
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

October 2017

ORACLE GUIDED INCREMENTAL SAT SOLVING TO REVERSE ORACLE GUIDED INCREMENTAL SAT SOLVING TO REVERSE

ENGINEER CAMOUFLAGED CIRCUITS ENGINEER CAMOUFLAGED CIRCUITS

Xiangyu Zhang
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

 Part of the Digital Circuits Commons, and the VLSI and Circuits, Embedded and Hardware Systems

Commons

Recommended Citation Recommended Citation

Zhang, Xiangyu, "ORACLE GUIDED INCREMENTAL SAT SOLVING TO REVERSE ENGINEER CAMOUFLAGED

CIRCUITS" (2017). Masters Theses. 551.

https://doi.org/10.7275/10232197 https://scholarworks.umass.edu/masters_theses_2/551

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/masters_theses_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/10232197
https://scholarworks.umass.edu/masters_theses_2/551?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ORACLE GUIDED INCREMENTAL SAT SOLVING TO
REVERSE ENGINEER CAMOUFLAGED CIRCUITS

A Thesis Presented

by

XIANGYU ZHANG

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

September 2017

Electrical and Computer Engineering

ORACLE GUIDED INCREMENTAL SAT SOLVING TO
REVERSE ENGINEER CAMOUFLAGED CIRCUITS

A Thesis Presented

by

XIANGYU ZHANG

Approved as to style and content by:

Daniel Holcomb, Chair

Maciej Ciesielski, Member

Sandip Kundu, Member

Christopher V. Hollot, Head
Electrical and Computer Engineering

DEDICATION

In the name of Jesus Christ.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Daniel Holcomb, for his thoughtful, patient

guidance and support. Thanks are also due to Duo Liu and Cunxi Yu. Together

their friendship and selfless contribution to my professional development have been

invaluable and will forever be appreciated. I would also like to extend my gratitude to

the members of my committee, Dr. Sandip Kundu and Dr. Maciej J. Ciesielski, for

their helpful comments and suggestions on all stages of this project.

A special thank you to all those whose support and friendship helped me to stay

focused on this project and who have provided me with the encouragement to continue

when the going got tough.

iv

ABSTRACT

ORACLE GUIDED INCREMENTAL SAT SOLVING TO

REVERSE ENGINEER CAMOUFLAGED CIRCUITS

SEPTEMBER 2017

XIANGYU ZHANG

B.Sc., FLORIDA INSTITUTE OF TECHNOLOGY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel Holcomb

This study comprises two tasks. The first is to implement gate-level circuit

camouflage techniques. The second is to implement the Oracle-guided incremental

de-camouflage algorithm and apply it to the camouflaged designs.

The circuit camouflage algorithms are implemented in Python, and the Oracle-

guided incremental de-camouflage algorithm is implemented in C++. During this

study, I evaluate the Oracle-guided de-camouflage tool (Solver, in short) performance

by de-obfuscating the ISCAS-85 combinational benchmarks, which are camouflaged

by the camouflage algorithms. The results show that Solver is able to efficiently

de-obfuscate the ISCAS-85 benchmarks regardless of camouflaging style, and is able

to do so 10.5x faster than the best existing approaches. And, based on Solver, this

study also measures the de-obfuscation runtime for each camouflage style.

v

CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES .viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

2. RELATED WORK .3

3. CIRCUIT CAMOUFLAGE AND ATTACKER MODEL6

3.1 Camouflaged Standard Cells using Dummy Contacts 7
3.2 Obfusgates: Dopant Programmable Logic Cells . 8
3.3 Transformable Interconnects . 9

4. PROBLEM FORMULATION . 12

4.1 Defining Notation . 13
4.2 SAT Solving of Camouflaged Circuit . 15
4.3 Incremental-SAT Algorithm . 16
4.4 Baseline SAT-based De-obfuscation Algorithm . 19
4.5 Illustrative . 19

4.5.1 Example 1 - NAND/NOR/XOR Camouflaging 19
4.5.2 Example 2 - All Gates are Camouflaged . 21

5. IMPLEMENTATION AND USER GUIDE . 23

5.1 Introduction to Software . 23

vi

5.1.1 Purpose . 23
5.1.2 Principle . 23
5.1.3 Terminology . 23

5.2 Installation Tutorial . 24

5.2.1 Dependencies . 24
5.2.2 Installation . 24
5.2.3 Command Line Usage . 25
5.2.4 Description of oracle program . 26
5.2.5 Format of camouflage circuit model . 26
5.2.6 Flow Diagram . 29

5.3 Architecture and implementation details . 29

5.3.1 Control Flow . 30
5.3.2 Class Structure . 31
5.3.3 IncreSolver . 32
5.3.4 MiterSolver . 34
5.3.5 AddonSolver . 35
5.3.6 SoluFinder . 39

6. EVALUATION OF DE-OBFUSCATION ALGORITHM41

6.1 Evaluation of Camouflaging Techniques . 41
6.2 Limitation of SAT-based De-obfuscation . 44
6.3 Incremental Algorithm versus Baseline . 45
6.4 Evaluating for combination of different camouflaging techniques 46

7. CONCLUSION . 49

BIBLIOGRAPHY . 50

vii

LIST OF TABLES

Table Page

4.1 Values produced at each iteration of Alg. 1 during deobfuscation of the
camouflaged c17 circuit in Figure 4.3. The number of feasible
configurations is the number of programming vectors that satisfy
the constraints at each iteration of the algorithm. 20

6.1 Camouflagable components in the ISCAS-85 benchmarks when
applying different camouflaging techniques. Note that, in the case
of transformable interconnects, any net can be chosen, but the
choice of dummy connections is restricted to avoid creating
apparent combinational loops. 44

viii

LIST OF FIGURES

Figure Page

3.1 Circuit constructs used to model Camouflaged Standard Cells.
Boolean variables pi configure the logic function of the gate, and an
attacker tries to learn the value of these variables. 7

3.2 Schematic of a single Obfusgate that consists of 5 Obfuscells together
with a 4-input NAND gate. This gate can have 162 different logic
functions depending on the logical functions realized by each
Obfuscell. 9

3.3 (a) Design as viewed by reverse engineers; (b, c, d) three valid circuit
configurations when d1 or d2 or d3 is transformable interconnect;
(e) attacker model of transformable interconnect. 11

4.1 The unshaded components comprise a miter used to find conditions
where two copies of the circuit produce different outputs due to
different programming vectors. The shaded components enforce
feasibility constraints that restrict programming vectors to be
consistent with input-output examples. 13

4.2 Gate-level netlist of circuit c17. 19

4.3 Modeling of c17 benchmark with G1, G4, G5 camouflaged using
NAND/NOR/XOR camouflaging. 21

4.4 Modeling of c17 with all gates fully camouflaged. In this scenario, the
reverse engineer only knows the routing. 21

4.5 Resolved function of c17 when all gates are fully camouflaged. 22

5.1 class structure of the software. 31

5.2 class MiterSolver’s work flow . 36

5.3 class AddonSolver’s work flow . 37

ix

5.4 class SoluFinder’s work flow . 40

6.1 Plots show average runtime to de-obfuscate eight ISCAS-85
benchmarks with varied numbers of randomly obfuscated
components using the camouflaging techniques presented in
Camouflaged Standard Cells [27], Obfusgates [23] and Transformable
Interconnects [4]. Specifically, the runtimes shown are the average
runtimes over 10 random trials for each technique and number of
obfuscated components. 42

6.2 Eliminating feasible configurations using input-output examples
generated by the de-obfuscation algorithm for circuits c2670, c3540,
c5315, and c7552 with 51 gates camouflaged using camouflaged
standard cells that can implement NAND, NOR or XOR gates.
The initial model of each camouflaged circuit has 351 configurations.
The five trials in each plot denote five different random choices of
which gates to camouflage. 43

6.3 Comparing the total deobfuscation CPU time and the number of
vectors used for deobfuscation of Corruptibility-guided and random
camouflaged ISCAS-85 benchmarks. 44

6.4 Comparing the total de-obfuscation runtime of baseline and
incremental algorithms on 2400 randomly camouflaged circuits
instances using different styles of camouflaged gates. The
incremental solver gives an average speedup of 10.5x. Runtimes
exceeding 1500 seconds are truncated from the plot. 45

6.5 Examining the variable and clauses elimination using incremental SAT
solving on 10 randomly camouflaged instances of ISCAS-85
benchmark c7552, each with 200 NAND/NOR/XOR camouflaged
standard cells [27]. 45

6.6 Plots show each design favors to a certain type of obfuscation. Smaller
circuit tends to functionality obfuscation, while connection
obfuscation works better with larger circuit. 48

x

CHAPTER 1

INTRODUCTION

IC designers have clear incentives against publicizing all implementation details of a

design, as this may compromise their strategic advantage or leak sensitive information.

However, once a circuit is fabricated and released to market, reverse engineering

techniques can attempt to extract implementation details from the physical object

without consent or knowledge of the designer. Circuit camouflaging is an attempt to

obscure the true functionality of a circuit, and to limit the information that can be

leaked through reverse engineering.

Gate-level camouflaging is a particular camouflaging technique in which the func-

tions of certain combinational logic gates cannot be directly ascertained from imaging-

based reverse engineering. In this case, the logic may be inferred using a combination

of information obtained from reverse engineering and information obtained through

observation of input-output vectors captured through scan chains or other mechanisms.

In my work I present such an algorithm for extracting the functionality of reverse

engineered netlists.

The specific contributions of this work are as follows:

• I present an incremental-SAT-based technique for reverse engineering camou-

flaged integrated circuits that outperforms its non-incremental counterpart by

10.5x in terms of average runtime on ISCAS-85 benchmarks.

• I show that selective gate camouflaging based on the objective of maximizing

output corruption [27] offers no resistance to reverse engineering and can reduce

the number of vectors required to deobfuscate a circuit.

1

• I provide a new standard and widely-applicable tool for logic de-obfuscation that

can be used to evaluate current and future approaches for selective camouflaging.1

• I demonstrate that our technique is general and can efficiently resolve the

obfuscated function of three proposed camouflaging techniques [27, 23, 4].

1The source code of our tool and benchmarks used in this work are released publicly at our project
website at
https://ycunxi.github.io/Incremental-SAT-DeCam/.

2

CHAPTER 2

RELATED WORK

By decapsulating chips, and removing layers and imaging in succession to reveal

the internal information, invasive techniques can be used by a reverse engineer to steal

gate-level circuit functions. Recently, such reverse engineering of integrated circuit

(IC) chips has caused loss for the IC industry [32]. Torrance and James [32] gave an

overview of the state of the art in invasive reverse engineering.

Recent years, people focus on extracting high-level meaning from the deluge of

gates by invasive reverse engineering of fabricated circuits. Through matching against

known components, Li managed to resolve subcircuit components and obtain word-

level structures [20]. Subramanyan also improves to operate on the unstructured

netlist, where subcircuits are not identified in advance [30]. Work by Gascón [10]

managed to check equivalence between a circuit-under-investigation and a reference

circuit when the signal correspondence between the two is unknown. Different from

the above mentioned methods, there is no complete gate-level model of the circuit-

under-investigation.

Camouflaged gates is a countermeasure against image-based reverse engineering.

Camouflaged gates can provide the same looking cells while the logic functions or

connections are substantially different. In such way, a circuit’s function cannot be

inferred from its appearance. Camouflaged gate libraries [31] can be realized by

using hard-to-observe structural techniques to create different gate functions [6], or

functionality can be controlled without structural differences by changing doping of

specific devices [1, 28, 23, 12]. To minimize cost, one may choose to only camouflage

3

a small portion of the circuits [3, 27]. However, without the knowledge of the actual

circuit, a reverse engineer needs to consider all gates are camouflaged [2]. Vijayakumar

provides an overview of physical mechanisms for obfuscation [33].

Rajendran al. gives an attacker model for reverse engineering circuits with camou-

flaged gates [26]. When the attacker knows all non-camouflaged gates and can apply

input and get output, the camouflaged circuit remain hard to discover. My work

uses oracle-guided synthesis [13], but the capability and limitation of this technique

need attention. Though the overall circuit produced by oracle-guided synthesis is

guaranteed to be functionally equivalent to the obfuscated circuit, it is not guaranteed

to have equivalence gate by gate. For example, given that 2-input XOR and 2-input

NAND gates produce different outputs only for the 00 input combination, the two

gate functions are interchangeable if the 00 input combination cannot be justified

or propagated to the outputs. This gate-level ambiguity is unavoidable if trying to

synthesize a design based on merely inputs and outputs, but it is important to note

that a design recovered through oracle-guided synthesis should not be used for certain

classes of side-channel attacks or fault injection attacks that require knowing the states

of all combinational circuit nets.

During my work, I modeled all the three mainstream camouflage techniques by

a logic model based on multiplexer, but the problem of logic locking arise. Logic

locking is closely related to the problem of camouflaging and in logic locking, recent

works show the importance of trying to thwart SAT attacks by ensuring that each

input-output example provides limited information about the values of the key bits

that unlock the circuit [36] [34]. In an extreme case, one can guarantee that an

exponential number of input-output examples are needed to exactly learn the key

bits, but a consequence of this is that output corruption under incorrect key guesses

will be limited [36]. A similar approach has been used with camouflaging to quantify

the security of the camouflaged circuits [37] [19]. Note that in logic locking, care

4

must be taken to ensure that the key gates cannot be identified and removed, and

thus to remain secure under reverse engineering logic locking can be combined with

obfuscation [36] [15].

Reverse engineering could be viewed as a form of privacy threat with respect to

the IP implemented on a chip. In a related reverse engineering context, privacy of

specific chip instances can be violated by an ability to observe unintended unique

features of each device instance [14, 25].

5

CHAPTER 3

CIRCUIT CAMOUFLAGE AND ATTACKER MODEL

The attacker model in my work is that of an attacker have instances of a chip and

want to reconstruct the logic function of the whole chip. Based on prior works and

the attacker model proposed by Rajendran [27], the assumption of the capability of

the attacker is as follows:

1. By imaging the layers, an attacker can obtain the information of the logic

functions and the topology of the circuit. Namely, the attacker can generate a

netlist from such instances of a chip.

2. The attacker can identify which components are camouflaged, which is because

the camouflaged parts do not look identical to the non-camouflaged parts. For

example, a camouflaged gate that can be configured to a number of different

possible functions is usually larger than the function-specific implementation of

the same gates.

3. The attacker can apply input to the camouflaged combinational circuit and

observe the output signals. Because attacker has access to an instance of chips,

this could be achieved by using scan-based test techniques [35], possibly combined

with micro probing to gain access to deactivated scan chains [17].

In this work, I model all the configurations of the camouflaged circuit using

multiplexers with uncertain control bits, because an uncertainty of connection and

functionality can be translated to uncertainty about the value of certain Boolean

variables . In Chapter 4, I show how to solve for the value of these variables using

6

SAT. The resolved value can thus indicate the actual logic function or connection

of the camouflaged gate. In this chapter, I will explain the principle of the three

different types of camouflaged components: Camouflaged Standard Cells, Obfusgates,

and Transformable Interconnects, as well as how to apply this modeling mechanism.

pi
 pi+1

A

B

Y

(a) NAND/NOR/XOR Camouflage

Y

pi
 pi+1 pi+2 pi+3

A

B

(b) Fully Camouflaged

Figure 3.1: Circuit constructs used to model Camouflaged Standard Cells. Boolean variables pi
configure the logic function of the gate, and an attacker tries to learn the value of these variables.

3.1 Camouflaged Standard Cells using Dummy Contacts

The principle of standard cell camouflaging is using a generic cell layout to

realize multiple logic functions. Through some invisible changes to this layout, the

functionality can be substantially changed while attacker cannot notice those changes

from an imaging-based attack. One way to implement hard-to-observe changes is to

use Dummy Contacts [5]. Dummy contacts are structures that look like connections

between metal layers, or connections between metal layers and polysilicon, but there is

no such connection. A same-looking cell can be configured to different logic functions

depending on which contacts in a cell are true contacts. According to [5], Dummy

Contacts can not be found by imaging-based technique, so a reverse engineer cannot

know which logic function is implemented by the cell.

7

A specific variant of a camouflaged standard cell is a generic cell layout that can

realize the functionality of 2-input XOR, NAND, or NOR gates depending on which

contacts are true [27]. To model the camouflaged cell, I introduce a multiplexer-based

model (Figure 3.1). The functionality can be derived by resolving the values of program

bits pi, pi+1 (Figure 3.1 a). Note that in this model pi, pi+1 are forbidden to be ”11” since

there are only three possible functions for the gate. Additionally, I extend the model

(Figure 3.1 b) to gain the capability of modeling other types of camouflaged standard

cells. The function of Y can be represented as Y = ĀB̄p1+ĀBp2+AB̄p3+ABp4.

Hence, this model is able to represent any of the sixteen possible two-input functions.

3.2 Obfusgates: Dopant Programmable Logic Cells

Similar to the principle of camouflaged standard cell, Malik et al. [23] proposed

another indistinguishable component, which is Obfusgates. An Obfusgate is imple-

mented by combining a standard cell logic gate with some Obfuscells connected to

its input and output ports. Malik demonstrates Obfusgates based on both NAND4

and AND2 [23], but here I consider only the NAND4 variant. Depending on the

dopant polarity within the active area of the Obfuscell, each Obfuscell can have four

logic functions: inverter, buffer, constant 1, or constant 0. Because imaging-based

technique can not see the dopant polarity, attackers will have difficulty learning the

logical function of the Obfusgate [23].

Unlike camouflaged standard cells that can only provide functionality obfuscation,

Obfusgates can provide both functionality and connection obfuscation. The func-

tionality obfuscation is based on the different configuration of Obfuscell. And the

connection obfuscation relies on the fact that pins connected to the constant 0 and

constant 1 inputs can provide additional dummy wire, which can be connected to any

sources without impacting the logic function of the circuit.

8

OBF-CELL

OBF-CELL

OBF-CELL

i1

i2

i3

1

0

p
i+1p

i

Y

YOBF-CELL

OBF-CELLi4

NAND

Figure 3.2: Schematic of a single Obfusgate that consists of 5 Obfuscells together with a 4-input
NAND gate. This gate can have 162 different logic functions depending on the logical functions
realized by each Obfuscell.

Figure 3.2 shows an Obfusgate comprising a NAND4 gate and five Obfuscells.

Because an Obfuscell potentially has four different functions, I use a 4-to-1 multiplexer

to model an Obfuscell and apply constant 0, constant 1, buffer and inverter to the

multiplexer (Figure 3.2). The function of the camouflaged circuit can be resolved

by finding appropriate values for the programming bits of the Obfuscells. For each

NAND4-based Obfusgate, with five Obfuscells each having four possible functions,

there are 45 total configurations possible. Many of these 45 configurations cause

the Obfusgate to realize the same functions, and there are 162 unique 4-input logic

functions that can be created by the NAND4 Obfusgate.

3.3 Transformable Interconnects

Different from the previous discussed two techniques, the principle of transformable

interconnects is to provide connection obfuscation, which is proposed by Chen et al [4].

The implementation of this method is using two types of contacts in interconnection:

magnesium (Mg) contacts which are conductors, and magnesium oxide (MgO) contacts

9

which are not conductors. During delaying, the Mg contacts will oxidize into MgO, so

the attacker cannot distinguish which contacts were Mg.

An example of camouflaging using transformable interconnect is shown in Figure 3.3.

The reverse engineer’s view of the circuit is as shown in Fig. 3.3(a), and from this

he will infer that d1, d2, and d3 cannot all be true wires. The configurations in

Fig. 3.3(b), 3.3(c) and 3.3(d) represent the set of hypotheses for the true connectivity

of the circuit. Each one of these would represent the circuit functionality under a

single guess about which wire was a non-conducting dummy. The reverse engineer

therefore models the transformable interconnect component as shown in Fig. 3.3(e),

where the values of p0 and p1 select the true connectivity of the circuit. Now, just as

in the previous components, the reverse engineer can use input-output examples from

the circuit to infer the values of p0 and p1 and hence resolve the function of the circuit.

10

1 5

2

4

a

b

x

y

z

d1

1 5
3

2

4

a
b

x

y

z

(a) (b)

(c) (d)

1 5
3

2

4

a

b

x

y

z

0

1

b
0

1

b

(e)

d1
d3

d2

3

1 5
3

2

4

a
b

x

y

z

d2

1 5
3

2

4

a
b

x

y

z

d3

p
0

p
1

Figure 3.3: (a) Design as viewed by reverse engineers; (b, c, d) three valid circuit configurations
when d1 or d2 or d3 is transformable interconnect; (e) attacker model of transformable interconnect.

11

CHAPTER 4

PROBLEM FORMULATION

Algorithm 1 Incremental SAT-based Deobfuscation: Incrementally generate a set of
constraints that are sufficient to identify the correct model of the circuit, and then
solve the constraints to find the model.
1: M(I, P, P ′)← ckt(I, P,O) ∧ ckt(I, P ′, O′) ∧O 6= O′ // see Fig. 4.1

2: feas(P)← ⊤ // all programming vectors are feasible initially, unless the model itself

imposes constraints

3: feas(P ′)← ⊤

4: for j = 1, 2, 3 . . . do

5: // number of satisfying assignments to feas(P) is the number of programming vectors that

remain feasible

6: if ∃I, P, P ′.

I distinguishes P and P ′

︷ ︸︸ ︷
M(I, P, P ′) ∧

P and P ′ both feasible
︷ ︸︸ ︷
feas(P) ∧ feas(P ′) then

7: Îj ← I

8: Ôj ← QueryOracle(Îj) // (Îj , Ôj) is the jth I/O pair discovered

9: feas(P) ← feas(P) ∧ ckt(Îj , P, Ôj) // strengthen feasibility constraint on P

using new I/O pair

10: feas(P ′)← feas(P ′) ∧ ckt(Îj , P
′, Ôj) // strengthen feasibility constraint on P ′

using new I/O pair

11: else

12: ∃P.feas(P) // Find a single feasible programming assignment P

13: return P

14: end if

15: end for

From the previous chapter, I use multiplexer-based component to model the three

techniques (see Figs. 3.1, 3.2 and 3.3). I now present a de-obfuscation algorithm to

solve for the programming vector assignment that can configure the logic function

of the model to be the same as the oracle circuit. The programming vector can

thus reveal the actual connection and functionality of the camouflaged circuit. This

algorithm is based on a series of input-output pairing; these pairs constrain which

12

programming vector values are feasible. A feasible programming vector is one that

induces a circuit function that does not contradict any known input-output pairings.

⎫

⎬
⎪

⎭⎪
Feas(P ')

⎫

⎬
⎪

⎭⎪
Feas(P)

Î
2

Î
1

P

ˆO
1

P '

ckt

ckt

ckt

Î
0

Ô
0

ˆO
2

ckt

ckt

I

O

O '

…
…Î

2

Î
1

ˆO
1

ckt

ckt

Î
0

Ô
0

ˆO
2

ckt

≠?
1

Figure 4.1: The unshaded components comprise a miter used to find conditions where two copies of
the circuit produce different outputs due to different programming vectors. The shaded components
enforce feasibility constraints that restrict programming vectors to be consistent with input-output
examples.

4.1 Defining Notation

• Vector I = {i0, . . . , im−1} represents an m-bit primary input vector to the circuit.

• Vector P = {p0, p1, . . .} represents a programming vector that specifies the

logic function implemented by each camouflaged component in the circuit. The

length of the programming vector depends on the number of camouflaged circuit

elements and the number of possible realizations for each element. The value of

P together with the non-camouflaged circuit components together fully specify

the logical function of the overall circuit. A programming vector is denoted

as feasible if the logic function it induces does not contradict a set of known

input-output examples. Learning new input-output examples incrementally

constrains feasible values of the programming vector P .

13

• Vector O = {o0, . . . , on−1} represents an n-bit primary output vector.

• The combinational circuit model, including all multiplexers and programming

bits, is converted into a CNF formula ckt using Tseitin encoding. I use

ckt(I, P,O) to denote the CNF formula of the circuit when I, P , and O are the

input variables, programming bits, and output variables respectively. Wherever

ckt(I, P,O) appears in Alg. 1 (at lines 1, 9, and 10), it always refers to a fresh

copy of the circuit CNF with new variables for all internal circuit nodes. If two

copies of the circuit CNF share a common input vector or programming vector,

the respective inputs or programming vectors are equated to each other outside

of the CNF of the combinational circuit.

• Subformula M(I, P, P ′) in Alg. 1 (line 1) represents the CNF-encoded miter of

two copies of the circuit, as shown by the unshaded blocks in Fig. 4.1. This

formula is satisfiable if and only if there exists an input I, and programming

vectors P and P ′ that cause the circuit to map I to different output values.

Restated, M(I, P, P ′) is satisfiable if some P and P ′ cause the circuit to realize

different logic functions. If M(I, P, P ′) is unsatisfiable, then it means that all

P and P ′ cause the circuit to realize the same logic function. On its own,

this formula would typically be easily satisfiable and not meaningful, but it

becomes useful when combined with additional feasibility constraints on P and

P ′. In that scenario, the formula M(I, P, P ′) is used for checking whether the

constraints can be satisfied by two different realizable logic functions, or whether

the constraints are strong enough that only a single realizable logic function

satisfies them.

• Subformulas feas(P) and feas(P ′) denote the feasibility constraints applied to

programming vectors P and P ′ respectively. These formulas are identical except

for being applied to different copies of the programming vector. The formulas

14

evaluate to true only for the subset of programming vectors that are consistent

with a set of input-output pairings obtained from the oracle. These feasibility

constraints are CNF-encodings of the shaded blocks in Fig. 4.1.

The goal of the attacker is to recover the function of the obfuscated circuit by

finding a value of P that induces his model to realize the same function as the oracle.

Two functions are equivalent if they produce the same outputs for all possible inputs,

but equivalence is usually checked symbolically instead of by exhaustively applying

inputs. However, symbolic equivalence checking cannot be applied between a model

and a black-box oracle, so SAT-based reverse engineering relies on an oracle-guided

synthesis approach, as described in the remainder of this paragraph. Given that there

are programming vectors to select all possible functions of all camouflaged components,

there necessarily exists one or more values of P that will cause the model to realize the

same function as the oracle. Because the attacker knows that there must exist such a

value of P , he can find it by ruling out values of P using input-output examples from

the oracle until only a single function remains. At this point, the one function that is

not ruled out is known to be equivalent to the oracle by the process of elimination.

Any value of P that induces the model to have this function is a solution to the

deobfuscation problem.

4.2 SAT Solving of Camouflaged Circuit

Boolean satisfiability solving is a common way to reason circuit logic, and it is used

widely in automated test pattern generation (ATPG) [18]. Using Tseitin encoding, a

gate-by-gate translation can map the circuit logic into a (CNF)-encoded SAT problem.

The number of variables in the CNF problem is equal to the number of nodes in the

circuit, and the number of clauses in the CNF problem is linear in the number of

circuit logic gates. If a CNF problem is satisfiable, a SAT solver can find an assignment

of 0 or 1 to each variable such that the CNF problem is equal to 1.

15

The difference between ATPG and the de-obfuscation problem is that obfuscated

components are represented by the CNF formula using the circuit constructs of

Figs. 3.1, 3.2, and 3.3. Those three constructs are encoded into the CNF in the same

way as the other nodes and gates. The variables in the CNF model also include

programming vector, circuit inputs, and circuit outputs. The known input-output

pairs are applied by using unit clauses to force an input or an output variable to be

certain value. To avoid confusion with arbitrary input and output vectors (I and O

respectively), an input-output pairing that is known to be correct as is denoted Î and

Ô with various subscripts.

4.3 Incremental-SAT Algorithm

Our oracle-guided incremental-SAT based algorithm is given in Alg. 1. Following

the notation described at the start of this section, the algorithm uses the sub-formula

M(I, P, P ′) to check whether two programming vectors induce different logic functions,

and uses feas(P) and feas(P ′) to constrain programming vector assignments to

be consistent with all previously observed input-output pairs from the oracle. In

Alg. 1, both feas(P) and feas(P ′) are typically initialized to ⊤ meaning that the

programming vectors are initially unconstrained; however, when using the modeling

construct in Fig. 3.1a where only the 00,01, and 10 values are used for each pair of

programming bits to select one of three logic functions, the constraints are initialized

to rule out the 11 assignment.

The feasibility constraints are increasingly strengthened as the algorithm iterates

through the loop. At the jth loop iteration in Alg. 1, a satisfying assignment at line 6

produces an input vector I that can distinguish two feasible programming vectors

P and P ′. This vector I is assigned to Îj and the oracle is queried to obtain the

corresponding output Ôj. The pair (Îj, Ôj) is known to be a correct input-output

pairing according to the oracle, and it is used to strengthen the programming vector

16

feasibility constraints at lines 9 and 10. To strengthen the constraints on P , a new

copy of the circuit CNF formula is added with P as its programming vector and

Îj and Ôj applied to inputs and outputs as unit clauses (line 9). The feasibility

constraint on P ′ is strengthened in the same way (line 10). The strengthening of the

feasibility constraints corresponds to adding new shaded blocks in Fig. 4.1. Note that

the strengthened feasibility constraints will necessarily have fewer solutions after being

strengthened; specifically, among the values P and P ′ that satisfied the SAT formula

at line 6, at least one will now be infeasible1.

Once the feasibility constraints are sufficiently strong, there will no longer exist two

different programming vectors that induce distinct logic functions while also satisfying

the feasibility constraints. At this point, the SAT call at line 6 becomes unsatisfiable,

and a final SAT call is made (line 12) to find a single programming vector P that

satisfies the feasibility constraints. Note that the value of P that is discovered may

not be a unique solution, but it is known that no other feasible P ′ induces a different

overall logic function2, as this is necessary for the SAT call at line 6 to be unsatisfiable.

Relative to SAT-based attacks of El Massad et al. [24] and Subramanyan et al. [29],

a distinguishing feature of our work is the use of incremental SAT. A typical SAT

problem is encoded in CNF and solved by a SAT solver to output either a satisfying

assignment or a result of UNSAT to indicate that no such assignment exists. In the

process of solving the SAT problem instance, the solver spends considerable time

learning from conflicts and making inferences to simplify the problem and guide its

search toward a satisfying assignment. If solving a set of related SAT instances, it is

desirable to reuse this reasoning to reduce the number of costly inferences made in

1Because P and P ′ induce different outputs under the input vector Îj , no more than one of them

can induce output vector Ôj , which is now known to be correct.

2If two programming vectors do not produce different outputs for any input vectors, then they
induce the same logic function

17

each SAT call [8]; incremental SAT is the formulation that allows for efficient reuse

of inference across related SAT instances. Our problem is amenable to solving by

incremental SAT because each SAT query (line 6 of Alg. 1) is solving an instance

obtained by adding clauses (at lines 9 and 10) to the previously-solved SAT problem

instance. All inferences learned in one SAT problem are therefore still applicable in

the subsequent one.

A number of engineering challenges are addressed in order to use an oracle-guided

approach with incremental SAT solving. An overview is given here, with more

information found in the user manual included with our program. The algorithm

is implemented using a modified version of MiniSat [9] version 2.2.0. From within

MiniSat, at each iteration of the algorithm, when a satisfying assignment to the CNF is

produced (at line 6 of Alg. 1), the primary input values (Îj) are extracted and mapped

into their corresponding signal names and printed to a file. The oracle, implemented

as a standalone executable, is then queried (line 8) and the program waits for the

oracle to map Îj to Ôj. Once the oracle has produced Ôj, the program adds new

clauses to the ongoing CNF problem in order to strengthen the constraints on P and

P ′.

The MiniSat 2.2.0 (simp) version is used because it implements variable elimination

and simplification before solving. The overhead cost of performing the simplifications

is justified because the simplified constraints are carried forward and used in all future

iterations. Because this version of MiniSat can eliminate variables, care must be taken

to “freeze” certain variables so that they will not be eliminated. In our case, the

programming vectors P and P ′, and the input vector I, are frozen. Being frozen means

that variables will always remain in the SAT problem, and this makes it possible to

read out their values whenever a satisfying assignment is found.

18

G1

G2

G3

G4

G5

G6

i
1

i
2

i
3

i
4

o
1

o
0

i
0

Figure 4.2: Gate-level netlist of circuit c17.

4.4 Baseline SAT-based De-obfuscation Algorithm

The baseline I used in my work is the approach that introduced by El Massad,

Garg, and Tripunitara [24], which is similar to mine. Their algorithm can de-obfuscate

a circuit in minutes while using brute force can take years [27]. Except for attacking

different circuits, the major difference between my work and theirs is that I use

incremental SAT to increase the performance. Unlike incremental SAT, the baseline

treats each iteration as an unrelated SAT problem, so the solved variables and clauses

in the previous iteration cannot be re-used in the current iteration. T runtime of the

incremental approach is compared to the baseline in Chapter 5.

4.5 Illustrative

In this section, I use ISCAS-85 benchmark circuit c17 to demonstrate algorithm 1.

The techniques shown here are NAND/NOR/XOR Camouflaged Standard Cells and

fully camouflaged logic gates. In addition, I give an example to show why a successfully

solved function does not agree with the oracle circuit gate-by-gate. Figure 4.2 is the

gate level netlist for c17.

4.5.1 Example 1 - NAND/NOR/XOR Camouflaging

Figure 4.3 shows the camouflaged c17 model. I camouflage gate G1, G4, and

G5. The camouflaged gate is equivalent to Figure 3.1(a). The program will find a

19

j
num. feasible SAT solution (Alg. 1, line 6) constraint learned

CNF statistics
Incremental

CNF statistics
Baseline

configurations {I} {P} {P ′} (Îj, Ôj) num. vars num. clauses num. vars num. clauses
1 27 01000 10,01,00 00,10,00 (01000,11) 114 364 114 364
2 14 10100 00,10,01 00,01,01 (00000,00) 170 640 239 739
3 8 10110 00,00,01 00,01,01 (10110,10) 236 916 364 1114
4 6 00100 10,01,01 00,01,01 (00100,00) 294 790 489 1489
5 4 00000 01,01,01 00,01,01 (00000,00) 344 1066 614 1864
6 2 11101 01,01,01 01,01,00 (11101,11) 333 1342 739 2239
7 1 UNSAT - 95 1614 864 2614

Table 4.1: Values produced at each iteration of Alg. 1 during deobfuscation of the camouflaged c17
circuit in Figure 4.3. The number of feasible configurations is the number of programming vectors
that satisfy the constraints at each iteration of the algorithm.

programming vector P that can configure the camouflaged model to be functionally

equivalent to the oracle. Because there are only three choices of function for to each

camouflaged cell, two bits of the programming vector are used to represent a gate.

The value of 00 selects a XOR gate, 01 selects a NAND gate, and 10 selects a NOR

gate. The value of 11 is forbidden here by a constraint.

Table 4.1 recorded step-by-step results. In the table, j is the iteration number; I, P ,

P ′ are the assigned values in the solution to the SAT call at line 6 of the algorithm; (Îj ,

Ôj) are the input-output pairs obtained and used to strengthen feasibility constraints

at lines 9 and 10 of the algorithm. For instance, the input value I = 01000 is found

in the first iteration. Applying this input to the oracle produces an input-output

pair (01000,11). In the next iteration, there are only 14 feasible configurations can

satisfy this pair. Program then generates a different output when applying another

input, which is the value of 10100. After six iterations, the program can not find such

two different control vectors that can satisfy the previously found input-output pairs.

At this time, the feasibility constraints imposed by these six pairs are sufficient to

identify a unique logic function that matches the oracle and thus de-obfuscates the

circuit. There is only one configuration remaining after 6 iterations. However, there

can be more than one feasible configuration in the last step for some larger circuits.

In Table 4.1, the number of clauses and unresolved variables is growing sub-linearly

at each iteration for the incremental solver. This indicates that the solver is making

20

simplifications to the problem as it runs, which is important for large camouflaged

designs.

G2

G3

G6

i
1

i
2

i
3

i
4

o
1

o
0

i
0

p
0
p
1

p
2
p
3

p
4
p
5

Figure 4.3: Modeling of c17 benchmark with G1, G4, G5 camouflaged using NAND/NOR/XOR
camouflaging.

i
1

i
2

i
3

i
4

o
1

o
0

i
0

p
0
p
1
p
2
p
3

p
4
p
5
p
6
p
7

p
8
p
9
p
10
p
11

p
12
p
13
p
14
p
15

p
16
p
17
p
18
p
19

p
20
p
21
p
22
p
23

Figure 4.4: Modeling of c17 with all gates fully camouflaged. In this scenario, the reverse engineer
only knows the routing.

4.5.2 Example 2 - All Gates are Camouflaged

In this scenario, all the logic gates in circuit c17 are fully camouflaged, the only

information left is the routing. The model is shown in Fig. 4.4 which is based on

c17, and the solution is shown in Fig. 4.5. Though different from the oracle on a

gate-by-gate basis, the resolved function is equivalent to the original. Solving a circuit

21

with all gates are camouflaged is very hard, the program cannot de-obfuscate c432

after three days when all 160 gates are camouflaged.3

G1’

G2’

G3’

G4’

G5’

G6’

i
1

i
2

i
3

i
4

o
1

o
0

i
0

Figure 4.5: Resolved function of c17 when all gates are fully camouflaged.

3The ISCAS-85 benchmark c432 has 160 gates, some of which have more than 2 inputs. Because
I use 2-input obfuscated gates, I map c432 into a circuit with 209 gates of 2 or fewer inputs, and
then obfuscate all 209 cells of the remapped circuit.

22

CHAPTER 5

IMPLEMENTATION AND USER GUIDE

5.1 Introduction to Software

5.1.1 Purpose

The Oracle-Guided Incremental SAT Solver (Solver) is designed to solve camouflaged

circuit with extremely high efficiency. The camouflaged circuit model represents

the reverse engineer’s uncertainty about the logic gates. The oracle represents the

real physical object, where the user has only the ability to apply inputs and observe

outputs, but cannot look inside to see what the gates are. The Solver will use the

oracle as guide to solve for the logic function of the camouflaged circuit.

5.1.2 Principle

Solver executes a loop that continually finds new input and output vectors using

SAT queries and an oracle circuit model. After some number of iterations, the

constraints accumulated are sufficient to rule out all logical functions except for the

one that is the true function of the obfuscated circuit.

5.1.3 Terminology

The additional terminology used in this chapter is listed below:

• Oracle program: an executable program that can produce the correct circuit

output for any input. The input is provided to it via file PI.txt, and the

corresponding output is written to PO.txt.

• Camouflaged circuit: obfuscated oracle circuit.

23

• Allowed values: Allowed values are the sets of values that the programming bits

for each obfuscated component can take. Given that the programming bits select

the functionality of the circuit, the combinations of the allowed values for all

components represents the space of hypotheses for the overall circuit function.

Finding specific values from these choices is the deobfuscation problem, and is

the goal of our program.

5.2 Installation Tutorial

5.2.1 Dependencies

NOTE: The Solver is based on MINISAT.

• MINISAT module: modified from original MINISAT

– (MROOT)/core: includes MINISAT solver head file, implementation file

and related supporting file.

– (MROOT)/mtl: includes MINISAT templates and make file.

– (MROOT)/utils: includes MINISAT utilities.

• Solver module: solver module

– (MROOT)/simp: includes Solver main file and MINISAT SimpSolver

source file.

– (MROOT)/incre: includes Solver source file and all the related utilities.

– (MROOT)/Oracle: includes sample Oracle and sample Shell script.

5.2.2 Installation

Makefile is included in (MROOT)/simp directory, change to MROOT directory

and use command below to install

1. $ export MROOT=(solver-dir)

24

2. $ cd simp

3. $ make rs

4. $ cp SOLVER static (install-dir)/SOLVER

NOTE:

1. The minimum requirement for complier is g++ 4.9.

2. If make fails, use $ make clean and try again.

5.2.3 Command Line Usage

After installation, solver can be accessed from command line:

$ SOLVER [options] <Cam.v > <Orac.sh >

• Cam.v : the Verilog netlist of the circuit to be de-obfuscated. The netlist must

have the necessary annotations for the PIs and annotations to define the allowed

values for the programming bits. Note that only a restricted subset of Verilog

can be used, as defined below.

• Orac.sh: shell script that the solver will execute to query Oracle.

• -d, - -debug: change to debug mode, solver will generate log message and log

files.

• -o, - -outfile: export solution to this file .

For example, if the oracle shell is ”c432-Oracle.sh” and the camouflaged model is

”c432-mux4-101.v”, then the command can be:

$ SOLVER -d - -outfile Solution.txt c432-mux4-101.v c432-Oracle.sh

25

5.2.4 Description of oracle program

During the solving, Solver will repeatedly query the oracle by generating a ’PI.txt’

file and reading a ’PO.txt’ file. For stability sake, these filenames can not be changed.

Please make sure your oracle program will can read ’PI.txt’ and export ’PO.txt’ in

working directory. Sample PO.txt is in folder Oracle. The first line are the signal

names, and the second line are the signal values. Each net name or value in PO file is

seperated by a tab, each line in PO file is seperated by a line break. PI file uses the

same format. For example:

N1(\t)N2(\t)N3(\t)N4(\t)N5(\t)CONST1(\t)CONST0(\n)

1(\t)1(\t)1(\t)0(\t)1(\t)1(\t)0(\n)

The user’s oracle program can produce the outputs by any means they desire. In

a reverse engineering setting, the oracle program could be a script that physically

queries the obfuscated circuit via its scan chain. For sake of evaluation, users may

wish to implement an oracle program that run simulation of a non-obfuscated circuit

function, or queries a pre-programmed exhaustive look-up table of PI-PO pairs. In

the example oracle program we provide, the PIs are mapped to POs by evaluating the

circuit CNF using Minisat with appropriate inputs applied.

5.2.5 Format of camouflage circuit model

The camouflaged circuit model, including all programming bits is written in a

limited subset of gate-level Verilog, the following is an example:

module c17 (N1,N2,N3,N4,N5,N10,N11,CONST1,CONST0,D 0,D 1,D 2,D 3);

input N1,N2,N3,N4,N5,CONST1,CONST0 ;//RE PI;

input D 0,D 1 ;//RE ALLOW(00,01,10,11);

input D 2,D 3 ;//RE ALLOW(00,01,10,11);

output N10,N11;

wire N6,N7,N8,N9,D 0 NOT,D 1 NOT,N7 NOT,N7 OBF,ED 0,ED 1,ED 2,ED 3,ED 4,

ED 5,ED 6,ED 7,ED 8,ED 9,D 2 NOT,D 3 NOT,N6 NOT,N6 OBF,ED 10,ED 11,

ED 12,ED 13,ED 14,ED 15,ED 16,ED 17,ED 18,ED 19;

nand2 gate1(.a(N1), .b(N3), .O(N6));

nand2 gate2(.a(N3), .b(N4), .O(N8));

nand2 gate3(.a(N2), .b(N8), .O(N7));

26

nand2 gate4(.a(N8), .b(N5), .O(N9));

nand2 gate5(.a(N6 OBF), .b(N7), .O(N10));

nand2 gate6(.a(N7 OBF), .b(N9), .O(N11));

inv1 gate7(.a(D 0), .O(D 0 NOT));

inv1 gate8(.a(D 1), .O(D 1 NOT));

inv1 gate9(.a(N7), .O(N7 NOT));

and2 gate10(.a(N7), .b(D 0 NOT), .O(ED 0));

and2 gate11(.a(N7 NOT), .b(D 0 NOT), .O(ED 1));

and2 gate12(.a(CONST1), .b(D 0), .O(ED 2));

and2 gate13(.a(CONST0), .b(D 0), .O(ED 3));

and2 gate14(.a(ED 0), .b(D 1 NOT), .O(ED 9));

and2 gate15(.a(ED 1), .b(D 1), .O(ED 7));

and2 gate16(.a(ED 2), .b(D 1 NOT), .O(ED 5));

and2 gate17(.a(ED 3), .b(D 1), .O(ED 4));

or2 gate18(.a(ED 4), .b(ED 5), .O(ED 6));

or2 gate19(.a(ED 6), .b(ED 7), .O(ED 8));

or2 gate20(.a(ED 9), .b(ED 8), .O(N7 OBF));

inv1 gate21(.a(D 2), .O(D 2 NOT));

inv1 gate22(.a(D 3), .O(D 3 NOT));

inv1 gate23(.a(N6), .O(N6 NOT));

and2 gate24(.a(N6), .b(D 2 NOT), .O(ED 10));

and2 gate25(.a(N6 NOT), .b(D 2 NOT), .O(ED 11));

and2 gate26(.a(CONST1), .b(D 2), .O(ED 12));

and2 gate27(.a(CONST0), .b(D 2), .O(ED 13));

and2 gate28(.a(ED 10), .b(D 3 NOT), .O(ED 19));

and2 gate29(.a(ED 11), .b(D 3), .O(ED 17));

and2 gate30(.a(ED 12), .b(D 3 NOT), .O(ED 15));

and2 gate31(.a(ED 13), .b(D 3), .O(ED 14));

or2 gate32(.a(ED 14), .b(ED 15), .O(ED 16));

or2 gate33(.a(ED 16), .b(ED 17), .O(ED 18));

or2 gate34(.a(ED 19), .b(ED 18), .O(N6 OBF));

endmodule

There are several points that need attention regarding the Verilog netlist:

• The line declaring primary inputs should be followed by ”//RE PI;”.

• The line declaring control bits should be noted by ”//RE ALLOW();”.

• Allowed values for each group of control bits should be written inside parentheses

of ”//RE ALLOW();”, for example ”//RE ALLOW(1,0);”. If one camouflaged

gate requires more than one control bits, for example it needs two bits, use the

format ”//RE ALLOW(00,01,10,11);”.

• The number of control bits in an input line must be equal to the length of

allowed values after it. For example, ”input D 1; //RE ALLOW(00,01,10,11);”

27

is illegal because it defines a single programming bit but describes a set of 2-bit

values for the bit to take.

• Primary inputs named CONST1 and CONST0 will be interpreted as values 1

and 0.

• Solver can accept the following gate types:

– inv

– and (with any number of fanin)

– or (with any number of fanin)

– xor

– nor (with any number of fanin)

– nand (with any number of fanin)

– buf

28

5.2.6 Flow Diagram

translate and

build miter

solve to

find a PI to

differentiate

two feasible

programming

vectors

solvable?
find corre-

sponding PO

instantiate

new copy of

camouflaged

circuit and

assign newly

found PIPO
based on col-

lected PIPOs

solve for final

programming

vectors that

deobfus-

cates circuit

Yes

No

NOTE: The white filled blocks are solver tasks. And the red filled block belongs to

user defined oracle.

5.3 Architecture and implementation details

The real computation is based on encoded-CNF. So principle of the software is

very close to a compiler. The front end involves syntax analyzer and symbol table,

and back end is responsible for generating intermediate representation, which is the

encoded-CNF model. Different from the traditional concept of compiler, my software

doesn’t include code optimization and code generation module. It calls MINISAT’s

29

interface to convert the Tseitin-encoded CNF model into the internal data structure

and solve. The communication between MINISAT and compiler happens in each

iteration.The compiler provides new encoded-CNF clauses for the circuit, and MINSAT

provide the intermediate result indicating whether the problem is solved. In this

section, the architecture, class structure, class interface and implementation, and the

verification tool are explained.

5.3.1 Control Flow

Based on the flow diagram provided in the previous section, the main function is

written as shown:

MiterSolver ∗MTR = new MiterSolver;

MTR−>buildmiter();
delete MTR;

while(1)

{
AddonSolver ∗ADD = new AddonSolver;

ADD−>start solving();

if(IncreSolver::check ret() == l True)

{
ADD−>queryOrac();
ADD−>continue solving();

}
else

{
break;

}
delete ADD;

}

SoluFinder ∗finder = new SoluFinder;

finder−>find solu();

IncreSolver::print state();

finder−>print solution();

delete finder;

return 0;

There are some challenges needed to solve when writing this program.

1. Working as an API, this software must be encapsulated and extensible.

30

Figure 5.1: class structure of the software.

2. Considering that some large design require many iteration before completing,

memory usage is critical, so this software is running iteratively rather than

recursively. However, the intermediate result will be removed after each iteration.

3. For the convenience of debugging, the status while running should be accessible

for inspection.

5.3.2 Class Structure

To deal with the first challenge, this software is wrapped by base class IncreSolver.

The class structure is shown in Fig. 5.1.?

The class MiterSolver works as the compiler, its responsibility is to translate the

input Verilog code into Tseitin encoded-CNF model. It also duplicates two copies

of the camouflaged circuit and builds the miter, which is the line 1, 2, 3 in Alg. 1.

Class AddonSolver solves the grown CNF model and applies the most recent input

to the oracle in order to get the corresponding output. The last step belongs to class

SoluF inder, it duplicates the camouflaged circuit CNF as the number of input-output

31

pair, uses MINISAT’s interface to solve and collects the solution to the programming

vector that de-obfuscates the circuit.

To prevent the intermediate result from being deleted, all the necessary internal

variables and data structure are stored as static. So even though the instance of

AddonSolver is deleted, the intermediate data and the grown CNF model can be kept.

And the static variables can also be accessed from the base class regardless of whether

there is an instance of IncreSolver. But using static variables requires there should

be only one instance of class. By disabling the copy constructor, this software is a

typical singleton design.

5.3.3 IncreSolver

As the base class, the role of IncreSolver is mainly to declare and defines global

member variables and virtual functions. However, this class also provides some

common utilities. The global variables are declared as below, with description of each

one gives in comments:

public:

static Minisat::lbool ret; //

indicator: indicate whether this iteration in addon is sat or

not

std::map<int, std::string> Solution; //

container: store final Solution

std::map<int, std::string> PItemp; //

container: store temporary (only in this iteration) miter PI

index−>value
std::map<int, std::string> POtemp; //

container: store temporary (only in this iteration) oracle PO

index−>value

static std::vector<std::map<int, std::string> > OracPIs; //

container: store all temp PIs

static std::vector<std::map<int, std::string> > OracPOs; //

container: store all temp POs

IncreSolver();

˜IncreSolver();

static Minisat::lbool check ret(); // tools

: check ret before any instanization

32

static void print state(); // tools

: print info including CPU, memory, time ,iterations

protected:

static bool debug; // indicator: level of

verb

static bool out file; // indicator: exist

solution file or not

static bool time limit; // indicator: set time

limited or not

static int niter; // indicator: number of

iterations

static int time bound; // value: time limited

static const char ∗ Came file path; // path: input

Camouflage file path

static const char ∗ Orac file path; // path: input Oracle

SHELL file path

static const char ∗ target cnf; // path: output of

buildmiter, input of solver, and output of addon

static const char ∗ Solver solution; // path: final solution

path

static std::vector<int> camPIndex; // container:

miter first circuit’s PI, and also it the oracle’s PI

static std::vector<int> camPOindex; // container: PO

index list

static std::vector<int> camCBindex; // container: CB

except duplicated circuit

static std::vector<int> miterCBindex; // container: CB

include duplicated circuit

static std::vector<int> camCB2index; // container:

duplication’s CB

static std::vector<int> nodes2grab; // container:

variable need to be frozen during incremental solving

static std::map<int, std::string> indexVarDict; // map: store

map of index to netname

static std::map<std::string, int> varIndexDict; // map: store

map of netname to index

std::map<int, std::string> CB1temp; // map: store

temporary (only in this iteration) original CB index−>value
std::map<int, std::string> CB2temp; // map: store

temporary (only in this iteration) duplication CB index−>value

std::vector<int> addon CB1; // container: store

temporary (only in this iteration) first duplication CB index

std::vector<int> addon CB2; // container: store

temporary (only in this iteration) second duplication CB index

std::vector<int> addon PI1; // container: store

temporary (only in this iteration) first duplication CB index

33

std::vector<int> addon PI2; // container: store

temporary (only in this iteration) second duplication PI index

std::vector<int> addon PO1; // container: store

temporary (only in this iteration) first duplication PO index

std::vector<int> addon PO2; // container: store

temporary (only in this iteration) second duplication PO index

static int cktTotVarNum; // values: number of

wire including miter and oracle circuit

static int camVarNum; // values: total number

of wires + inputs + CBs + outputs in the original cam ckt

static int miterOutIndex; // values: last index of

miter

static std::vector<std::string> camCNFile; // CNF: original

Camouflaged circuit CNF

static progress t bar; // indicator:

process bar

static Minisat::SimpSolver S; // object: used

for solve add on

static Minisat::SimpSolver S final; // object: used

for solve finalSolue

static clock t start; // indicator: starting

time

static clock t totoal all; // indicator: all thread

total time

static clock t total sub; // indicator: sub−thread
total time

5.3.4 MiterSolver

Class MiterSolver is responsible for parsing the input netlist and building the

miter. The complete class definition is shown as below:

class MiterSolver : public IncreSolver

{

private:

MiterSolver(MiterSolver&);

int baseMtrVarNum; // values: total variable number (original

+ duplicated + XOR + OR)

std::vector<std::string> baseCnfMtrLs; // CNF: completed

miter (including original Cam, duplicated Cam, XOR, Or)

std::vector<std::vector<int> > inputs; // container: same

to inputs (includes PI and CBs)

std::vector<std::string> forbidden string; // CNF: forbidden

string

34

public:

MiterSolver(); // constructor: initialize base class and

milterSolver

˜MiterSolver(); // deconstructor

void buildmiter(); // main: build CNF formatted miter and

export to Miter file path

private:

void genOracCNF(char const ∗ OracPath, int start); // main:

parse "OracPath", generate CNF, index start on "start"

void genCameCNF(char const ∗ CamePath); // main: parse

"CamePath" and generate CNF

std::vector<std::string> forbidden bits(std::string line, std::

vector<int> target); // main: process forbidden options

std::vector<std::string> connectPO xor(std::vector<int> &posIndex,

int &camVarNum, int &xorInt); // tools: connect POs using

xor, used only for two duplicated circuit

void formatCheck(std::vector<std::string> netlist);

};

Note that as a singleton design, the copy constructor is disabled. Except for the

copy control functions, the only public member function is buildmiter(). This function

is the flow control function is this class, which can be described as Fig. 5.2. The

function forbidden bits is responsible for the conversion from allowed bits to forbidden

bits. The allowed bits defined in input Verilog will be translated in this function and

added to the CNF model as constrain to prevent any non-allowed values from being

assigned to those programming bits.

5.3.5 AddonSolver

Class AddonSolver is the most important part. Its job can be roughly divided

into three parts:

1. solve CNF model generated by MiterSolver or the previous iteration.

2. apply input to the oracle and generate the corresponding output.

3. strengthen the current model by adding constraints for the new input-output

vector

The detailed work flow is described in Fig. 5.3. And the complete class definition

is shown below:

35

Figure 5.2: class MiterSolver’s work flow

36

Figure 5.3: class AddonSolver’s work flow

37

class AddonSolver: public IncreSolver

{

public:

AddonSolver();

˜AddonSolver();

void start solving();

void continue solving();

void queryOrac();

private:

void print solution(const char ∗ path);

void freeze();

void print map(std::map<int,std::string> &container, std::ofstream &

outfile);

void solve();

void export PI();

void parse PO();

void run shell();

};

The function run shell() is the implementation of querying oracle. It based on C

standard library function system(char* command). By calling this function, the

current process is forked into two identical processes. One of the process calls the

argument command, while the other process is stalled until the previous process sends

a exit signal. The string command is a shell command.

Function continue solving() is designed to collect output generated from oracle

and add more constraints to the current model. To be specific, it duplicates two more

encoded camouflaged circuit copies and connects the control bits to the original two

copies respectively, then the newly found input-output pair is assigned to both of

them as constraints.

Due to the incremental solving, some unnecessary variables will be eliminated.

However, some important variables, such as control bits, input bits and output bits,

can also be deleted. So I write function freeze() to notify the SAT solver of which

variables should be frozen.

38

5.3.6 SoluFinder

As the last class, SoluF inder is responsible to use all the collected input-output

pairs to create a CNF model, then solve it and translate the solution into human

readable form. The form indicates the value of the programming bits, which can in

turn specify the actual functionality of the camouflaged gates. The work flow can

be summarized as Fig. 5.4 and the class definition is shown below. Similar to class

AddonSolver, the function freeze() can freeze those critical variables and prevent

them from be eliminated by solver.

class SoluFinder : public IncreSolver

{

public:

SoluFinder();

˜SoluFinder();

void find solu();

void print solution();

private:

int num2dup = 0;

int totVarNum = 0;

int clauseNum = 0;

std::vector<std::string> finalCNF;

void solve it();

void freeze();

};

39

Figure 5.4: class SoluFinder’s work flow

40

CHAPTER 6

EVALUATION OF DE-OBFUSCATION ALGORITHM

I evaluate my algorithm using a set of ISCAS-85 combinational benchmarks [11].

I also investigate the way to utilize both functionality and connection obfuscation.

The results presented in this chapter are based on the attacker model introduced in

chapter 3.

6.1 Evaluation of Camouflaging Techniques

I apply my incremental deobfuscation algorithm to reverse engineer designs cam-

ouflaged using Camouflaged Standard Cells [27], Obfusgates [23], and Transformable

Interconnects [4]. I implement each of the three camouflaging techniques randomly as

summarized in Tab. 6.1 and described here:

• For Camouflaged Standard Cells, I randomly choose gates from NAND2, NOR2,

and XOR2 to camouflage. Those gates are the types that can be realized by

camouflaged standard cells.

• For Obfusgates, although each NAND4 obfusgate can implement 162 different

logical functions, most of the functions do not exist in the ISCAS-85 benchmarks.

The gates from the ISCAS benchmarks that can be realized by the NAND4

obfusgates are as shown in Tab. 6.1.

• For Transformable Interconnects, I randomly select a wire to obfuscate and

choose three wires driven by other gates’ output as the input to the logic model.

But before this, I levelize circuit based on dependency, and all the PI are assigned

41

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c499

[4]
[3]
[2]

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c880

[4]
[3]
[2]

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c1355

[4]
[3]
[2]

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c1908

[4]
[3]
[2]

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c2670

[4]
[3]
[2]

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c3540

[4]
[3]
[2]

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c5315

[4]
[3]
[2]

 1

 10

 100

 1000

0 2
100

2
200

2
300

2
400

C
P

U
 T

im
e

(s
)

Number of configurations

c7552

[4]
[3]
[2]

Figure 6.1: Plots show average runtime to de-obfuscate eight ISCAS-85 benchmarks with varied
numbers of randomly obfuscated components using the camouflaging techniques presented in Cam-
ouflaged Standard Cells[27], Obfusgates[23] and Transformable Interconnects[4]. Specifically, the
runtimes shown are the average runtimes over 10 random trials for each technique and number of
obfuscated components.

as level 1. For example. a gate has inputs from PI and another gate at level

2, then this gate is in level 3. Note an attacker may be able to identify a loop

and know it is dummy wire, so I only use dummy wire from the levels close to

primary input.

42

I apply all three techniques to the eight ISCAS benchmarks, as shown in Fig. 6.1.

In each case, I vary the number of components that are obfuscated, and for each

number of obfuscated components, I repeat the experiment 10 times making different

random choices of which components to obfuscate, and plot the average runtime.

To provide a common framework for comparison, I plot the de-obfuscation runtime

against the number of possible configurations in Fig. 6.1. The number of possible

configurations is 2x where x is the number of programming bits needed to select the

functionality of the circuit. The value of x also indicates the number of camouflaged

cells in the circuits. Specifically, in Fig. 6.1, the numbers of camouflaged cells for

Camouflaged Standard Cells [27], Obfusgates [23], and Transformable Interconnects

[4] are x/2, x/5, and x/2, respectively. Note that I don’t consider here that some

programming bits select the same logic function.

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

 0 5 10 15 20 25 30 35 40

F
ra

ct
io

n
 o

f
co

n
fi

g
u

ra
ti

o
n

s
 r

em
ai

n
in

g
 f

ea
si

b
le

Number of iterations

c2670

Trial1
Trial2
Trial3
Trial4
Trial5

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

 0 5 10 15 20 25

F
ra

ct
io

n
 o

f
co

n
fi

g
u

ra
ti

o
n

s
 r

em
ai

n
in

g
 f

ea
si

b
le

Number of iterations

c3540

Trial1
Trial2
Trial3
Trial4
Trial5

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

 0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f
co

n
fi

g
u

ra
ti

o
n

s
 r

em
ai

n
in

g
 f

ea
si

b
le

Number of iterations

c5315

Trial1
Trial2
Trial3
Trial4
Trial5

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

 0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f
co

n
fi

g
u

ra
ti

o
n

s
 r

em
ai

n
in

g
 f

ea
si

b
le

Number of iterations

c7552

Trial1
Trial2
Trial3
Trial4
Trial5

Figure 6.2: Eliminating feasible configurations using input-output examples generated by the de-
obfuscation algorithm for circuits c2670, c3540, c5315, and c7552 with 51 gates camouflaged using
camouflaged standard cells that can implement NAND, NOR or XOR gates. The initial model of
each camouflaged circuit has 351 configurations. The five trials in each plot denote five different
random choices of which gates to camouflage.

43

Camoflaging Technique
Camouflagable components
in ISCAS-85 benchmarks

NAND/NOR/XOR camouflaged cells [27] NAND2, NOR2, XOR2

NAND4 Obfusgates [23]
AND/NAND(2,3,4), INV,
OR/NOR(2,3,4), BUFFER

Tranformable Interconnects [4] any net

Table 6.1: Camouflagable components in the ISCAS-85 benchmarks when applying different camou-
flaging techniques. Note that, in the case of transformable interconnects, any net can be chosen, but
the choice of dummy connections is restricted to avoid creating apparent combinational loops.

 1

 10

 100

 1000

 1 10 100 1000

D
eo

b
fu

sc
at

io
n
 C

P
U

 t
im

e
(C

o
rr

u
p
ti

b
il

it
y
)

Deobfuscation CPU time (Random camouflaged)

(a) Runtime of deobfuscation.

 1

 10

 100

 1 10 100

N
u
m

b
er

 o
f

v
ec

to
rs

 (
C

o
rr

u
p
ti

b
il

it
y
)

Number of vectors (Random camouflaged)

(b) Number of vectors of deobfuscation.

Figure 6.3: Comparing the total deobfuscation CPU time and the number of vectors used for
deobfuscation of Corruptibility-guided and random camouflaged ISCAS-85 benchmarks.

6.2 Limitation of SAT-based De-obfuscation

SAT has the limited performance to solve certain circuit, such as multipliers [7].

The effectiveness of SAT-based deobfuscation on such circuits is also limited. To

investigate this, I tested my algorithm on two multiplier. First, I use ten Camouflaged

Standard Cells to obfuscate c6288, and it takes 5.4 hours to get solved. Most of the

time is spent on the last iteration, which is the one SAT solver returns an UNSAT

result (at line 6 of Alg. 1). I also repeat the same experiments on a 16-bit Montgomery

multiplier [16] in field GF(216), and the program cannot finish solving in 6 hours with

only one gate camouflaged. The reason is that solving GF multiplier problems using

SAT is tough, which has been studied in [22]. So, including my work, any SAT-based

algorithm has limited ability to reverse engineer multipliers or cryptographic ciphers.

44

This situation can be utilized by works that camouflaged circuits in a way that resists

SAT-based reverse engineering [38].

 0

 500

 1000

 1500

 500 1000 1500
N

o
n
-i

n
c
re

m
e
n
ta

l
C

P
U

 t
im

e
 (

s)
Incremental CPU time (s)

Figure 6.4: Comparing the total de-obfuscation runtime of baseline and incremental algorithms
on 2400 randomly camouflaged circuits instances using different styles of camouflaged gates. The
incremental solver gives an average speedup of 10.5x. Runtimes exceeding 1500 seconds are truncated
from the plot.

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

 0 10 20 30 40 50 60 70 80 90

N
u
m

b
e
r

o
f

c
la

u
s
e
s

Iteration

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Trial 7

Trial 8

Trial 9

Trial 10

(a) Number of clauses remaining in each
iteration.

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

 0 10 20 30 40 50 60 70 80 90

N
u
m

b
e
r

o
f

n
o
n
-r

e
s
o
lv

e
d
 v

a
ri

a
b
le

s

Iteration

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Trial 7

Trial 8

Trial 9

Trial 10

(b) Number of non-resolved variables in each
iteration.

Figure 6.5: Examining the variable and clauses elimination using incremental SAT solving on 10
randomly camouflaged instances of ISCAS-85 benchmark c7552, each with 200 NAND/NOR/XOR
camouflaged standard cells [27].

6.3 Incremental Algorithm versus Baseline

In this section, I provide the comparison between my work and the result from

baseline, which is the algorithm from El Massad et al. [24]. Both of the programs can

solve any kind of camouflaging, but my comparison focuses on Camouflaged Standard

45

Cells because it is used in El Massad’s work. Fig. 6.4 is the runtime by using baseline

and incremental algorithms to solve ISCAS-85 benchmarks with randomly selected

gates that use XOR/NOR/NAND and the cells from Fig. 3.1b. Each dot stands for

the runtime for my solver and the baseline. My solver can solve the largest example

faster than baseline, where the incremental solver gives more significant improvement.

To quantify the efficiency benefit from the incremental program, I here provide more

detail using the example that c7552 camouflaged with 200 Camouflaged Standard

Cells [27]. Fig. 6.5 shows the trend of the number of clauses and the number of

unsolved variables. Theoretically, a non-incremental solver doesn’t make any further

simplification. Thus both of the trends would appear linear as new copies of the

CNF-encoded circuit are added to the original problem in each iteration. Subfig. 6.5a

shows sub-linear growth in the number of clauses, and in Subfig. 6.5b, the number

of unsolved variables also grows slower than linear. This figure suggests that some

unnecessary variables and values are simplified.

6.4 Evaluating for combination of different camouflaging tech-

niques

The previous section demonstrated the performance of each technique. Camouflag-

ing a chip using Camouflaged Standard Cells [5] can provide functionality obfuscation,

using Transformable Interconnection [4] can provide connection obfuscation, and using

Obfusgates [23] can provide both functionality and connection obfuscation. However,

the overall performance about combining different technique might be different. To

investigate in which ratio combining the both functionality and connection obfuscation

can provide the best security, I applied NOR/NAND/XOR Camouflaged Standard

Cell (Fig.3.1(a)) and Transformable Interconnect (Fig. 3.3) to ISCAS-85 benchmarks

as described here:

46

1. First, I apply NOR/NAND/XOR Camouflaged Standard Cell (Fig.3.1(a)) to

replace the original gate to camouflage a circuit. I select gates to obfuscate by

randomly.

2. Then I apply Transformable Interconnect (Fig.3.3). Similar to the previous

section, I randomly choose nets to camouflage and then attach three dummy

wires from the previous level to the 4-to-1 multiplexer. The four nets can be

from the original circuits or the nets from Camouflaged Standard Cells.

3. Each Camouflage Standard Cell can provide three possibilities of the circuit,

and each Transformable Interconnect can provide four possibilities to the circuit.

4. Except for c499, the number of camouflaged gates are 200. C499 does not have

200 gates, so I use 100 instead.

The result is shown in Fig. 6.6. Different from my expectation, there is not such

a best ratio. Each benchmark favors to one single type of obfuscation rather than a

combination. However, different circuit tends to various techniques. According to the

result, obfuscation via functionality and connection may have similar effects on c1355.

Functionality obfuscation appears to provide better security for c499 and c880, which

are relatively smaller benchmarks. Moreover, connection obfuscation appears to work

better in the other larger designs.

47

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c499

Runtime

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c880

Runtime

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c1355

Runtime

 0
 10
 20
 30
 40
 50
 60
 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c1908

Runtime

 0

 500

 1000

 1500

 2000

 2500

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c2670

Runtime

 5
 10
 15
 20
 25
 30
 35
 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c3540

Runtime

 0
 10
 20
 30
 40
 50
 60
 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c5315

Runtime

 0
 10
 20
 30
 40
 50
 60
 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
P

U
 T

im
e

(s
)

#bits for functionallity/#total bits

c7552

Runtime

Figure 6.6: Plots show each design favors to a certain type of obfuscation. Smaller circuit tends to
functionality obfuscation, while connection obfuscation works better with larger circuit.

48

CHAPTER 7

CONCLUSION

This work proposes an incremental-SAT based approach for de-obfuscating camou-

flaged circuits. I have implemented the algorithm and tested its performance by using

it to de-obfuscate ISCAS-85 combinational benchmarks when camouflaged using three

different styles of component camouflaging. The results show that the algorithm is

able to efficiently deobfuscate the ISCAS-85 benchmarks regardless of camouflaging

style, and is able to do so 10.5x faster than the best existing approaches. Our tool is

released publicly to evaluate and support development of future selective component

camouflaging approaches. [21] [40] [39]

49

BIBLIOGRAPHY

[1] Becker, G. T., Regazzoni, F., Paar, C., and Burleson, W. P. Stealthy dopant-level
hardware trojans. In Cryptographic Hardware and Embedded Systems-CHES 2013.
Springer, 2013, pp. 197–214.

[2] Bi, Y., Shamsi, K., Yuan, J., Gaillardon, P., Micheli, G., Yin, X., Hu, X. S.,
Niemier, M., and Jin, Y. Emerging technology-based design of primitives for
hardware security. ACM Journal on Emerging Technologies in Computing Systems
(JETC) 13, 1 (2016), 3.

[3] Chakraborty, R.S., and Bhunia, S. Harpoon: an obfuscation-based soc design
methodology for hardware protection. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on 28, 10 (2009), 1493–1502.

[4] Chen, S., Chen, J., Forte, D., Di, J., Tehranipoor, M., and Wang, L. Chip-level
anti-reverse engineering using transformable interconnects. In Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFTS), 2015 IEEE International
Symposium on (2015), IEEE, pp. 109–114.

[5] Chow, L., Baukus, J.P., and Jr, W. M. Clark. Integrated circuits protected against
reverse engineering and method for fabricating the same using an apparent metal
contact line terminating on field oxide, Nov. 13 2007. US Patent 7,294,935.

[6] Cocchi, R. P., Baukus, J. P., Chow, L. W., and Wang, B. J. Circuit camouflage
integration for hardware IP protection. In Design Automation Conference (DAC),
2014 51st ACM/EDAC/IEEE (2014), IEEE, pp. 1–5.

[7] Cook, S. A., and Mitchell, D. G. Finding hard instances of the satisfiability
problem. In Satisfiability Problem: Theory and Applications: DIMACS Workshop,
March 11-13, 1996 (1997), vol. 35, American Mathematical Soc., p. 1.

[8] Eén, N., and Sörensson, N. Temporal induction by incremental sat solving.
Electronic Notes in Theoretical Computer Science 89, 4 (2003), 543–560.

[9] Een, N., and Sörensson, N. An extensible SAT-solver. Theory and Applications
of Satisfiability Testing (2004).

[10] Gascón, A., Subramanyan, P., Dutertre, B., Tiwari, A., Jovanovic, D., and Malik,
S. Template-based circuit understanding. In Formal Methods in Computer-Aided
Design (FMCAD), 2014 (2014), IEEE, pp. 83–90.

50

[11] Hansen, M.C., Yalcin, H., and Hayes, J.P. Unveiling the ISCAS-85 benchmarks:
a case study in reverse engineering. Design Test of Computers, IEEE 16, 3 (1999),
72–80.

[12] Iyengar, A., and Ghosh, S. Threshold voltage-defined switches for programmable
gates.

[13] Jha, S., Gulwani, S., Seshia, S. A., and Tiwari, A. Oracle-guided component-based
program synthesis. In Software Engineering, 2010 ACM/IEEE 32nd International
Conference on (2010), vol. 1, IEEE, pp. 215–224.

[14] Keshavarz, S., and Holcomb, D. Privacy leakages in approximate adders. In
International Symposium of Circuits and Systems (2017).

[15] Keshavarz, S., Paar, C., and Holcomb, D. Design automation for obfuscated
circuits with multiple viable functions. In Design Automation and Test in Europe
(DATE’17) (2017).

[16] Koc, C.K., and Acar, T. Montgomery multiplication in gf (2k). Designs, Codes
and Cryptography 14, 1 (1998), 57–69.

[17] Kömmerling, O., and Kuhn, M. G. Design principles for tamper-resistant smart-
card processors. Smartcard 99 (1999), 9–20.

[18] Larrabee, T. Test pattern generation using Boolean satisfiability. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 11, 1 (1992),
4–15.

[19] Li, M., K.Shamsi, Meade, T., Zhao, Z., Yu, B., Jin, Y., and Pan, D. Z. Provably
secure camouflaging strategy for IC protection. In Proceedings of the 35th
International Conference on Computer-Aided Design, ICCAD 2016, Austin, TX,
USA, November 7-10, 2016 (2016), p. 28.

[20] Li, W., Wasson, Z., and Seshia, S. A. Reverse engineering circuits using behavioral
pattern mining. In Hardware-Oriented Security and Trust (HOST), 2012 IEEE
International Symposium on (2012), pp. 83–88.

[21] Liu, D., Zhang, X., Yu, C., and Holcomb, D. Oracle-Guided Incremental SAT
Solving to Reverse Engineer Camouflaged Logic Circuits. IEEE/ACM/EDAA
Design, Automation and Test in Europe (DATE) (2016).

[22] Lv, J., Kalla, P., and Enescu, F. Efficient gröbner basis reductions for formal
verification of galois field multipliers. In Proceedings of the Conference on Design,
Automation and Test in Europe (2012), EDA Consortium, pp. 899–904.

[23] Malik, S., Becker, G., Paar, C., and Burleson, W. Development of a Layout-Level
Hardware Obfuscation Tool. In IEEE Computer Society Annual Symposium on
VLSI, ISVLSI 2015 (2015).

51

[24] Massad, M. E., Garg, S., and Tripunitara, M. V. Integrated circuit (IC) decam-
ouflaging: Reverse engineering camouflaged ics within minutes. In 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San Diego,
California, USA, February 8-11, 2014 (2015).

[25] Rahmati, A., Hicks, M., Holcomb, D. E., and Fu, K. Probable cause: the
deanonymizing effects of approximate dram. In ACM SIGARCH Computer
Architecture News (2015), vol. 43, ACM, pp. 604–615.

[26] Rajendran, J., Pino, Y., Sinanoglu, O., and Karri, R. Logic encryption: A fault
analysis perspective. In Proceedings of the Conference on Design, Automation
and Test in Europe (2012), DATE ’12, pp. 953–958.

[27] Rajendran, J., Sam, M., Sinanoglu, O., and Karri, R. Security analysis of
integrated circuit camouflaging. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security (2013), ACM, pp. 709–720.

[28] Shiozaki, M., Hori, R., and Fujino, T. Diffusion programmable device : The
device to prevent reverse engineering. IACR Cryptology ePrint Archive 2014
(2014), 109.

[29] Subramanyan, P., Ray, S., and Malik, S. Evaluating the security of logic encryption
algorithms. In Hardware-Oriented Security and Trust (HOST) (2015).

[30] Subramanyan, P., Tsiskaridze, N., Pasricha, K., Reisman, D., Susnea, A., and
Malik, S. Reverse engineering digital circuits using functional analysis. In
Proceedings of the Conference on Design, Automation and Test in Europe (2013),
EDA Consortium, pp. 1277–1280.

[31] SypherMedia. Syphermedia library – circuit camouflage technology. http://

www.smi.tv/SMI_SypherMedia_Library_Intro.pdf, 2012. Online; accessed 21-
April-2015.

[32] Torrance, R., and James, D. The state-of-the-art in semiconductor reverse
engineering. In Proceedings of the 48th Design Automation Conference (2011),
DAC ’11, pp. 333–338.

[33] Vijayakumar, A., Patil, V., Holcomb, D. E., Paar, C., and Kundu, S. Physical
design obfuscation of hardware: A comprehensive investigation of device and
logic-level techniques. IEEE Transactions on Information Forensics and Security
12, 1 (2017), 64–77.

[34] Xie, Y., and Srivastava, A. Mitigating sat attack on logic locking. In Cryptographic
Hardware and Embedded Systems-CHES 2016. Springer, 2016.

[35] Yang, B., Wu, K., and Karri, R. Scan based side channel attack on dedicated
hardware implementations of data encryption standard. In Test Conference, 2004.
Proceedings. ITC 2004. International (2004), IEEE, pp. 339–344.

52

[36] Yasin, M., Mazumdar, B., Rajendran, J., and Sinanoglu, O. Sarlock: Sat attack
resistant logic locking. In 2016 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST) (2016), IEEE, pp. 236–241.

[37] Yasin, M., Mazumdar, B., Sinanoglu, O., and Rajendran, J. Camoperturb:
secure IC camouflaging for minterm protection. In Proceedings of the 35th
International Conference on Computer-Aided Design, ICCAD 2016, Austin, TX,
USA, November 7-10, 2016 (2016), p. 29.

[38] Yasin, M., Rajendran, J., Sinanoglu, O., and Karri, R. On improving the security
of logic locking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems PP, 99 (2015), 1–1.

[39] Yu, C., Holcomb, D., and Ciesielski, M. Reverse Engineering Irreducible Polyno-
mial of GF(2m) Arithmetic. IEEE/ACM/EDAA Design, Automation and Test in
Europe (DATE) (2017).

[40] Yu, C., Zhang, X., Liu, D., Ciesielski, M., and Holcomb, D. Incremental SAT-
based Reverse Engineering of Camoulaged Logic Circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2017).

53

	ORACLE GUIDED INCREMENTAL SAT SOLVING TO REVERSE ENGINEER CAMOUFLAGED CIRCUITS
	Recommended Citation

	tmp.1502070569.pdf.0rc9t

