
Electronic Journal of Statistics

Vol. 6 (2012) 1803–1837
ISSN: 1935-7524
DOI: 10.1214/12-EJS730

Oracle inequalities for cross-validation

type procedures

Guillaume Lecué∗
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1. Introduction

In this paper, we construct adaptation procedures inspired by cross-validation.
Adaptation procedures are of particular interest when one wants to adapt to
an unknown parameter. Such a parameter can appear in statistical procedures
for two reasons: either it is an unknown parameter of the model (complexity
parameter, “concentration” parameter, geometric parameter, variance of the
noise,...), or the construction of the procedure requires fitting a parameter that
no theory is able to determine (regularization parameter, smoothing parameter,
threshold,...). Thus it is very useful to have at hand some statistical procedure
which can choose these unknown parameters in a data-dependent way. The
construction of adaptation procedures has been one of the main topics in non-
parametric statistics for the two last decades. Retracing the entire bibliography
here is not possible. Nevertheless, we would like to refer the reader to some
classical – and now pioneering – steps in this field like the model selection
approach (cf. i.e. [3] and [25]), aggregation methods (cf. i.e. [27, 9] and [8]),
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empirical risk minimization (cf. i.e. [36, 16] and [5]) or Lepskii’s adaptation
method in [22, 23]. Of course many other approaches in some particular setups
have been developed. But one of the most popular and universal strategy used
for fitting unknown parameters or more generally to select algorithms is the
Cross-Validation (CV). Cross-validation is a very important and widely applied
family of model/ estimator/ parameter selection methods. The CV procedures
can be traced back up the 30s with [17] where the key idea that training and
testing a statistical procedure on the same data yield overoptimistic results.
Among other, the CV procedure was studied for the selection of the bandwidth
in kernel density estimation in [15] and [30], for the regression model in [29],
in classification in [11]. Many other authors have been studying or using this
method and we refer the reader to the survey of CV methods in model selection
[2], the PhD thesis [10, 28] or [34] for more bibliographical references on this
topic. The aim of this paper is to present and to study three procedures inspired
by the CV procedure in the following general framework.

Let (Z, T ) be a measurable space and F be a class of measurable functions
from Z to R. On a very general level, our aim is to minimize a risk function
R : F → R over its domain F . This risk function is assumed to exist, but is
unknown to us. To obtain information about it, though, we assume that it also
appears as the expectation of a quantity we can sample from:

Let Z be a random variable with values in Z and denote its probability
measure by π. Assume that there exists a “contrast” or loss function Q : Z ×
F 7−→ R such that the risk of any f ∈ F can be written in the form

R(f) := E [Q(Z, f)] ,

and that there exists a sequence (Zi)i∈N of i.i.d. random variables distributed
according to π. For the purpose of statistical estimation, we have only access to
a finite amounts of data from this sequence, say the first n variables Z1, . . . , Zn.

The problem of risk minimization is a general formulation for many different
kinds of statistical problems, and we shall introduce all our examples using this
form. If the infimum

R∗ := inf
f∈F

R(f)

over all f in F is achieved by at least one function, we write f∗ for some
choice of such a minimizer in F . In this paper, we will assume that inff∈F R(f)
is achieved – otherwise we can replace f∗ by f∗

n, an element in F satisfying
R(f∗

n) ≤ inff∈F R(f) + n−1, and still obtain the same results.
This model is best illustrated by its three key examples: regression, density

estimation and classification.
Regression: Take Z = X × R, where (X ,A) is a measurable space, and let

Z = (X,Y ) be a random pair on Z. In the regression framework, we would
like to estimate the regression function f∗(x) = E [Y |X = x] , ∀x ∈ X . Take
F = L2(X ,A, PX), where PX is the distribution of X . Consider the contrast
function Q((x, y), f) = (y−f(x))2 defined for any (x, y) ∈ X ×R and f ∈ F . We
have R(f) = E [Q((X,Y ), f)] = ‖f∗ − f‖2L2(PX ) +E

[

ζ2
]

, where ζ = Y − f∗(X)
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is usually called the noise or residual. Thus f∗ is a minimizer of R(·) and the
minimum achievable risk is R∗ = E[ζ2].

Density estimation: Let (Z, T , µ) be a measure space, and take Z to be a
random variable with values in Z. We assume that the probability distribution
π of Z is absolutely continuous with respect to µ and denote by f∗ one version
of its density. Consider F the set of all density functions on (Z, T , µ), i.e. the
set of all T -measurable functions f : Z → R+ that integrate to 1. We consider
the contrast function Q(z, f) = − log f(z) for any z ∈ Z and f ∈ F . The corre-
sponding risk computes as R(f) = E [Q(Z, f)] = K(f∗|f)−

∫

Z log(f∗(z))dπ(z).
Thus f∗ is a minimizer of R(·) and the minimum achievable risk is R∗ =
−
∫

Z log(f∗(z))dπ(z).
Instead of using the Kullback-Leibler loss, one can use the quadratic loss.

The corresponding contrast function is Q(z, f) =
∫

Z f
2dµ−2f(z) for any z ∈ Z

and f ∈ F . Using this contrast function, the risk of any f ∈ F works out as
R(f) = E [Q(Z, f)] = ||f∗ − f ||2L2(µ) −

∫

Z(f
∗(z))2dµ(z). Thus f∗ is a minimizer

of R(·) and the corresponding minimal risk is R∗ = −
∫

Z(f
∗(z))2dµ(z).

Classification framework: Let (X ,A) be a measurable space. We assume
that the space Z = X×{−1, 1} is endowed with an unknown probability measure
π, and consider a random pair Z = (X,Y ) which takes on values in Z and whose
probability distribution is π. Denote by F the set of all measurable functions
from X to R, and furthermore let φ be a function from R to R. For any f ∈ F
consider the φ−risk, R(f) = E[Q((X,Y ), f)], where the contrast function is
given byQ((x, y), f) = φ(yf(x)) for any (x, y) ∈ X×{−1, 1}. In many situations,
a minimizer f∗ of the φ−risk R over F (or the sign of f∗, if the latter takes on
arbitrary real values) is equal to the Bayes rule f∗

Bayes(x) = Sign(2η(x)−1), ∀x ∈
X , where η(x) = P(Y = 1|X = x) (cf. [38] and [4]).

We say that a statistic is a sequence of functions f̂ = (f̂ (n))n∈N such that

each f̂ (n) is a map associating a function f̂ (n)(·) := f̂ (n)(D(n))(·) in F to each

data set D(n) = {Z1, . . . , Zn}. If f̂ is a statistic and n is an integer, the risk of

its nth element f̂ (n) is defined as the σ(D(n))-measurable random variable

R(f̂ (n)(D(n))) = E[Q(Z, f̂(D(n)))|D(n)].

We assume that we know how to construct some statistics f̂λ for λ in a set
of indexes Λ. The aim of this work is to construct procedures f̄ := (f̄ (n))n∈N

satisfying oracle inequalities that is inequalities like, for any sample size n,

E[R(f̄ (n)(D(n)))−R∗] ≤ C inf
λ∈Λ

E[R(f̂
(n)
λ (D(n)))−R∗] + r(n,Λ) (1.1)

where C ≥ 1 is a constant and r(n,Λ) is a residue term which we would like to
keep as small as possible. Controlling this residue will depend on some complex-

ity parameter of the excess loss function class {Q(·, f̂ (n)
λ (D(n)))−Q(·, f∗) : λ ∈

Λ}, as well as on a margin parameter that limits the behavior of the contrast
function around the risk minimizer (cf. Assumptions (A) in Section 2). Note
that for any measurable function f , the function z ∈ Z 7→ Q(z, f)−Q(z, f∗) is
called the excess loss functions of f .
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The paper is organized as follows. In Section 2, we introduce some adapta-
tion procedures which are then proved to satisfy oracle inequalities in the finite
case |Λ| = p. Section 3 is devoted to the study of a general non-finite case.
In Section 4, we apply our adaptation procedures to the construction of Lasso
estimators with a data-driven regularization parameter and aggregates with ex-
ponential weights with a data-driven temperature parameter. Finally, the main
proofs are provided in Section 5.

2. Procedures and oracle inequalities

In this section we provide some oracle inequalities for several procedures select-
ing or aggregating estimators: first two modified versions of the cross-validation
procedure, then cross-validation procedure itself, and then finally we discuss
aggregation with multiple splitting.

2.1. Classical cross-validation procedures

The key feature of the CV procedure, the use of multiple splits to train and
test the candidate estimator, renders it somewhat more difficult to handle in a
theoretial way. Nevertheless, we shall show that a carefully crafted risk inequality
opens the door to oracle inequalities for cross-validation too. In this section,
we have to pay careful attention to the exact choice of the splits of our data,
especially when retraining the selected model to obtain our final estimator(s).

First we shall introduce some notation. Let n be an integer, and V be a
divisor of n. We split the data set D(n) into V disjoint subsets of equal size
nC = n/V , namely, for every k = 1, . . . , V ,

Bk = {Z(k−1)nC+1, . . . , ZknC}, (2.1)

which shall be test sets, and their complements

Dk = ∪Vj=1:j 6=kBj , (2.2)

the corresponding training sets. Note that Dk is a data set of size nV := n−nC.
Let Q(Z, f) be a contrast function whose arguments are a data point Z and a

parameter f ∈ F . For a statistic f̂ = (f̂ (n))n, we define the V-fold CV empirical
risk by

Rn,V (f̂) =
1

V

V
∑

k=1

1

nC

knC
∑

i=(k−1)nC+1

Q(Zi, f̂
(nV )(Dk)). (2.3)

Let p statistics f̂1, . . . , f̂p be given. The V-fold CV procedure is the procedure

f̄V CV = (f̄
(n)
V CV )n defined, for any n, by

f̄
(n)
V CV (D

(n)) = f̂
(n)

̂(D(n))
(D(n)) s.t. ̂(D(n)) ∈ Arg min

j∈{1,...,p}
Rn,V (f̂j). (2.4)

Perhaps the oldest, and certainly the most frequently studied, cross-validation
scheme is n-fold or leave-one-out cross-validation. It forms the intersection be-
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tween the class of V -fold cross-validation schemes and the class of leave-m-out
CV schemes, defined by

f̄
(n)
lmo(D

(n)) = f̂
(n)

̂(D(n))
(D(n)) s.t. ̂(D(n)) ∈ Arg min

j∈{1,...,p}
Rn,−m(f̂j), (2.5)

where Rn,−m is defined as

Rn,−m(f̂) =

(

n

m

)−1
∑

C⊂{1,...,n}:|C|=m

1

m

∑

i∈C
Q(Zi, f̂

(n−m)((Zk)k∈{1,...,n}\C)).

This method does however become very computationally inadequate as soon
asm is no longer 1, as there are far too many subsets of {1, . . . , n} to average over
(however, it has been pointed out in [2] that in some settings the leave-m-out
procedures are tractable in practice). One possible solution for this is balanced
incomplete cross-validation, where cross-validation is treated as a block design
and the available pieces of data are all used equally often for training, and equally
often for testing. Alternatively, we could useMonte Carlo cross-validation, where
the training and testing subsets are drawn randomly – without replacement –
from the available data. See [28] for a discussion of all these methods.

We can place all of these cross-validation schemes into one general framework
as follows. For any subset C ⊂ {1, . . . , n} of indices, write D(C) for {Zi : i ∈ C}
and D(C)′ for {Zi : i /∈ C}. Assume that a fixed value nC be given (the size of
test sets), and define nV = n−nC . Let C1, . . . , CNC be NC subsets of {1, . . . , n},
each of size nV . Now for any statistic f̂ define the CV risk

RnC (f̂) =
1

NC

NC
∑

k=1

1

nC

∑

i/∈Ck

Q(Zi, f̂
(nV )(D(Ck))), (2.6)

and its minimizer by

f̂
(n)
CV (D

(n)) = f̂
(n)

̂(D(n))
(D(n)) s.t. ̂(D(n)) ∈ Arg min

j∈{1,...,p}
RnC (f̂j). (2.7)

2.2. The modified CV procedure and its average version

In this subsection, we introduce the selection procedures that we will be studying
later. We use the notations introduced in the previous subsection.

To introduce the modified CV procedure, we consider some integer V and we
assume that V divides n. We consider the splits (B1, D1), . . . , (BV , DV ) of the
data introduced in (2.1) and (2.2). We define the modified CV procedure
(mCV) by

f̄
(n)
mCV (D

(n)) = f̂
(nV )

̂(D(n))
(D(nV )) (2.8)

where D(nV ) = {Z1, . . . , ZnV } and, for the V-fold CV empirical risk Rn,V intro-
duced in (2.3),

̂(D(n)) ∈ Arg min
j∈{1,...,p}

Rn,V (f̂j).
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For the average version of the mCV procedure, we don’t have to split the data
in the same “organized” way as in (2.1) and (2.2). We can consider the more
general second partition scheme introduced in the second part of the previous
subsection that we recall now for the reader convenience: Let NC and 1 ≤
nC < n be two integers and set nV = n − nC . Let C1, . . . , CNC be subsets of
{1, . . . , n} each of size nV . We define the averaged version of the modified
CV procedure (amCV) by:

f̂
(n)
amCV (D

(n)) =
1

NC

NC
∑

k=1

f̂
(nV )

̂(D(n))
(D(Ck)). (2.9)

where, for the CV-risk RnC introduced in (2.6),

̂(D(n)) ∈ Arg min
j∈{1,...,p}

RnC (f̂j).

Note that the mCV procedure is a model selection procedure (taking values in
the dictionary itself) whereas the amCV procedure is a model combination or
aggregation procedure (taking values in the convex hull of the dictionary).

We did not consider the same partition scheme of the data for the two pro-
cedures. The one considered for the amCV is more general but to obtain oracle
inequalities for the amCV we will need the convexity of the risk. Whereas for
the mCV, the partition scheme is the one used for the VCV method and will
only require a weak assumption on the basis statistics f̂1, . . . , f̂p. For each one
of our results, we will consider two different setups depending on the procedure
that we want to study and the assumptions of the problem.

Note that the difference between the classical VCV procedure defined in (2.4)

and our mCV procedure is that f̄
(n)
mCV takes its values in {f̂ (nV )

1 , . . . , f̂
(nV )
p }

whereas f̄
(n)
V CV takes its values in {f̂ (n)

1 , . . . , f̂
(n)
p }. Therefore, under some extra

“regularity” or “stability” assumptions on the basis statistics f̂1, . . . , f̂p saying

that for every j, f̂
(n)
j has a smaller risk as n increases (cf., for instance, the

“stability” assumption in [7]) the VCV procedure should outperform our mCV
procedure. Nevertheless, we will not explore this kind of regularity assumption
(even though, it may be reasonable to think that oracle inequalities for the
classical VCV procedure may hold under the stability assumption of [7]) and

will require only weak assumptions on the estimators f̂1, . . . , f̂p. Under these
weak assumptions, the mCV (as well as the amCV) will, in fact, outperform the
classical VCV and CV procedures, in the sense that the mCV satisfies oracle
inequalities (cf. Theorem 2.4 below) in some setup where the VCV and CV
procedures do not (cf. Example 2.8 below).

2.3. Assumptions

A significant part of our analysis is based on concentration properties of sums
of random variables that belong to an Orlicz space. These spaces appear to
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be useful for the non-bounded setup we have in mind. We say that a function
ψ : R+ 7−→ R is a Young function (cf. [35]) when it is convex, non-decreasing,
ψ(0) = 0 and ψ(∞) = ∞. Each Young function gives rise to a norm on a suitable
class of random variables as follows:

Definition 2.1. For a Young function ψ and a real-valued random variable
f , the ψ-norm of f is ‖f‖ψ = inf

{

C > 0 : Eψ
(

|f |/C
)

≤ 1
}

. The Orlicz space
associated with ψ is then the space of random variables with finite ψ-norm.

For instance, when we consider ψα = exp(xα) − 1 for α ≥ 1, the ψα-norm
measures exponential tail behavior of a random variable. Indeed, one can show
that for every u ≥ 0, P(|f | > u) ≤ 2 exp(−cuα/‖f‖αψα), where c is an absolute
constant independent of f (see, for example, [35]). Note that the Orlicz space
associated with the Young function ψ(x) = xp is the classical Lp space.

We shall use the following assumptions on the tail behavior and the “margin”
(cf. [24] and [32]) of the excess loss function of an estimator f̂ .

(A) There exist κ ≥ 1 and K0,K1 > 0 such that the following holds. For any
m ∈ N and any data set D(m) = {Z1, . . . , Zm}

1.
∥

∥Q(·, f̂ (m)(D(m)))−Q(·, f∗)
∥

∥

Lψ1
(π)

≤ K0

2.
∥

∥Q(·, f̂ (m)(D(m)))−Q(·, f∗)
∥

∥

L2(π)
≤ K1

(

R(f̂ (m)(D(m)))−R(f∗)
)1/2κ

.

The first point allows us to handle unbounded loss functions and unbounded
estimators. This is a crucial point when one wants to consider the regression
problem with unbounded noise or when one wants to aggregate unbounded
estimators.

The second point is the classical “margin assumption” (cf. [24]). This means
that the L2-diameter of the set of almost oracles is controlled by their excess
risks. The idea behind this assumption is for empirical risk minimization based
procedures, the L2-diameter of the set of almost minimizers of the empirical
risk will be small with high probability. This leads to a smaller complexity of
the set within we are looking for the oracle. Moreover, a side effect of this kind
of assumption is that the concentration of the empirical risk around the risk is
improved. The margin condition is linked to the convexity of the underlying loss
Q. In density and regression estimation it is naturally satisfied with the best
margin parameter (κ = 1), but for non-convex losses (for instance in classifica-
tion), this assumption does not hold naturally (cf. [18] for a discussion on the
margin assumption and for examples of such losses).

2.4. Oracle inequalities for the modified CV procedures (mCV) and
its average version (amCV)

In this section, we shall not yet introduce any conditions on how a candidate
statistic f̂ =

(

f̂ (n)
)

n
in {f̂1, . . . , f̂p} behaves when its training sample size

changes, i.e. about the relationship of f̂ (m) and f̂ (n) for m 6= n. As the usual
application of cross-validation involves retraining the selected model using all
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the available data to obtain a final estimator, such assumptions are crucial for
avoiding such pathological “counter-examples” as that found in Example 2.8
below. As we shall only introduce such conditions in Section 2.5, we will first
study a simpler case – the case where even after the selection (or validation)

step, we still only use the estimators f̂
(nV )
j , j = 1, . . . , p over training samples of

size nV to build the final estimator. The case where we retrain on all available
data will then be handled in Section 2.5 in some very specific setting.

We will require some simple (fixed sample size) properties on the estimators

f̂1, . . . , f̂p to obtain an oracle inequality for the modified CV procedure.

Definition 2.2. We say that a statistic f̂ = (f̂ (n))n is exchangeable when for
any integer n, for any permutation φ : {1, . . . , n} 7−→ {1, . . . , n} for any π⊗n-

almost vector (z1, . . . , zn) ∈ Zn, we have f̂ (n)(z1, . . . , zn) = f̂ (n)(zφ(1), . . . , zφ(n)).

Remark that most of the statistics in the batch setup (the setup of this paper)
satisfy this property. On the other side, statistics coming from the on-line setup
are likely to be un-exchangeable.

The following lemma shows that in the two setups considered in this work,
supremum bounds on the “shifted” empirical process for the “trained” estimates

f̂
(nV )
j (D(nV )) are sufficient for deriving oracle inequalities for the corresponding
amCV and mCV procedures:

Lemma 2.3. We have two different setups, depending on the procedure that we
want to study. Assume that one of the two following conditions holds:

1. The risk function f 7−→ R(f) is convex, and our estimator f̄ (n) = f̂
(n)
amCV

is the averaged version of the modified CV procedure (cf. (2.9)), with NC
arbitrary deterministic splits of n pieces of data into nV pieces of training
and nC pieces of test data.

2. The statistics f̂1, . . . , f̂p are exchangeable and our estimator f̄ (n) = f̄
(n)
mCV

is the modified CV procedure defined in Equation (2.8) using the splits of
the data defined in Equation (2.1) and (2.2).

Then for any constant a ≥ 0, the following inequality holds:

ED(n)

(

R(f̄ (n)(D(n)))−R(f∗)
)

≤(1 + a) min
j=1,...,p

[

ED(nV )R(f̂
(nV )
j (D(nV ))) −R(f∗)

]

+ ED(n) max
j=1,...,p

[

(P − (1 + a)PnC )
(

Q(·, f̂ (nV )
j (D(nV )))−Q(·, f∗)

)]

,

where PnC = n−1
C

∑n
i=nV +1 δZi is the empirical probability measure on {ZnV+1,

. . . , Zn}.

Now combining Lemma 2.3 and the maximal inequality of Lemma 5.3 below
for the shifted empirical process appearing in Lemma 2.3, we are in a position to
obtain the following oracle inequality for the amCV and the mCV procedures.
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Theorem 2.4. Let f̂1, . . . , f̂p be p statistics satisfying Assumption (A). We have
two different setups depending on the procedure that we want to study. Assume
that one of the two conditions holds:

1. The risk function f 7−→ R(f) is convex and our estimator is the amCV

procedure f̄ (n) = f̂
(n)
amCV introduced in (2.9).

2. The statistics f̂1, . . . , f̂p are exchangeable and our procedure is the modified

CV procedure f̄ (n) = f̄
(n)
mCV introduced in (2.8).

Then for any a > 0, there exists a constant c = c(a, κ) such that

ED(n)

(

R(f̄ (n)(D(n)))−R(f∗)
)

≤ (1 + a) min
j=1,...,p

[

ED(nV )R(f̂
(nV )
j (D(nV )))−R(f∗)

]

+ c
( log p

nC

)
κ

2κ−1 ∨
( lognC log p

nC

)

.

Before stating some similar results for the cross-validation method, we would
like to make two remarks on Theorem 2.4.

Remark 2.5. Note that Theorem 2.4 (and Theorem 3.5 below in the continuous
case) provides oracle inequalities which holds in expectation. We believe that
the techniques used in the present work to obtain these results do not allow
to obtain similar deviation results (i.e. oracle inequalities that hold with high
probability).

Remark 2.6. The usual question when considering resampling procedures is
about the choice of V or here of (nV , nC) – the size of the training and learn-
ing/validation/test samples. It follows from Theorem 2.4 that an “ideal” or
“oracle” choice of (nV , nC) may follow from optimizing the right-hand side of
the oracle inequality of Theorem 2.4. That is by equalizing the “bias term”

(1 + a) min
j=1,...,p

[

ED(nV )R(f̂
(nV )
j (D(nV )))−R(f∗)

]

and the “variance term”

c(a, κ)
( log p

nC

)
κ

2κ−1 ∨
( lognC log p

nC

)

.

Of course this method is meaningful only if the bound in the oracle inequality
of Theorem 2.4 is good enough (that is, if this bound describes in a “good
enough” way the behavior of E

(

R(f̄ (n)(D(n))) − R(f∗)
)

in terms of nV and
nC). Moreover, this approach is only “ideal” in the sense that we don’t know

the value of the excess risks E
(

R(f̂
(nV )
j (D(nV ))) − R(f∗)

)

, j = 1, . . . , p, thus
such a method cannot be performed from the data only. Somehow, to overcome
this problem, we have to perform this bias/variance terms equilibrium in an
empirical way in the same spirit as Lepskii’s method for adaptation to be able
to derive some optimal choice for (nV , nC).
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2.5. Oracle inequalities for cross-validation itself

In Part 1 of Theorem 2.4, we make the assumption that the risk R(·) is convex –
for which e.g. the conditional convexity of the contrast function Q(z, f), for all
z, would suffice, and thereafter in Part 2 we assume that our candidate statistics
are exchangeable. To derive a result for a CV estimator retrained on the full data
D(n) (instead of the only data D(nV ) like in (2.8) and (2.9)), we shall combine
and strengthen these two assumptions.

Regard the mCV procedure f̄
(n)
mCV (D

(n)) = f̂
(nV )

̂(D(n))
(D(nV )), whose final esti-

mator is retrained on the first nV pieces of data. For symmetry reasons, Part 2

of Theorem 2.4 remains true for any k = 1, . . . , V , if we replace f̄
(n)
mCV (D

(n)) by

f̄
(n)
mCV,k(D

(n)) = f̂
(nV )

̂(D(n))
(Dk) using the training set Dk from the k−th split.

Now assume that Z = R and the statistics f̂1, . . . , f̂p can all be written as
functionals on the cumulative distribution function of the data, i.e. that there
exist functionals G1, . . . , Gp such that

f̂
(m)
j (D(m)) = Gj(FD(m)), j = 1, . . . , p,m ∈ N, (2.10)

where FD(m)(z) := 1
m

∑m
i=1 1I{Zi ≤ z}, ∀z ∈ R. (This assumption automatically

implies the exchangeability of the statistics. In particular, all M-estimators,
such as the mean or median, have such a functional form.) Obviously FD(n) =

V −1
∑V
k=1 FDk . Thus if the risk R(·) is convex, and all the compositions R ◦Gj

too, then we can combine the upper bounds for the estimators f̄
(n)
mCV,k(D

(n))
obtained in Part 2 of Theorem 2.4 to derive a bound for the VCV procedure (2.4)
as follows:

R
(

f̄
(n)
V CV (D

(n))
)

= R
(

G̂(D(n)) (FD(n))
)

= R

(

G̂(D(n))

(

1

V

V
∑

k=1

FDk

))

≤ 1

V

V
∑

k=1

R
(

G̂(D(n)) (FDk)
)

=
1

V

V
∑

k=1

R
(

f̄
(n)
mCV,k(D

(n))
)

,

and thus it easily follows from Part 2 of Theorem 2.4 the result:

Theorem 2.7. Let f̂1, . . . , f̂p be p statistics that can be written as functionals
G1, . . . , Gp as in (2.10) and which satisfy Assumption (A), and assume that all
the compositions R◦G1, . . . , R◦Gp are convex, as also is the risk function R(·).
Then for the V-fold cross-validation procedure, we have the oracle inequality

ED(n)

(

R(f̄
(n)
V CV (D

(n)))−R(f∗)
)

≤ (1 + a) min
j=1,...,p

[

ED(nV )R(f̂
(nV )
j (D(nV )))−R(f∗)

]

+ c
( log p

nC

)
κ

2κ−1 ∨
( lognC log p

nC

)

where c is a constant depending only on a and κ.
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Note. The “functional convexity condition” on the R ◦ Gj is a strong one,
but can be relaxed – it suffices for it to hold up to a summand that converges
to zero no slower than the residual term in Theorem 2.4, and versions of it
averaged over the training data may also suffice. In most practical cases, the
only straightforward way of showing the convexity of the R ◦ Gj (with high
certainty) is by simulation. In the standard example of least-squares regression
with underlying Gaussian linear model, for instance, R ◦ Gj is convex for the
fixed-design setup, regardless of other parameters, but for the random-design
setup we need additional conditions such as a reasonable signal-to-noise ratio or
large enough sample size (indicating that such a convexity condition does in fact
hold up to a quickly-decaying extra summand). Simulations of a straightforward
sparse Lasso example with 100-dimensional Gaussian covariates and Gaussian
noise have shown that the neccessary functional convexity condition for 10-fold
cross-validation holds from a sample size of n = 40 and a signal-to-noise ratio
of 2.0 upwards, for a range of penalty tuning parameters. However, discussing
this issue at length is beyond the scope of this paper.

The reason why we need extra assumptions such as the functional form of the
candidate statistics is that the computation of the index ̂(D(n)) only involves

the performances of the estimators for nV observations (RnC (f̂) depends only on

f̂ (nV )). Without extra assumptions, it is thus easy to contrive counter-examples

for which f̂ (nV ) performs well and f̂ (n) performs badly:

Example 2.8. Fix an integer V and a sample size n > 1 that is a multiple of V .
We will construct a set Fn = {f̂1, f̂2} of two estimators (which are functionals
of the training data) for which V-fold cross-validation does not satisfy the oracle
inequality from Theorem 2.7.

We consider the classification problem with 0−1 lossQ(Z, f) = Q((X,Y ), f) =
1If(X) 6=Y . Assume that Y ≡ 1 a.s. and X is uniformly distributed on [0, 1]. The
Bayes rule is thus given by f∗(x) = P(Y = 1|X = x) = 1, ∀x ∈ [0, 1]. We define

statistics f̂1 = (f̂
(n)
1 )n and f̂2 = (f̂

(n)
2 )n by

f̂
(p)
1 ≡

{

0 if 1 ≤ p ≤ n− 1
1 if p ≥ n

and f̂
(p)
2 ≡

{

1 if 1 ≤ p ≤ n− 1
0 if p ≥ n

.

It is easy to see that ̂(D(n)) = argminj∈{1,2}Rn,V (f̂j) is always equal to 2.

Thus the V -fold CV procedure is f̄
(n)
V CV (D

(n)) = f̂
(n)

̂(D(n))
(D(n)) = f̂

(n)
2 (D(n)).

Set Fn = {f̂1, f̂2}. For any 1 ≤ p ≤ n, it is easy to check that

min
f̂∈Fn

ED(n) [R(f̂ (p)(D(p)))−R∗] = 0 and ED(n) [R(f
(n)
V CV (D

(n)))−R∗] = 1.

As we can do this for arbitrarily high sample sizes n, V-fold cross-validation
is not even risk-consistent at this level of generality – and certainly does not
satisfy any meaningful oracle inequality.
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2.6. Aggregation with multiple splits

Let a dictionary F = {f1, . . . , fp} be given and assume that f̃ = (f̃ (n))n is
an aggregation method satisfying the following oracle inequality under a ψ1

assumption on the excess loss functions and a margin assumption with margin
parameter κ ≥ 1 (like in Assumption (A)):

E[R(f̃ (n)(D(n)))−R∗] ≤ Kaggmin
f∈F

[R(f)− R∗] + c
( log p

n

)
κ

2κ−1

(2.11)

where Kagg ≥ 1 is the leading constant. For instance, both the empirical risk
minimization algorithm

f̃
(n)
ERM (D(n)) ∈ Argmin

f∈F
Rn(f), where Rn(f) =

1

n

n
∑

i=1

Q(Zi, f)

and the aggregate with exponential weights and temperature parameter T > 0,

f̃
(n)
AEW (D(n)) =

p
∑

j=1

w
(n)
j fj , where w

(n)
j =

exp
(

− nRn(fj)/T
)

∑p
k=1 exp

(

− nRn(fk)/T
) , (2.12)

satisfy an oracle inequality of the form (2.11) (cf. [19]).

Let f̂1, . . . , f̂p be p statistics. Assume that a fixed value nC be given (the size
of test sets), and define nV = n−nC. Let C1, . . . , CNC be subsets of {1, . . . , n},
each of size nV . For any 1 ≤ k ≤ NC , we consider f̃

(n)
k (D(n)) an aggregation

procedure where the weights have been constructed on the data set D(Ck)′ and

for the dictionary Fk = {f̂ (nV )
1 (D(Ck)), . . . , f̂

(nV )
p (D(Ck))}, for instance, when

the ERM aggregation procedure is chosen for the basic aggregation procedure,

f̃
(n)
k (D(n)) ∈ Arg min

f∈Fk

1

nC

∑

i/∈Ck

Q(Zi, f).

Then we average all these aggregates over the NC different splits of D(n),
namely: (D(Ck), D(Ck)′)1≤k≤NC . We define the aggregate with multiple splits

f̄Agg := (f̄
(n)
Agg)n by

f̄
(n)
Agg(D

(n)) =
1

NC

NC
∑

k=1

f̃
(n)
k (D(n)) . (2.13)

Theorem 2.9. Let f̂1, . . . , f̂p be p statistics satisfying Assumption (A). Assume
that the risk function f 7−→ R(f) is convex. Consider an aggregation procedure
satisfying (2.11). The aggregate with multiple splits (defined in (2.13)) associ-

ated with this aggregation procedure and the p statistics f̂1, . . . , f̂p satisfies the
inequality

ED(n)

(

R(f̄
(n)
Agg(D

(n)))−R(f∗)
)

≤ Kagg min
j=1,...,p

[

ED(nV )R(f̂
(nV )
j (D(nV )))−R(f∗)

]

+ c
( log p

nC

)
κ

2κ−1

.
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Proof. By the convexity of the risk, we have

E[R(f̄
(n)
Agg(D

(n)))−R(f∗)] = E

[

R
( 1

NC

NC
∑

k=1

f̃
(n)
k (D(n))

)

−R(f∗)
]

≤ 1

NC

NC
∑

k=1

E

[

R(f̃
(n)
k (D(n)))−R(f∗)

]

≤ 1

NC

NC
∑

k=1

ECkEC′

k

[

R
(

f̃
(n)
k (D(n))

)

−R (f∗)
]

≤ 1

NC

NC
∑

k=1

ECk

[

Kagg min
j=1,...,p

[R(f̂
(nV )
j (D(Ck)))−R(f∗)] + c

( log p

nC

)
κ

2κ−1
]

≤ Kagg min
1≤j≤p

ED(nV )(R(f̂
(nV )
j (D(nV )))−R(f∗)) + c

( log p

nC

)
κ

2κ−1

.

Note that when we chose an optimal aggregation procedure (cf. the progres-
sive mixture of [9] or [37]) for the basic aggregation procedure, we can take
Kagg = 1. Such oracle inequalities with leading constant Kagg = 1 cannot be
achieved by “selection procedure” that is by procedures taking their values in
the dictionary itself and note in its convex hull (cf. [18]).

3. Continuous case

We consider Λ a set of indexes and F = {f̂λ : λ ∈ Λ} a set of statistics indexed by
Λ. In the previous part of this paper, we have explored the case Λ = {1, . . . , p}.
In this section, we need not assume Λ to be finite.

We consider the notation introduced in Section 2, and define the continuous
version of the modified CV procedure by

f̄
(n)
mCV (D

(n)) = f̂
(nV )

λ̂(D(n))
(D(nV )) where λ̂(D(n)) ∈ Argmin

λ∈Λ
Rn,V (f̂λ) (3.1)

and the continuous version of the averaged version of the modified CV procedure
by

f̂
(n)
amCV (D

(n)) =
1

NC

NC
∑

k=1

f̂
(nV )

λ̂(D(n))
(D(Ck)) where λ̂(D

(n)) ∈ Argmin
λ∈Λ

RnC (f̂λ).

(3.2)

Remark that we assume that the infima of λ 7−→ Rn,V (f̂λ) and λ 7−→ RnC (f̂λ)
are achieved. We also called these two infima by the same name but there will
be no ambiguity since we will use them in two clearly separated setups.

Following the line of Lemma 2.3, it is easy to obtain the following result.

Lemma 3.1. We have two different setups, depending on the procedure that we
want to study:
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1. If the risk function f 7−→ R(f) is convex, then the averaged version of the
modified CV (cf. (3.2)) with NC arbitrary deterministic splits of n pieces
of data into nV pieces of training and nC pieces of test data satisfies the

following oracle inequality with f̄ (n) = f̂
(n)
amCV ;

2. If the statistics f̂λ, λ ∈ Λ are exchangeable, then the modified V -fold CV
procedure defined in Equation (3.1) for the splits of the data defined in
Equation (2.1) and (2.2) with 1 ≤ V ≤ n satisfies the following oracle

inequality with f̄ (n) = f̄
(n)
mCV ;

for any constant a ≥ 0, we have the following inequality

ED(n)

(

R(f̄ (n)(D(n)))−R(f∗)
)

≤ (1 + a) inf
λ∈Λ

[

ED(nV )R(f̂
(nV )
λ (D(nV )))−R(f∗)

]

+ ED(n) sup
λ∈Λ

[

(P − (1 + a)PnC )
(

Q(·, f̂ (nV )
λ (D(nV )))−Q(·, f∗)

)]

,

where PnC = (1/nC)
∑n

i=nV +1 δZi .

To control the expectation of the supremum of the “shifted” empirical process
appearing in Lemma 3.1, we need some results from empirical process theory
(the proof is provided in Section 5).

Lemma 3.2. Let a > 0 and Q := {Qλ : λ ∈ Λ} be a set of measurable functions
defined on (Z, T ). Let Z,Z1, . . . , Zm be i.i.d. random variables with values in
(Z, T ) such that ∀Q ∈ Q,EQ(Z) ≥ 0. Suppose that there exists some constants
c, L, ǫmin > 0 such that for all ǫ ≥ ǫmin and all u ≥ 1, with probability greater
than 1− L exp(−cu)

sup
Q∈Q:PQ≤ǫ

((P − Pm)Q)+ ≤ uJ(ǫ)√
m

, (3.3)

where J is a strictly increasing function such that J−1 is strictly convex. Let ψ
be the convex conjugate of J−1 defined by ψ(u) = supv>0(uv− J−1(v)), ∀u > 0.
Assume that for some r ≥ 1, x > 0 7−→ ψ(x)/xr decreases and define for q > 1
and u ≥ 1,

ǫq(u) = ψ
(2qr+1(1 + a)u

a
√
m

)

∨ ǫmin.

Then, there exists a constant L1 (depending only on L) such that for every
u ≥ 1, with probability greater than 1− L1 exp(−cu)

sup
Q∈Q

(

(P − (1 + a)Pm)Q
)

+
≤ aǫq(u/q)

q
.

Moreover, assume that ψ increases such that ψ(∞) = ∞, then there exists a
constant c1 depending only on L and c such that

E sup
Q∈Q

(

(P − (1 + a)Pm)Q
)

+
≤ ac1ǫq(1/q)

q
.
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The function ǫ 7−→ supQ∈Q:PQ≤ǫ(P − Pm)Q, appearing in Equation (3.3), is
a classical measure of the complexity of the set of functions Q (cf. for instance
[33, 5, 16] and references therein). A common way to upper bound this function
with high probability is to use some metric complexity measure like the Dudley
entropy integral (cf. [12] or, for instance, [35]) coming out of the chaining argu-
ment. In this paper, we use the γ function of Talagrand (cf. [31]) as a metric
complexity measure of Q. We recall here the definition.

Let (T, d) be a metric space. An admissible sequence of T is a collection
{Ts : s ∈ N} of subsets of T , such that |T0| = 1 and |Ts| ≤ 22

s

, ∀s ≥ 1.

Definition 3.3 ([31]). For a metric space (T, d) and α ≥ 0 define

γα(T, d) = inf
(Ts)

sup
t∈T

∞
∑

s=0

2s/αd(t, Ts),

where the infimum is taken over all admissible sequences (Ts) of T .

The generic chaining mechanism can be used to show (cf. theorem 1.2.7 in
[31]) that if {Xt : t ∈ T } (where T is a set provided with two distances d1 and
d2) is such that EXt = 0 and

P

(

|Xs −Xt| ≥ u
)

≤ 2 exp
(

−min
( u2

d2(s, t)2
,

u

d1(s, t)

))

, ∀s, t ∈ T, u > 0

then, there exists some absolute constant L, c > 0 such that for all u ≥ 1,

sup
s,t∈T

|Xs −Xt| ≤ uL(γ1(T, d1) + γ2(T, d2)) (3.4)

with probability at least 1− L exp(−cu).
Note that one potential (yet, usually suboptimal) choice for the sets Ts that

constitutes an admissible sequence (Ts) in Definition 3.3 are ǫs-covers of T ,
where each ǫs is such that the entropy number N(T, ǫs, d) is less than 22

s

.
Then, for this choice, an easy computation (cf. [31]) shows that

γα(T, d) ≤ c

∫ Diam(T,d)

0

(logN(T, ǫ, d))1/αdǫ. (3.5)

Lemma 3.4. Let Q := {Qλ : λ ∈ Λ} be a set of measurable functions defined
on (Z, T ). Let Z,Z1, . . . , Zm be i.i.d. random variables with values in (Z, T ).
Grant that there exists C1 > 0 and an increasing function G(·) such that

∀Q ∈ Q, ‖Q(Z)‖L2 ≤ G(EQ(Z)) and sup
q∈Q

‖Q(Z)‖Lψ1
≤ C1.

Then, there exists some absolute constant L, c > 0 such that for all ǫ > 0 and
for all u ≥ 1, with probability at least 1− L exp(−cu),

sup
Q∈Q:PQ≤ǫ

((P − Pm)Q)+ ≤ uL
((logm)γ1(QL2

ǫ , ‖ · ‖ψ1)

m
+
γ2(QL2

ǫ , ‖ · ‖L2)√
m

)

,

where QL2
ǫ = {Q ∈ Q : ‖Q(Z)‖L2 ≤ G(ǫ)}.
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The proof of Lemma 3.4 is provided in Section 5. Now, combining Lemma
3.2 and Lemma 3.4, we obtain a continuous version of Theorem 2.4.

Theorem 3.5. Let Λ a set of indexes and F = {f̂λ : λ ∈ Λ} a set of statistics
indexed by Λ. Fix nV ≤ n the size of the validation sample and define the set of

excess loss functions associated with F by Q = {Q(·, f̂ (nV )
λ (D(nV )))−Q(·, f∗) :

λ ∈ Λ}. We assume that the tail behavior of the statistics in F and the complexity
of F satisfy the following assumptions:

Any statistic f̂ in F satisfies (A) and there exist ǫmin and a strictly increasing
function J such that J−1 is strictly convex, the convex conjugate ψ of J−1

increases, ψ(∞) = ∞ and there exists r ≥ 1 such that x 7→ ψ(x)/xr decreases
and

J(ǫ) ≥ γ2(QL2
ǫ , ‖ · ‖L2) +

(lognC)γ1(QL2
ǫ , ‖ · ‖ψ1)√

nC
, ∀ǫ > ǫmin

where QL2
ǫ = {Q ∈ Q : ‖Q(Z)‖L2 ≤ ǫ1/2κ}.

We consider two different setups depending on the procedure we want to study.
Assume that one of the two condition holds:

1. The risk function f 7−→ R(f) is convex and our procedure is the amCV

procedure f̄ (n) = f̂
(n)
amCV defined in (3.2).

2. The statistics f̂1, . . . , f̂p are exchangeable and our procedure is the mCV

procedure f̄ (n) = f̄
(n)
mCV introduced in (3.1).

Then, for every a > 0 and q > 1, the following inequality holds

ED(n)

(

R(f̄ (n)(D(n)))−R(f)
)

≤ (1 + a) inf
λ∈Λ

[

ED(nV )R(f̂
(nV )
λ (D(nV )))−R(f∗)

]

+
acǫq(1/q)

q
,

where we set ǫq(u) = ψ
( 2qr+1(1+a)u

a
√
nC

)

∨ ǫmin, ∀u > 0.

Note that Theorem 3.5 generalizes Theorem 2.4 to a continuous family of
estimators. Indeed, it is easy to verify that, in the finite case |Λ| = p, we obtain
the same result as in Theorem 2.4. For instance, under the assumptions of
Theorem 2.4 by using Equation 3.5, we have, for any ǫ > 0,

(lognC)γ1(QL2
ǫ , ‖ · ‖ψ1)√

nC
+ γ2(QL2

ǫ , ‖ · ‖L2)

≤ K0(lognC) log p√
nC

+ ǫ1/2κ
√

log p := J(ǫ);

thus, the convex conjugate of J−1 is

ψ(v) =
K0(lognC) log p√

nC
v + cκ

(

v
√

log p
)

2κ
2κ−1 , ∀v > 0.

Thus, ǫq(1/q) is, up to some constant depending only on K0 and κ, of the same
order as the residue of the oracle inequality of Theorem 2.4. Furthermore, the
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same reasoning used for Theorem 2.7 can also be applied here in sufficiently
convex setups where the full data set is used for retraining. Nevertheless, from
a technical point of view, there is a major difference between the finite and
the continuous cases. In the finite case, it is only a side effect of the margin
assumption (cf. second point of Assumption (A)) that is actually used, namely
a better concentration of the empirical risk to the actual risk. Whereas in the
continuous case, all the strength of the margin assumption is used: a reduction
of the L2 diameter of the set of potential almost oracle. This control on the
diameter can be easily seen in the Dudley’s entropy integral, where this diameter
appears in the upper bound of integration.

4. Applications

In this section, we will be interested in two procedures which initially are non-
adaptive to one unknown parameter of the model or to one parameter for which
we have no canonical choice: First, the Lasso procedure where theoretical results
have been obtained under the assumption that the variance of the noise is known
(we will provide a procedure with a data dependent regularization parameter).
Second, aggregation with exponential weights, which depends on a temperature
parameter. We could just as well have applied this adaptation procedure to other
problems, like the choice of the regularization parameter for penalized empirical
risk minimization, or the choice of the threshold constant in wavelet methods.

4.1. Adaptive choice of the regularization parameter for the Lasso

We consider the linear regression model Y =
〈

X, β∗〉 + σǫ, where Y ∈ R is a
random vector, X ∈ R

p is a random vector and ǫ ∈ R is a random variable
(the noise) independent of X such that Eǫ = 0 and Eǫ2 = 1. We have n i.i.d.
observations in this model, and the total dataset consists of Y = (Y1, . . . , Yn)

t

and X = (X1, . . . , Xn)
t. We consider the function Φ : Rp × R

+ 7−→ R defined
by

Φ(β, λ) = |Y −Xβ|2n + λ|β|1.

Given a regularization parameter λ, the Lasso estimator f̂λ is defined by

f̂
(n)
λ (·, D(n)) =

〈

·, β̂(λ)(n)(D(n))
〉

where β̂(λ)(n)(D(n)) ∈ Arg min
β∈Rp

Φ(β, λ).

We consider the regularization parameter λ to be normalized so as to lie in [0, 1].
Such a normalization is possible, since for λmax := 2maxi |

〈

Xi, Y
〉

|, the zero
vector is a minimizer of Φ(β, λmax); that is, the Lasso penalty is always able to
shrink the coefficient estimate for β down to zero.

Usually the choice of the regularization parameter λ is a problem. A pos-
sible solution is to use the adaptation procedures that were introduced in the
previous sections. One can think of using the adaptation procedures introduced
in Section 3 (in the continuous case) for the dictionary {f̂λ : λ ∈ [0, 1]}. The
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continuous case will be illustrated in the next subsection, therefore, we focus our
attention on the finite case in this subsection. We should consider two different
types of dictionary:

1. the dictionary of estimators is a finite set {f̂λ : λ ∈ G} where G is a finite
grid of [0, 1]. This means somehow that the regularization parameters are
given based upon some a priori knowledge.

2. the dictionary is a set {f̂1, . . . , f̂N} of estimators that may have been con-
structed using the LARS algorithm or any other solution path procedures
or other estimators in the regression model. In particular, this type of dic-
tionary allows for data-dependent regularization parameters (like in the
LARS algorithm). Note that in this setup, the number N of elements may
also be random (like in the LARS case). Here, we assume that N is fixed.
In the “LARS case”, we know that the number N of solutions is always
less than n therefore, in this case, one can “complete” the dictionary up
to n by repeating the final LARS estimator - for instance - and therefore
one can take N = n.

It appears that oracle inequalities follow directly from Theorem 2.4 and The-
orem 2.9 for the second type of dictionary. For instance, the LARS algorithm
provides a family of regularization parameters 0 = λ(0) < λ(1) < . . . < λ(N),
(where N ≤ n), and the corresponding Lasso estimators f̂λ(j) , j = 1, . . . , N .
Thus we believe that using the LARS algorithm combined with the mCV, amCV
or Agg procedures for the dictionary {f̂λ(0) , . . . , f̂λ(N)} will prove to be efficient
in practice.

More theoretical details on the type of assumption and results can be pro-
vided in the first case. We now turn to the study of this first case. We con-
struct the mCV procedure (cf. (2.8)) in this setup. Consider the family of splits
(B1, D1), . . . , (BV , DV ) of D(n) defined in (2.1) and (2.2) for some 1 ≤ V ≤ n

dividing n. For any Lasso estimator f̂λ the r-V-fold CV empirical risk, for r > 0,
is defined by

R
(r)
n,V (f̂λ) =

1

V

V
∑

k=1

1

nC

knC
∑

i=(k−1)nC+1

|Yi −
〈

Xi, β̂(λ)
(nV )(Dk)

〉

|r.

The mCV procedure is defined in this context by

f̄
(n)
mCV (·, D(n)) = f̂

(nV )

λ̂r(D(n))
(·, D(nV )) =

〈

·, β̂(λ̂r(D(n)))(nV )(D(nV ))
〉

:=
〈

·, β̄(n)
mCV (D

(n))
〉

where

λ̂r(D
(n)) ∈ Argmin

λ∈G
R

(r)
n,V (f̂λ).

Now, we construct the amCV (cf. (2.9)) and the Agg (cf. (2.13)) procedures
using the subsets C1, . . . , CNC of {1, . . . , n} each of size nV : the mCV is defined,
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in this context, by

f̂amCV (D
(n))(·, D(n)) =

1

NC

NC
∑

k=1

f̂
(nV )

λ̂r(D(n))
(·, D(Ck))

=
〈

·, 1

NC

NC
∑

k=1

β̂(λ̂r(D
(n)))(nV )(D(Ck))

〉

:=
〈

·, β̂(n)
amCV (D

(n))
〉

,

where λ̂r(D
(n)) ∈ Argminλ∈G R

(r)
nC (f̂λ) and R

(r)
nC is the r-CV risk. Finally the

Agg procedure (with respect to the aggregate with exponential weights as a
based aggregation procedure) is defined by

f̃
(n)
Agg(·, D(n)) =

1

NC

NC
∑

k=1

f̃
(n)
k (·, D(n)) =

〈

·, 1

NC

NC
∑

k=1

∑

λ∈G
w

(nC)
λ (C′

k)β̂(λ)
(nV )(D(Ck))

〉

:=
〈

·, β̃(n)
Agg(D

(n))
〉

where
f̃
(n)
k (D(n)) =

∑

λ∈G
w

(nC)
λ (C′

k)f̂
(nV )
λ (D(Ck))

and

w
(nC)
λ (C′

k) :=
exp

(

− T−1
∑

i/∈Ck |Yi −
〈

Xi, β̂(λ)
(nV )(Ck)

〉

|r
)

∑

µ∈G exp
(

− T−1
∑

i/∈Ck |Yi −
〈

Xi, β̂(µ)(nV )(Ck)
〉

|r
)

Note that for values of r close to 0, the Lasso vector β̄
(n)
mCV constructed

with a data-driven choice of the regularization parameter λ̂r(D
(n)) is likely to

enjoy some model selection (or sign consistency) properties. Nevertheless, from
a theoretical point of view, we will obtain results only for the prediction problem
with respect to the L2-risk.

We would like to apply Theorem 2.4 and Theorem 2.9 to the three procedures
that we have introduced here. To this end, we have to check assumption (A) for

the elements of the dictionary F := {f̂λ : λ ∈ G} and so the design vector X
has to enjoy some properties.

Definition 4.1. LetX be a random vector ofRp and denote by µ its probability
distribution. We say that X is log-concave when for all nonempty measurable
sets A,B ⊂ R

p and every α ∈ [0, 1], µ(αA + (1 − α)B) ≥ µ(A)αµ(B)1−α. We
say that X is a ψ2 vector when ‖X‖ψ2

:= supx∈Sp−1

∥

∥

〈

X, x
〉∥

∥

ψ2
<∞.

Many natural measures are log-concave. Among the examples are measures
that have a log-concave density, the volume measure of a convex body, and many
others. A well known fact on a log-concave random vector X of Rp follows from
Borell’s inequality (cf. [26]): for every x ∈ R

p,
∥

∥

〈

X, x
〉∥

∥

ψ1
≤ c

∥

∥

〈

X, x
〉∥

∥

L1
where

c is an absolute constant. In particular, the moments of linear functionals satisfy,
for all p ≥ 1,

∥

∥

〈

X, x
〉
∥

∥

Lp
≤ cp

∥

∥

〈

X, x
〉
∥

∥

L1
.
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In the following we assume that X is a ψ2, log-concave vector and the noise
ǫ is ψ2.

Let m ∈ N, λ ∈ G, β := β̂(λ)(m)(D(m)) be fixed for the moment, and let
Lβ(X,Y ) = (Y −

〈

X, β
〉

)2 − (Y −
〈

X, β∗〉)2 be the corresponding excess loss
function. We need to bound the ψ1-norm of Lβ and to check the margin condi-
tion. For the second task, we use the log-concavity of X to obtain

ELβ(X,Y )2 ≤2E
〈

X, β − β∗〉4 + 8σ2
E
〈

X, β − β∗〉2

≤(c+ 8σ2)E
〈

X, β − β∗〉2 = (c+ 8σ2)ELβ .

This proves that the dictionary F satisfies the margin assumption with param-
eter κ = 1. For the first task, we use the fact that X is a ψ2-vector to get

‖Lβ(X,Y )‖ψ1
=
∥

∥

∥

〈

X, β − β∗〉2 + 2σǫ
〈

X, β∗ − β
〉

∥

∥

∥

ψ1

≤ (1 + 2σ)
∥

∥

〈

X, β − β∗〉∥
∥

2

ψ2
+ 2σ ‖ǫ‖2ψ2

≤ (1 + 2σ) ‖X‖2ψ2
‖β − β∗‖22 + 2σ ‖ǫ‖2ψ2

.

Now for the construction of the dictionary, we threshold all the Lasso vectors
β̂(λ), λ ∈ G in such a way that the ℓ2-norm of these vectors is smaller than
a constant K ′

0. Then the dictionary F satisfies Assumption (A) (with K0 :=
K ′

0 + ‖β∗‖2). Note that under assumption (A), the aggregate with exponential
weights satisfies the oracle inequality (2.11) (up to a logn factor when κ = 1,
cf. [19]). Thus, we are now in position to apply Theorem 2.4 and Theorem 2.9.

Let β̂ be either β̄
(n)
mCV (D

(n)), β̂
(n)
amCV (D

(n)) or β̃
(n)
Agg(D

(n)), we have

E[(Y −
〈

X, β̂
〉

)2] ≤(1 + a)min
λ∈G

E[(Y −
〈

X, τ(β̂(λ)(nV )(D(nV )))
〉

)2]

+ c
log |G| log(nC)

nC
, (4.1)

where τ is a thresholded function such that ∀β ∈ R
p, ‖τ(β)‖2 ≤ K ′

0.

This proves that the adaptation procedures provided in Section 2 optimize
the prediction task of the Lasso thanks to a data-driven choice of the regular-
ization parameter. Note that a classical theoretical choice of the regularization
parameter λ is such that λ & σ

√

(log p)/n (cf. [6]) – even though in many real-
world applications such a choice is in general too conservative. By taking a grid
G with a thin enough step (for instance of the order of 1/n), such theoretical

result can be used in (4.1) to prove that the procedures β̂ have good predic-

tion properties. But the real advantage of β̂ is that in cases where taking λ
such that λ & σ

√

(log p)/n is not a good choice then, thanks to the adaptation

properties of β̂, a better choice of λ will be made “automatically” (that is in a
data-dependent way).
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4.2. Adaptive choice of the temperature parameter for aggregation
with exponential weights

In the aggregation setup, one is given a set of data D(n) and a finite set F0 ofM
functions f1, . . . , fM . The problem is to construct a an estimator which has a risk
as close as possible to the risk of the oracle, the best element in F0. A common
aggregation procedure is the aggregation procedure with exponential weights
(AEW for short) defined in Equation (2.12); this procedure is defined up to a
free parameter which is called the temperature parameter. In this subsection,
we use the adaptive procedures introduced in the previous section to choose the
temperature parameter.

Let (B1, D1), . . . , (BV , DV ) be the family of splits of D(n) defined in (2.1) for
some 1 ≤ V ≤ n. For any AEW procedure f̃(T ) (where T ≥ 0 is the temperature
parameter) the V-fold-CV empirical risk is defined by

Rn,V (f̃(T )) =
1

V

V
∑

k=1

1

nC

knC
∑

i=(k−1)nC+1

Q(Zi, f̃(T )
(nV )(Dk))

We consider the following data-driven temperature and the mCV procedure

T̂ (D(n)) ∈ Argmin
T∈G

Rn,V (f̃(T )); f̄ (n)(D(n)) = f̃(T̂ (D(n)))(nV )(D(nV )),

where G is a subset of (0,+∞).

We want to apply Theorem 3.5 to the procedure f̄ (n)(D(n)). We consider
the bounded regression model Y = f∗(X) + σǫ with respect to the quadratic
loss function Q((x, y), f) = (y − f(x))2. We consider a finite dictionary F0

(constructed with a previous sample that we supposed fixed). We assume that

‖ǫ‖∞ , ‖f∗‖∞ ,max
f∈F0

‖f‖∞ = K <∞.

For every T > 0, we construct the aggregate with exponential weights f̃(T )
associated with the dictionary F0 (cf. (2.12)). Fix A > 0 and construct the
infinite dictionary F := {f̃(T ) : T ≥ A}. It is easy to check that the elements
of the dictionary F satisfy Assumption (A) with margin parameter κ = 1.
Moreover, for every pair T1, T2 > 0 of temperature parameters, for any n, and
any data set D(n), we have

∣

∣

∣
f̃ (n)(T1)(D

(n))(·)− f̃ (n)(T2)(D
(n))(·)

∣

∣

∣
≤ cbd(T1, T2)

where d(T1, T2) := |T−1
1 − T−1

2 | and thereby for Q := {Q(·, f̃(T )(nV )(D(nV )))−
Q(·, f∗) : T ≥ A}, the complexity function J of Theorem 3.5 can be taken equal
to

J(ǫ) := cA,b

(√
ǫ log

( 1

A
√
ǫ
+ 1
)

+
lognC√
nC

)
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Thus, the exchangeability of the AEW being obvious, Theorem 3.5 yields the
following oracle inequality

E(f̄ (n)(D(n))(X)− Y )2 ≤ (1 + a) min
T≥A

E(f̃(T )(nV )(D(nV ))(X)− Y )2

+ ca,A,b
log2(nC)

nC
.

Thus the procedure f̄ (n)(D(n)) is optimal amongst all the AEW procedures with
temperature parameter T ≥ A for a given A.

5. Proofs

5.1. Preliminaries from empirical process

We start with the following lemma which is a ψ1 version of Bernstein’s inequality
(see, for instance, [35], Chapter 2.2).

Lemma 5.1. Let Y, Y1, . . . , Ym be i.i.d mean zero random variables with ‖Y ‖ψ1 <
∞. Then for any u > 0,

P

( 1

m

m
∑

i=1

Yi > 3u‖Y ‖ψ1

)

≤ exp
(

−m(u2 ∧ u)
)

.

Nevertheless, it appears that Lemma 5.1 does not suit the analysis we have in
mind. Indeed, most of the models worked out here satisfy a margin condition;
that is, a relation of the form EY 2 ≤ K(EY )1/(2κ). In Lemma 5.1, the sub-
Gaussian and the sub-exponential (or Poisson) behavior of 1

m

∑m
i=1 Yi are given

with respect to the ψ1-norm of Y without reference to the term EY 2. According
to the Central Limit Theorem, we would expect sub-Gaussian behavior of the
sum 1

m

∑m
i=1 Yi with respect to the L2-norm of Y . That is the objective of the

following result. The price that one pays for replacing the ψ1-norm by the L2-
norm under sub-Gaussian behavior is, in general, an extra factor logm in the
sub-exponential behavior.

Proposition 5.2. There exists an absolute constant c > 0 such that the fol-
lowing holds. Let Y, Y1, . . . , Ym be i.i.d mean zero random variables such that
‖maxi=1,...,m Yi‖ψ1 <∞. Then for any u > 0,

P

( 1

m

m
∑

i=1

Yi > u
)

≤ 2 exp

(

−cm
( u2

EY 2

)

∧
( u

‖maxi=1,...,m Yi‖ψ1

)

)

.

Proof. We follow the line of [1]. Let ρ > 0 be the truncation level to be chosen
later. For every i = 1, . . . ,m we defined Xi := Yi1I|Yi|≤ρ and Zi := Yi −Xi. For
every u > 0, we have

P

(

m
∑

i=1

Yi ≥ u
)

≤ P

(

m
∑

i=1

Xi − EXi ≥ u/2
)

+ P

(

m
∑

i=1

Zi − EZi ≥ u/2
)

. (5.1)
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To bound the first term of (5.1), we use the classical Bernstein inequality for
bounded variables together with the inequality V(Xi) ≤ EX2

i ≤ EY 2
i for all

i = 1, . . . , n

P

(

m
∑

i=1

Xi − EXi ≥ u/2
)

≤ exp
(

− cu2

mEY 2 + ρu

)

. (5.2)

Now take ρ := 8Emax1≤i≤m |Yi|. For the second term of (5.1), we note that,
by Chebyshev’s inequality,

P

(

max
1≤k≤m

∣

∣

∣

k
∑

i=1

Zi

∣

∣

∣
> 0
)

≤ P

(

max
i=1,...,m

|Zi| > 0
)

= P

(

max
i=1,...,m

|Yi| > ρ
)

≤ 1/8.

Thus, by Hoffman-Jorgensen’s inequality (cf. Proposition 6.8 in [21]), we have

E max
k=1,...,m

∣

∣

∣

k
∑

i=1

Zi

∣

∣

∣
≤ 8E max

i=1,...,m
|Zi|.

Consequently, since E|X | ≤ K ‖X‖ψ1
for any random variable X ,

E

∣

∣

∣

m
∑

i=1

Zi − EZi

∣

∣

∣
≤ 2E

∣

∣

∣

m
∑

i=1

Zi

∣

∣

∣
≤ 16E max

i=1,...,m
|Zi| ≤ K0

∥

∥

∥

∥

max
i=1,...,m

|Zi|
∥

∥

∥

∥

ψ1

. (5.3)

Now, we use Theorem 6.21 of [21] to obtain

∥

∥

∥

∥

∥

m
∑

i=1

Zi − EZi

∥

∥

∥

∥

∥

ψ1

≤ K1

(∥

∥

∥

∥

∥

m
∑

i=1

Zi − EZi

∥

∥

∥

∥

∥

L1

+

∥

∥

∥

∥

max
i=1,...,m

|Zi − EZi|
∥

∥

∥

∥

ψ1

)

.

Combining the last result and Equation (5.3), we get

∥

∥

∥

∥

∥

m
∑

i=1

Zi − EZi

∥

∥

∥

∥

∥

ψ1

≤ K2

∥

∥

∥

∥

max
i=1,...,m

Zi

∥

∥

∥

∥

ψ1

≤ K2

∥

∥

∥

∥

max
i=1,...,m

Yi

∥

∥

∥

∥

ψ1

In particular, we have

P

(

m
∑

i=1

Zi − EZi ≥ u/2
)

≤ exp
(

− cu

‖maxi=1,...,m Yi‖ψ1

)

. (5.4)

We obtain the result by using the last inequality together with Equation (5.2)
in Equation (5.1) and noting that ρ ≤ K3 ‖maxi |Yi|‖ψ1

.

To obtain oracle inequalities for the mCV and amCV procedures, we need to
control the suprema of some empirical processes. The next lemma is precisely
such a bound for a (shifted) empirical process, and its conditions are formulated
in terms of a general risk bound and a margin condition.
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Lemma 5.3. Let Q := {Q1, . . . , Qp} be a set of p ≥ 1 measurable functions
defined on (Z, T ). Let Z,Z1, . . . , Zm be i.i.d. random variables with values in
(Z, T ) such that ∀Q ∈ Q,EQ(Z) ≥ 0. Assume the existence of constants
C0 > 0 and κ ≥ 1 such that ∀Q ∈ Q, ‖Q(Z)‖L2 ≤ C0(EQ(Z))1/2κ and set
bm := maxQ∈Q ‖maxi=1,...,mQ(Zi)‖ψ1 . For any given shift parameter a > 0
there exists a constant c = c(a, κ) such that

Emax
Q∈Q

(

EQ(Z)− (1 + a)
1

m

m
∑

i=1

Q(Zi)
)

≤ c

(

log(ep)

m

)
κ

2κ−1

∨
(bm log(ep)

m

)

.

Proof. For any δ > 0, an union bound yields

P

[

max
Q∈Q

(

EQ(Z)− (1 + a)
1

m

m
∑

i=1

Q(Zi)
)

≥ δ
]

≤
∑

Q∈Q
P

[

EQ(Z)− (1 + a)
1

m

m
∑

i=1

Q(Zi) ≥ δ
]

≤
∑

Q∈Q
P

[

EQ(Z)− 1

m

m
∑

i=1

Q(Zi) ≥
δ + aEQ(Z)

1 + a

]

.

Now, we apply Proposition 5.2 to the random variables Q(Z), Q(Z1), . . . , Q(Zm)
and combine this with the margin-type condition ‖Q(Z)‖L2 ≤ C0(EQ(Z))1/2κ

to get the inequality

P

[

max
Q∈Q

(

EQ(Z)− (1 + a)
1

m

m
∑

i=1

Q(Zi)
)

≥ δ
]

≤
∑

Q∈Q
2 exp

[

− C2m

(

( δ + aEQ(Z)

(EQ(Z))1/(2κ)

)2

∧
(δ + aEQ(Z)

bm

)

)

]

,

where we use the constant C2 :=
(

3C0(1 + a) ∨ 9C2
0 (1 + a)2

)−1
. By comparing

EQ(Z) and δ, it is easy to see that

C2

(

( δ + aEQ(Z)

(EQ(Z))1/(2κ)

)2

∧
(δ + aEQ(Z)

bm

)

)

≥ C3δ
2−1/κ ∧ (δ/bm)

when C3 := C2 ·
(

a ∧ C−1
1

)1/(2κ)
. Thus, for any δ > 0,

P

[

max
Q∈Q

(

EQ(Z)−(1+a)
1

m

m
∑

i=1

Q(Zi)
)

≥ δ
]

≤ 2p exp
(

−C3m
(

δ2−1/κ∧(δ/bm)
))

.

Now we use the fact that
∫∞
A

exp(−Btα)dt ≤ (αBAα−1)−1 exp(−BAα) for
any α ≥ 1 and A,B > 0 to get, for any u > 0 and v > 0,
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E

[

max
Q∈Q

(

EQ(Z)− (1 + a)
1

m

m
∑

i=1

Q(Zi)
)]

≤
∫ ∞

0

P

[

max
Q∈Q

(

EQ(Z)− (1 + a)
1

m

m
∑

i=1

Q(Zi)
)

≥ δ
]

dδ

≤ u+2p

∫ b−κ/(κ−1)
m

u

exp(−C3mδ
2−1/κ)dδ+ v+2p

∫ ∞

b
−κ/(κ−1)
m +v

exp(−C3mδ)dδ

≤ u+ 2p
exp(−C3mu

2−1/κ)

C3mu1−1/κ
+ v + 2p

exp(−C3m(v/bm))

C3m/bm
. (5.5)

We denote by µ(p) the unique solution of µ = p exp(−µ). For this quantity,
we have the inequality µ(p) ≤ log(ep). Take u such that C3mu

2−1/κ = µ(p);
then

u+ 2p
exp(−C3mu

2−1/κ)

C3mu1−1/κ
≤ 3

(

µ(p)

C3m

)
κ

2κ−1

≤ 3

(

log(ep)

C3m

)
κ

2κ−1

.

Now take v such that C3mv = bmµ(p) to obtain

v + 2p
exp(−C3mv/bm)

C3m/bm
≤ 3bmµ(p)

C3m
≤ 3bm log(ep)

C3m
.

Then by plugging these values of u and v in Equation (5.5), we obtain the
result.

Note that one of the main advantages of the set of assumptions of Lemma 5.3
is that we are allowed to use unbounded random variables. And, in the bounded
case maxQ∈Q ‖Q(Z)‖∞ ≤ b0, we recover the classical Bernstein inequality since
maxQ∈Q ‖maxiQ(Zi)‖ψ1

≤ b0. But, if we only have a ψ1 control of the type
maxQ∈Q ‖Q(Z)‖ψ1

≤ b0, then by using the following classical result due to
Pisier (cf. for instance [35])

∥

∥

∥

∥

max
1≤i≤m

Q(Zi)

∥

∥

∥

∥

ψ1

≤ c(logm) max
1≤i≤m

‖Q(Zi)‖ψ1
, ∀Q ∈ Q

we obtain maxQ∈Q ‖maxiQ(Zi)‖ψ1
≤ c(logm)b0. Thus, by using this approach

a (maybe extra) logm term may appear in the upper bound of the shift process
in Lemma 5.3 when the margin parameter κ equals to 1. If κ > 1, then we
obtain the same upper bound for both L∞ and Lψ1 control.

5.2. Proof of Lemma 2.3

We first prove the result for f̄ (n) = f̂
(n)
amCV . By definition of ̂(D(n)), we have,

for any j ∈ {1, . . . , p},

R̃nC (f̂amCV ) :=
1

NC

NC
∑

k=1

1

nC

∑

i/∈Ck

Q(Zi, f̂
(nV )

̂(D(n))
(D(Ck))) ≤ RnC (f̂j). (5.6)
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Using inequality (5.6), we have the following basic inequality for all j and
any set of data D(n),

R(f̂
(n)
amCV (D

(n)))−R(f∗)

= (1 + a)(R̃nC (f̂amCV )−RnC (f
∗)) + (R(f̂

(n)
amCV (D

(n)))−R(f∗))

−(1 + a)(R̃nC (f̂amCV )−RnC (f
∗))

≤ (1 + a)(RnC (f̂j)−RnC (f
∗)) (5.7)

+
(

R(f̂
(n)
amCV (D

(n)))−R(f∗)− (1 + a)(R̃nC (f̂amCV )−RnC (f
∗))
)

.

Since the Zi’s are i.i.d., it follows that the expectation of the first term in (5.7)
is such that for every j,

ED(n)RnC (f̂j)− ED(n)RnC (f
∗)

=
1

NC

NC
∑

k=1

1

nC

∑

i/∈Ck

(

ED(n)Q(Zi, f̂
(nV )
j (D(Ck)))− ED(n)Q(Zi, f

∗)
)

=
1

NC

NC
∑

k=1

1

nC

∑

i/∈Ck

(

ED(Ck)
R(f̂

(nV )
j (D(Ck))) −R(f∗)

)

= ED(nV )R(f̂
(nV )
j (D(nV )))−R(f∗),

and, by using the convexity of the risk, the expectation of the second term in
(5.7) is such that

ED(n)

[

R(f̂
(n)
amCV (D

(n)))−R(f∗)− (1 + a)(R̃nC (f̂
(n)
amCV )−RnC (f

∗))
]

≤ 1

NC

NC
∑

k=1

ED(n)

[

PQ(·, f̂ (nV )

̂(D(n))
(D(Ck)))− PQ(·, f∗)

− 1 + a

nC

∑

i/∈Ck

(

Q(Zi, f̂
(nV )

̂(D(n))
(D(Ck)))−Q(Zi, f

∗)
)

]

≤ 1

NC

NC
∑

k=1

ED(n) max
j=1,...,p

[

PQ(·, f̂ (nV )
j (D(nV )))− PQ(·, f∗)

− 1 + a

nC

∑

i/∈Ck

(

Q(Zi, f̂
(nV )
j (D(Ck)))−Q(Zi, f

∗)
)

]

=
1

NC

NC
∑

k=1

ED(n) max
j=1,...,p

[

PQ(·, f̂ (nV )
j (D(nV )))− PQ(·, f∗)

− 1 + a

nC

n
∑

i=nV +1

(

Q(Zi, f̂
(nV )
j (D(nV )))−Q(Zi, f

∗)
)

]

= ED(n) max
j=1,...,p

[

PQ(·, f̂ (nV )
j (D(nV )))− PQ(·, f∗)
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− 1 + a

nC

n
∑

i=nV +1

(

Q(Zi, f̂
(nV )
j (D(nV )))− (Zi, f

∗)
)

]

= ED(n) max
j=1,...,p

[

(P − (1 + a)PnC )
(

Q(·, f̂ (nV )
j (D(nV )))−Q(·, f∗)

)]

,

which now gives the desired result.

We can follow the same lines to obtain the oracle inequality for f̄ (n) = f̄
(n)
mCV .

But instead of using the convexity of the risk in the second line of the last
calculus we use the exchangeability and the “organized” partition scheme of the
data provided by (2.1) and (2.2). Indeed, for this partition scheme, ̂ satisfies
some exchangeability properties under particular permutations of the data: For
any k = 1, . . . , V , we introduce the permutation φk(j) = j + knC [n] (where [n]

means modulo n). By using the exchangeability of the statistics f̂1, . . . , f̂p, it
is easy to see that for any k = 1, . . . , V and j = 1, . . . , p and for φk(Bp) :=
{φk((p− 1)nC + 1), . . . , φk(pnC)} and φk(Dp) := {Zi : i /∈ φk(Bp)},

1

V

V
∑

p=1

1

nC

∑

i∈φk(Bp)
Q(Zi, f̂

(nV )
j (φk(Dp))) = Rn,V (f̂j),

and thus that ̂(Zφk(1), . . . , Zφk(n)) = ̂(D(n)). Moreover, for each k = 1, . . . , V ,

φk(D
(nV )) = φk(DV−1) = Dk, so we have

ED(n)R(f̂
(n)
mCV (D

(n))) = ED(n)R
(

f̂
(nV )

̂(D(n))
(D(nV ))

)

=
1

V

V
∑

k=1

ED(n)R
(

f̂
(nV )
̂(Zφk(1),...,Zφk(n))

(φk(D
(nV )))

)

=
1

V

V
∑

k=1

ED(n)R
(

f̂
(nV )

̂(D(n))
(Dk)).

5.3. Proof of Lemma 3.2

For any q > 1 and u ≥ 1, the following family of inequalities holds simultane-
ously with probability greater than 1−L

∑∞
j=0 exp(−cqju) ≥ 1−L1 exp(−cu):

sup
Q∈Q:PQ≤qj ǫq(qju)

(

(P − Pm)Q
)

+
≤ qjuJ

(

qjǫq(q
ju)
)

√
m

for every j ≥ 0.

Thus, with probability greater than 1− L1 exp(−cu),

sup
Q∈Q

(

PQ− (1 + a)PmQ
)

+
= sup
Q∈Q

(

(1 + a)(PQ − PmQ)− aPQ
)

+

≤
∞
∑

j=1

sup
Q∈Q:

qj−1ǫq(q
j−1u)<PQ≤qjǫq(qju)

(

(1 + a)(PQ− PmQ)− aPQ
)

+
+

(1 + a)uJ(ǫq(u))√
m

≤
∞
∑

j=1

sup
Q∈Q:

PQ≤qjǫq(qju)

(

(1 + a)(PQ − PmQ)− aqj−1ǫq(q
j−1u)

)

+
+

(1 + a)uJ(ǫq(u))√
m
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≤
∞
∑

j=1

(

(1 + a) sup
Q∈Q:

PQ≤qjǫq(qju)

(PQ− PmQ)− aqj−1ǫq(q
j−1u)

)

+
+

(1 + a)uJ(ǫq(u))√
m

≤
∞
∑

j=1

((1 + a)qjuJ(qjǫq(q
ju))√

m
− aqj−1ǫq(q

j−1u)
)

+
+

(1 + a)uJ(ǫq(u))√
m

≤(1 + a)uJ(ǫq(u))√
m

≤ aǫq(u/q)

q
,

where we use that x > 0 7−→ ψ(x)/xr decreases and so for every j ≥ 0, u ≥ 1,
ǫq(q

ju) ≤ qrǫq(q
j−1u) which, using the convex duality property of ψ, implies

(1 + a)qjuJ(qjǫq(q
ju))√

m
=

a

2qr+1

2qj+r+1(1 + a)u

a
√
m

J(qjǫq(q
ju))

≤ a

2qr+1

(

qjǫq(q
ju) + ψ

(2qj+r+1(1 + a)u

a
√
m

))

=
a(qj + 1)

2qr+1
ǫq(q

ju) ≤ aqj−1ǫq(q
j−1u).

Now, for the “moreover” part, we use that x > 0 7−→ ψ(x)/xr decreases to
get ǫq(u/q) = o(exp(cu)) when u tends to infinity; ǫq(u/q) ≤ urǫq(1/q), ∀u ≥ 1
and

E sup
Q∈Q

(

(P − (1 + a)Pm)Q
)

+
=

∫ ∞

0

P

[

sup
Q∈Q

(

(P − (1 + a)Pm)Q
)

+
≥ t
]

dt

≤ aǫq(1/q)

q
+

∫ ∞

1

L1 exp(−cu)
aǫ′q(u/q)

q2
du

=
aǫq(1/q)

q
+
aL1

q
e−cǫq(1/q) +

aL1c

q

∫ ∞

1

exp(−cu)ǫq(u/q)du

≤ aǫq(1/q)

q
+
aL1

q
e−cǫq(1/q) +

aL1c

q

∫ ∞

1

exp(−cu)urǫq(1/q)du ≤ ac1ǫq(1/q)

q
.

5.4. Proof of Lemma 3.4

Let ǫ > 0 and take Q0 ∈ Q such that PQ0 ≤ ǫ. We have

sup
Q∈Q:PQ≤ǫ

(

(P − Pm)Q
)

+
≤ sup
Q∈Q:PQ≤ǫ

|Z(Q)− Z(Q0)|+ |Z(Q0)|

where Z(Q) = (P − Pm)Q, ∀Q ∈ Q.
For every Q1, Q2 ∈ QL2

ǫ , Proposition 5.2 and Pisier’s inequality yield for any
u ≥ 1

P

[

|Z(Q1)− Z(Q2)| ≥ u
]

≤ 2 exp
(

−min
( u2

d22(Q1, Q2)
,

u

d1(Q1, Q2)

))
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where

d22(Q1, Q2) =
‖Q1 −Q2‖2L2(π)

cm
and d1(Q1, Q2) =

‖Q1 −Q2‖Lψ1
(π)(logm)

cm
.

Since {Q ∈ Q : PQ ≤ ǫ} ⊂ QL2
ǫ , Equation (3.4) provides two absolute constant

L, c > 0 such that for every u ≥ 1 with probability greater than 1−L exp(−cu)

sup
Q∈Q:PQ≤ǫ

|Z(Q)− Z(Q0)| ≤ uL
((logm)γ1(QL2

ǫ , ‖ · ‖ψ1)

m
+
γ2(QL2

ǫ , ‖ · ‖L2)√
m

)

.

Then, Proposition 5.2 applied to the single element Q0 ∈ Q such that PQ0 ≤ ǫ
provides, for any u ≥ 1, with probability greater than 1− L exp(−cu),

|Z(Q0)| ≤
u logm

m
‖Q0‖ψ1(π)

+

√

u

m
‖Q0‖L2(π)

.

Combining the two last results with the fact that diam(T, d) ≤ cγα(T, d) for
every metric space (T, d) provides the result.

6. Simulation study

In this section, we compare the experimental performances of the procedures
under examination. For this comparison, we shall apply these procedures to a
high-dimensional model aggregating elastic net estimators, which extends the
application in Section 4.1.

6.1. Model

For a given size d, let (X(1), . . . , X(d)) be a random vector uniformly distributed
on the unit hypercube [0, 1]d, and let ε be Gaussian noise with variance σ2. For
a fixed vector β ∈ R

p+1, we define

Y = βTX + ε .

Generalizing the ℓ1-penalty used by the Lasso, we take a weighted average of
ℓ1- and ℓ2-penalties, the latter stemming from Ridge regression. This gives us
the elastic net estimator

f̂
(Elastic net)
λ,α := argmin

β

∥

∥Y − βTX
∥

∥

2

2,n
+ λ(α |β|1 + (1− α) |β|22) ,

which has two tuning parameters, λ ∈ [0, λmax] (as in Section 4.1) and α ∈ [0, 1]
(cf. [39, 13]). Taking grids Λ and G for λ and α, respectively, we obtain a family
of estimators for aggregation:

F :=
{

f̂
(Elastic net)
λ,α |λ ∈ Λ, α ∈ G

}

.

For the aggregation step itself, we use Lr-loss, where r does not always have to
equal 2.
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6.2. Methods and results

The family of estimators thus described we aggregated in three different ways:

• Model selection by cross-validation: the aggregate estimator is

f̄
(n)
V CV (D

(n)) = f̂
(n)

̂(D(n))
(D(n)) s.t. ̂(D(n)) ∈ Arg min

j∈{1,...,p}
Rn,V (f̂j),

the definition already given in (2.4). The weights assigned to each model
are either 0 or 1.

• Aggregation with exponential weights using the cross-validation score:
here the aggregate estimator is

f̄
(n)
AEW (D(n)) =

p
∑

j=1

wj f̂
(n)
j (D(n))

and

wj =
exp

(

− nRn,V (f̂j)/T
)

∑p
k=1 exp

(

− nRn,V (f̂k)/T
) .

• Split-wise aggregation with exponential weights, averaging the estimator
over all splits: the aggregate estimator in this situation is

f̄
(n)
SW (D(n)) =

p
∑

j=1

( 1

V

V
∑

k=1

w
(k)
j

)

f̂
(n)
j (D(n))

and

w
(k)
j =

exp
(

− nR
(k)
n,V (f̂j)/T

)

∑p
k=1 exp

(

− nR
(k)
n,V (f̂k)/T

)

.

Computation We simulated the performance for the elastic net estimator
using covariates in R

200 and the distribution of (X,Y ) given above. The total
sample size for which we looked at the performance of the estimator was 100, and
the cross-validation procedure we used was 10-fold cross-validation. Regardless
of the sparsity of a model, we scaled the true coefficients so that |β|2 = 1 and
chose the error variance so that the signal-to-noise ratio was 5. The loss order
for the aggregation step we took to be r = 2 for the first simulation runs.

We used the glmnet procedure (cf. [13]) to compute the elastic net estima-
tors. This procedure standardizes covariates at the beginning, ensuring that
∑n

i=1X
(j)
i = 0 and (

∑n
i=1(X

(j)
i )2)/N = 1 for all j = {1, . . . , d}. The penalty

scaling parameter λ we chose to take on values in a logarithmically equispaced
grid Λ := {1, 0.050.1, 0.050.2, . . . , 0.05}·λmax, and the penalty mixing parameter
α to take on the equispaced grid of values G := {0, 0.1, . . . , 1}.

Fixing the aggregation temperature parameter to T = 5 (seen to be a rea-
sonable value from various simulation attempts), we took varying degrees of
sparsity for the true model. The class of models we are interested in aggregating
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Fig 1. Weights yielded by cross-validation (left), cross-validatory aggregation with exponen-
tial weights (middle) and split-wise aggregation (right), with the true model consisting of
covariates 1, 2 and 3 (∆ =

√

3).

contains both “sparse” estimators, which perform variable selection (such as the
Lasso), and “non-sparse” estimators, which do not (such as Ridge regression).
An important indicator of sparsity is the ratio

∆(β) =
|β|1
|β|2

∈ [1,
√
p] .

In terms of this indicator, ∆(β) = 1 corresponds to a sparse model (which should
elicit comparatively good performance from the Lasso). ∆(β) =

√
p corresponds

to a well-spread model (which is nice for ridge regression). To investigate the
degree to which our estimators are sensitive to sparsity, we performed a series
of simulations, in which the true model for the k-th plot is given by the coef-

ficient vector β(k) with β
(k)
j = 1{j ≤ k}. The corresponding sparsity ratios are

∆(βj)=
√
j.

Results When the true model is one including just the first 3 covariates (∆ =√
3), we obtained – on average over 100 repetitions – the weights displayed in

Figure 1. Here, as in the other figures displaying weights, we show individual
plots for aggregation with exponential weights using the cross-validated score
on the left, and split-wise aggregation on the right.

Other sparse models up to ∆ =
√
20 provide similar weights: ones concen-

trated on the ℓ1-penalized models. For ∆ = 10, by contrast (100 out of 200
variables contained in the true model), all 3 procedures concentrate more on
the ℓ2-penalized procedures (see Figure 2), as was to be expected.

Using other loss functions for the model selection/aggregation step
The simulations that we just described were also carried out for various different
loss functions in the cross-validation step (using covariates 1 to 3 in the true
model). Instead of squared loss (r = 2), we tried the loss functions given by r =
3/2, r = 1 (absolute loss), r = 1/2 and r = 1/5 (the latter two of course being
non-convex). However, these loss functions did not yield the desired increase in
selection sharpness for our example.
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Fig 2. Weights yielded by cross-validation (left), cross-validatory aggregation with exponential
weights (middle) and split-wise aggregation (right), with the true model including covariates
1-100 (∆ = 10).
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Fig 3. L2-estimator risk of cross-validation (left), cross-validatory aggregation with expo-
nential weights (middle) and split-wise aggregation (right), with the true model containing
covariates 1-3.

Estimator risk In the simulations we performed, the estimator risk (as com-
puted for each of 100 samples) is already roughly normal in distribution. For the
sparse model of Figure 1, cross-validation based model selection has a marginally
lower estimator risk compared to the two aggregation procedures using expo-
nential weights (Figure 3). For the non-sparse model already seen in Figure 2,
the three procedures have more similar estimator risks (Figure 4).
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Fig 4. L2-estimator risk of cross-validation (left), cross-validatory aggregation with expo-
nential weights (middle) and split-wise aggregation (right), with the true model including
covariates 1-100.
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1836 G. Lecué and C. Mitchell

[10] Cornec, M. (2009). Probability bounds for the cross-validation estimate in
the context of the statistical learning theory and statistical models applied
to economics and finance. PhD Thesis, CREST - Centre de Recherche en
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