi[ρ(Yi, XiJ(τ)
TαJ)− ρ(Yi, XiJ(τ)

Tα0J)]

∣∣∣∣∣

)

≤ 4LE

(
sup
τ∈Tn

sup
|αJ−α0J |2≤Cǫkn

∣∣∣∣∣
1

n

n∑

i=1

ǫi(XiJ(τ)
T (αJ − α0J))

∣∣∣∣∣

)
,

which is bounded by the sum of the following two terms, V1n + V2n, due to the triangle

inequality and the fact that |αJ −α0J |1 ≤ |αJ −α0J |2
√
s: first, when δ0 = 0, V1n ≡ 0; second,

when δ0 6= 0 and τ0 is identifiable, we have that

V1n = 4LE

(
sup
τ∈Tn

sup
|αJ−α0J |1≤Cǫkn

√
s

∣∣∣∣∣
1

n

n∑

i=1

ǫi(XiJ(τ)−XiJ(τ0))
T (αJ − α0J)

∣∣∣∣∣

)

≤ 4LE

(
sup
τ∈Tn

sup
|δJ−δ0J |1≤Cǫkn

√
s

∣∣∣∣∣
1

n

n∑

i=1

ǫiX
T
iJ(δ0)

(1{Qi > τ} − 1{Qi > τ0})(δJ − δ0J)

∣∣∣∣∣

)

≤ 4LCǫkn
√
sE

(
sup
τ∈Tn

max
j∈J(δ0)

∣∣∣∣∣
1

n

n∑

i=1

ǫiXij(1{Qi > τ} − 1{Qi > τ0})
∣∣∣∣∣

)

≤ 4LCǫkn
√
sC1 |J(δ0)|0

√
log n

n2

by bounding the maximum over j with summation and using the maximal inequality in

Theorem 2.14.1 in van der Vaart and Wellner (1996) since the class of transformations

ǫiXij(1{Qi > τ} − 1{Qi > τ0}) constitutes a VC class of functions. Here the bound is

uniform and determined by the L2-norm of the envelope, which is proportional to

√
E (1{|Qi − τ0| ≤ n−1 log n}).
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Note that

V2n = 4LE

(
sup

|αJ−α0J |1≤Cǫkn
√
s

∣∣∣∣∣
1

n

n∑

i=1

ǫiXiJ(τ0)
T (αJ − α0J)

∣∣∣∣∣

)

≤ 4LCǫkn
√
sE

(
max

j∈J(α0)

∣∣∣∣∣
1

n

n∑

i=1

ǫiXij(τ0)

∣∣∣∣∣

)
≤ 4LCǫC2k

2
n,

due to the Bernstein’s moment inequality (Lemma 14.12 of Bühlmann and van de Geer

(2011) for some C2 > 0. Therefore,

Vn ≤ 4LCǫkn
√
sC1 |J(δ0)|0

√
log n

n2
+ 4LCǫC2k

2
n < 5LCǫC2k

2
n,

where the last inequality is due to s2 log n/ log s = o(n). Therefore, conditioning on the

event τ̂ ∈ Tn when δ0 6= 0, or for τ̂ ∈ T when δ0 = 0, with probability at least 1 − ǫ,

(2) ≤ 1
ǫ
5LC2Cǫk

2
n.

In addition, note that P (maxj∈J(α0) |wj| = 0) = 1, so (3) = 0 with probability approach-

ing one. Hence

inf
|αJ−α0J |2=Cǫkn

Q̄n(αJ)− Q̄n(α0J) ≥
c1C

2
ǫ k

2
n

3
− 1

ǫ
5LC2Cǫk

2
n > 0.

The last inequality holds for Cǫ >
15LC2

c1ǫ
. By the continuity of Q̄n, there is a local minimizer

of Q̄n(αJ) inside {αJ ∈ R
s : |α0J − αJ |2 ≤ Cǫkn}, which is also a global minimizer due to

the convexity.

On R
2p, recall that

Rn(τ, α) =
1

n

n∑

i=1

ρ(Yi, Xi(τ)
Tα).

For ᾱJ = (β̄J(β0), δ̄J(δ0)) ≡ (β̄J , δ̄J) in the previous lemma, define

ᾱ = (β̄T
J , 0

T , δ̄TJ , 0
T )T .

89



Without introducing confusions, we also write ᾱ = (ᾱJ , 0) for notational simplicity. This

notation indicates that ᾱ has zero entries on the indices outside the oracle index set J(α0).

We prove the following lemma.

Lemma E.5. With probability approaching one, there is a random neighborhood of ᾱ in R
2p,

denoted by H, so that ∀α = (αJ , αJc) ∈ H, if αJc 6= 0, we have S̃n(αJ , 0) < Q̃n(α).

Proof of Lemma E.5. Define an l2-ball, for rn ≡ µn/ log n,

H = {α ∈ R
2p : |α− ᾱ|2 < rn/(2p)}.

Then supα∈H |α − ᾱ|1 = supα∈H
∑

l≤2p |αl − ᾱl| < rn. Consider any τ ∈ Tn. For any α =

(αJ , αJc) ∈ H, write

Rn(τ, αJ , 0)−Rn(τ, α)

= Rn(τ, αJ , 0)− ERn(τ, αJ , 0) + ERn(τ, αJ , 0)−Rn(τ, α) + ERn(τ, α)− ERn(τ, α)

≤ ERn(τ, αJ , 0)− ERn(τ, α) + |Rn(τ, αJ , 0)− ERn(τ, αJ , 0) + ERn(τ, α)−Rn(τ, α)|

≤ ERn(τ, αJ , 0)− ERn(τ, α) + |νn(αJ , 0, τ)− νn(α, τ)|.

Note that |(αJ , 0)− ᾱ|22 = |αJ − ᾱJ |22 ≤ |αJ − ᾱJ |22 + |αJc − 0|22 = |α− ᾱ|22. Hence α ∈ H

implies (αJ , 0) ∈ H. In addition, by definition of ᾱ = (ᾱJ , 0) and |ᾱJ − α0J |2 = OP (
√

s log s
n

)

(Lemma E.4), we have |ᾱ− α0|1 = OP (s
√

log s
n
), which also implies

sup
α∈H

|α− α0|1 = OP

(
s

√
log s

n

)
+ rn,

where the randomness in supα∈H |α− α0|1 comes from that of H.

By the mean value theorem, there is h in the segment between α and (αJ , 0),

ERn(τ, αJ , 0)− ERn(τ, α) = Eρ(Y,XJ(τ)
TαJ)− Eρ(Y,XJ(τ)

TαJ +XJc(τ)TαJc)
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= −
∑

j /∈J(α0)

∂Eρ(Y,X(τ)Th)

∂αj

αj ≡
∑

j /∈J(α0)

mj(τ, h)αj

where mj(τ, h) = −∂Eρ(Y,X(τ)T h)
∂αj

. Hence, ERn(τ, αJ , 0)− ERn(τ, α) ≤
∑

j /∈J |mj(τ, h)||αj|.

Because h is on the segment between α and (αJ , 0), so h ∈ H. So for all j /∈ J(α0),

|mj(τ, h)| ≤ sup
α∈H

|mj(τ, α)| ≤ sup
α∈H

|mj(τ, α)−mj(τ, α0)|+ |mj(τ, α0)−mj(τ0, α0)|.

We now argue that we can apply Assumption 8 (ii). Let

cn ≡ s
√

(log s) /n+ rn.

For any ǫ > 0, there is Cǫ > 0, with probability at last 1−ǫ, supα∈H |α−α0|1 ≤ Cǫcn. ∀α ∈ H,

write α = (β, δ) and θ = β + δ. On the event |α − α0|1 ≤ Cǫcn, we have |β − β0|1 ≤ Cǫcn

and |θ − θ0|1 ≤ Cǫcn. Hence E[(XT (β − β0))
21{Q ≤ τ0}] ≤ |β − β0|21 maxi,j≤p E|XiXj| <

r2, yielding β ∈ B(β0, r). Similarly, θ ∈ G(θ0, r). Therefore, by Assumption 8 (ii), with

probability at least 1− ǫ, (note that neither Cǫ, L nor cn depend on α)

max
j /∈J(α0)

sup
τ∈Tn

sup
α∈H

|mj(τ, α)−mj(τ, α0)| ≤ L sup
α∈H

|α− α0|1 ≤ L(Cǫcn),

max
j≤2p

sup
τ∈Tn

|mj(τ, α0)−mj(τ0, α0)| ≤ Mnn
−1 log n.

In particular, when δ0 = 0, mj(τ, α0) = 0 for all τ . Therefore, when δ0 6= 0,

sup
j /∈J(α0)

sup
τ∈Tn

|mj(τ, h)| = OP (cn +Mnn
−1 log n) = oP (µn);

when δ0 = 0, supj /∈J(α0) supτ∈T |mj(τ, h)| = OP (cn) = oP (µn).

Let ǫ1, ..., ǫn be a Rademacher sequence independent of {Yi, Xi, Qi}i≤n. Then by the
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symmetrization and contraction theorems,

E

(
sup
τ∈T

|νn(αJ , 0, τ)− νn(α, τ)|
)

≤ 2E

(
sup
τ∈T

∣∣∣∣∣
1

n

n∑

i=1

ǫi[ρ(Yi, XiJ(τ)
TαJ)− ρ(Yi, Xi(τ)

Tα)]

∣∣∣∣∣

)

≤ 4LE

(
sup
τ∈T

∣∣∣∣∣
1

n

n∑

i=1

ǫi[XiJ(τ)
TαJ −Xi(τ)

Tα]

∣∣∣∣∣

)

≤ 4LE

(
sup
τ∈T

∥∥∥∥∥
1

n

n∑

i=1

ǫiXi(τ)

∥∥∥∥∥
max

)
∑

j /∈J(α0)

|αj| ≤ 2ωn

∑

j /∈J(α0)

|αj|,

where the last equality follows from (E.5).

Thus uniformly over α ∈ H, Rn(τ, αJ , 0)−Rn(τ, α) = oP (µn)
∑

j /∈J(α0)
|αj|. On the other

hand,
∑

j∈J(α0)

wjµnD̂j|αj| −
∑

j

wjµnD̂j|αj| =
∑

j /∈J(α0)

µnwjD̂j|αj|.

Also, w.p.a.1, wj = 1 and D̂j ≥ D for all j /∈ J(α0). Hence with probability approaching

one, Q̃n(αJ , 0)− Q̃n(α) equals

Rn(τ̂ , αJ , 0) +
∑

j∈J(α0)

D̂jwjλn|αj| −Rn(τ̂ , α)−
∑

j≤2p

D̂jwjωn|αj| ≤ −D
µn

2

∑

j /∈J(α0)

|αj| < 0.

Proof of Theorem 4.5. Conditions in Lemmas E.4 and E.5 are expressed in terms of Mn.

By Lemma D.1, we verify that in quantile regression models, Mn = Cs1/2 for some C > 0.

Then all the required conditions in Lemmas E.4 and E.5 are satisfied by the conditions

imposed in Theorem 4.5.

By Lemmas E.4 and E.5, w.p.a.1, for any α = (αJ , αJc) ∈ H,

S̃n(ᾱJ , 0) = Q̄n(ᾱJ) ≤ Q̄n(αJ) = S̃n(αJ , 0) ≤ S̃n(α).

Hence (ᾱJ , 0) is a local minimizer of S̃n, which is also a global minimizer due to the convexity.
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This implies that w.p.a.1, α̃ = (α̃J , α̃Jc) satisfies: α̃Jc = 0, and α̃J = ᾱJ , so

|α̃J − α0J |2 = OP

(√
s log s

n

)
, |α̃J − α0J |1 = OP

(
s

√
log s

n

)
.

Finally, by (E.48), and that R(α0, τ̂) ≤ Cs|τ̂ − τ0| = OP (sn
−1),

R(α̃, τ̂) ≤ 2R(α0, τ̂) + 3µnD̄|α̃− α0|1 = OP (sn
−1 + µns

√
log s

n
) = OP (µns

√
log s

n
).

E.9 Proof of Theorem 4.6

Recall that by Theorems 4.3 and 4.5, we have

|α̃J − α0J |2 = OP

(√
s log s

n

)
and |τ̂ − τ0| = OP (n

−1), (E.46)

and the set of regressors with nonzero coefficients is recovered w.p.a.1. Hence we can restrict

ourselves on the oracle space J(α0). In view of (E.46), define rn ≡
√
n−1s log s and sn. Let

R∗
n (αJ , τ) ≡

1

n

n∑

i=1

ρ
(
Yi, XiJ(τ)

TαJ

)
,

where αJ ∈ An ≡ {αJ : |αJ − α0J |2 ≤ Krn} ⊂ R
s and τ ∈ Tn ≡ {τ : |τ − τ0| ≤ Ksn} for

some K < ∞, where K is a generic finite constant.

The following lemma is useful to establish that α0 can be estimated as if τ0 were known.

Lemma E.6 (Asymptotic Equivalence). Assume that ∂
∂α
E
[
ρ
(
Y,XTα

)
|Q = t

]
exists for all

t in a neighborhood of τ0 and all its elements are continuous and bounded. Suppose that

s3(log s)(log n) = o (n). Then

sup
αJ∈An,τ∈Tn

|{R∗
n (αJ , τ)−R∗

n (αJ , τ0)} − {R∗
n (α0J , τ)−R∗

n (α0J , τ0)}| = oP
(
n−1
)
.
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This lemma implies that the asymptotic distribution of argminαJ
R∗

n (αJ , τ̂) can be charac-

terized by α̂∗
J ≡ argminαJ

R∗
n (αJ , τ0). It then follows immediately from the variable selection

consistency that the asymptotic distribution of α̃J is equivalent to that of α̂∗
J . Therefore, we

have proved the theorem.

Proof of Lemma E.6. Noting that

ρ
(
Yi, X

T
i β +XT

i δ1 {Qi > τ}
)
= ρ

(
Yi, X

T
i β
)
1 {Qi ≤ τ}+ ρ

(
Yi, X

T
i β +XT

i δ
)
1 {Qi > τ} ,

we have, for τ > τ0,

Dn (α, τ)

≡ {Rn (α, τ)−Rn (α, τ0)} − {Rn (α0, τ)−Rn (α0, τ0)}

=
1

n

n∑

i=1

[
ρ
(
Yi, X

T
i β
)
− ρ

(
Yi, X

T
i β0

)]
1 {τ0 < Qi ≤ τ}

− 1

n

n∑

i=1

[
ρ
(
Yi, X

T
i β +XT

i δ
)
− ρ

(
Yi, X

T
i β0 +XT

i δ0
)]

1 {τ0 < Qi ≤ τ}

=: Dn1 (α, τ)−Dn2 (α, τ) .

To prove this lemma, we consider empirical processes

Gnj (αJ , τ) ≡
√
n (Dnj (αJ , τ)− EDnj (αJ , τ)) , (j = 1, 2),

and apply the maximal inequality in Theorem 2.14.2 of van der Vaart and Wellner (1996).

First, for Gn1 (αJ , τ), we consider the following class of functions indexed by (βJ , τ):

Fn ≡ {
(
ρ
(
Yi, X

T
iJβJ

)
− ρ

(
Yi, X

T
iJβ0J

))
1 (τ0 < Qi ≤ τ) : |βJ−β0J |2 ≤ Krn and |τ − τ0| ≤ Ksn}.
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Note that the Lipschitz property of ρ yields that

∣∣ρ
(
Yi, X

T
iJβJ

)
− ρ

(
Yi, X

T
iJβ0J

)∣∣ 1 {τ0 < Qi ≤ τ} ≤
∣∣XT

iJ

∣∣
2
|βJ − β0J |21 {|Qi − τ0| ≤ Ksn} .

Thus, we let the envelope function be Fn(XiJ , Qi) ≡ |XiJ |2 Krn1 {|Qi − τ0| ≤ Ksn} and

note that its L2 norm is O
(√

srn
√
sn
)
.

To compute the bracketing integral

J[] (1,Fn, L2) ≡
∫ 1

0

√
1 + logN[] (ε‖Fn‖L2

,Fn, L2)dε,

note that its 2ε bracketing number is bounded by the product of the ε bracketing num-

bers of two classes Fn1 ≡
{
ρ
(
Yi, X

T
iJβJ

)
− ρ

(
Yi, X

T
iJβ0

)
: |βJ − β0J |2 ≤ Krn

}
and Fn2 ≡

{1 (τ0 < Qi ≤ τ) : |τ − τ0| ≤ Ksn} by Lemma 9.25 of Kosorok (2008) since both classes are

bounded w.p.a.1 (note that w.p.a.1, |XiJ |2 Krn < C < ∞ for some constant C). That is,

N[] (2ε‖Fn‖L2
,Fn, L2) ≤ N[] (ε‖Fn‖L2

,Fn1, L2)N[] (ε‖Fn‖L2
,Fn2, L2) .

Let Fn1(XiJ) ≡ |XiJ |2 Krn and ln(XiJ) ≡ |XiJ |2. Note that by Theorem 2.7.11 of van der

Vaart and Wellner (1996), the Lipschitz property of ρ implies that

N[] (2ε‖ln‖L2
,Fn1, L2) ≤ N(ε, {βJ : |βJ − β0J |2 ≤ Krn}, | · |2),

which in turn implies that, for some constant C,

N[] (ε‖Fn‖L2
,Fn1, L2) ≤ N

(
ε‖Fn‖L2

2‖ln‖L2

, {βJ : |βJ − β0J |2 ≤ Krn}, | · |2
)

≤ C

( √
s

ε
√
sn

)s

= C

(√
ns

ε

)s

,

where the last inequality holds since a ε-ball contains a hypercube with side length ε/
√
s in
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the s-dimensional Euclidean space. On the other hand, for the second class of functions Fn2

with the envelope function Fn2(Qi) ≡ 1 {|Qi − τ0| ≤ Ksn}, we have that

N[] (ε‖Fn‖L2
,Fn2, L2) ≤ C

√
sn

ε‖Fn‖L2

=
C

ε
√
srn

=
C
√
n

εs
√
log s

,

for some constant C. Combining these results together yields that

N[] (ε‖Fn‖L2
,Fn, L2) ≤

C2
√
n

εs
√
log s

(√
ns

ε

)s

≤ C2ε−s−1n(s+1)/2

for all sufficiently large n. Then we have that

J[] (1,Fn, L2) ≤ C2(
√

s log n+
√
s)

for all sufficiently large n. Thus, by the maximal inequality in Theorem 2.14.2 of van der

Vaart and Wellner (1996),

n−1/2
E sup

An×Tn
|Gn1 (αJ , τ)| ≤ O

[
n−1/2

√
srn

√
sn(
√

s log n+
√
s)
]

= O
[ s

n3/2

√
log s(

√
s log n+

√
s)
]

= o
(
n−1
)
,

where the last equality follows from the restriction that s3(log s)(log n) = o (n). Identical

arguments also apply to Gn2 (αJ , τ).

Turning to EDn (α, τ) , note that by the condition that ∂
∂α
E
[
ρ
(
Y,XTα

)
|Q = t

]
exists

for all t in a neighborhood of τ0 and all its elements are continuous and bounded, we have
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that for some mean value β̃J between βJ and β0J ,

∣∣E
(
ρ
(
Y,XT

J βJ

)
− ρ

(
Y,XT

J β0J

))
1 {τ0 < Q ≤ τ}

∣∣

=

∣∣∣∣E
[
∂

∂β
E

[
ρ
(
Y,XT β̃J

)
|Q
]
1 {τ0 < Q ≤ τ}

]
(β − β0)

∣∣∣∣

= O (srnsn)

= O

[
s3/2

n3/2

√
log s

]

= o
(
n−1
)
,

where the last equality follows from the restriction that s3(log s) = o (n). Since the same

holds for the other term in EDn, sup |EDn (α, τ)| = o (n−1) as desired.

E.10 Proof of Theorem 4.7

By definition,

1

n

n∑

i=1

ρ(Yi, Xi(τ̂)
T α̃) + µn|WD̂α̃|1 ≤

1

n

n∑

i=1

ρ(Yi, Xi(τ̂)
Tα0) + µn|WD̂α0|1.

where W = diag{w1, ..., w2p}. From this, we obtain the following inequality

R(α̃, τ̂) + µn|WD̂α̃|1 ≤ |νn(α0, τ̂)− νn(α̃, τ̂)|+R(α0, τ̂) + µn|WD̂α0|1.

Now applying Lemma E.1 yields, when
√
log(np)/n = o(µn) (which is true under the as-

sumption that ωn ≪ µn), we have that w.p.a.1, |νn(α0, τ̂) − νn(α̃, τ̂)| ≤ 1
2
µn|D̂(α0 − α̃)|1.

Hence on this event,

R(α̃, τ̂) + µn|WD̂α̃|1 ≤
1

2
µn|D̂(α0 − α̃)|1 +R(α0, τ̂) + µn|WD̂α0|1.
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Note that maxj wj ≤ 1, so for ∆ := α̃− α0,

R(α̃, τ̂) + µn|(WD̂∆)Jc |1 ≤
3

2
µn|D̂∆J |1 +

1

2
µn|D̂∆Jc |1 +R(α0, τ̂).

By Theorem 4.2, maxj /∈J |α̂j| = OP (ωns). Hence for any ǫ > 0, there is C > 0, maxj /∈J |α̂j| ≤

Cωns < µn with probability at least 1 − ǫ. On the event maxj /∈J |α̂j| ≤ Cωns < µn, by

definition, wj = 1 ∀j /∈ J . Hence on this event,

R(α̃, τ̂) +
1

2
µn|(D̂∆)Jc |1 ≤

3

2
µn|D̂∆J |1 +R(α0, τ̂). (E.47)

We now consider two cases: (i) 3
2
µn|D̂∆J |1 ≤ R(α0, τ̂); (ii)

3
2
µn|D̂∆J |1 > R(α0, τ̂).

case 1: 3
2
µn|D̂∆J |1 ≤ R(α0, τ̂)

We have: for C = 14D−1/3, µn|∆|1 ≤ CR(α0, τ̂). If τ̂ > τ0, for τ = τ̂ in the inequalities

below,

R(α0, τ̂) = E(ρ(Y,XTβ0)− ρ(XT θ0))1{τ0 < Q < τ} ≤ LE|XT δ0|1{τ0 < Q < τ}

≤ L|δ0|1 max
j≤p

E|Xj|1{τ0 < Q < τ} ≤ L|δ0|1 max
j≤p

sup
q

E(|Xj||Q = q)P (τ0 < Q < τ)

≤ Cs(τ − τ0).

The case for τ ≤ τ0 follows from the same argument. Hence µn|∆|1 ≤ C|τ̂ − τ0|s.

case 2: 3
2
µn|D̂∆J |1 > R(α0, τ̂)

Then by the compatibility property,

R(α̃, τ̂) +
1

2
µn|(D̂∆)Jc |1 ≤ 3µn|D̂∆J |1 ≤ 3µnD̄

√
s‖X(τ0)

T∆‖2/
√
φ.

The same argument as that of Step 5 in the proof of Theorem 4.2 yields

‖X(τ0)
T∆‖22 ≤ CR(α̃, τ̂) + C|τ̂ − τ0|
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for some generic constant C > 0. This implies, for some generic constant C > 0,

R(α̃, τ̂)2 ≤ µ2
nsC(R(α̃, τ̂) + |τ̂ − τ0|).

It follows that R(α̃, τ̂) ≤ C(µ2
ns+ |τ̂ − τ0|), and ‖X(τ0)∆‖22 ≤ C(µ2

ns+ |τ̂ − τ0|). Hence

|∆|21 ≤ Cs‖X(τ0)∆‖22 ≤ C(µ2
ns

2 + |τ̂ − τ0|s).

Combining both cases, we reach:

|α̃− α0|21 ≤ C(µ2
ns

2 + |τ̂ − τ0|s+
1

µ2
n

|τ̂ − τ0|2s2),

which gives the desired result since the first term µ2
ns

2 dominates the other two terms.

Rate of convergence for R(α̃, τ̂)

In the proofs above, we have in fact shown that

R(α̃, τ̂) ≤ 2R(α0, τ̂) + 3µnD̄|α̃− α0|1, (E.48)

and when δ0 6= 0, R(α0, τ̂) ≤ Cs|τ̂ − τ0|. Note that τ̂ − τ0 = OP (n
−1). Hence R(α̃, τ̂) =

OP (sn
−1 + µ2

ns) = OP (µ
2
ns).

E.11 Proof of Theorem 5.1

If δ0 = 0, τ0 is non-identifiable. In this case, we decompose the excess risk in the following

way:

R (α, τ) = E
([
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

)]
1 {Q ≤ τ}

)

+ E
([
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

)]
1 {Q > τ}

)
.

(E.49)

We split the proof into three steps.
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Step 1: For any r > 0, we have that w.p.a.1, β̆ ∈ B̃(β0, r, τ̆) and θ̆ ∈ G̃(β0, r, τ̆).

Proof of Step 1. As in the proof of Step 1 in the proof of Theorem 4.2, Assumption 9 (iii)

implies that

E
[
(XT (β − β0))

21{Q ≤ τ}
]
≤ R(α, τ)2

(η∗r∗)2
∨ R(α, τ)

η∗
.

For any r > 0, note that R(ᾰ, τ̆) = oP (1) implies that the event R(ᾰ, τ̆) < r2 holds w.p.a.1.

Therefore, we have shown that β̆ ∈ B̃(β0, r, τ̆). The other case can be proved similarly.

Step 2 : Suppose that δ0 = 0. Then

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
w.p.a.1. (E.50)

Proof. The proof of this step is similar to that of Step 3 in the proof of Theorem 4.2. Since

(ᾰ, τ̆) minimizes the ℓ1-penalized objective function in (2.2), we have that

1

n

n∑

i=1

ρ(Yi, Xi(τ̆)
T ᾰ) + κn|D̆ᾰ|1 ≤

1

n

n∑

i=1

ρ(Yi, Xi(τ̆)
Tα0) + κn|D̆α0|1. (E.51)

When δ0 = 0, ρ(Y,X(τ̆)Tα0) = ρ(Y,X(τ0)
Tα0). Using this fact and (E.51), we obtain the

following inequality

R(ᾰ, τ̆) ≤ [νn(α0, τ̆)− νn(ᾰ, τ̆)] + κn|D̆α0|1 − κn|D̆ᾰ|1. (E.52)

As in Step 3 in the proof of Theorem 4.2, we apply Lemma E.1 to [νn(α0, τ̆)− νn(ᾰ, τ̆)]

with an and bn replaced by an/2 and bn/2. Then we can rewrite the basic inequality in (E.52)

by

κn

∣∣∣D̆α0

∣∣∣
1
≥ R (ᾰ, τ̆) + κn

∣∣∣D̆ᾰ
∣∣∣
1
− 1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

w.p.a.1.

Now adding κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
on both sides of the inequality above and using the fact that
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|α0j|1 − |ᾰj|1 + |(ᾰj − α0j)|1 = 0 for j /∈ J , we have that w.p.a.1,

2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≥ R (ᾰ, τ̆) +

1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
.

Therefore, we have obtained the desired result.

Step 3 : Suppose that δ0 = 0. Then

R (ᾰ, τ̆) = OP (κ
2
ns) and |ᾰ− α0| = OP (κns) .

Proof. By Step 2,

4
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
≥
∣∣∣D̆ (ᾰ− α0)

∣∣∣
1
=
∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1
+
∣∣∣D̆ (ᾰ− α0)Jc

∣∣∣
1
, (E.53)

which enables us to apply the compatibility condition in Assumption 3.

Recall that ‖Z‖2 = (EZ2)1/2 for a random variable Z. Note that for s = |J(α0)|0,

R (ᾰ, τ̆) +
1

2
κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1

≤(1) 2κn

∣∣∣D̆ (ᾰ− α0)J

∣∣∣
1

≤(2) 2κnD̄
∥∥X(τ̆)T (ᾰ− α0)

∥∥
2

√
s/φ

≤(3)
4κ2

nD̄
2s

2c̃φ2
+

c̃

2

∥∥X(τ̆)T (ᾰ− α0)
∥∥2
2
,

(E.54)

where (1) is from the basic inequality (E.50) in Step 2, (2) is by the compatibility condition

(Assumption 3), and (3) is from the inequality that uv ≤ v2/(2c̃) + c̃u2/2 for any c̃ > 0.
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Note that

∥∥X(τ)Tα−X(τ)Tα0

∥∥2
2

=(1) E
[
(XT (θ − β0))

21{Q > τ}
]
+ E

[
(XT (β − β0))

21{Q ≤ τ}
]

≤(2) (η
∗)−1

E
[(
ρ
(
Y,XT θ

)
− ρ

(
Y,XTβ0

))
1 {Q > τ}

]

+ (η∗)−1
E
[(
ρ
(
Y,XTβ

)
− ρ

(
Y,XTβ0

))
1 {Q ≤ τ}

]

≤(3) (η
∗)−1R(α, τ), (E.55)

where (1) is simply an identity, (2) from Assumption 9 (iii) , and (3) is due to (E.49). Hence,

(E.54) with c̃ = η∗ implies that

R (ᾰ, τ̆) + κn

∣∣∣D̆ (ᾰ− α0)
∣∣∣
1
≤ 4κ2

nD̄
2s

η∗φ2
. (E.56)

Therefore, R (ᾰ, τ̆) = OP (κ
2
ns). Also, |ᾰ− α0| = OP (κns) since D(τ̆) ≥ D w.p.a.1 by

Assumption 1 (iv).

E.12 Proof of Theorem 5.2

We first prove part (i) when the minimum signal condition holds.

When τ0 is not identifiable (δ0 = 0), τ̂ obtained in the second-step estimation can be

any value in T . Note that Lemmas E.4 and E.5 are stated and proved for this case as

well. Similar to the proof of Theorem 4.5, by Lemma D.1, in quantile regression models,

Mn = Cs1/2 for some C > 0. Hence all the required conditions in Lemmas E.4 and E.5 are

satisfied by the conditions imposed in Theorem 5.2. Then by Lemmas E.4 and E.5, w.p.a.1,

for any α = (αJ , αJc) ∈ H,

S̃n(ᾱJ , 0) = Q̄n(ᾱJ) ≤ Q̄n(αJ) = S̃n(αJ , 0) ≤ S̃n(α).
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Hence (ᾱJ , 0) is a local minimizer of S̃n, which is also a global minimizer due to the convexity.

This implies that w.p.a.1, α̃ = (α̃J , α̃Jc) satisfies: α̃Jc = 0, and α̃J = ᾱJ , so

|α̃J − α0J |2 = OP

(√
s log s

n

)
, |α̃J − α0J |1 = OP

(
s

√
log s

n

)
.

Also, note that R(α0, τ̂) = 0 when δ0 = 0. Hence by (E.48),

R(α̃, τ̂) ≤ 2R(α0, τ̂) + 3µnD̄|α̃− α0|1 = OP (νns

√
log s

n
).

We now prove part (ii) without the minimum signal condition. The proof is very similar

to that of Theorem 4.7. Hence we provide the proof briefly. In fact (E.48) still holds by the

same argument. But now R(α0, τ̂) = 0. Hence for ∆ = α̃− α0,

R(α̃, τ̂) +
1

2
µn|(D̂∆)Jc |1 ≤

3

2
µn|D̂∆J |1 ≤ 2µnD̄

√
s‖X(τ̂)T∆‖2/

√
φ,

where the last inequality follows from Assumption 3. By (E.55),
∥∥X(τ̂)T∆

∥∥2
2
≤ CR(α̃, τ̂),

for some C > 0. This implies, for some generic constant C > 0, R(α̃, τ̂)2 ≤ µ2
nsCR(α̃, τ̂). It

follows that

R(α̃, τ̂) ≤ µ2
nsC,

and

|∆|21 ≤ Cs‖X(τ̂)∆‖22 ≤ CsR(α̃, τ̂) ≤ Cs2µ2
n.
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F Additional Simulation Results: Different τ0 and dis-

tributions of Q

Tables 9–11 summarize simulation results when the change point τ0 and the distribution

of Qi vary. We set γ = 0.5, i.e. median regression, and n = 200 for all designs. We consider

three different distributions of Qi: Uniform[0, 1], N(0, 1), and χ2(1). The change point

parameter τ0 varies over 0.3, 0.4, . . . , 0.7 quantiles of each Qi distribution. We can confirm

the following two results from these simulation studies. First, the performance of τ̂ measured

by the root-mean-squared error depends on the density of Qi distribution. For instance, it

is quite uniform over different τ0 when Qi follows Uniform[0, 1]. However, when Qi follows

N(0, 1) or χ2(1), it performs better when τ0 is located at a point with higher density of Qi

distribution. Second, the mean squared error of α̂ and the oracle proportion get better when

τ0 smaller. It might be caused by the simulation design, Xi · 1(Qi > τ0), as it will generate

less zeros when τ0 is smaller and help increase the signal from Xi’s.
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Table 9: Different τ0 and Qi dist.: Qi ∼ Unif [0, 1]
Excess Risk E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop.

τ0 = 0.3

Oracle 1 0.008 NA 0.016 (NA / NA) 0.282 NA NA NA
Oracle 2 0.017 NA 0.016 (NA / NA) 0.451 0.010 0.951 NA
Step 1 0.039 5.557 0.206 ( 0.182 / 0.024) 0.697 0.011 0.950 0.026
Step 2 0.040 NA NA (NA / NA) 0.700 0.011 0.949 NA
Step 3a 0.038 5.536 0.201 ( 0.177 / 0.024) 0.687 0.011 0.947 0.026
Step 3b 0.041 2.042 0.145 ( 0.134 / 0.011) 0.717 0.012 0.924 0.475

τ0 = 0.4

Oracle 1 0.008 NA 0.014 (NA / NA) 0.287 NA NA NA
Oracle 2 0.017 NA 0.014 (NA / NA) 0.458 0.011 0.956 NA
Step 1 0.039 5.590 0.228 ( 0.201 / 0.027) 0.706 0.011 0.955 0.019
Step 2 0.037 NA NA (NA / NA) 0.707 0.011 0.955 NA
Step 3a 0.034 5.578 0.226 ( 0.199 / 0.027) 0.695 0.011 0.949 0.018
Step 3b 0.040 2.203 0.147 ( 0.131 / 0.017) 0.704 0.011 0.933 0.492

τ0 = 0.5

Oracle 1 0.008 NA 0.012 (NA / NA) 0.287 NA NA NA
Oracle 2 0.018 NA 0.012 (NA / NA) 0.470 0.010 0.951 NA
Step 1 0.042 5.698 0.262 ( 0.230 / 0.032) 0.706 0.011 0.944 0.020
Step 2 0.042 NA NA (NA / NA) 0.711 0.011 0.939 NA
Step 3a 0.041 5.680 0.256 ( 0.224 / 0.032) 0.696 0.011 0.941 0.020
Step 3b 0.041 2.343 0.167 ( 0.142 / 0.025) 0.714 0.011 0.931 0.443

τ0 = 0.6

Oracle 1 0.008 NA 0.013 (NA / NA) 0.295 NA NA NA
Oracle 2 0.017 NA 0.013 (NA / NA) 0.475 0.011 0.947 NA
Step 1 0.042 5.869 0.344 ( 0.303 / 0.041) 0.731 0.013 0.937 0.012
Step 2 0.042 NA NA (NA / NA) 0.742 0.013 0.930 NA
Step 3a 0.039 5.855 0.336 ( 0.296 / 0.040) 0.730 0.013 0.928 0.012
Step 3b 0.041 2.467 0.249 ( 0.204 / 0.046) 0.734 0.012 0.923 0.382

τ0 = 0.7

Oracle 1 0.007 NA 0.012 (NA / NA) 0.280 NA NA NA
Oracle 2 0.018 NA 0.012 (NA / NA) 0.470 0.010 0.949 NA
Step 1 0.041 5.978 0.464 ( 0.407 / 0.057) 0.729 0.012 0.954 0.016
Step 2 0.042 NA NA (NA / NA) 0.737 0.012 0.951 NA
Step 3a 0.041 5.981 0.456 ( 0.400 / 0.056) 0.718 0.012 0.953 0.020
Step 3b 0.040 2.549 0.386 ( 0.303 / 0.083) 0.706 0.012 0.944 0.319

Note: For all designs, J(αγ) = 2, γ = 0.5, and n = 200. See the note below Table 1 for other notation.
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Table 10: Different τ0 and Qi dist.: Qi ∼ N(0, 1)
Excess Risk E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop.

τ0 = −0.52

Oracle 1 0.008 NA 0.017 (NA / NA) 0.294 NA NA NA
Oracle 2 0.018 NA 0.017 (NA / NA) 0.500 0.034 0.949 NA
Step 1 0.037 5.389 0.191 ( 0.168 / 0.023 ) 0.689 0.036 0.953 0.024
Step 2 0.039 NA NA (NA / NA) 0.690 0.036 0.943 NA
Step 3a 0.039 5.382 0.187 ( 0.164 / 0.023) 0.677 0.036 0.938 0.023
Step 3b 0.042 2.248 0.132 ( 0.125 / 0.008) 0.695 0.042 0.918 0.523

τ0 = −0.25

Oracle 1 0.008 NA 0.014 (NA / NA) 0.292 NA NA NA
Oracle 2 0.018 NA 0.014 (NA / NA) 0.482 0.028 0.954 NA
Step 1 0.041 5.722 0.231 ( 0.204 / 0.027) 0.708 0.027 0.950 0.022
Step 2 0.034 NA NA (NA / NA) 0.719 0.028 0.945 NA
Step 3a 0.039 5.724 0.226 ( 0.199 / 0.027) 0.717 0.028 0.943 0.022
Step 3b 0.042 2.231 0.145 ( 0.129 / 0.016) 0.702 0.029 0.938 0.474

τ0 = 0

Oracle 1 0.008 NA 0.013(NA / NA) 0.291 NA NA NA
Oracle 2 0.016 NA 0.013 (NA / NA) 0.464 0.025 0.968 NA
Step 1 0.038 5.709 0.275 ( 0.242 / 0.033) 0.709 0.028 0.953 0.024
Step 2 0.040 NA NA (NA / NA) 0.706 0.028 0.957 NA
Step 3a 0.038 5.682 0.271 ( 0.238 / 0.033 ) 0.691 0.028 0.956 0.023
Step 3b 0.042 2.309 0.184 ( 0.156 / 0.029) 0.711 0.027 0.948 0.458

τ0 = 0.25

Oracle 1 0.008 NA 0.012 (NA / NA) 0.292 NA NA NA
Oracle 2 0.017 NA 0.012 (NA / NA) 0.474 0.028 0.958 NA
Step 1 0.041 5.829 0.359 ( 0.316 / 0.043) 0.718 0.029 0.959 0.016
Step 2 0.043 NA NA (NA / NA) 0.732 0.030 0.949 NA
Step 3a 0.039 5.841 0.351 ( 0.308 / 0.042) 0.730 0.030 0.950 0.016
Step 3b 0.038 2.456 0.269 ( 0.219 / 0.050) 0.711 0.030 0.941 0.378

τ0 = 0.52

Oracle 1 0.008 NA 0.012 (NA / NA) 0.286 NA NA NA
Oracle 2 0.017 NA 0.012(NA / NA) 0.466 0.031 0.964 NA
Step 1 0.043 5.929 0.455 ( 0.400 / 0.055) 0.759 0.034 0.953 0.012
Step 2 0.041 NA NA (NA / NA) 0.748 0.034 0.947 NA
Step 3a 0.037 5.932 0.445 ( 0.390 / 0.055) 0.736 0.033 0.945 0.010
Step 3b 0.042 2.529 0.395 ( 0.310 / 0.084) 0.750 0.033 0.940 0.300

Note: For all designs, J(αγ) = 2, γ = 0.5, and n = 200. Note that Quant0.3(Qi) ≈ −0.52, Quant0.4(Qi) ≈
−0.25, Quant0.5(Qi) = 0. See the note below Table 1 for other notation.
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Table 11: Different τ0 and Qi dist.: Qi ∼ χ2(1)
Excess Risk E[J(α̂)] MSE of α̂ (α̂J0

/α̂Jc

0
) Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop.

τ0 = 0.15

Oracle 1 0.008 NA 0.017 (NA / NA) 0.293 NA NA NA
Oracle 2 0.017 NA 0.017(NA / NA) 0.461 0.012 0.978 NA
Step 1 0.038 5.523 0.211 ( 0.187 / 0.025) 0.701 0.012 0.979 0.032
Step 2 0.034 NA NA (NA / NA) 0.721 0.011 0.980 NA
Step 3a 0.036 5.524 0.207 ( 0.182 / 0.025) 0.697 0.011 0.980 0.029
Step 3b 0.037 2.023 0.137 ( 0.126 / 0.010) 0.692 0.012 0.966 0.523

τ0 = 0.27

Oracle 1 0.008 NA 0.014 (NA / NA) 0.286 NA NA NA
Oracle 2 0.017 NA 0.014 (NA / NA) 0.448 0.015 0.957 NA
Step 1 0.036 5.562 0.229 ( 0.202 / 0.027) 0.720 0.016 0.951 0.026
Step 2 0.036 NA NA (NA / NA) 0.712 0.016 0.950 NA
Step 3a 0.038 5.558 0.225 ( 0.199 / 0.027) 0.694 0.016 0.947 0.028
Step 3b 0.040 2.206 0.138 ( 0.124 / 0.014) 0.693 0.015 0.945 0.507

τ0 = 0.45

Oracle 1 0.008 NA 0.011 (NA / NA) 0.291 NA NA NA
Oracle 2 0.016 NA 0.011 (NA / NA) 0.461 0.022 0.942 NA
Step 1 0.036 5.810 0.291 ( 0.256 / 0.035) 0.718 0.022 0.934 0.017
Step 2 0.038 NA NA (NA / NA) 0.722 0.021 0.930 NA
Step 3a 0.041 5.834 0.288 ( 0.253 / 0.035) 0.706 0.021 0.930 0.019
Step 3b 0.041 2.353 0.207 ( 0.171 / 0.036) 0.712 0.021 0.919 0.439

τ0 = 0.71

Oracle 1 0.009 NA 0.012 (NA / NA) 0.288 NA NA NA
Oracle 2 0.018 NA 0.012 (NA / NA) 0.485 0.030 0.933 NA
Step 1 0.035 5.883 0.348 ( 0.307 / 0.042) 0.717 0.031 0.934 0.015
Step 2 0.042 NA NA (NA / NA) 0.741 0.032 0.923 NA
Step 3a 0.038 5.866 0.337 ( 0.296 / 0.041) 0.726 0.032 0.922 0.014
Step 3b 0.038 2.386 0.240 ( 0.197 / 0.044) 0.724 0.032 0.909 0.397

τ0 = 1.07

Oracle 1 0.008 NA 0.013(NA / NA) 0.291 NA NA NA
Oracle 2 0.017 NA 0.013 (NA / NA) 0.473 0.044 0.936 NA
Step 1 0.043 5.967 0.459 ( 0.404 / 0.055) 0.740 0.049 0.923 0.008
Step 2 0.041 NA NA (NA / NA) 0.752 0.050 0.922 NA
Step 3a 0.036 5.932 0.445 ( 0.390 / 0.054) 0.738 0.050 0.920 0.010
Step 3b 0.044 2.486 0.381 ( 0.303 / 0.078) 0.740 0.048 0.918 0.317

Note: For all designs, J(αγ) = 2, γ = 0.5, and n = 200. Note that τ0 values are 0.3, 0.4, . . . , 0.7 quantiles
of χ2(1). See the note below Table 1 for other notation.
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G Additional Simulation Results: Sensitivity Analyses

Tables 12–21 summarize the simulation results of sensitivity analysis on tuning parame-

ters. We set γ = 0.5, i.e. median regression, and n = 200 for all designs. We make variation

on four constants of tuning parameters: γ∗ of Λ1−γ∗ , c1 of κn and ωn, c2 of µn, and a of the

signal adaptive weight wj. Recall that they are set to γ∗ = 0.1, c1 = 1.1, c2 = log log n,

and a = 3.7 following the existing literature and some preliminary simulations. We make

changes over the range between −15% and +15% of the suggested values. Since γ∗ and c1

are relevant for all estimation steps, we report the sensitivity analysis results for all steps:

Tables 12–15 and Tables 16–19. However, we only report the results of Step 3b for c2 and a

as they affect only the last step: Table 20 and Table 21. These simulation studies confirm

that the proposed estimators are robust to some variation in tuning parameters. Both γ∗

and c1 show some tendency that a smaller penalty size (larger γ∗ and smaller c1) improves

the prediction error slightly. Table 20 shows quite stable oracle proportions unless c2 is too

small. The constant a for the signal adaptive weight shows quite uniform performance over

different values. Figures 3–12 present graphical representation of the sensitivity analyses

reported in Tables 12–21.

Table 12: Sensitivity Analysis of γ∗: Step 1
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.039 5.776 0.279 0.246 0.033 0.730 0.011 0.945 0.015
-12% 0.039 5.717 0.280 0.247 0.033 0.727 0.011 0.937 0.019
-9% 0.040 5.720 0.278 0.245 0.033 0.739 0.012 0.931 0.013
-6% 0.039 5.635 0.277 0.244 0.033 0.732 0.012 0.945 0.016
-3% 0.040 5.767 0.282 0.248 0.034 0.733 0.012 0.940 0.017
0% 0.040 5.790 0.279 0.245 0.034 0.723 0.011 0.950 0.015

+3% 0.043 5.782 0.275 0.242 0.033 0.741 0.011 0.944 0.017
+6% 0.038 5.711 0.272 0.239 0.033 0.715 0.011 0.944 0.018
+9% 0.041 5.745 0.278 0.245 0.034 0.697 0.010 0.961 0.018

+12% 0.040 5.730 0.272 0.240 0.032 0.735 0.010 0.957 0.012
+15% 0.042 5.809 0.271 0.240 0.032 0.713 0.011 0.949 0.010
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Table 13: Sensitivity Analysis of γ∗: Step 2
Changes Excess Risk Pred. Er. RMSE of τ̂ C. Prob. of τ̂

-15% 0.035 0.726 0.011 0.937
-12% 0.035 0.721 0.011 0.937
-9% 0.036 0.731 0.012 0.933
-6% 0.036 0.727 0.012 0.934
-3% 0.042 0.719 0.012 0.931
0% 0.036 0.729 0.011 0.946

+3% 0.044 0.728 0.012 0.936
+6% 0.038 0.719 0.011 0.936
+9% 0.040 0.703 0.010 0.956

+12% 0.039 0.701 0.010 0.948
+15% 0.040 0.720 0.011 0.946

Table 14: Sensitivity Analysis of γ∗: Step 3a
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.040 5.793 0.277 0.244 0.033 0.722 0.011 0.941 0.014
-12% 0.040 5.750 0.275 0.243 0.032 0.716 0.011 0.938 0.022
-9% 0.041 5.732 0.273 0.240 0.033 0.726 0.012 0.934 0.015
-6% 0.040 5.699 0.272 0.239 0.033 0.724 0.012 0.935 0.017
-3% 0.040 5.795 0.278 0.245 0.034 0.729 0.012 0.933 0.018
0% 0.039 5.910 0.272 0.239 0.033 0.717 0.011 0.947 0.017

+3% 0.036 5.782 0.269 0.237 0.033 0.714 0.012 0.938 0.018
+6% 0.039 5.726 0.267 0.235 0.033 0.699 0.011 0.938 0.018
+9% 0.040 5.747 0.272 0.239 0.033 0.688 0.010 0.959 0.017

+12% 0.038 5.740 0.267 0.236 0.032 0.707 0.010 0.949 0.012
+15% 0.034 5.836 0.267 0.235 0.032 0.703 0.011 0.944 0.009

Table 15: Sensitivity Analysis of γ∗: Step 3b
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.041 2.331 0.185 0.157 0.028 0.726 0.011 0.932 0.429
-12% 0.040 2.309 0.179 0.153 0.025 0.720 0.011 0.928 0.447
-9% 0.042 2.338 0.195 0.165 0.030 0.734 0.012 0.922 0.417
-6% 0.042 2.296 0.189 0.161 0.028 0.732 0.012 0.924 0.449
-3% 0.043 2.311 0.186 0.158 0.028 0.721 0.012 0.924 0.435
0% 0.040 2.330 0.182 0.155 0.027 0.702 0.011 0.929 0.428

+3% 0.041 2.333 0.176 0.150 0.027 0.725 0.012 0.922 0.434
+6% 0.037 2.299 0.173 0.146 0.026 0.689 0.011 0.932 0.467
+9% 0.040 2.325 0.177 0.150 0.027 0.696 0.010 0.944 0.450

+12% 0.036 2.300 0.170 0.144 0.025 0.682 0.011 0.931 0.465
+15% 0.038 2.326 0.180 0.150 0.029 0.686 0.011 0.931 0.455
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Table 16: Sensitivity Analysis of c1: Step 1
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.039 5.811 0.266 0.233 0.033 0.695 0.011 0.948 0.027
-12% 0.034 5.656 0.273 0.239 0.034 0.707 0.012 0.946 0.010
-9% 0.039 5.870 0.273 0.241 0.032 0.699 0.010 0.964 0.014
-6% 0.036 5.787 0.274 0.241 0.033 0.707 0.009 0.965 0.016
-3% 0.043 5.807 0.274 0.242 0.032 0.716 0.011 0.944 0.008
0% 0.040 5.790 0.279 0.245 0.034 0.723 0.011 0.950 0.015

+3% 0.039 5.736 0.281 0.248 0.033 0.730 0.011 0.951 0.016
+6% 0.040 5.727 0.287 0.252 0.035 0.734 0.011 0.945 0.011
+9% 0.042 5.846 0.284 0.251 0.033 0.745 0.011 0.939 0.015

+12% 0.047 5.952 0.309 0.274 0.035 0.753 0.012 0.947 0.012
+15% 0.041 5.828 0.291 0.257 0.033 0.734 0.010 0.961 0.013

Table 17: Sensitivity Analysis of c1: Step 2
Changes Excess Risk Pred. Er. RMSE of τ̂ C. Prob. of τ̂

-15% 0.038 0.697 0.011 0.943
-12% 0.037 0.713 0.012 0.943
-9% 0.036 0.698 0.010 0.953
-6% 0.034 0.711 0.009 0.954
-3% 0.040 0.723 0.011 0.941
0% 0.036 0.729 0.011 0.946

+3% 0.035 0.724 0.011 0.943
+6% 0.040 0.742 0.011 0.944
+9% 0.038 0.753 0.011 0.931

+12% 0.044 0.753 0.011 0.940
+15% 0.046 0.745 0.009 0.960

Table 18: Sensitivity Analysis of c1: Step 3a
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.035 5.783 0.262 0.230 0.033 0.676 0.011 0.947 0.026
-12% 0.037 5.691 0.270 0.237 0.034 0.696 0.012 0.946 0.011
-9% 0.040 5.854 0.270 0.238 0.032 0.689 0.010 0.956 0.017
-6% 0.039 5.810 0.271 0.238 0.033 0.705 0.009 0.960 0.015
-3% 0.034 5.832 0.268 0.237 0.031 0.706 0.011 0.943 0.010
0% 0.039 5.910 0.272 0.239 0.033 0.717 0.011 0.947 0.017

+3% 0.040 5.747 0.278 0.244 0.033 0.720 0.011 0.944 0.016
+6% 0.041 5.728 0.281 0.246 0.035 0.728 0.011 0.945 0.014
+9% 0.042 5.789 0.280 0.247 0.033 0.715 0.011 0.935 0.015

+12% 0.038 5.952 0.304 0.269 0.035 0.729 0.011 0.945 0.012
+15% 0.038 5.818 0.285 0.252 0.033 0.735 0.010 0.962 0.016
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Table 19: Sensitivity Analysis of c1: Step 3b
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.035 2.341 0.158 0.129 0.028 0.649 0.011 0.937 0.468
-12% 0.038 2.328 0.190 0.156 0.034 0.678 0.012 0.936 0.415
-9% 0.038 2.346 0.185 0.156 0.029 0.676 0.010 0.946 0.442
-6% 0.037 2.332 0.164 0.138 0.026 0.674 0.010 0.943 0.453
-3% 0.039 2.343 0.187 0.157 0.030 0.694 0.011 0.931 0.447
0% 0.040 2.330 0.182 0.155 0.027 0.702 0.011 0.929 0.428

+3% 0.041 2.331 0.184 0.157 0.027 0.723 0.011 0.935 0.436
+6% 0.047 2.309 0.193 0.164 0.028 0.745 0.012 0.932 0.436
+9% 0.045 2.341 0.170 0.148 0.022 0.732 0.011 0.931 0.434

+12% 0.049 2.385 0.225 0.189 0.035 0.757 0.012 0.925 0.427
+15% 0.045 2.354 0.204 0.175 0.029 0.755 0.010 0.944 0.424

Table 20: Sensitivity Analysis of c2: Step 3b
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.040 2.455 0.173 0.146 0.027 0.699 0.012 0.928 0.409
-12% 0.040 2.416 0.175 0.148 0.028 0.698 0.011 0.929 0.414
-9% 0.041 2.390 0.175 0.148 0.027 0.702 0.011 0.922 0.431
-6% 0.039 2.373 0.167 0.141 0.025 0.695 0.011 0.931 0.432
-3% 0.041 2.349 0.166 0.142 0.025 0.708 0.011 0.932 0.443
0% 0.040 2.330 0.182 0.155 0.027 0.702 0.011 0.929 0.428

+3% 0.042 2.324 0.192 0.162 0.031 0.716 0.010 0.932 0.464
+6% 0.045 2.308 0.186 0.158 0.028 0.738 0.012 0.917 0.460
+9% 0.045 2.273 0.194 0.164 0.030 0.739 0.011 0.932 0.457

+12% 0.047 2.269 0.192 0.163 0.029 0.757 0.011 0.926 0.438
+15% 0.047 2.266 0.189 0.161 0.028 0.762 0.012 0.927 0.446

Table 21: Sensitivity Analysis of a: Step 3b
Changes Excess Risk E[J0(α̂)] MSE of α̂ MSE of α̂J0

MSE of α̂Jc

0
Pred. Er. RMSE of τ̂ C. Prob. of τ̂ Oracle Prop

-15% 0.040 2.599 0.183 0.152 0.031 0.696 0.011 0.932 0.435
-12% 0.040 2.343 0.176 0.148 0.028 0.699 0.011 0.935 0.436
-9% 0.041 2.356 0.176 0.149 0.028 0.706 0.011 0.929 0.433
-6% 0.041 2.371 0.175 0.148 0.027 0.713 0.011 0.924 0.421
-3% 0.041 2.342 0.166 0.142 0.025 0.710 0.011 0.928 0.450
0% 0.040 2.330 0.182 0.155 0.027 0.702 0.011 0.929 0.428

+3% 0.042 2.349 0.174 0.147 0.027 0.718 0.011 0.927 0.443
+6% 0.042 2.350 0.173 0.148 0.026 0.720 0.011 0.929 0.445
+9% 0.046 2.340 0.182 0.155 0.027 0.735 0.011 0.923 0.449

+12% 0.046 2.327 0.184 0.156 0.028 0.733 0.011 0.922 0.457
+15% 0.044 2.339 0.185 0.157 0.028 0.724 0.011 0.935 0.453
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Figure 3: Sensitivity Analysis of γ∗: Step 1
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Figure 4: Sensitivity Analysis of γ∗: Step 2
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Figure 5: Sensitivity Analysis of γ∗: Step 3a
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Figure 6: Sensitivity Analysis of γ∗: Step 3b
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Figure 7: Sensitivity Analysis of c1: Step 1
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Figure 8: Sensitivity Analysis of c1: Step 2
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Figure 9: Sensitivity Analysis of c1: Step 3a
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Figure 10: Sensitivity Analysis of c1: Step 3b
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Figure 11: Sensitivity Analysis of c2: Step 3b
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Figure 12: Sensitivity Analysis of a: Step 3b
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H Estimating a Change Point in Racial Segregation:

Additional Tables

Table 22: Selected Covariates γ = 0.25

Selected Regressors
6 control variables
No Interaction 3 6
Two-way Interaction 1:3 3:5 4:5 5:6
Three-way Interaction 4:5 5:6 1:2:3 1:3:5 1:4:6 2:3:5 3:4:5 3:5:6
Four-way Interaction 4:5 5:6 2:3:5 1:3:4:5 1:4:5:6 3:4:5:6
Five-way Interaction 4:5 5:6 2:3:5 1:4:5:6 1:2:3:4:5 2:3:4:5:6
Six-way Interaction 4:5 5:6 2:3:5 1:4:5:6 1:2:3:4:5 2:3:4:5:6

12 control variables
No Interaction 3 6
Two-way Interaction 1:5 3:5-sq 5:6 6:5-sq 3-sq:5-sq
Three-way Interaction 5:6 3:5:5-sq 4:1-sq:4-sq 5:1-sq:6-sq 5:3-sq:5-sq 5:4-sq:6-sq 1-sq:3-

sq:5-sq 1-sq:5-sq:6-sq
Four-way Interaction 5:6 2:5:6 1:3:1-sq:4-sq 1:5:6:6-sq 2:1-sq:5-sq:6-sq 3:5:2-sq:4-sq 3:5:2-

sq:5-sq 3:1-sq:4-sq:6-sq 5:1-sq:2-sq:6-sq 5:1-sq:3-sq:5-sq 5:2-sq:3-
sq:5-sq 6:3-sq:4-sq:6-sq

Five-way Interaction 5:6 2:5:6 1:3:4:1-sq:4-sq 1:3:1-sq:4-sq:6-sq 1:5:6:2-sq:6-sq 1:5:3-
sq:4-sq:5-sq 1:1-sq:2-sq:5-sq:6-sq 2:5:1-sq:2-sq:6-sq 2:5:2-sq:3-sq:5-
sq 3:5:1-sq:3-sq:5-sq 4:6:3-sq:4-sq:6-sq 4:1-sq:2-sq:5-sq:6-sq

Six-way Interaction 2:5:6 1:3:4:1-sq:4-sq 2:5:1-sq:2-sq:6-sq 2:5:2-sq:3-sq:5-sq 1:2:5:6:2-
sq:6-sq 1:2:1-sq:2-sq:5-sq:6-sq 1:3:4:5:3-sq:5-sq 1:3:4:6:1-sq:4-sq
1:3:2-sq:4-sq:5-sq:6-sq 1:4:1-sq:3-sq:4-sq:6-sq 2:4:1-sq:2-sq:5-sq:6-
sq 3:4:6:3-sq:4-sq:6-sq 3:5:1-sq:2-sq:3-sq:5-sq 4:5:1-sq:2-sq:3-sq:5-
sq

Note: Numbers 1 to 6 refer to 6 tract-level control variables: the unemployment rate(1), the log of mean
family income(2), the fractions of vacant(3), renter-occupied housing units(4), and single-unit(5), and the
fraction of workers who use public transport to travel to work(6). Notation ‘-sq’ stands for the squared
variable. The colon (:) denotes interaction between covariates. For example, 1:2 stands for interaction
between the unemployment rate and the log of the mean family income.
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Table 23: Selected Covariates γ = 0.50

Selected Regressors
6 control variables
No Interaction 1 3 6
Two-way Interaction 1:3 3:5 4:5 5:6
Three-way Interaction 4:5 1:3:5 2:3:5 2:4:6 2:5:6 3:4:5
Four-way Interaction 4:5 5:6 2:3:5 1:3:4:5 1:4:5:6 2:3:4:6
Five-way Interaction 4:5 5:6 2:3:5 1:4:5:6 2:3:4:6 1:2:3:4:5
Six-way Interaction 4:5 5:6 2:3:5 1:4:5:6 2:3:4:6 1:2:3:4:5

12 control variables
No Interaction 1 3 6 5-sq
Two-way Interaction 1 1:5 3:5-sq 4:5 5:6 6:4-sq 3-sq:5-sq
Three-way Interaction 1 5 1:5 3:5:5-sq 5:6:2-sq 5:1-sq:6-sq 5:4-sq:6-sq 1-sq:3-sq:5-sq 1-

sq:5-sq:6-sq 2-sq:3-sq:5-sq 4-sq:5-sq:6-sq
Four-way Interaction 1 5 5:6:2-sq 1:4:5-sq:6-sq 1:5:6:6-sq 1:3-sq:4-sq:5-sq 2:2-sq:3-sq:5-

sq 3:5:2-sq:5-sq 3:1-sq:4-sq:6-sq 4:5:6:6-sq 5:1-sq:2-sq:6-sq 5:1-sq:3-
sq:5-sq 1-sq:2-sq:5-sq:6-sq

Five-way Interaction 1 5 2:2-sq:3-sq:5-sq 5:1-sq:3-sq:5-sq 1:4:2-sq:5-sq:6-sq 1:5:3-sq:4-
sq:5-sq 2:3:5:2-sq:5-sq 2:5:1-sq:2-sq:6-sq 2:5:2-sq:3-sq:5-sq 2:1-sq:2-
sq:5-sq:6-sq 3:4:1-sq:4-sq:6-sq 3:5:2-sq:5-sq:6-sq 3:6:1-sq:4-sq:6-sq
4:5:6:2-sq:6-sq 4:1-sq:2-sq:5-sq:6-sq

Six-way Interaction 1 5 2:2-sq:3-sq:5-sq 5:1-sq:3-sq:5-sq 1:5:3-sq:4-sq:5-sq 2:3:5:2-sq:5-
sq 2:5:1-sq:2-sq:6-sq 2:5:2-sq:3-sq:5-sq 2:1-sq:2-sq:5-sq:6-sq 1:3:1-
sq:3-sq:5-sq:6-sq 1:3:2-sq:4-sq:5-sq:6-sq 2:3:5:2-sq:5-sq:6-sq 2:4:1-
sq:2-sq:5-sq:6-sq 3:4:6:1-sq:4-sq:6-sq

Note: Numbers 1 to 6 refer to 6 tract-level control variables: the unemployment rate(1), the log of mean
family income(2), the fractions of vacant(3), renter-occupied housing units(4), and single-unit(5), and the
fraction of workers who use public transport to travel to work(6). Notation ‘-sq’ stands for the squared
variable. The colon (:) denotes interaction between covariates. For example, 1:2 stands for interaction
between the unemployment rate and the log of the mean family income.

123



Table 24: Selected Covariates γ = 0.75

Selected Covariates
6 control variables
No Interaction 3 5
Two-way Interaction 1:3 3:5 4:5 4:6 5:6
Three-way Interaction 1:2 4:5 1:3:5 1:5:6 2:3:5 2:4:5 2:5:6 3:4:5 3:4:6 3:5:6
Four-way Interaction 1:2 4:5 2:3:5 2:5:6 3:5:6 1:3:4:5 1:4:5:6 2:3:4:6
Five-way Interaction 1:2 4:5 2:3:5 2:5:6 3:5:6 1:4:5:6 2:3:4:6 1:2:3:4:5
Six-way Interaction 1:2 4:5 2:3:5 2:5:6 3:5:6 1:4:5:6 2:3:4:6 1:2:3:4:5

12 control variables
No Interaction 1 3 5-sq
Two-way Interaction 1:2 1:3 1:1-sq 3:5-sq 4:5 5:6 6:6-sq 3-sq:4-sq 3-sq:5-sq 4-sq:6-sq
Three-way Interaction 1 3:5:5-sq 3:1-sq:5-sq 3:2-sq:5-sq 3:5-sq:6-sq 4:3-sq:4-sq 5:6:2-sq

5:1-sq:6-sq 5:4-sq:6-sq 1-sq:3-sq:5-sq 1-sq:5-sq:6-sq 2-sq:3-sq:5-sq
Four-way Interaction 1 1-sq:3-sq:5-sq 1:3:4:5 1:3:4-sq:5-sq 1:4:5-sq:6-sq 2:3:2-sq:5-sq

2:5:6:2-sq 2:2-sq:3-sq:5-sq 3:4:2-sq:4-sq 3:5:2-sq:5-sq 3:5:5-sq:6-sq
3:1-sq:4-sq:6-sq 4:1-sq:5-sq:6-sq 5:1-sq:3-sq:5-sq 1-sq:2-sq:5-sq:6-sq

Five-way Interaction 1 1-sq:3-sq:5-sq 1:3:4:5 1:3:4-sq:5-sq 1:4:5-sq:6-sq 2:3:2-sq:5-sq
2:5:6:2-sq 2:2-sq:3-sq:5-sq 3:4:2-sq:4-sq 3:5:2-sq:5-sq 3:5:5-sq:6-sq
3:1-sq:4-sq:6-sq 4:1-sq:5-sq:6-sq 5:1-sq:3-sq:5-sq 1-sq:2-sq:5-sq:6-sq

Six-way Interaction 1 5:6 1-sq:3-sq:5-sq 1:3:4:5 2:3:2-sq:5-sq 2:2-sq:3-sq:5-sq 5:1-sq:3-
sq:5-sq 2:3:4:2-sq:4-sq 2:3:5:2-sq:5-sq 2:1-sq:2-sq:5-sq:6-sq 2:3:5:2-
sq:5-sq:6-sq 2:4:5:1-sq:3-sq:5-sq 2:4:1-sq:2-sq:5-sq:6-sq 3:4:5:1-sq:2-
sq:5-sq 4:6:1-sq:3-sq:4-sq:6-sq

Note: Numbers 1 to 6 refer to 6 tract-level control variables: the unemployment rate(1), the log of mean
family income(2), the fractions of vacant(3), renter-occupied housing units(4), and single-unit(5), and the
fraction of workers who use public transport to travel to work(6). Notation ‘-sq’ stands for the squared
variable. The colon (:) denotes interaction between covariates. For example, 1:2 stands for interaction
between the unemployment rate and the log of the mean family income.
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Table 25: Full Estimation Results from Mean Regression (Untrimmed Data)

No. of Reg.
No. of

τ̂ CI for τ0 δ̂
Selected Reg.

6 control variables
No Interaction 26 25 3.25 NA -21.53
Two-way Interaction 41 34 3.25 NA -17.39
Three-way Interaction 61 40 3.25 NA -16.60
Four-way Interaction 76 50 3.25 NA -15.80
Five-way Interaction 82 49 3.25 NA -16.12
Six-way Interaction 83 50 3.25 NA -16.14

12 control variables
No Interaction 32 29 3.25 NA -19.94
Two-way Interaction 98 54 3.25 NA -15.27
Three-way Interaction 318 80 3.25 NA -15.33
Four-way Interaction 813 103 3.25 NA -15.16
Five-way Interaction 1605 129 3.25 NA -15.27
Six-way Interaction 2529 142 3.25 NA -15.55
Note: The sample size of untrimmed data is n = 1, 813. The parameter τ0 is estimated by the grid search
on the 591 equi-spaced points over [1, 60]. As in the simulation studies, the tuning parameters are set from
Step 1 in median regression.

Table 26: Full Estimation Results from Mean Regression (Trimmed Data)

No. of Reg.
No. of Selected Reg.

τ̂ CI for τ0 δ̂
in Step 3b

6 control variables
No Interaction 26 24 3.35 NA -6.32
Two-way Interaction 41 32 3.25 NA -6.00
Three-way Interaction 61 37 3.25 NA -7.01
Four-way Interaction 76 35 3.25 NA -6.68
Five-way Interaction 82 41 3.25 NA -6.59
Six-way Interaction 83 41 3.25 NA -6.53

12 control variables
No Interaction 32 30 3.35 NA -4.27
Two-way Interaction 98 48 3.35 NA -4.28
Three-way Interaction 318 63 3.25 NA -5.02
Four-way Interaction 813 90 3.25 NA -5.18
Five-way Interaction 1605 88 3.25 NA -5.27
Six-way Interaction 2529 107 3.25 NA -5.19
Note: The trimmed data drop top and bottom 5% observations based on {Yi} and the sample sizes decreases
to n = 1, 626. The parameter τ0 is estimated by the grid search on the 591 equi-spaced points over [1, 60].
As in the simulation studies, the tuning parameters are set from Step 1 in median regression.
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