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Oracle inequalities for a Group Lasso procedure applied to

generalized linear models in high dimension

Mélanie Blazère, Jean-Michel Loubes and Fabrice Gamboa

Abstract

We present a Group Lasso procedure for generalized linear models (GLMs) and we study
the properties of this estimator applied to sparse high-dimensional GLMs. Under general
conditions on the covariates and on the joint distribution of the pair covariates, we provide
oracle inequalities promoting group sparsity of the covariables. We get convergence rates for
the prediction and estimation error and we show the ability of this estimator to recover good
sparse approximation of the true model. Then we extend this procedure to the case of an
Elastic net penalty. At last we apply these results to the so-called Poisson regression model
(the output is modeled as a Poisson process whose intensity relies on a linear combination of
the covariables). The Group Lasso method enables to select few groups of meaningful variables
among the set of inputs.

Keywords: Generalized linear model, high dimension, sparse model, groups of variables,
Group Lasso, oracle inequalities.

1 Introduction

Handling high dimensional data is nowadays required for many practical applications ranging
from astronomy, economics, industrial problems to biomedicine. Being able to extract information
from these large data sets has been at the heart of statistical studies over the last decades and
many papers have extensively studied this setting in a lot of fields ranging from statistical inference
to machine learning. We refer for instance to references therein.

For high-dimensional data, classical methods based on a direct minimization of the empirical
risk can lead to over fitting. Actually adding a complexity penalty enables to avoid it by selecting
fewer coefficients. Using an ℓ0 penalty leads to sparse solutions but the usely non-convex mini-
mization problem turns out to be extremely difficult to handle when the number of parameters
becomes large. Hence the ℓ1 type penalty has been introduced to overcome this issue. On the
one hand this penalty achieves sparsity of an estimated parameter vector and on the other hand
it requires only convex optimization type calculations which are computationally feasible even for
high dimensional data. The use of a ℓ1 type penalty, first proposed in [25] by Tibshirani, is now
a well established procedure which has been studied in a large variety of models. We refer for
example to [2], [5], [26], [8], [24], [32] and [4].

Group sparsity can be promoted by imposing a ℓ2 penalty to individual groups of variables
and then a ℓ1 penalty to the resulting block norms. Yuan and Lin [31] proposed an extension of
the Lasso in the case of linear regression and presented an algorithm when the model matrices in
each group are orthonormal. This extension, called the Group Lasso, encourages blocks sparsity.
Wei and Huang [29] studied the properties of the Group Lasso for linear regression, Nardi and
Rinaldo [18] established asymptotic properties and Lounici, Pontil, van de Geer and Tsybakov [14]
stated oracle inequalities in linear Gaussian noise under group sparsity. Meir, van de Geer and
Bühlmann [17] considered the Group Lasso in the case of logistic regression and Zhang and Huang
[32] studied the benefit of group sparsity. Another important reference is the work of Negahban,
Ravikumar, Wainwright and Yu [20]. In this last paper a unified framework for the study of rates of
convergence in high dimensional setting is provided under two key assumptions (restricted strong
convexity and decomposability). This work and these two assumptions will be discussed in more
details in Section 3.

1



In this paper we focus on the Group Lasso penalty to select and estimate parameters in the
generalized linear model. One of the application is the Poisson regression model. More precisely,
we consider the generalized linear model introduced by McCullagh and Nelder [16]. Let F be a
distribution on R and let (X,Y ) be a pair of random variables with X ∈ R

p and Y ∈ R. The
conditional law of Y |X = x is modeled by a distribution from the exponential family and the
canonical parameter is the linear predictor. Thus the conditional distribution of the observations
given X = x is P (Y |β∗, x) = exp(yβ∗Tx−ψ(β∗Tx)), where β∗Tx satisfies

∫
exp(yβ∗Tx)F (dy) <∞

and ψ is the normalized function. Notice that E(Y |X)
a.s
= ψ

′

(β∗TX) in other words β∗TX
a.s
=

h(E(Y |X)) where h = ψ
′−1

is the so-called link function. Some common examples of generalized
linear models are the Poisson regression for count data, logistic and probit regression for binary
data or multinomial regression for categorical data. The quantities of interest that we would like
to estimate are the component (β∗

j )16j6p of β∗ and for a given x we may also wish to predict
the response Y |X = x. A natural field of applications for such models is given by genomics and
Poisson regression type models. In particular thousands of variables such as expressions of genes
and bacterias can be measured for each animal (mices) in a (pre-)clinical study thanks to the
developpement of micro arrays (see, for example, [3] and [7] ). A typical goal is to classify their
health status, e.g. healthy or diseased, based on their bio-molecular profile, i.e. the thousands of
bio-molecular variables measured for each individual (see for instance [9], [22] and [21]).

The paper falls into the following parts. In Section 2 we describe the model and the Group Lasso
estimator for generalized linear models. In Section 3 we present the main results on coefficients
estimation and prediction error and in Section 4 we consider the model in the particular case of
a Poisson regression. We also study here the general model in the case of a mixture of an ℓ1 and
ℓ2 penalty. The Group Lasso estimator is then used on simulated data sets in Section 5 and its
performances are compared to those of the Lasso estimator. The Appendix is devoted to the proof
of the main theorems.

2 Sparse Variable selection for generalized linear models

2.1 The model

The Exponential family on the real line is a unified family of distributions parametrized by
a one dimensional parameter and is widely used for practical modelling. Let F be a probability
distribution on R not concentrated on a point and

Θ :=

{

θ ∈ R :

∫

exp(θx)F (dx) <∞
}

.

Define

M(θ) :=

∫

exp(θx)F (dx) (θ ∈ Θ)

and
ψ(θ) := log(M(θ)) (θ ∈ Θ).

Let P (y; θ) = exp(θy−ψ(θ)) with θ ∈ Θ. The densities of probability (related to a mesure adapted
to the continuous or discrete case) {P (.; θ) : θ ∈ Θ} is called the exponential family. Θ is the natural
parameter space and θ is called the canonical parameter. The exponential family includes most of
the commonly used distributions like normal, gamma, poisson or binomial distributions [16].

We consider a pair of random variables (X,Y ) where Y ∈ R and X ∈ R
p such that the

conditional distribution Y |X = x is P (Y |β∗, x) = exp(yβ∗Tx − ψ(β∗Tx)), with β∗Tx ∈ Θ. Our
aim is to estimate the components (β∗

j )16j6p of β∗ in order to predict the response Y |X = x
conditionally on a given value of x. We assume that

• (H.1): the variable X is almost surely bounded by a constant L i.e. there exists a constant
L > 0 such that ‖ X ‖∞6 L a.s.

• (H.2): for all x ∈ [−L,L]p, β∗Tx ∈ Int(Θ)
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and we consider
Λ =

{
β ∈ R

p : ∀x ∈ [−L,L]p , βTx ∈ Θ
}
.

Let (X1, Y1), ..., (Xn, Yn) be i.i.d copies of (X,Y ) where Xi = (Xi,1, ..., Xi,p)
T for i = 1, ..., n. We

consider the case of high-dimensional regression i.e p ≫ n. The log-likelihood for a generalized
linear model is given by

L(β) =
n∑

i=1

[
Yiβ

TXi − ψ(βTXi)
]
.

We denote the generalized linear model loss function by

l(β) =: l(β;x, y) =: −yfβ(x) + ψ(fβ(x)), (1)

where fβ(x) := βTx. Notice that this function is convex in β (as ψ is convex). The associated risk
is defined by Pl(β) =: El(β;Y,X) and the empirical risk by Pnl(β) where

Pnl(β) :=
1

n

n∑

i=1

[
−YiβTXi + ψ(βTXi)

]
.

Obviously
β∗ = argmin

β∈Λ
Pl(β).

2.2 Group Lasso for generalized linear model

Assume that X is structured into Gn groups each of size dg for g ∈ {1, ..., Gn}. For i = 1, ..., n
we set

Xi = (X1
i , ..., X

g
i , ..., X

Gn

i )T

where
Xg
i = (Xg

i,1, ..., X
g
i,dg

)T

and
∑Gn

g=1 dg = p. This decomposition is often natural in biology and micro arrays data when
the covariates are genes expresssion (see for instance [23] and [30]). We allow the number of
groups to increase with the sample size n, so we can consider the case where Gn ≫ n. Define
dmax := max

g∈{1,...,Gn}
dg and dmin := min

g∈{1,...,Gn}
dg. For β ∈ R

p we denote by βg the sub-vector of β

whose indexes correspond to the index set of the gth group of X.
Let us consider the Group Lasso estimator which achieves group sparsity and is obtained as

the solution of the convex optimization problem

β̂n = argmin
β∈Λ

{

Pnl(β) +

Gn∑

g=1

s(dg)‖βg‖2
}

where rn is the tuning parameter.
Here ‖.‖2 refers to the Euclidian norm and s is a given function. An increase in rn leads

to a diminution of the βg to zero, this means that some blocks become simultaneously zero and
groups of predictors drop out of the model. Typically we choose s(dg) :=

√
dg to penalize more

heavily groups of large size. Notice that if all the groups are of size one then we recover the
Lasso estimator. The Group Lasso achieves variables selection and estimation simultaneously as
the Lasso does. The penalty function is the sum of the ℓ2 norm of the groups of variables. Thus
the Group Lasso estimator acts like the Lasso at the group level [18], [14], [31]. Actually the
objective function above is the sum of a particular loss function (which is convex and based on
the exponential family) with a weighted regularizer. This type of convex optimization problem is
referred as a regularized M-estimator in the paper of Negahban et al. [20]. We can also notice that
the penalty norm satisfies the decomposability condition defined in this last paper.

We study estimation and prediction properties of the Group Lasso in high dimensional settings
when the number of groups exceeds the sample size i.e. Gn ≫ n. Define H∗ = {g : β∗g 6= 0} the
index set of the groups for which the correponding sub vectors of β∗ are non-zero and m∗ := |H∗|.
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Such a set characterizes the sparsity of the model. In the following H∗c denotes the index set of
the groups which are not in H∗. We can notice that H∗ and m∗ depend on n but for simplicity we
do not specify this dependency. In general, it will be hopeless to estimate all unknown parameters
from data except if we make the assumption that the true parameter is group sparse. In this
paper we consider that β∗ is partitioned into a number of groups, in correspondance with the
partition of X, only few of which are relevant. The index of group sparsity m∗ will be discussed
more deeply after Theorem 3.7. We also assume (H.3): there exists a constant B > 0 such that
∑Gn

g=1

√
dg‖β∗g‖2 6 B.

3 Main Results

3.1 Bounds for estimation and prediction error

Under some assumptions on the value of the parameter rn and on the covariance matrix of X
we are going to show the ability of this estimator to recover good sparse approximation of the true
model. To prove oracle inequalities for the Group Lasso applied to generalized linear model we
need to state concentration inequalities for the empirical process Pn (l(β)) for β ∈ Λ. This step
is essential to compute an appropriate lower bound for the regularization parameter that ensures
good statistical properties of the estimator with high probability. Notice that this step requires a
boundedness assumption on the (Xi,j) (cf. proof of Proposition 3.1).

To state concentration inequalities we first break down the empirical process into a linear part
and a part which depends on the normalized parameter ψ

(Pn − P) (l(β)) = (Pn − P) (ll(β)) + (Pn − P) (lψ(β))

where ll(β) := ll(β, x, y) = −yβTx and lψ(β) := lψ(β, x) = ψ(βTx). Define

A =

Gn⋂

g=1

{Lg 6 rn/2}

where

Lg :=

∥
∥
∥
∥
∥

1
√
dgn

n∑

i=1

(YiX
g
i − E(Y Xg))

∥
∥
∥
∥
∥
2

for all g ∈ {1, ..., Gn} and

B =






sup

β:
∑Gn

g=1

√
dg‖βg−β∗g‖26M

|νn(β, β∗)| 6 rn
2







where

νn(β, β
∗) :=

(Pn − P) (lψ(β
∗)− lψ(β))

∑Gn

g=1

√
dg‖βg − β∗g‖2 + εn

with M = 8B + εn and εn = 1
n . We assume that Gn and n are such that log(2Gn)

n 6 1. The next
proposition shows that the event A ∩ B occurs with high probability for some suitable values of
the tuning parameter.

Proposition 3.1. Let

rn > AKL

{

CL,B ∨ max
{|x|6Lκn}∩Θ

|ψ′

(x)|)
}√

2 log(2Gn)

n

where K is a universal constant, A >
√
2, κn := 17B + 2

n and CL,B is defined in Lemma 3.2. We
have

P (A ∩ B) > 1− (C + 2dmax)(2Gn)
−A2/2.

where C is a universal constant.
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The proof rests on concentration inequalities and is detailled in the appendix. Indeed infering
a bound for the probability of the events A and B is equivalent to prove concentration inequalities
for the linear and non linear part of the empirical process. A concentration inequality for the linear
part is derived from Bernstein inequality once the following lemma has been proved. This lemma
provides moment bounds for Y .

Lemma 3.2. Let (X,Y ) a pair of random variables whose conditional distribution is P (Y ;β∗|X =
x) = exp(yβ∗Tx − ψ(β∗Tx)) and assume assumptions (H.1-3) are fulfilled. For all k ∈ N

∗ there
exists a constant CL,B (which depends only on L and B) such that E(|Y |k) 6 k!(CL,B)

k.

The boundedness assumption on the components of X is required to prove this lemma. Then,
for the non linear part of the empirical process, we use again this assumption to show that we
can restrict the study of ψ to a suitable compact set. Since ψ is lipchitzian on this compact set,
concentration results for lipchitzian loss functions (see [12]) allow to bound the probability of the
event B.

Thus, on the event A which occurs with high probability (see Proposition 3.1), we have an

upper bound for the linear part of the empirical process (Pn − P)
(

ll(β
∗)− ll(β̂n)

)

.

Proposition 3.3. On the event A

(Pn − P)
(

ll(β
∗)− ll(β̂n)

)

6
rn
2

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2.

Proof. We have

(Pn − P)
(

ll(β
∗)− ll(β̂n)

)

=

Gn∑

g=1

(β̂gn − β∗g)T

[

1

n

n∑

i=1

YiX
g
i − E(Y Xg)

]

6

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2

∥
∥
∥
∥
∥

1
√
dgn

n∑

i=1

(YiX
g
i − E(Y Xg))

∥
∥
∥
∥
∥
2

.

The last bound is obtained by using Cauchy-Schwarz inequality. Then on the event A the propo-
sition follows.

Therefore the difference between the linear part of the empirical process and its expectation
is bounded from above by the tuning parameter multiplied by the norm (associated to the Group
Lasso penalty) of the difference between the estimated parameter and the true parameter β∗. We
can state a similar result for the non linear part of the empirical process, the key of the proof is
based on the fact that the estimator β̂n is in a neighborhood of the target parameter β∗ on the
event A⋂B.

Lemma 3.4. On the event A⋂B we have
∑Gn

g=1

√
dg‖β̂gn − β∗g‖2 6 M, where we recall that

M = 8B + εn and εn = 1
n .

Then the next proposition provides an upper bound for (Pn − P)
(

lψ(β
∗)− lψ(β̂n)

)

and is

directly involved by the definition of B and Lemma 3.4.

Proposition 3.5. On the event A ∩ B

(Pn − P)
(

lψ(β
∗)− lψ(β̂n)

)

6
rn
2

(
Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 + εn

)

.
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Once concentration of the loss function around its mean is stated, we have to ensure that the
loss function is not too flat in such a way that if the loss difference l(β̂n) − l(β∗) converges to

zero then β̂n converges to β∗. In this paper such a property holds assuming that the covariance
matrix satisfies a Group Stabil condition (see condition below). This condition is closely related
to the one of Negahban et al. [20] called Restricted Strong Convexity property. Notice that in our
analysis the boundedness of the covariates is required to prove such a property. In fact, thanks
to the boundedness of the covariates, we first bound from below the mean deviation of the loss
function by a quadratic function (see Proposition A.1 in Appendix A). This first step enables to
relate the deviation in the loss to the deviation of the estimated parameter from the true one.
Then the Group Stabil condition implies that the loss function satisfies a local strong convexity
property. This has been characterized as a common step for convergence of M -estimator (see
[20]). Notice that the boundedness assumption on the components of X is not required to obtain
a kind of strong convexity. For example, as stated by Negahban et al., if the covariates have
sub-gaussian tails and if the covariance matrix is positive definite then the loss function satisfies a
form of restricted strong convexity property with high probability. However, as noticed above the
boundedness assumption is necessary to establish Proposition 3.1.

Therefore the key condition to derive oracle inequalities rests on the correlation between the
covariates i.e. on the behavior of the Gram matrix 1

n

∑n
i=1XiX

T
i which is necessarily singular

when p > n. Meier, van de Geer and Bühlmann [17] proved that the group Lasso is consistent
in the particular case of logistic regression and gave bounds for the prediction error under the
assumption that E(XXT ) is non singular. In this paper we give sharp bounds for estimation and
prediction errors for generalized linear models using a weaker condition similar to the restricted
eigenvalue condition (RE) of Bickel, Ritov and Tsybakov [2]. This condition is quite weaker than
the one of Bunea, Tsybakov and Wegkamp [6]. In their article Bickel, Ritov and Tsybakov also
give several sufficient conditions for RE (which are easier to check). Here we use a condition which
is a group version of the Stabil Condition first introduced by Bunea [5] for logistic regression in
the case of an ℓ1 penalty. This condition is similar (within a constant ε) to the condition used by
Lounici, Pontil, van de Geer and Tsybakov [14] to state oracle inequalities for linear regression.
For c0, ε > 0, we define the restricted set as

S(c0, ε) =






δ :

∑

g∈H∗c

√

dg‖δg‖2 6 c0
∑

g∈H∗

√

dg‖δg‖2 + ε






.

On this set we assume that the covariance matrix satisfies the Group Stabil condition defined
below. This condition ensures local stong convexity in a neighborhood of β∗.

Let Σ := E(XXT ) be the p× p covariance matrix.

Definition : Group Stabil Condition
Let c0, ε > 0 be given. Σ satisfies the Group Stabil condition GS(c0, ε, k) if there exists 0 < k < 1
such that

δTΣδ > k
∑

g∈H∗

‖δg‖22 − ε

for any δ ∈ S(c0, ε).

Before going any further we have to define two norms that are used to control the estimation
error. For all z ∈ R

p, let

‖z‖R :=

Gn∑

g=1

√

dg‖zg‖2

and

‖z‖2,1 :=

Gn∑

g=1

‖zg‖2.

The norm ‖.‖R is called the regularizer norm.
We are now able to state the main result of this paper which provides meaningful bounds for

the estimation and prediction error when the true model is sparse and log(Gn) is small as compared
to n.
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Let γ∗ :=
∑

g∈H∗ dg. We recall that κn := 17B + 2
n .

Theorem 3.6. Assume condition GS(3, 1
2n , k) is fulfilled. Let

rn > AKL

{

CL,B ∨ max
{|x|6Lκn}∩Θ

|ψ′

(x)|)
}√

log(2Gn)

n

where A >
√
2, K is a universal constant and CL,B is defined in Lemma 3.2. Then, with probability

at least 1− (C + 2dmax)(2Gn)
−A2/2 (where C is given in Proposition 3.1), we have

‖β̂n − β∗‖R 6
4

cnk
rnγ

∗ +

(

1 +
1

rn

)
1

2n
,

‖β̂n − β∗‖2,1 6
4

cnk
√
dmin

rnγ
∗ +

(

1 +
1

rn

)
1

2n
√
dmin

and

E

(

β̂TnX − β∗TX
)2

6
16

c2nk
r2nγ

∗ +
2rn + 1

2cnn
.

where

cn := min
{|x|6L(9B+ 1

n
)}∩Θ

{

ψ
′′

(x)

2

}

.

Notice that cn > 0 since the measure associated to the distribution F is not concentrated on a
point.

These results are similar to those of Nardi and Rinaldino [18] who proved asymptotic properties
of the Group Lasso estimator for linear models. We can notice that if γ∗ = O(1) then the bound

on the estimation error is of the order O

(√
logGn

n

)

and the Group Lasso estimator still remains

consistent for the ℓ2,1-estimation error and for the ℓ2-prediction error under the Group Stabil
condition if the number of groups increases almost as fast as O(exp(n)). The term

√
logGn is the

price to pay for having a large number of factors and not knowing where are the non zero ones.
Since ‖β̂n − β∗‖2 ≤ ‖β̂n − β∗‖2,1, we also have

‖β̂n − β∗‖2 6
4

cnk
√
dmin

rnγ
∗ +

(

1 +
1

rn

)
1

2n
√
dmin

.

However, a sharper bound for the l2-norm of the estimation error holds but under a stronger
assumption than GS(3, 1

2n , k).

Theorem 3.7. Assume GS(2m∗, 3, 1
2n , k

′

) i.e there exists 0 < k
′

< 1 such that

δTΣδ > k
′
∑

g∈J

‖δg‖22 −
1

2n

for any δ such that
∑

g∈Jc

√
dg‖δg‖2 6 3

∑

g∈J

√
dg‖δg‖2 + 1

2n and J such that |J | ≤ 2m∗. Then

we have with probability at least 1− (C + 2dmax)(2Gn)
−A2/2

‖β̂n − β∗‖22 6 10
dmax

dmin

{

16

k′2c2n
r2nγ

∗ +
2rn + 1

2k′cnn
+

1

2k′n

}

.

Proof. Let J∗ = H∗ ∪ I and I is the set of indice corresponding to the m∗ largest values of
√
dg‖β̂gn − β∗g‖2 in H∗c. We can prove (see proof of Theorem 3.1 in [14] with λg = rn

√
dg ) that

∑

g∈J∗c

‖β̂gn − β∗g‖22 ≤ 9
dmax

dmin

∑

g∈J∗

‖β̂gn − β∗g‖22 (2)

7



and
∑

g∈J∗c

√

dg‖β̂gn − β∗g‖2 6 3
∑

g∈J∗

√

dg‖β̂gn − β∗g‖2 +
1

2n
.

Therefore on one hand, using assumption GS(2m∗, 3, 1
2n , k

′

), we deduce

k
′
∑

g∈J∗

‖β̂gn − β∗g‖22 ≤ E

(

β̂TnX − β∗TX
)2

+
1

2n
(3)

and on the other hand, by the same arguments as those used in the proof of Theorem 3.6 to state
Equation (14), we have

E

(

β̂TnX − β∗TX
)2

6
16

c2nk
′
r2nγ

∗ +
2rn + 1

2ncn
. (4)

From equation (3) and equation (4) we conclude

∑

g∈J∗

‖β̂gn − β∗g‖22 6
16

k′2c2n
r2nγ

∗ +
2rn + 1

2k′cnn
+

1

2k′n
. (5)

Finally inequalities (2) and (5) conclude the proof.

The convergences rates obtained in Theorem 3.6 and Theorem 3.7 are exactly of the same order
as the ones stated by Lounici and al. [14] for the Group Lasso in a Gaussian setting. The oracle

inequality stated in Theorem 3.7 shows that the l2-estimation error is bounded by O
(

γ∗ logGn

n

)

under GS(2m∗, 3, 1
2n , k

′

). Therefore, in the case of finite size groups, m∗ still could be much larger
than logGn and the estimator remains consistent. We can also notice that the number of samples
required in order that the prediction and estimation error (with respect to the l2 norm) goes to
zero is almost of the order of O (γ∗ logGn).

As mentionned above the group structured norm satisfies the decomposability property (see
[20]). Furthermore, under the assumptions made, the loss function satisfies a local restricted strong
convexity property. According to Negahban et al., these properties are two important conditions
that ensure good statistical properties of M-estimators. This is especially true for the Group Lasso
applied to generalized linear model as shown in Theorem 3.6 and Theorem 3.7. Indeed, these two
theorems demonstrate the ability of the Group Lasso to recover good approximation of the true
model for sparse generalized linear models under the Group Stabil condition.

3.2 Lasso for generalized linear models

When each group is of size one we recover the Lasso estimator

β̂n = argmin
β∈Λ

{Pnl(β) + 2rn‖β‖1}

where ‖β‖1 =
∑n
j=1 |βj |. Thus following step by step the proof of Theorem 3.6 we can easily

deduce bounds for estimation and prediction error for the Lasso estimator in the case of gen-
eralized linear models. Notice that the l2-estimation error of the Lasso applied to GLMs was
first studied by Negahban and al. (see [19] and [20]). The Lasso is a special case of the Group
Lasso where γ∗ = s∗ with s∗ := |I∗| =

∣
∣
{
j : β∗

j 6= 0
}∣
∣ and Gn = p. We still consider high-

dimensional data i.e. n ≪ p and sparsity assumption on the target β∗ i.e. s∗ ≪ p and we
assume (H.1-3) except that for (H.3) we consider the ℓ1 norm i.e. ‖β∗‖1 6 B. The condi-
tion GS in this case requires the existence of 0 < k < 1 such that δTΣδ > k

∑

j∈I∗ δ
2
j − ε for

any δ ∈ S(c0, ε) =
{

δ ∈ R
p :
∑

j∈I∗c |δj | 6 c0
∑

j∈I∗ |δj |+ ε
}

. We recover the Stabil condition

St(c0, ε, k) of [5]. We also define condition St(2s∗, c0, ε, k
′

) i.e there exists 0 < k
′

< 1 such that
δTΣδ > k

′ ∑

j∈J δ
2
j − ε for any δ which satisfies

∑

j∈Jc |δj | 6 c0
∑

j∈J |δj | + ε and J such that
|J | ≤ 2s∗.
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Theorem 3.8. Assume condition St(3, 1
2n , k) is fulfilled. Let

rn > AKL

{

CL,B ∨ max
{|x|6Lκn}∩Θ

|ψ′

(x)|
}√

log(2p)

n

where A >
√
2 and CL,B depends only on L and B. We have, with probability at least 1−C(2p)−A2/2

(where C is a universal constant),

‖β̂n − β∗‖1 6
4

cnk
rns

∗ +

(

1 +
1

rn

)
1

2n

and

E

(

β̂TnX − β∗TX
)2

6
16

c2nk
r2ns

∗ +
2rn + 1

2ncn
.

Furthermore if St(2s∗, 3, 1
2n , k

′

) holds then we have

‖β̂n − β∗‖22 6 10
dmax

dmin

{

16

k′2c2n
r2ns

∗ +
2rn + 1

2k′cnn
+

1

2k′n

}

,

with cn := min
{|x|6L(9B+ 1

n
)}∩Θ

{

ψ
′′

(x)
2

}

.

Proof. The proof of Theorem 3.8 follows the same guidelines as the one for the Group Lasso. The
main difference comes from concentration inequalities for the linear and log Laplace transform part
of the loss function, leading to simpler bounds.

This result extends the one of Bunea [5] for logistic regression to generalized linear model and
states convergence rates for the estimation and prediction error. The error bounds presented in
Theorem 3.8 are of the same order as the ones stated by Bickel, Ritov and Tsybakov [2] in their
analysis of the properties of the Lasso for standard linear models. We can also notice that in [19]
Negahban and al. obtained bounds for the l2-estimation error of the Lasso applied to GLMs of
the same order as the one we get but under stronger conditions. In fact they assume that the
distribution of the response Y based on a predictor X is given by

P (Y |X;β∗) = exp(Y β∗TX − ψ(β∗TX))

with |X| ≤ A and |Y | ≤ B and that ψ
′′

is bounded from below on a suitable set. In our work
we do not make these two last assumptions. The restricted eigenvalue property they use is also
slightly stronger than St(3, εn, k). In addition we establish oracle inequalities for the prediction
error.

The bounds in Theorem 3.8 are meaningful if rn is small (in particular if n≫ log(p)) and s∗ is

small. Indeed, the bound on the l1-estimation error is of the order of O

(

s∗
√

log p
n

)

. We can also

notice that the minimum number of samples required to make the l2-estimation and prediction
error decrease to zero is of the order of O (s∗ log p).

Then a relevant issue is the benefit of the Group Lasso over the Lasso. To understand better
the power of a group structured estimator when the covariates have a group structure we refer to
Huang and Zhang [10]. In this paper the authors investigate the benefit of sparsity with group
structure compared to the usual Lasso. They develop a concept called strong group sparsity which
means that the signal β∗ is efficiently covered by grouping. They showed that the Group Lasso is
better than the usual Lasso for strongly group sparse data in the case of a standard linear model
(see also [15]). Comparing Theorem 3.6 and Theorem 3.8 we see that an important improvement
over the Lasso is given when the number of non-zero groups is much smaller than the total number
of non-zero coefficients. Actually when the number of covariates increases this estimator removes
completely the effect of the number of predictors. Indeed if we assume that the maximum size
of the groups is finite then the estimation error for the Group Lasso depends only on the total
number of groups Gn and on the number of significant groups m∗. Besides the prediction error
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for the Lasso is of the order of O(s∗ log p
n ) whereas it is of the order of O(m∗ logGn

n ) for the Group
Lasso. Therefore if β∗ has a group structure this is a meaningful improvement when p is large and
the number of groups Gn is much more smaller. Notice this comparaison must be tempered by
the fact that the two estimators require different conditions on the covariance matrix. In fact for
a same data set there is not a condition which is weaker and implies the other. We also refer to
the simulations in Section 5 that show some of the benefit of the Group Lasso over the Lasso when
the covariates have a group structure in term of estimation and prediction error.

4 Applications and extensions

4.1 Group Lasso for Poisson regression

Sparse logistic regression has been widely studied in the literature (see, for example, [5] and
[17]) but not the Poisson one for a sparse model. This last model is also very useful for many
practical applications. For instance it is used to model count data and contingency tables. Poisson
models are a special case of generalized linear models where the conditionnal law of Y given X = x
has a Poisson distribution with parameter λ∗(x) := exp(β∗Tx). Therefore the conditional mean
for Poisson regression is modeled by E(Y |X = x) = exp(β∗Tx). Thus the normalized function ψ is
the exponential function and is defined on R. For this special link function we are going to specify
the constants which appear in Theorem 3.6. The log-likelihood based on the observations is given
by

L(β) =
n∑

i=1

[
Yiβ

TXi − exp(βTXi)− log(Yi!)
]

and thus the Poisson loss function is defined by

l(β) =: l(β;x, y) =: −yβTx+ exp(βTx).

It is formula (1) with ψ = exp. In the particular case of Poisson regression the conditional law is
defined by Y |X ∼ P (λ∗(X)) and the higher moments for a Poisson distribution are given by

E
(
Y k|X

)
=

k∑

l=1

(λ∗(X))
l
Sl:k

where Sl:k =
1

l!

∑l
i=0(−1)l−i

(
l
i

)
ik > 0 is the number of partitions of a set with l members into k

undersets. The number
∑k
l=1 Sl:k := Bk is called the kth Bell number and this number satisfies

the relation Bn+1 =
∑n
k=0

(
k
n

)
Bk (see for example [11]). So we can easily prove by induction that

Bk 6 k! for all k > 1. Then we have on the event {0 6 λ∗(X) < 1}

E
(
Y k
)
= E

(
k∑

i=1

(λ∗(X))
i
Si:k

)

6

k∑

i=1

Si:k 6 k!

and on the event {1 6 λ∗(X)} using (H.1) combined with (H.3) we find

E
(
Y k
)
=

k∑

i=1

Si:kE
(

(λ∗(X))
i
)

6 k!(eLB)k

Because eLB > 1 we deduce that for all k > 1

E|Y |k 6 k!(eLB)k.

Thus for Poisson regression we have CL,B = eLB . Besides max
|x|6Lκn

{

|ψ′

(x)|
}

= eLκn and min
|x|6L(9B+ 1

n
)

{

ψ
′′

(x)
2

}

=

1
2e

−L(9B+ 1
n
) where we recall that κn := 17B + 2

n . Therefore, in the case of Poisson regression,
Theorem 3.6 becomes
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Corollary 4.1. Let cn := 1
2e

−L(9B+ 1
n
). Assume that condition GS(3, 1

2n , k) holds. If

rn > AKLeL(17B+ 2
n
)

√

log(2Gn)

n

with A >
√
2 then, with probability at least 1− (C + 2dmax)(2Gn)

−A2/2, we have

‖β̂n − β∗‖R 6
4

cnk
rnγ

∗ +

(

1 +
1

rn

)
1

2n
,

‖β̂n − β∗‖2,1 6
4

cnk
√
dmin

rnγ
∗ +

(

1 +
1

rn

)
1

2n
√
dmin

and

E

(

β̂TnX − β∗TX
)2

6
16

c2nk
r2nγ

∗ +
2rn + 1

2ncn
.

Furthermore if condition GS(2m∗, 3, 1
2n , k

′

) holds, then

‖β̂n − β∗‖22 6
dmax

dmin

[

160
1

k′2c2n
r2nγ

∗ + 5
2rn + 1

k′cnn
+ 10

1

2k′n

]

.

4.2 Elastic net for generalized linear models

The most difficult part of the proof of Theorem 3.6 is to prove Proposition 3.1. Once this
proposition has been proved it becomes easy to generalize the results presented above to any
standard penalization using a modified version of the condition GS (depending on the norm we
use). For example we can replace the ℓ1 norm by a combination of ℓ1 and ℓ2 norms. It is the
so-called Elastic net introduced by Zou, Trevor and Hastie [33] in the frame of linear regression.
They showed that this estimator outperforms the Lasso in many situations for real world data and
simulations. It is an alternative to the Group Lasso (the Elastic net has a behaviour similar to
the one of the Group Lasso estimator). As the Lasso does, the Elastic net encourages sparsity and
group selection but contrary to the Lasso when the sample size n is smaller than p the Elastic net
can select more than n significant variables. This estimator is the solution of a convex optimization
problem. Zou, Trevor and Hastie in [33] proposed an algorithm to solve this problem. The Elastic
net estimator for the generalized linear model is defined by

β̂n = argmin
β∈Λ

{
Pnl(β) + 2rn‖β‖1 + tn‖β‖22

}
(6)

where rn and tn are the penalty parameters. Theorem 4.2 is an extension of the results first
proved by Bunea [5] in the special case of logistic regression. Let 2tnB = rn. We have the
following theorem

Theorem 4.2. Assume condition St(4, 1
2n , k) holds. Let

rn > AKL

{

CL,B ∨ max
{|x|6L(17B+ 2

n
)}∩Θ

|ψ′

(x)|
}√

log(2p)

n

where A >
√
2 and CL,B depends only on L and B. Then, with probability at least 1−C(2p)−A

2/2

(where C is a universal constant), we have

‖β̂n − β∗‖1 6
(2.5)2

tn + cnk
rns

∗ +

(

1 +
1

rn

)
1

2n

and

E

(

β̂TnX − β∗TX
)2

6
2(2.5)2

cnk(tn + cnk)
r2ns

∗ +
2rn + 3

2cnn
.

where cn := min
{|x|6L(9B+ 1

n
)}∩Θ

{

ψ
′′

(x)
2

}

.

We can notice that thanks to the ℓ2 penalty the bound for the ℓ1 and ℓ2 errors are less sensitive
to small value of k and small value of cn (which can appears when L or B are large).
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5 Simulations

We are going to compare the performances of the Lasso and Group Lasso for Poisson Regression
on simulated data sets. Computations have been performed using R. We use the package grplasso
developped by Meir, van de Geer and Buhlmann [17] for the Group Lasso and the package glmnet
developped by Friedman, Hastie and Tibshirani [8] for the Lasso. The function glmnet fits the
entire lasso regularization path for some generalized linear model via penalized maximum likeli-
hood. We use this function in the particular case of Poisson regression. The function grplasso

fits the solution of a Group Lasso problem for a model of type grpl.model which generates models
to be used for Group Lasso algorithm and identify the exponential family of the response and the
link function which is used. Here we consider the function PoissReg() which generates a Poisson
model.

We simulate 100 data sets for each simulation and we ran the Lasso and Group Lasso on these
data sets. Each data set X is cut into three separate subsets: a training data set, a validation
data set and a test data set. We simulate responses via the model Y ∼ P(exp(Xβ∗)) where
β∗ = (β∗1, ..., β∗G) with g groups with non zero coefficients among the G groups. The training
data set (Xtrain of size ntrain) is used to fit the model (we estimate the target β∗ for a sequence of
the tuning parameter λ and denote by βλ the estimate of β∗ obtained for such a parameter for the
Lasso and the Group Lasso estimator). Then, we use the validation data (Xvalid of size nvalid) to
evaluate the performance of the fitted model according to a specific loss function. We define the
optimal tuning parameter as the one for which the deviation from the fitted mean to the response

is minimal i.e. λopt ∈ argmin
λ

{
1

nvalid
‖Y − exp(Xvalidβλ)‖22

}

. From that we determine the model

with the parameter vector βλopt
. Then we compute the hits i.e the number of correctly identified

relevant variables, the false positives i.e the number of non significant variables choosen as relevant
and the degreee of freedom i.e the total number of variables selected in the model. Finally, we
estimate the performance of the selected model by computing the coefficients estimation error
‖β∗−βλopt

‖1 and the prediction error ‖Xtestβ
∗−Xtestβλopt

‖2 on the test data (Xtest of size ntest).
We ran the Lasso and Group Lasso on these data sets.

Eight models are considered in the simulations. For each simulation ntrain = 50, nvalid = 50,
ntest = 100. To compare the Lasso and Group Lasso we use a random design matrix where the
predictors are simulated as followed according to a uniform distribution to have bounded predictors.

1. • Xi = U1 + εi for 1 6 i 6 10 with U1 ∼ U([0, 1])

• Xi = U2 + εi for 11 6 i 6 20 with U2 ∼ U([0, 1])

• Xi = Ui for the last 100 variables Ui ∼ U([−0.1, 0.1])

with εi i.i.d ∼ U([0, 0.01]).
The covariates within the first two blocks are highly correlated (∼ 0.8) and there are small
correlations between the blocks. The target is

β∗ = (0.3, ..., 0.3
︸ ︷︷ ︸

10

, 0.2, ..., 0.2
︸ ︷︷ ︸

10

, 0, ..., 0
︸ ︷︷ ︸

10

, ..., 0, ..., 0
︸ ︷︷ ︸

10
︸ ︷︷ ︸

10

).

2. The simulation is the same as the first one except that εi i.i.d ∼ U([0, 1]). Thus there are
small correlations within and between groups (∼ 0.5).

3. The simulation is the same as the first one except that εi i.i.d ∼ U([0, 1.2]). Thus there are
very small correlations within and between groups (∼ 0.2).

For all the following simulations the non zero groups are generated in the same way as
in the second example. For j = 1, ...,m∗ and i = 1, ..., dj , Xi = Uj + εi where Uj ∼ U([0, 1])
and εi i.i.d ∼ U([0, 1]). The non influencial groups are simulated according to Xi = Ui with
Ui ∼ U([−0.1, 0.1]). In the two following simulations we increase the size of the non zero
groups
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4.
β∗ = (0.3, ..., 0.3

︸ ︷︷ ︸

20

, 0.2, ..., 0.2
︸ ︷︷ ︸

20

, 0, ..., 0
︸ ︷︷ ︸

20

, ..., 0, ..., 0
︸ ︷︷ ︸

20
︸ ︷︷ ︸

10

).

5.
β∗ = (0.3, ..., 0.3

︸ ︷︷ ︸

5

, 0.2, ..., 0.2
︸ ︷︷ ︸

5

, 0, ..., 0
︸ ︷︷ ︸

5

, ..., 0, ..., 0
︸ ︷︷ ︸

5
︸ ︷︷ ︸

10

).

In the last three simulations it is the number of the non zero groups which is increased.

6.
β∗ = (0.2, ..., 0.2

︸ ︷︷ ︸

10

, 0.2, ..., 0.2
︸ ︷︷ ︸

10

, 0, ..., 0
︸ ︷︷ ︸

10

, ..., 0, ..., 0
︸ ︷︷ ︸

10
︸ ︷︷ ︸

10

).

7.
β∗ = (0.2, ..., 0.2

︸ ︷︷ ︸

10

, ..., 0.2, ..., 0.2
︸ ︷︷ ︸

10
︸ ︷︷ ︸

4

, 0, ..., 0
︸ ︷︷ ︸

10

, ..., 0, ..., 0
︸ ︷︷ ︸

10
︸ ︷︷ ︸

10

).

8.
β∗ = (0.2, ..., 0.2

︸ ︷︷ ︸

10

, ..., 0.2, ..., 0.2
︸ ︷︷ ︸

10
︸ ︷︷ ︸

6

, 0, ..., 0
︸ ︷︷ ︸

10

, ..., 0, ..., 0
︸ ︷︷ ︸

10
︸ ︷︷ ︸

10

).

The results of the eight simulations are reported in Table I hereafter where p is the number of
covariates, s∗ the number of significant covariates, G the number of groups, m∗ the number of non
zero groups and v is the size of the non zero groups. The Group Lasso seems to perform better
than the Lasso to include the relevant predictors into the model particularly when there are high
within group correlations. The Lasso tends to select fewer variables among the influencial ones
(the Lasso selects only some variables from the groups of highly correlated predictors) than the
Group Lasso does in the case of highly correlated covariates and when the size or the number of the
nonzero groups is large. The Group Lasso succeeds in including the true significant groups in most
of the cases. On the contrary the Group Lasso estimator tends to add more irrelevant covariates
than the Lasso does in particular when the number or the size of the non influencial groups is
large. We can expect such a result because the Group Lasso estimator includes not single variable
one after another but groups of variables (when one of the covariates is included in the model
all the others which belongs to the same group are also included in the model). Thus the Group
Lasso selects models that are larger than the true model. However when the Group Lasso selects a
number of covariates which is the same than the number of significants covariates it is, with high
probability, the correct groups which are included. We have also measured the performances of the
Lasso and Group Lasso in terms of estimation error and prediction error. The Group Lasso seems
to perform better than the Lasso in term of estimation error and of prediction error in most of the
cases and the improvement is particularly meaningful for prediction error. We can also notice that
the performances of the two estimators decreases with the increase of G and m∗. To conclude, the
Group Lasso estimator seems to perform better than the Lasso to include the hits in the model
and in terms of prediction and estimation error when the covariates are structured into groups and
in particular in the case of high correlations within groups.

To better understand the difference of behaviour between the Lasso and the Group Lasso in
terms of variables selection we also provide some kind of ROC curves. These curves are created by
plotting the fraction of true positives (of the estimated parameter) out of the positive coefficients
of β∗ for discretized values of the penalty parameter going from zero (completely dense solution)
up to the value where the first group of covariates enters the model (completely sparse solution).
To ensure that we well detect each new inclusion of covariates, the discretization involves 10000
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Simulation 1 2 3 4 5 6 7 8
s∗/p 20/120 20/120 20/120 40/240 10/60 20/120 40/140 60/160
G 12 12 12 12 12 12 14 16
m∗ 2 2 2 2 2 2 4 6
v 10 10 10 20 5 10 10 10

Mean Hit lasso (%) 86, 9 99, 4 99, 95 66, 27 87, 6 95, 9 78, 79 54, 16
Mean Hit group lasso (%) 100 100 100 98, 5 100 100 100 98, 8

Mean False positive lasso (%) 15, 02 10, 61 9, 25 2, 39 47, 38 18, 96 9, 33 8, 87
Mean False positive group lasso (%) 28, 7 36, 1 33, 9 74 34, 2 29, 6 61, 9 37, 9

Mean Nonzero lasso 32, 4 30, 49 29, 24 31, 29 32, 45 38, 14 40, 85 41, 37
Mean Nonzero gp lasso 48, 7 56, 1 53, 9 187, 4 27, 1 49, 6 101, 9 97, 2

Mean Prediction error lasso 0, 19 0, 15 0, 18 6, 73 0, 15 0, 17 3, 22 17, 97
Mean Prediction error gp lasso 0, 021 0, 007 0, 004 1, 98 0, 03 0, 016 0, 012 1, 32
Mean Estimation error lasso 6, 36 2, 84 2, 08 9, 79 15, 31 6, 37 8, 45 16, 28

Mean Estimation error gp lasso 5, 54 2, 66 1, 64 18, 65 4, 22 3, 40 2, 77 12, 76

Table 1: Results of the simulations for the eight models

values of the penalty parameter. We plot the curves for each model considered. Three models are
described below and the respective ROC curves are shown in Figures 1, 2 and 3.

For each model we have

• for j = 1, ...,m∗ and i = 1, ..., dj , Xi = Uj + εi where εi i.i.d ∼ U([−1, 1]) and Uj ∼ U([0, 1])
for simulation 1 and Uj ∼ U([−1, 1]) for simulation 2 and 3 .

• for the non significant groups Xi = Ui with Ui ∼ U([−0.1, 0.1]) for simulation 1 and 2 and
Ui ∼ U([−0.01, 0.01]) for simulation 3.

1. For the first simulation the target is
β∗ = (0.2, ..., 0.2

︸ ︷︷ ︸

5

, ... 0.2, ..., 0.2
︸ ︷︷ ︸

5
︸ ︷︷ ︸

10

, 0, ..., 0
︸ ︷︷ ︸

5

, ..., 0, ..., 0
︸ ︷︷ ︸

5
︸ ︷︷ ︸

50
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Figure 1: Simulation 1

2. For the second simulation the target is
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β∗ = (0.2, ..., 0.2
︸ ︷︷ ︸

5

, ... 0.2, ..., 0.2
︸ ︷︷ ︸

5
︸ ︷︷ ︸

10

, 0, ..., 0
︸ ︷︷ ︸

5

, ..., 0, ..., 0
︸ ︷︷ ︸

5
︸ ︷︷ ︸

100

).
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Figure 2: Simulation 2

3. For the third simulation the target is
β∗ = (0.2, ..., 0.2

︸ ︷︷ ︸

5

, ... 0.2, ..., 0.2
︸ ︷︷ ︸

5
︸ ︷︷ ︸

10

, 0, ..., 0
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︸ ︷︷ ︸

5
︸ ︷︷ ︸
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Figure 3: Simulation 3

The simulations clearly illustrate that contrary to the Lasso the Group Lasso includes not single
covariates one after another but all the covariates which belong to the same group at the same time.
The Group Lasso tends to include in priority the significant groups and then the non significant
groups in such a way that for some values of the penalty parameter the rate of perfect selection can
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be very close to one and even equal to one in some particular cases (see for instance Figure 1). We
can notice that the ROC curves for the Lasso follow at the beginning those of the Group Lasso and
then fall below. The break in the curves of the Lasso illustrate a special feature of this estimator.
Actually the number of covariates included in the model for the Lasso is restricted by the sample
size whereas for the Group Lasso the restriction is given by the number of groups. That is why
for the Lasso the number of true positives but also the number of false positives are smaller than
those of the Group Lasso (once approximately 100 covariates are added in the model the Lasso
stop including other ones). We can also notice that the Group Lasso is less stable than the Lasso
in terms of variables selection. In fact a little change in the penalty parameter can substantially
increase the number of false positives. This particular feature of the Group Lasso due to a group
structure penalty is reflected in Table I with a rate of false positives larger for the Group Lasso
in most of the cases. Thus Figures 1, 2 and 3 confirm what has been previously deduced from
the results presented in Table I. To conclude the Group Lasso seems to be more reliable than the
Lasso to include the variables of interest but in return it tends to incorporate more false positives.

6 Conclusion

We consider the generalized linear model in high dimensional settings and use the Group Lasso
estimator to estimate the regression parameter β∗ when the covariates are naturally structured
into groups of variables and the true parameter is group sparse (just a few variables are relevant to
explain the response). Under some assumptions on the sparsity of β∗, on the correlations between
the groups of covariates and on the tuning parameter of the estimator we state general oracle
inequalities for estimation and error prediction for the Group Lasso estimator applied to generalized
linear models. In the particular case of groups of size one, we provide original inequalities for
the Lasso in the case of generalized linear models extending the results of Bunea [5] for logistic
regression. Furthermore, we extend these results to other penalties such as the Elastic net. Then
we compare the performances of the Lasso to the ones of the Group Lasso on simulated data. We
show the improvement in terms of variables selection and prediction errror of the Group Lasso
compared to the Lasso when the covariates are structured into groups. Moreover we illustrate on
these simulated data the impact of the total number of groups, of the number of non zero groups
and of the size of the groups on the performances of the Group Lasso. The conclusion is that
the Group Lasso estimator behave well in a high dimensional setting under sparsity and group
correlations assumptions. However the main drawback of the Group Lasso is that we need an a
priori knowledge on the groups and it is not always possible.

A Proof of Theorem 3.6

A.1 The main steps of the proof

The proof follows the guidelines in [4] or [13]. Using the mere definition of β̂n, we have

Pnl(β̂n) + 2rn

Gn∑

g=1

√

dg‖β̂gn‖2 6 Pnl(β
∗) + 2rn

Gn∑

g=1

√

dg‖β∗g‖2. (7)

Hence we get

P

(

l(β̂n)− l(β∗)
)

+ 2rn

Gn∑

g=1

√

dg‖β̂gn‖2

6 (Pn − P)
(

l(β∗)− l(β̂n)
)

+ 2rn

Gn∑

g=1

√

dg‖β∗g‖2. (8)

We decompose the empirical process into a linear part and a part which depends on the normalized
parameter ψ.

(Pn − P)
(

l(β∗)− l(β̂n)
)
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= (Pn − P)
(

ll(β
∗)− ll(β̂n)

)

+ (Pn − P)
(

lψ(β
∗)− lψ(β̂n)

)

where
ll(β) := ll(β, x, y) = −yβTx

and
lψ(β) := lψ(β, x) = ψ(βTx).

From Proposition 3.3 and Proposition 3.5 and by adding rn
∑Gn

g=1

√
dg‖β̂gn − β∗g‖2 to both sides

of the inequality (8) we find, on A ∩ B, that

rn

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 + P

(

l(β̂n)− l(β∗)
)

6 2rn

Gn∑

g=1

√

dg

(

‖β̂gn − β∗g‖2 + ‖β∗g‖2 − ‖β̂gn‖2
)

+
rn
2
εn.

If g /∈ H∗ then ‖β̂gn− β∗g‖2 + ‖β∗g‖2 −‖β̂gn‖ = 0 and otherwise ‖β∗g‖2 −‖β̂gn‖2 6 ‖β̂gn− β∗g‖2. So
the last inequality can be bounded by

4rn
∑

g∈H∗

√

dg‖β̂gn − β∗g‖2 +
rn
2
εn. (9)

By the definition of β∗ we have P

(

l(β̂n)− l(β∗)
)

> 0 and therefore

∑

g/∈H∗

√

dg‖β̂gn − β∗g‖2 6 3
∑

g∈H∗

√

dg‖β̂gn − β∗g‖2 +
εn
2

i.e β̂n − β∗ ∈ S(3,
εn
2
). The next proposition provides a lower bound for P

(

l(β̂n)− l(β∗)
)

.

Proposition A.1. On the event A ∩ B we have

P

(

l(β̂n)− l(β∗)
)

> cnE

[(

fβ̂n
(X)− fβ∗(X)

)2
]

with cn := min
|x|6L(9B+ 1

n
)

{

ψ
′′

(x)
2

}

.

Proof.

P

(

l(β̂n)− l(β∗)
)

= −E

[

E(Y |X)
(

fβ̂n
(X)− fβ∗(X)

)]

+E

[

ψ
′

(fβ∗(X))
(

fβ̂n
(X)− fβ∗(X)

)]

+E

[

ψ
′′

(fβ̃(X))

2

(

fβ̂n
(X)− fβ∗(X)

)2
]

where β̃TX is an intermediate point between β̂TnX and β̃TX given by a second order Taylor
expansion of ψ. Since ψ

′

(fβ∗(X)) = E(Y |X) we find

P

(

l(β̂n)− l(β∗)
)

= E

[

ψ
′′

(fβ̃(X))

2

(

fβ̂n
(X)− fβ∗(X)

)2
]

.

Besides we have
|β̃TX| 6 |β̃TX − β∗TX|+ |β∗TX|

6

Gn∑

g=1

‖β∗g − βg‖2‖Xg‖2 +
Gn∑

g=1

‖β∗g‖2‖Xg‖2.
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Applying (H.1), we find
‖Xg‖2 6 L

√

dg.

Then using Lemma 3.4 and (H.3) we find

|β̃TX| 6 LM + LB a.s. (10)

Furthermore, β∗ and β̂n belongs to Λ which is a convex set. Therefore β̃ ∈ Λ and β̃TX ∈ Θ a.s.
Thus we conclude

P

(

l(β̂n)− l(β∗)
)

> cnE

[(

fβ̂n
(X)− fβ∗(X)

)2
]

where cn := min
{|x|6L(M+B)}∩Θ

{

ψ
′′

(x)
2

}

.

From Propositon A.1 and (9) we deduce that

rn

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 + cnE
(

β̂TnX − β∗TX
)2

6 4rn
∑

g∈H∗

√

dg‖β̂gn − β∗g‖2 +
rn
2
εn. (11)

Then the end of the proof is similar to the end of the proof of Theorem 2.4 in [5]. Let Σ be the
p× p covariance matrix whose entries are E(XkXj). We have

E

(

β̂TnX − β∗TX
)2

= (β̂n − β∗)TΣ(β̂n − β∗).

Because condition GS(3, εn2 , k) is satisfied we have

cn(β̂n − β∗)TΣ(β̂n − β∗) > cnk
∑

g∈H∗

‖β̂gn − β∗g‖22 −
εn
2
.

Then by using Cauchy-Schwarz inequality in (11) we find

rn

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 + cnk
∑

g∈H∗

‖β̂gn − β∗g‖22

6 4rn

√
∑

g∈H∗

dg

√
∑

g∈H∗

‖β̂gn − β∗g‖22 + (rn + 1)
εn
2
.

Now the fact that 2xy 6 tx2 + y2/t for all t > 0 leads to the following inequality

rn

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 + cnk
∑

g∈H∗

‖β̂gn − β∗g‖22

6 4tr2nγ
∗ +

1

t

∑

g∈H∗

‖β̂gn − β∗g‖22 + (rn + 1)
εn
2
. (12)

Replacing t by
1

cnk
in (12) we obtain

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 6
4

cnk
rnγ

∗ + (1 +
1

rn
)
εn
2
.

i.e

‖β̂n − β∗‖R 6
4

cnk
rnγ

∗ + (1 +
1

rn
)
εn
2
.
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What is more
√

dmin‖β̂n − β∗‖2,1 6

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2.

This yields

‖β̂n − β∗‖2,1 6
4

cnk
√
dmin

rnγ
∗ +

(

1 +
1

rn

)
1

2n
√
dmin

. (13)

A similar argument could be made to prove

E

(

β̂TnX − β∗TX
)2

6
16

c2nk
r2nγ

∗ +
2rn + 1

cn

εn
2
. (14)

Finally we conclude the proof using Proposition 3.1.

A.2 Proof of Proposition 3.1

Proof. Let A >
√
2. We recall that we have made the assumption log(2Gn)

n 6 1. We deduce
Proposition 3.1 from the two following lemmas.

Lemma A.2. Let

rn >

(

8
√
2ALCL,B

√

log(2Gn)

n

)

∨
(

16A2LCL,B
log(2Gn)

n

)

with A > 1. Then
P {A} > 1− 2dmax(2Gn)

1−A2

.

Lemma A.3. Let

rn > 20AL

(

max
{|x|6Lκn}∩Θ

|ψ′

(x)|
)√

2 log 2Gn
n

where A > 1. Then
P(B) > 1− C(2Gn)

−A2/2

where we recall κn := 17B +
2

n
. We can notice that P(B) −→

n→∞
1.

Thus if

rn > AKL

{

CL,B ∨ max
{|x|6Lκn}∩Θ

|ψ′

(x)|)
}√

2 log(2Gn)

n

with K choosen such that
rn > max (C1, C2, C3)

where

C1 := 8
√
2ALCL,B

√

log(2Gn)

n

C2 := 16A2LCL,B
log(2Gn)

n

and

C3 := 20AL

(

max
{|x|6Lκn}∩Θ

|ψ′

(x)|
)√

2 log 2Gn
n

then P(A ∩ B) > 1− (2dmax + C)(2Gn)
−A2/2.
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A.3 Proofs of the technical lemmata

Proof of Lemma 3.2

Proof. Let θ ∈ Int(Θ) and Yθ be a real random variable with density exp(θy − ψ(θ))F (dy). First
we prove that for all k ∈ N, there exists a constant Cθ > 0 which depends on θ such that

E|Yθ|k 6 k!Ckθ .

The kth absolute moment of Yθ is the kth derivate of Hθ := E(es|Yθ|) at 0. Let s ∈ C be given. We
have

Hθ(s) =
M+(s+ θ) +M−(θ − s)

M(θ)

where we define M+ and M− as

M+ :

∣
∣
∣
∣

C −→ C

z 7−→
∫

y>0
eyzF (dy)

and

M− :

∣
∣
∣
∣

C −→ C

z 7−→
∫

y<0
eyzF (dy).

M is analytic on ΩΘ := {z ∈ C : Re(z) ∈ Int(Θ)} and so does M+ and M−. Therefore Hθ :
s 7−→ E(es|Yθ|) is analytic on Uθ := {s ∈ C : Re(s+ θ) ∈ Int(Θ) and Re(θ − s) ∈ Int(Θ)}. Since
θ ∈ Int(Θ), Hθ is analytic at the point 0 and hence the function is also holomorphic in a neighbor-
hood of 0. We recall the following result for analytic functions (see [28]).
Theorem: If f is holomorphic on a domain Ω of C then f ∈ C∞(Ω) and if in addition Ω is simply
connected then for all contour γ around z ∈ Ω we have

f (n)(z) =
n!

2iπ

∫

γ

f(v)

(v − z)n+1
dv.

Using the previous theorem on Hθ at 0 and taking γ as a circle with radius R centered in 0
(such that Hθ is holomorphic on D(0, R), of course R depends on θ) we obtain that for all k ∈ N

|H(k)
θ (0)| 6 k!

2π

∣
∣
∣
∣

∫

γ

Hθ(v)

vk+1
dv

∣
∣
∣
∣
6

k!

Rk
sup
|z|6R

|Hθ(z)|. (15)

and the result follows with Cθ := max

(

1,
1

R
sup
|z|6R

|Hθ(z)|
)

. Thanks to assumption (H.2) we can

apply (15) with θ = β∗TX and find that for all k ∈ N,

E
(
|Y |k|X

)
6 k!

(
Cβ∗TX

)k
.

Finally (H.1) combined with (H.3) leads to

E
(
|Y |k

)
6 k!

(

sup
|θ|6LB

Cθ

)k

and the result follows with CL,B := sup
|θ|6LB

Cθ.

Proof of Lemma 3.4

Proof. The proof is based on the convexity of the loss function and of the penalty, the main idea
of the proof is similar to the one used by Bühlmann and van de Geer [4] for the Lasso to show

consistency of the excess of risk. Define t :=
M

M +
∑Gn

g=1

√
dg‖β̂gn − β∗g‖2

and β̃ := tβ̂n+(1− t)β∗.
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Notice
∑Gn

g=1

√
dg‖β̃g − β∗g‖2 6M . By convexity of β → lψ(β) and β → ‖β‖2 combined with the

fact that β̂n satisifies (7) we find

P

(

l(β̃)− l(β∗)
)

+ 2rn

Gn∑

g=1

√

dg‖β̃g‖2

6 (Pn − P)
(

l(β∗)− l(β̃)
)

+ 2rn

Gn∑

g=1

√

dg‖β∗g‖2.

On the event A⋂B we have

P

(

l(β̃)− l(β∗)
)

+ 2rn

Gn∑

g=1

√

dg‖β̃g‖2

6 rn

Gn∑

g=1

√

dg‖β̃g − β∗g‖2 + rn
εn
2

+ 2rn

Gn∑

g=1

√

dg‖β∗g‖2.

Because P

(

l(β̃)− l(β∗)
)

> 0, by adding to both sides of the inequality 2rn
∑Gn

g=1

√
dg‖β∗g‖2 and

by using the triangular inequality we have

Gn∑

g=1

√

dg‖β̃g − β∗g‖2 6
εn
2

+ 4

Gn∑

g=1

√

dg‖β∗g‖2.

Therefore, using (H.3), we have

Gn∑

g=1

√

dg‖β̃g − β∗g‖2 6
εn
2

+ 4B =
M

2
.

i.e.

t

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 6
M

2

and then the definition of t leads to

Gn∑

g=1

√

dg‖β̂gn − β∗g‖2 6M.

Proof of Lemma A.2

Proof. We have

P(Ac) 6

Gn∑

g=1

P







∥
∥
∥
∥
∥

1

n

n∑

i=1

(YiX
g
i − E(Y Xg))

∥
∥
∥
∥
∥

2

2

>
r2n
4
dg







6

Gn∑

g=1

dg∑

j=1

P

{

1

n

∣
∣
∣
∣
∣

n∑

i=1

(
YiX

g
i,j − E

(
Y Xg

j

))

∣
∣
∣
∣
∣
>
rn
2

}

. (16)

For j = 1, ..., dg and i = 1, ..., n, let

W g
ij := YiX

g
i,j − E

(
YiX

g
j

)
.

The random variables {Wij}i=1,...,n are independant, identically distributed and centered and for
all m > 2

E|W g
ij |m 6

m∑

k=0

(
k

m

)

E|YiXi,j |k (E|YiXi,j |)m−k
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By using Jensen inequality we obtain

E|W g
ij |m 6 2m max

k=1,...,m

{
E|YiXi,j |kE|YiXi,j |m−k

}
.

For all k ∈ N, by (H.1) and Lemma 3.2 we have

E|YiXi,j |k 6 Lkk! (CL,B)
k
.

Therefore E|W g
ij |m 6 m!(2LCL,B)

m. Hence the conditions are satisfied to apply Bernstein concen-

tration inequality [1] with K = 2LCL,B and σ2 = 8(LCL,B)
2. Thus we obtain

P

(

1

n

∣
∣
∣
∣
∣

n∑

i=1

W g
ij

∣
∣
∣
∣
∣
> rn/2

)

6 2

(

exp

( −nrn
16LCL,B

)

+ exp

( −nr2n
32(2LCL,B)2

))

. (17)

Finally, from (16) and (17), we deduce that P(Ac

) is bounded by

2dmaxGn

(

exp

( −nrn
16LCL,B

)

+ exp

( −nr2n
32(LCL,B)2

))

.

Therefore if

rn > A216LCL,B
log(2Gn)

n
∨A8

√
2LCL,B

√

log(2Gn)

n

with A > 1 then
P
{
AC
}
6 2dmax(2Gn)

1−A2

.

Proof of Lemma A.3

Proof. The proof rests on the following Lemma

Lemma A.4. Let R > 0 be given. Define

ZR := sup
∑Gn

g=1

√
dg‖βg−β∗g‖26R

{|(Pn − P) (lψ(β
∗)− lψ(β))|} .

If A > 1 then

P

(

ZR > A5DLR

√

2 log 2Gn
n

)

6 (2Gn)
−A2

(18)

where D := max
{|x|6L(R+B)}∩Θ

{

|ψ′

(x)|
}

.

Proof. Let β satisfy
∑Gn

g=1

√
dg‖βg −β∗g‖2 6 R. Notice that if we change Xi by X

′

i while keeping

the others fixed then ZR is modified of at most
2

n
LR exp (L(R+B)). To see this let

Pn =
1

n

n∑

j=1

1Xj ,Yj

and

P
′

n =
1

n

n∑

j=1,j 6=i

1Xj ,Yj
+ 1X′

i ,Y
′

i

then we have
(Pn − P)(lψ(β

∗)− lψ(β))− (P
′

n − P)(lψ(β
∗)− lψ(β))
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=
1

n

(

lψ(β
∗, Xi)− lψ(β,Xi)− lψ(β

∗, X
′

i) + lψ(β,X
′

i)
)

6
1

n
|ψ′

(β̃TXi)||β∗TXi − βTXi|+
1

n
|ψ′

(β̃TX
′

i)||β∗TX
′

i − βTX
′

i |

with β̃TXi which is an intermediate point between βTXi and β∗TXi (using a first order Taylor
expansion of the exponential function). Then, using the same argument as for (10), we have

|β̃TXi| 6 LR+ LB.

Therefore
(Pn − P)(lψ(β

∗)− lψ(β))− (P
′

n − P)(lψ(β
∗)− lψ(β))

6
2

n
LR max

{|x|6L(R+B)}∩Θ
|ψ′

(x)| = 2

n
LRD.

We can apply McDiarmid’s inequality also called the bounded difference inequality.
Theorem. Let A a set. Assume g : AN → R is a function that satisfies the bounded difference
inequality

sup
x1,...,xn,x

′

i∈A

|g(x1, ..., xn)− g(x1, ..., xi−1, x
′

i, xi+1, ..., xn)| 6 ci.

Let X1, .., Xn be independent random variables all taking values in the set A. Then for all t > 0,

P {g(X1, ..., Xn)− Eg(X1, ..., Xn) > t} 6 e−2t2/
∑n

i=1
c2i .

We can apply McDiarmid’s inequality to ZR and obtain

P(ZR − EZR > u) 6 exp

(

− nu2

2R2L2 (D)
2

)

.

Therefore if rn > ADLR

√

2 log 2Gn
n

with A > 0 then

P(ZR − EZR > rn) 6 (2Gn)
−A2

. (19)

Now we have to bound the mean EZR.

Lemma A.5.

EZR 6 4RLD

√

2 log(2Gn)

n
.

Proof. First let us introduce two theorems. Let X1, ..., Xn independent random variables with
values in some space X and F a class of real-valued functions on X .
Theorem: Symmetrization theorem [27]. Let ǫ1, ..., ǫn be Rademacher sequence independent
of X1, ..., Xn and f ∈ F . Then

E

(

sup
f∈F

∣
∣
∣
∣
∣

n∑

i=1

{f(Xi)− E(f(Xi))}
∣
∣
∣
∣
∣

)

6 2E

(

sup
f∈F

|
n∑

i=1

ǫif(Xi)|
)

.

Theorem: Contraction principle [12]. Let x1, ..., xn elements of X and ε1, ..., εn be Rademacher
sequence. Consider Lipschitz functions gi. Then for any function f and h in F , we have

E

(

sup
f∈F

∣
∣
∣
∣
∣

n∑

i=1

ǫi {gi(f(xi))− gi(h(xi))}
∣
∣
∣
∣
∣

)

6 2E

(

sup
f∈F

∣
∣
∣
∣
∣

n∑

i=1

ǫi(f(xi)− h(xi))

∣
∣
∣
∣
∣

)

23



Let ǫ1, ..., ǫn a Rademacher sequence independant ofX1, ..., Xn and let SR :=
{

β ∈ R
p :
∑Gn

g=1

√
dg‖βg − β∗g‖2 6 R

}

.

Then by the Symmetrization theorem and the Contraction theorem (ψ is D-lipschitz on the com-
pact set SR ) we have

EZR 6 4DE

(

sup
β∈SR

1

n

n∑

i=1

∣
∣
∣ǫi(β

∗TXi − βTXi)
∣
∣
∣

)

6 4DRE

(

max
g∈{1,...,Gn}

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫi
‖Xg

i ‖2
√
dg

∣
∣
∣
∣
∣

)

,

by Holder inequality for the last bound. Now we are going to use the following theorem which is
a consequence of Hoeffding inequality.
Theorem. Let X1, ..., Xn be independent random variables on X and f1, ..., fn real-valued func-
tions on X which satisfies for all j = 1, ..., p and all i = 1, ..., n

Efj(Xi) = 0, |fj(Xi)| 6 aij .

Then

E

(

max
16j6p

∣
∣
∣
∣
∣

n∑

i=1

fj(Xi)

∣
∣
∣
∣
∣

)

6
√

2 log(2p) max
16j6p

√
√
√
√

n∑

i=1

a2ij .

By applying this theorem we obtain

E

(

max
g∈{1,...,Gn}

∣
∣
∣
∣
∣

1

n

n∑

i=1

ǫi
‖Xg

i ‖2
√
dg

∣
∣
∣
∣
∣

)

6 L

√

2 log(2Gn)

n
.

Thus

EZR 6 4RLD

√

2 log(2Gn)

n
. (20)

So we can conclude from (19) and (20) that if A > 1 then

P

(

ZR > A5DLR

√

2 log 2Gn
n

)

6 (2Gn)
−A2

(21)

for all R > 0.

Split up
{

β ∈ R
p :

Gn∑

g=1

√

dg‖βg − β∗g‖2 6M

}

,

where M = 8B + εn, into two sets which are

E1 =

{

β :

Gn∑

g=1

√

dg‖βg − β∗g‖2 6 εn

}

,

E2 =

{

β : εn 6

Gn∑

g=1

√

dg‖βg − β∗g‖2 6M

}

⊆
jn⋃

j=1

{

β : 2j−1εn <

Gn∑

g=1

√

dg‖βg − β∗g‖2 6 2jεn

}

where jn := ⌊log2(nM)⌋+ 1 is the smaller integer such that 2jnεn >M . We recall that

νn(β, β
∗) :=

(Pn − P) (lψ(β
∗)− lψ(β))

∑Gn

g=1

√
dg‖βg − β∗g‖2 + εn
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and to simplify notation let

αn(β, β
∗) := (Pn − P) (lψ(β

∗)− lψ(β))

and
Φ(t) := max

{|x|6t}∩Θ
|ψ′

(x)|.

Let A > 1. We recall that κn := 17B +
2

n
= 2M +B. On the event E1,

P

(

sup
β∈E1

|νn(β, β∗)| > A10LΦ(Lκn)

√

2 log(2Gn)

n

)

6 P

(

sup
β∈E1

|αn(β, β∗)| > A10LΦ(Lκn)εn

√

2 log(2Gn)

n

)

6 P

(

sup
β∈E1

|αn(β, β∗)| > A5LΦ(L(εn +B))εn

√

2 log(2Gn)

n

)

given that 2M > εn. From Lemma A.4 with R = εn we deduce

P

(

sup
β∈E1

|νn(β, β∗)| > A10LΦ(Lκn)

√

2 log(2Gn)

n

)

6 (2Gn)
−A2

. (22)

On the event E2, using the same type of argument as for (22) with R = 2jεn (given that 2M > 2jεn)
for all j = 1, ..., jn , we find

P

(

sup
β∈E2

|νn(β, β∗)| > A10LΦ(Lκn)

√

2 log(2Gn)

n

)

6 jn(2Gn)
−A2

.

Finally we have

6 C
′

(2Gn)
−A2

2 (23)

where C
′

is a constant (because jn = ⌊log2(nM)⌋+ 1 and n≪ Gn) and the result of Lemma A.3
follows from (22) and (23) with C = 1 + C

′

.

B Proof of Theorem 4.2

The main step of the proof are the same as for the Lasso.

Proof. By the same arguments as the ones used to prove (8) we have

P

(

l(β∗)− l(β̂n)
)

+ 2rn‖β̂n‖1 + tn‖β̂n‖22

6 (Pn − P)
(

l(β∗)− l(β̂n)
)

+ 2rn‖β‖1 + tn‖β∗‖22. (24)

The upper bound of (Pn−P)
(

ll(β
∗)− ll(β̂n)

)

, of (Pn−P)
(

lψ(β
∗)− lψ(β̂n)

)

and the lower bound of

P

(

l(β∗)− l(β̂n)
)

remains the same as those presented in the proof of Theorem 3.8 (see Proposition

3.3, Proposition 3.5 and Proposition A.1). Once these three propositions are proved, the rest of the
proof is similar to the one for logistic regression presented in [5]. On the event A∩B (which occurs
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with probability at least 1− 2(2p)1−A
2 −C

′

(2p)−A
2/2 > 1−C(2p)−A

2/2) by adding rn‖β̂n − β∗‖1
and tn

∑

j∈I∗(β
∗
j − β̂j)

2 to both sides of the inequality (24), we have

rn‖β̂n − β∗‖1 + P

(

l(β∗)− l(β̂n)
)

+ tn
∑

j∈I∗

(β∗
j − β̂j)

2

6 2rn‖β̂n − β∗‖1 + 2rn‖β∗‖1 − 2rn‖β̂n‖1 + tn
∑

j∈I∗

(β∗
j − β̂j)

2

− tn‖β̂n‖22 + tn‖β∗‖22 +
rn
2
εn (25)

with εn =
1

n
. On one hand, by the same argument as for (9) we get

2rn‖β̂n − β∗‖1 + 2rn‖β∗‖1 − 2rn‖β̂n‖1 6 4rn
∑

j∈I∗

|β∗
j − β̂j |

and on the other hand
tn
∑

j∈I∗

(β∗
j − β̂j)

2 − tn‖β̂n‖22 + tn‖β∗‖22

6 2tn
∑

j∈I∗

β∗
j
2 − 2tn

∑

j∈I∗

β∗
j β̂j

6 rn
∑

j∈I∗

|β∗
j − β̂j |.

Therefore inequality (25) can be bounded by

rn‖β̂n − β∗‖1 + P

(

l(β̂n)− l(β∗)
)

+ tn
∑

j∈I∗

(β∗
j − β̂j)

2

6 4rn
∑

j∈I∗

|β∗
j − β̂j |+ rn

∑

j∈I∗

|β∗
j − β̂j |+

rn
2
εn.

Since P

(

l(β∗)− l(β̂n)
)

> 0 we have

rn‖β̂n − β∗‖1 6 5rn
∑

j∈I∗

|β∗
j − β̂j |+

rn
2
εn

and then ∑

j∈I∗C

|β∗
j − β̂j | 6 4

∑

j∈I∗

|β∗
j − β̂j |+

εn
2
.

Thus (β̂n − β∗) ∈ S(4,
εn
2
). Using Proposition A.1 in the case of groups of size one we find

rn‖β̂n − β∗‖1 + tn
∑

j∈I∗

(β∗
j − β̂j)

2 + cnE
(

β̂TnX − β∗TX
)2

6 5rn
∑

j∈I∗

|β∗
j − β̂j |+

rn
2
εn,

with cn := min
{|x|6L(9B+ 1

n
)}∩Θ

{

ψ
′′

(x)
2

}

. The rest of the proof follows the guidelines of the proof of

(13) and (14) and leads to

‖β̂n − β∗‖1 6
(2.5)2rns

∗

tn + cnk
+ (1 +

1

rn
)
εn
2
.

and

E

(

β̂TnX − β∗TX
)2

6
2(2.5)2

cnk(tn + cnk)
r2ns

∗ +
2rn + 3

2ncn
.
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