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We consider a sequence space model of statistical linear inverse problems
where we need to estimate a function f from indirect noisy observations. Let
a finite set � of linear estimators be given. Our aim is to mimic the estimator
in � that has the smallest risk on the true f . Under general conditions, we
show that this can be achieved by simple minimization of an unbiased risk
estimator, provided the singular values of the operator of the inverse problem
decrease as a power law. The main result is a nonasymptotic oracle inequality
that is shown to be asymptotically exact. This inequality can also be used
to obtain sharp minimax adaptive results. In particular, we apply it to show
that minimax adaptation on ellipsoids in the multivariate anisotropic case
is realized by minimization of unbiased risk estimator without any loss of
efficiency with respect to optimal nonadaptive procedures.

1. Introduction. Let A be a known linear operator on a Hilbert spaceH with
inner product (·, ·) and norm ‖·‖. Let f ∈H be an unknown function that we want
to estimate from indirect observations

Y (g)= (Af,g)+ εξ(g), g ∈H,(1)

where 0 < ε < 1 and ξ(g) is a Gaussian random variable on a probability space
(,A,P), with mean 0 and variance ‖g‖2, such that E{ξ(g)ξ(v)} = (g, v), for any
g, v ∈H , where E is the expectation w.r.t. P.

Relation (1) defines a Gaussian white noise model. Instead of using all the
observations {Y (g), g ∈ H } it is usually sufficient to consider the set of values
{Y (ψk)}, for some orthonormal basis {ψk}∞k=1. Then ξ(ψk)= ξk are i.i.d. standard
Gaussian random variables.

We assume that the basis {ψk} is such that (Af,ψk)= bkθk , where bk are real
numbers and θk = (f,ϕk) are the Fourier coefficients of f w.r.t. some orthonormal
basis {ϕk} (not necessarily ϕk = ψk). A typical example when it occurs is that the
operator A admits a singular value decomposition of the form

Aϕk = bkψk, A∗ψk = bkϕk,(2)

where A∗ is the adjoint of A, bk are the singular values, {ψk} is an orthonormal
basis in Range(A)⊂H and {ϕk} is the corresponding orthonormal basis in H .
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Under these assumptions (but also in some other situations) one has the
equivalent discrete sequence observation model derived from (1):

yk = bkθk + εξk, k = 1,2, . . . ,(3)

where yk stands for Y (ψk). If bk �= 0, the model (3) can be written in the form

Xk = θk + εσkξk, k = 1,2, . . . ,(4)

where Xk = yk/bk and σk = b−1
k . This can also be viewed as a model with

direct observations and correlated data [Johnstone (1999)]. The sequence space
formulation (3) or (4) for statistical inverse problems has been studied in a number
of papers [see Johnstone and Silverman (1990), Korostelev and Tsybakov
(1993), Koo (1993), Donoho (1995), Mair and Ruymgaart (1996), Golubev
and Khasminskii (1999, 2001), Johnstone (1999), Goldenshluger and Pereverzev
(2000) and Cavalier and Tsybakov (2002) among others]. For ill-posed inverse
problems we have |bk| → 0 and |σk| → ∞, as k→ ∞.

Let θ̂ = (θ̂1, θ̂2, . . .) be an estimator of θ = (θ1, θ2, . . .) based on the data (4).
Then f is estimated by f̂ =∑

k θ̂kϕk . The mean integrated squared risk (MISE)
of f̂ is

R(f̂ , f )= Ef ‖f̂ − f ‖2 = Eθ
∑
k

(θ̂k − θk)2 = Eθ‖θ̂ − θ‖2,

where the notation ‖ · ‖ means the �2-norm when applied to θ -vectors in the
sequence space. Here and later Ef and Eθ denote the expectations w.r.t.
{Y (g), g ∈H } or X = (X1,X2, . . .) for models (1) and (4), respectively.
Analyzing the risk R(f̂ , f ) of the estimator f̂ is equivalent to analyzing the
corresponding sequence space risk Eθ‖θ̂ − θ‖2.

Let λ= (λ1, λ2, . . .) be a sequence of nonrandom weights, also called a filter.
Every filter λ defines the estimator θ̂ (λ) = (θ̂1, θ̂2, . . .), where θ̂k = λkXk .
Examples of commonly used weights λk are the projection weights λk = I (k ≤w),
for some integer w [where I (·) denotes the indicator function], the Tikhonov–
Phillips weights

λk = 1

1 + (k/w)α , w > 0, α > 0,

and the Pinsker (1980) weights

λk = (1 − (k/w)α)+, w > 0, α > 0,

where x+ = max(x,0). The estimator f̂ with Tikhonov–Phillips weights for even
values α is asymptotically equivalent to a smoothing spline estimator [Wahba
(1977, 1990)].

Although λ is not finite dimensional, it is usually determined by a finite number
of parameters, as in the above examples. In this paper we discuss how to choose
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these parameters optimally in a data-driven way. In particular, a data-driven choice
of smoothing parameters w and α for the Tikhonov–Phillips method is interesting.

We suppose that there is a finite set of possible candidate filters � =
{λ1, . . . , λN }, with λs = (λs1, λ

s
2, . . .), s = 1, . . . ,N , N ≥ 2, satisfying some

general conditions. These filters can be, for example, any of the three types
described above, as well as pooled sets of different kinds of filters. Given the
data, X = (X1,X2, . . .), our aim is to select a data-dependent sequence of weights
λ∗ = λ∗(X) = (λ∗

1, λ
∗
2, . . .), with values in �, that has asymptotically minimal

squared risk for the true θ . We show that λ∗ can be defined as a minimizer (with
respect to λ ∈ �) of an unbiased estimator of the risk. Optimality properties of
such λ∗ follow from the oracle inequalities that are the main result of the paper.
The oracle inequalities are nonasymptotic, they are obtained under very weak
conditions on � and they lead to asymptotically exact inequalities of the form

R(f ∗, f )≤ (1 + o(1))min
λ∈�R(fλ, f ),(5)

as ε → 0, where fλ = ∑∞
k=1 λkXkϕk , f

∗ = ∑∞
k=1 λ

∗
kXkϕk and o(1) does not

depend on f but depends on the family �.
As a consequence of these inequalities, we can justify the optimal choice of

smoothing parameters in the Tikhonov–Phillips and projection methods, as well as
in Pinsker’s method (the last one yields as a by-product sharp minimaxity of λ∗ on
Sobolev ellipsoids). The optimality results are valid under the assumption that σk
is growing as a power of k, as k→ ∞. Generality of the oracle inequalities allows
us to apply them in various problems. As an example, we consider sharp adaptation
on multivariate anisotropic smoothness classes. An interesting conclusion is that
the adaptive estimator based on λ∗ attains the minimax lower bound for the
multivariate anisotropic case, without any loss of efficiency.

Other oracle inequalities for inverse problems have been proposed recently by
Johnstone (1999) and Cavalier and Tsybakov (2002). Johnstone (1999) deals with
a class of nonlinear estimators based on soft thresholding in a wavelet context.
He obtains an asymptotically exact oracle inequality for this class. Cavalier
and Tsybakov (2002) consider the model (4) and obtain asymptotically exact
oracle inequalities of the form (5), where � is the class of all monotone weight
sequences λ and f ∗ (respectively, λ∗) is chosen in a different way, by application
of a penalized blockwise Stein’s rule. Their method is sharp adaptive in a minimax
sense on ellipsoids, but it is not suited for parameter selection in restricted classes
of filters, such as the Tikhonov–Phillips one.

2. Main results. We deal with the model (4) and we assume the following.

ASSUMPTION 1. For any λ ∈�,

0<
∞∑
i=1

σ 2
i λ

2
i <∞
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and

max
λ∈� sup

i

|λi| ≤ 1.(6)

The risk of the linear estimator θ̂ (λ) is given by

Rε[λ, θ] = Eθ‖θ̂ (λ)− θ‖2 =
∞∑
i=1

(1 − λi)2θ2
i + ε2

∞∑
i=1

σ 2
i λ

2
i .(7)

The assumption (6) is quite natural. In fact, it follows from (7) that the
estimator θ̂ (λ) with at least one λi /∈ [0,1] is inadmissible. However, we included
the case of negative bounded λi since it corresponds to a number of well-known
estimators such as kernel estimators with nonnegative kernels. The results below
remain valid (up to a change in constants) if we replace 1 by an arbitrary constantC
in (6).

Our data-driven choice of the smoothing parameter λ is based on the principle of
unbiased risk estimation. To be more specific, recall briefly a heuristic motivation
of the MallowsCp criterion [Akaike (1973), Mallows (1973)]. The best choice of λ
is the filter λ0 (called the oracle) that minimizesRε[λ, θ] over λ ∈�. The oracle λ0

cannot be found directly since the functional Rε[λ, θ] depends on the unknown θ2
i .

However, an unbiased estimator of θ2
i is available in the form X2

i − ε2σ 2
i . Thus the

functional

U [λ,X] =
∞∑
i=1

(λ2
i − 2λi)(X

2
i − ε2σ 2

i )+ ε2
∞∑
i=1

σ 2
i λ

2
i

=
∞∑
i=1

(λ2
i − 2λi)X

2
i + 2ε2

∞∑
i=1

σ 2
i λi

(8)

is an unbiased estimator of Rε[λ, θ] −∑∞
i=1 θ

2
i :

EθU [λ,X] =Rε[λ, θ] −
∞∑
i=1

θ2
i .(9)

Under our assumptions the random series in (8) converges in the mean squared
sense for any λ ∈�, and the definition (8), as well as other definitions of random
series appearing in the paper, are understood in this sense. Of course, in practice
one does not compute infinite series. One either requires that λi = 0 for all i
large enough (as for the projection or Pinsker filters) or translates the definition
of U [λ,X] into the function space to make it computable (e.g., for the Tikhonov–
Phillips filters with even α the computations are possible in terms of splines).

The principle of unbiased risk estimation suggests that we minimize over λ ∈�
the functional U [λ,X] in place of Rε[λ, θ]. This leads to the following data-driven
choice of λ:

λ∗ = arg min
λ∈�U [λ,X].(10)
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We show that this simple and intuitive smoothing parameter selection rule is
efficient for inverse problems with power growth of σk , in the sense that it satisfies
asymptotically precise oracle inequalities.

We define

ρ(λ)= sup
k

σ 2
k |λk|

{ ∞∑
i=1

σ 4
i λ

4
i

}−1/2

and

ρ = max
λ∈� ρ(λ).

Although the main results of this paper hold for general ρ, we will typically think
of ρ as being small (for small ε). In particular, this will be explicitly assumed in
the asymptotic corollaries.

Let the following assumption hold.

ASSUMPTION 2. There exists a constant C1 > 0 such that, uniformly in
λ ∈�,

∞∑
i=1

σ 4
i λ

2
i ≤ C1

∞∑
i=1

σ 4
i λ

4
i .

Assumptions 1 and 2 are very mild, and they are satisfied in most of the
interesting examples. Since |λi | ≤ 1, we have

∞∑
i=1

σ 4
i λ

4
i ≤

∞∑
i=1

σ 4
i λ

2
i ,

and Assumption 2 means that both sums are of the same order. The sums
ε4∑∞

i=1 σ
4
i λ

4
i and ε4∑∞

i=1 σ
4
i λ

2
i are the main terms of the variance Var{U [λ,X]}.

On the other hand Rε[λ, θ] ≥ ε2∑∞
i=1 σ

2
i λ

2
i and(

ε4∑∞
i=1 σ

4
i λ

4
i

)1/2
ε2∑∞

i=1 σ
2
i λ

2
i

≤ ρ.(11)

Therefore, the smallness of ρ guarantees the smallness of the ratio of standard
deviation to the mean error: Var1/2{U [λ,X]}/Rε[λ, θ], uniformly over λ and θ .

Note also that under Assumption 2 we have

ρ(λ)≤√C1 ∀λ ∈�.(12)

Define

S = max
λ∈� sup

i

σ 2
i λ

2
i

/
min
λ∈� sup

i

σ 2
i λ

2
i(13)
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and

M = ∑
λ∈�

exp{−1/ρ(λ)},

L� = log(NS)+ ρ2 log2(MS).

We recall that N is the number of elements of the family �. Since M ≤N , we
always have L� ≤ log(NS)+C1 log2(NS), but this bound is rough. In asymptot-
ics, as ε→ 0 and N → ∞, the correct order is typically ρ = o(1), M ∼ const and
L� ∼ log(NS).

Main results of the paper are given in the next two theorems.

THEOREM 1. Let Assumptions 1 and 2 hold. Then for every θ ∈ �2, for every
B > B0 and for the estimator θ∗ = (θ∗

1 , θ
∗
2 , . . .) with θ∗

i = λ∗
i Xi , where λ∗ is

defined by (10), we have

Eθ‖θ∗ − θ‖2 ≤ (1 + γ1B
−1)min

λ∈�Rε[λ, θ] + γ2Bε
2L�ω(B

2L�),(14)

where

ω(x)= max
λ∈� sup

k

σ 2
k λ

2
kI

{ ∞∑
i=1

σ 2
i λ

2
i ≤ x sup

k

σ 2
k λ

2
k

}
, x > 0,

and B0 > 0, γ1 > 0, γ2 > 0 are constants depending only on C1.

THEOREM 2. Let Assumptions 1 and 2 hold. Then there exist constants
γ3 > 0, γ4 > 0 depending only on C1, such that for every θ ∈ �2 and for the
estimator θ∗ = (θ∗

1 , θ
∗
2 , . . .) with θ∗

i = λ∗
i Xi , where λ∗ is defined by (10), we have

Eθ‖θ∗ − θ‖2 ≤ [1 + γ3ρ
√
L�
]
min
λ∈�Rε[λ, θ],

provided ρ
√
L� ≤ γ4.

To prove (5), in many examples it is sufficient to use Theorem 2, and even its
simplified version that we are going to state now. Assume that

lim
ε→0

ρ2 log(NS)= 0.(15)

Then L� =O(log(NS)), and we get the following corollary of Theorem 2.

COROLLARY 1. Let Assumptions 1 and 2 hold. Then there exist constants
C2 > 0, C3 > 0, depending only on C1, such that for ρ2 log(NS) < C2 we have

Eθ‖θ∗ − θ‖2 ≤
(
1 +C3ρ

√
log(NS)

)
min
λ∈�Rε[λ, θ],

for every θ ∈ �2 and for the estimator θ∗ = (θ∗
1 , θ

∗
2 , . . .) with θ∗

i = λ∗
i Xi .
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Thus, condition (15) is sufficient to have asymptotically exact oracle inequalities
of the form (5).

Recall that for ill-posed inverse problems σk → ∞, as k → ∞. A crucial
restriction, implicit in Theorems 1 and 2 and Corollary 1 is that σk should grow not
faster than a power of k. In fact, if σk grows exponentially, then even in the simplest
case of projection weights λk we have ρ �= o(1), as ε→ 0 (thus, Theorem 2 cannot
be applied if N grows with ε→ 0). Theorem 1 in this case can be applied but does
not give correct rates.

The oracle inequality (14) is suited to obtaining minimax results or rates of
convergence for classes of sequences θ . The remainder term in the right-hand
side of (14) is typically of the form ε2 loga(1/ε) with a > 1. This shows limits
of applications of (14): for the classes where the least favorable functions θ
satisfy minλ∈�Rε[λ, θ] � ε2 loga(1/ε), the remainder term is not asymptotically
negligible, and thus asymptotically sharp adaptation in a minimax sense is not
possible by use of our techniques. This remark concerns the classes of analytical
functions, for example. On the other hand, the remainder term is negligible
compared to the minimax risk on Sobolev ellipsoids.

Theorem 2 is rather a “class of estimators” than a “class of functions” result.
It allows us to get oracle inequalities of the form (5) for any fixed θ ∈ �2, provided
the class � of estimators is small enough.

REMARK 1. Theorems 1 and 2 remain valid for non-Gaussian ξi such that
E exp(Cξ2

i ) <∞ for some C > 0.

REMARK 2. Theorems 1 and 2 can be used not only for ill-posed, but also
for well-posed inverse problems where σk �→ ∞. For example, both theorems
apply if σk ∼ k−β with 0 ≤ β < 1/4 [allowing ρ = o(1), as ε → 0]. For faster
decreasing σk only Theorem 1 works. If N and S grow not faster than a power
of ε−1, the remainder term in (14) is O(ε2 loga(1/ε)) for some a > 0, which
is only logarithmically worse then the optimal rate ε2 of the well-posed inverse
problems.

REMARK 3. Consider the special case that corresponds to direct observations
(i.e., σk ≡ 1). Here several oracle inequalities have been known previously.
Theorems 1 and 2 extend these results, especially in what concerns multivariate
applications.

The first oracle inequalities for the direct observations model appeared, although
implicitly, in the proofs of optimality of Cp , cross-validation and related data-
driven methods [Li (1986, 1987) and Polyak and Tsybakov (1990, 1992)]. They
are also implicit in minimax adaptive constructions [Golubev (1987, 1992) and
Golubev and Nussbaum (1992)]. Presumably, the first explicit use of oracle
inequalities and its implications for minimax is due to Donoho and Johnstone
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(1994) and Kneip (1994). More recent references are Donoho and Johnstone
(1995, 1996), Nemirovski (2000), Birgé (2001), Birgé and Massart (2001),
Cavalier and Tsybakov (2002) and Goldenshluger and Tsybakov (2001). A link of
oracle inequalities to maxisets is discussed by Kerkyacharian and Picard (2002).
For linear estimators, the results are often proved in the following model, which
can be embedded into ours. Let Y = (Y1, . . . , Yn)

T be the vector of observations
in the nonparametric regression model

Yk = f (xk)+ νk, k = 1, . . . , n,(16)

where νk are i.i.d. N (0,1) random errors, xk ∈ [0,1] are nonrandom distinct points
and f (·) is the unknown function to be estimated. Consider the linear estimator
f̂ = SY of the vector f = (f (x1), f (x2), . . . , f (xn))

T , where S =∑n
i=1 λiuiu

T
i

is a symmetric n × n matrix (smoother matrix) with eigenvalues λi , and {ui} is
an orthonormal basis in R

n. Denoting Xi = n−1/2uTi Y , θi = n−1/2uTi f , ξi = uTi ν
[where ν = (ν1, . . . , νn)

T ] and ε = n−1/2, we rewrite the initial regression model
in the equivalent form

Xi = θi + εξi, i = 1, . . . , n,

which is a special case of (4), modulo the fact that the �2-vectors should contain
zeros starting from the (n + 1)th position: θ = (θ1, . . . , θn,0,0, . . .). The linear
estimator f̂ is translated into θ̂ (λ) = (θ̂1, . . . , θ̂n,0,0, . . .), where θ̂i = λiXi =
n−1/2λiu

T
i Y , and the risk is

Eθ‖θ̂ (λ)− θ‖2 = E
1

n

n∑
i=1

‖SY − f ‖2.

Kneip (1994) studies this setup assuming that the class of filters � contains the
sequences λ with monotone nonincreasing coefficients λi and such that for any
two sequences λ,λ′ ∈ � we have either λi ≤ λ′

i , ∀ i, or λi ≥ λ′
i , ∀ i (ordered

linear smoothers). The set � in Kneip (1994) need not be finite. With the above
translation into our notation, Kneip [(1994), page 844] proves the oracle inequality

Eθ‖θ∗ − θ‖2 ≤ (1 +O(B−1)
)

min
λ∈�Rε[λ, θ] +O(B)ε2 ∀B > 0,(17)

where θ∗ is the data-driven estimator (10). This is similar to (14) [but recall that
Kneip’s inequality (17) covers only the case σk ≡ 1]. Another difference is that we
assume finiteness of the set� (which is not restrictive in view of applications), but
we drop the assumption of order. The last point is useful in multivariate models, in
particular, anisotropic ones, where the ordering of the filters is not natural (cf. the
example in Section 6 below).

We also note that for the regression model (16) there exist several alternatives
to Mallows’ Cp , for example, cross-validation (CV) and generalized cross-
validation (GCV). Asymptotic optimality results [similar to (5)] for CV and GCV
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in regression are given by Härdle and Marron (1985), Li (1986, 1987) and Polyak
and Tsybakov (1992).

3. Examples. Consider some examples of application of the main results.
Typical assumptions on the parameters appearing in Theorems 1 and 2 will be
the following:

1. power growth of σk , as k→ ∞;
2. power behavior of S: S =O(ε−t ), for some t > 0, as ε→ 0;
3. at most power growth of N : N = O(ε−ν), for some ν > 0, as ε → 0 [and
N =O(log(1/ε)) in some examples].

In all the cases we have log(NS)=O(log(1/ε)).

EXAMPLE 1 (Projection estimators). Let 1 ≤ w1 < · · · < wN be integers.
Consider the projection filters λs = (λs1, λs2, . . .) defined by

λ1
i = I (i ≤w1), λ2

i = I (i ≤w2), . . . ,

λNi = I (i ≤wN), i = 1,2, . . . .
(18)

Throughout this section we assume a power law behavior of σk :

σmink
β ≤ |σk| ≤ σmaxk

β,(19)

k = 1,2, . . . , for some σmax ≥ σmin > 0, β ≥ 0.
Note that Assumption 2 is satisfied with the equality and C1 = 1. It is easy to

see that

ρ(λs)≤ Cw−1/2
s , ρ ≤ max

s=1,...,N
Cw−1/2

s =Cw−1/2
1

and

S ≤ C(wN/w1)
2β.

Here and later C stands for positive constants (possibly different on different
occasions) that do not depend on λ, θ and ε. Using the bound on ρ(λ), we
conclude that M is bounded by a constant independent of ε for any choice of
the sequence wi . Note also that

ω(x)≤C sup
k

k2βI
{
k2β+1 ≤Cxk2β}≤ Cx2β(20)

and

L� ≤ C(log(NwN/w1)+w−1
1 log2(wN/w1)

)
.

Since ρ
√

log(NS)≤ Cw−1/2
1

√
log(NwN/w1), Corollary 1 gives

Eθ‖θ∗ − θ‖2 ≤
[

1 +C
√

log(NwN/w1)

w1

]
min
λ∈�Rε[λ, θ](21)
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provided w−1
1 log(NwN/w1) is small enough. As a consequence, we get an

asymptotically exact oracle inequality of the form (5):

COROLLARY 2. Assume that �= (λ1, . . . , λN) is the set of projection filters
defined by (18) and that (19) holds. If N = N(ε) and w1 = w1(ε), wN = wN(ε)
are such that

lim
ε→0

log(NwN/w1)

w1
= 0,

then for every θ ∈ �2 and for the estimator θ∗ = (θ∗
1 , θ

∗
2 , . . .) with θ∗

i = λ∗
i Xi we

have

Eθ‖θ∗ − θ‖2 ≤ (1 + o(1)) inf
λ∈�Rε[λ, θ],

where o(1)→ 0 uniformly in θ ∈ �2.

In other words, Corollary 2 states that our adaptively selected filter behaves
itself asymptotically at least as well as the best projection estimator in �. For the
direct case (where σk ≡ 1) such an inequality is obtained by Birgé (2001), who
uses the Lepski adaptation method rather than the Mallows Cp.

Next, consider the situation where there is no restriction on w1 except w1 ≥ 1
(i.e., the class � can contain the projection filters of order less than or equal
to some wN ). Applying (21) we get an inequality with a logarithmic loss of
efficiency:

PROPOSITION 1. Assume that�= (λ1, . . . , λN) is the set of projection filters
defined by (18) and that (19) holds. For every θ ∈ �2 and for the estimator
θ∗ = (θ∗

1 , θ
∗
2 , . . .) with θ∗

i = λ∗
i Xi we have

Eθ‖θ∗ − θ‖2 ≤ C
√

log(NwN)min
λ∈�Rε[λ, θ],

where C > 0 depends only on σmin, σmax, β .

An important special case is wavelet estimators for which we set w1 = 2j0

(where j0 is the index of the initial level),wj = 2wj−1. Typically one chooses 2−j0
to be decreasing as a power of ε andN ∼ log(1/ε). It is easy to see that the result of
Corollary 2 remains valid in this case. Thus, a wavelet estimator that uses our data-
driven selection of wj is asymptotically at least as good as the best linear wavelet
estimator for any θ . By taking suprema of both sides of the oracle inequality over
Besov classes [for definition see Donoho and Johnstone (1994, 1995, 1996)] we
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get that our adaptive estimator attains optimal rate of convergence on all the Besov
classes where linear wavelet estimators attain optimal rates.

EXAMPLE 2 (Level-wise “keep-or-kill” estimators). Let m> 1 and 1 ≤w1 <

· · · < wm be integers and let e = (e1, . . . , em−1) be a binary sequence of length
m− 1, ek ∈ {0,1}. We associate with e a filter λ(e) = (λ1(e), λ2(e), . . .) defined
by

λi(e)= I {i ≤w1} +
m−1∑
k=1

ekI {wk < i ≤wk+1}, i = 1,2, . . . .

Consider the collection of filters

�= {λ(e) : e ∈E},(22)

where E is the set of all binary sequences e of length m− 1. The linear estimator
with weights λi(e) “keeps” the blocks of coefficients {θi :wk < i ≤ wk+1} for
which ek = 1 and “kills” the blocks for which ek = 0. Clearly,

N = Card(�)= 2m−1.

As in Example 1, we get that Assumption 2 is satisfied and that ρ ≤ Cw
−1/2
1 ,

S ≤ C(wm/w1)
2β , provided (19) holds. Therefore, applying Corollary 1 we get

the following result.

PROPOSITION 2. Assume that � is the set of levelwise “keep-or-kill” filters
defined by (22) and that (19) holds. If m = m(ε) and w1 = w1(ε), wm = wm(ε)

are such that

lim
ε→0

m+ log(wm/w1)

w1
= 0,(23)

then for every θ ∈ �2 and for the estimator θ∗ = (θ∗
1 , θ

∗
2 , . . .) with θ∗

i = λ∗
i Xi we

have

Eθ‖θ∗ − θ‖2 ≤ (1 + o(1)) inf
λ∈�Rε[λ, θ],

where o(1)→ 0 uniformly in θ ∈ �2.

Note that for wavelet bases (if we consider global thresholding level-by-level)
we have w1 = 2j0 , wm = 2j0+m−1 with an integer j0, and condition (23) reduces
to

lim
ε→0

2−j0m= 0,

which is readily satisfied for the typical situation where 2−j0 decreases as a power
of ε andm∼ log(1/ε). As a conclusion we get, in particular, that the wavelet keep-
or-kill level-by-level estimator that uses our data-driven rule attains the optimal
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rate of convergence on all the Besov classes where the linear wavelet level-wise
keep-or-kill estimators attain optimal rates.

EXAMPLE 3 (Tikhonov–Phillips estimators). Consider the set of filters

�=
{
λ= {λk} :λk = 1

1 + (k/w)α , w ∈ W , α ∈ A

}
,(24)

where A is a finite set of real numbers, possibly depending on ε:

A = {α(1), α(2), . . . , α(NA)}
such that 2β + 1/2 < αmin = α(1) < α(2) < · · · < α(NA) = αmax, and W is
a finite subset of the interval [w1,wmax], with Card(W) = NW , where NA,NW

are integers, 0<w1 <wmax <∞. Note that Card(�)=N , where N =NANW .
We get by simple algebra

∞∑
i=1

i4β

(1 + (i/w)α)4 ≥ C∗w4β+1,

∞∑
i=1

i4β

(1 + (i/w)α)2 ≤ C∗w4β+1,

where C∗ and C∗ are positive constants depending only on αmin, αmax, β . This
and (19) guarantee that Assumption 2 is satisfied.

Next,

sup
i

i2β

[1 + (i/w)α]2 =C(α,β)w2β,

where C(α,β) is bounded from 0 and ∞ uniformly for αmin ≤ α ≤ αmax.
Therefore S ≤ C(wmax/w1)

2β . Furthermore, we get similarly

ρ ≤ Cmax
λ∈� sup

i

i2β

1 + (i/w)α
( ∞∑
i=1

i4β

(1 + (i/w)α)4
)−1/2

≤Cw−1/2
1 .

Thus,

ρ
√

log(NS)≤ Cw−1/2
1

√
log(Nwmax/w1)

and, to guarantee an asymptotically exact oracle inequality, it remains to require
(in view of Corollary 1) that the parameters wmax,w1,NW ,NA are such that (15)
holds.

PROPOSITION 3. Assume that � = (λ1, . . . , λN) is the set of Tikhonov–
Phillips filters defined by (24) and that (19) holds. If N = NANW ,wmax =
wmax(ε),w1 =w1(ε) are such that

lim
ε→0

log(Nwmax/w1)

w1
= 0,(25)
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then for every θ ∈ �2 and for the estimator θ∗ = (θ∗
1 , θ

∗
2 , . . .) with θ∗

i = λ∗
i Xi we

have

Eθ‖θ∗ − θ‖2 ≤ (1 + o(1)) inf
λ∈�Rε[λ, θ],

where o(1)→ 0 uniformly in θ ∈ �2.

Note that condition (25) is very weak and it is easily checked in typical
situations. For example, one can take NW = O(ε−a), wmax = O(ε−b), for some
arbitrary fixed a > 0, b > 0, and assume that NA, αmax do not depend on ε (it is
typical to consider just a small fixed number of integers α, or even one integer α).
This should be completed, in order to satisfy (25), by the mild assumption
w1/ log2(1/ε) → ∞. Since there is no restriction on the power a, the discrete
net W can be arbitrarily fine, and it is not hard to show that optimality of our
discretized rule extends to the set of filters (24) where w varies continuously in the
interval.

4. Preliminary lemmas. Let ξi be i.i.d. N (0,1) random variables and let
v = {vi}∞1 ∈ �2 be a random sequence measurable w.r.t. {ξi}∞i=1. It is assumed
that v takes values in a finite set V of �2-sequences: v ∈ V = {v1, . . . , vN }.

LEMMA 1. For any K ≥ 1,

E

∣∣∣∣∣
∞∑
i=1

viξi

∣∣∣∣∣≤√2 log(NK)
(
E‖v‖ +

√
2E‖v‖2/K

)
.

PROOF. It suffices to consider the case where ‖vj‖ �= 0, ∀ vj ∈ V . Denote
ζv = ‖v‖−1∑∞

i=1 viξi , where the sums ‖v‖2 and
∑∞
i=1 viξi are understood in the

sense of mean squared convergence. By the Cauchy–Schwarz inequality,

E

∣∣∣∣∣
∞∑
i=1

viξi

∣∣∣∣∣≤ E‖v‖max
v∈V |ζv| ≤ E‖v‖max

v∈V |ζv|I
{

max
v∈V |ζv| ≤

√
2 log(NK)

}

+ E‖v‖max
v∈V |ζv|I

{
max
v∈V |ζv|>

√
2 log(NK)

}
≤
√

2 log(NK)E‖v‖

+ (E‖v‖2)1/2
(

E max
v∈V |ζv|2I

{
max
v∈V |ζv|>

√
2 log(NK)

})1/2

.

Now, for the function F(t)= t2I {t >√
2 log(NK)} we use that

F

(
max
v∈V |ζv|

)
≤ ∑
v∈V

F (|ζv|),
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and since ζv1, . . . , ζvN are identically distributed standard Gaussian variables, we
get

E

∣∣∣∣∣
∞∑
i=1

viξi

∣∣∣∣∣≤√
2 log(NK)E‖v‖

+ (E‖v‖2)1/2
(
NE|ζv1|2I

{
|ζv1 |>

√
2 log(NK)

})1/2

≤
√

2 log(NK)
(
E‖v‖ +

√
2E‖v‖2/K

)
,

where for the last inequality we used

E|ζv1 |2I {|ζv1|> x} ≤ 2(2π)−1/2(x + x−1) exp(−x2/2) ∀x > 0,

and NK ≥ 2. �

LEMMA 2. Let ‖v‖ �= 0, ∀v ∈ V , and denote m(v) = supi |vi |/‖v‖, mV =
maxv∈V m(v),

M(q)= ∑
v∈V

exp{−q/m(v)},(26)

where q > 0. Then for any K ≥ 1 we have

E

∣∣∣∣∣
∞∑
i=1

vi(ξ
2
i − 1)

∣∣∣∣∣≤D(√log(NK)+mV log
(
M(q)K

))(
E‖v‖ +

√
E‖v‖2/K

)
,

where D is a constant depending only on q .

PROOF. Let ηv = (
√

2‖v‖)−1∑∞
i=1 vi(ξ

2
i − 1), where the sums ‖v‖2 and∑∞

i=1 vi(ξ
2
i − 1) are understood in the sense of mean squared convergence. Using

the Markov inequality and the formula

− log(1 − x)=
∞∑
k=1

xk

k

one obtains, for any 0< t < [√2m(v)]−1,

P{ηv > x} ≤ exp(−tx)E exp(tηv)

= exp(−tx)
∞∏
i=1

exp
{
− tvi√

2‖v‖ − 1

2
log
(

1 −
√

2tvi
‖v‖

)}

= exp(−tx) exp

{ ∞∑
k=2

∞∑
i=1

1

2k

(√
2tvi

‖v‖
)k}
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≤ exp(−tx) exp

{
1

m2(v)

∞∑
k=2

1

2k

[√
2tm(v)

]k}

≤ exp(−tx) exp
{
− 1

2m2(v)
log
[
1 − √

2tm(v)
]− t√

2m(v)

}
.

Minimization of the last expression with respect to t yields

P{ηv > x} ≤ exp[ϕv(x)], ϕv(x)= 1

2m2(v)
log
[
1 + √

2xm(v)
]− x√

2m(v)
.

Note that for u≥ 0 we have

log(1 + u)− u= u
∫ 1

0

(
− τu

1 + τu
)
dτ ≤ −

∫ 1

0

τu2

1 + u dτ = − u2

2(1 + u).

Thus

ϕv(x)≤ − x2

2(1 + √
2xm(v))

,

and we conclude that

P{|ηv|> x} ≤ 2 exp
{
− x2

2(1 + √
2xm(v))

}
∀x > 0.(27)

Using (27), we find, for anyQ> 0,

Eη2
vI {|ηv|>Q} = 2

∫ ∞
Q
xP{|ηv|> x}dx

≤ 4
∫ ∞
Q
x exp

{
− x2

2(1 + √
2xm(v))

}
dx.

It is easy to see that

− x2

2(1 + √
2xm(v))

≤


−x

2

4
,

√
2m(v)x ≤ 1,

− x√
32m(v)

,
√

2m(v)x > 1,



858 CAVALIER, GOLUBEV, PICARD AND TSYBAKOV

and we get by simple algebra, for Q> q
√

32,

Eη2
vI {|ηv|>Q} ≤C exp

(
−Q

2

4

)
+CQ exp

{
− Q√

32m(v)

}
.(28)

In view of (26) we have, for anyQ> q
√

32,

∑
v∈V

exp
(
− Q√

32m(v)

)
≤M(q) exp

(
−Q/

√
32 − q
mV

)
.(29)

Now, acting as in the proof of Lemma 1 and using (28), (29) we obtain

E

∣∣∣∣∣
∞∑
i=1

vi(ξ
2
i − 1)

∣∣∣∣∣
≤ √

2E‖v‖max
v∈V |ηv|

≤ √
2E‖v‖max

v∈V |ηv|I
{

max
v∈V |ηv | ≤Q

}

+√
2E‖v‖max

v∈V |ηv |I
{

max
v∈V |ηv|>Q

}

≤ √
2QE‖v‖ +

√
2E‖v‖2

(
E max
v∈V η

2
vI

{
max
v∈V |ηv |>Q

})1/2

≤ √
2QE‖v‖ +

√
2E‖v‖2

(∑
v∈V

Eη2
vI {|ηv|>Q}

)1/2

≤ √
2QE‖v‖ +C

√
E‖v‖2

[
N exp

(
−Q

2

4

)
+M(q)Q exp

(
− Q√

32mV

)]1/2

,

for any Q> q
√

32. ChoosingQ= 2
√

log(NK)+ √
32mV log(M(q)K)+ q√32

one gets the lemma. �

Consider the estimator

θ̃i = λi(X)Xi,
where λi = λi(X) ∈ [−1,1] depends on the data X [not necessarily λi(X) =
λ∗
i (X)]. We assume that the filter λ(X) = (λ1(X),λ2(X), . . .) takes values in the

set of candidate filters �. In the next lemma we give a bound for the risk of this
estimator. We need the following notation:

Fε[λ] = ε2L� sup
i

σ 2
i λ

2
i ∀λ ∈�.
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LEMMA 3. For any B > 0 we have

Eθ‖θ̃ − θ‖2 ≤ (1 + 2B−1)EθRε[λ(X), θ] +CBEθFε[λ(X)],
where C > 0 is an absolute constant.

PROOF. Write

Eθ‖θ̃ − θ‖2 = Eθ

[ ∞∑
i=1

(
1 − λi(X))2θ2

i + ε2
∞∑
i=1

σ 2
i λ

2
i (X)

]

−2εEθ
∞∑
i=1

(
1 − λi(X))θiλi(X)σiξi(30)

+ ε2Eθ
∞∑
i=1

σ 2
i λ

2
i (X)(ξ

2
i − 1).

Using Lemma 1 with K = S we get

Eθ

∣∣∣∣∣
∞∑
i=1

(
1 − λi(X))θiλi(X)σiξi

∣∣∣∣∣
≤
√

2 log(NS)Eθ

[ ∞∑
i=1

(
1 − λi(X))2θ2

i λ
2
i (X)σ

2
i

]1/2

+ 2
√

log(NS)S−1/2

[
Eθ

∞∑
i=1

(
1 − λi(X))2θ2

i λ
2
i (X)σ

2
i

]1/2

≤
√

2 log(NS)Eθ

[
sup
i

|σi | |λi(X)|
( ∞∑
i=1

(
1 − λi(X))2θ2

i

)1/2]

+ 2
√

log(NS)S−1/2

[
Eθ

∞∑
i=1

(
1 − λi(X))2θ2

i

]1/2

max
λ∈� sup

i

|σi | |λi|.

Now (13) and the elementary inequality 2ab ≤ B−1a2 + Bb2, ∀B > 0, yield, for
any B > 0,

εEθ

∣∣∣∣∣
∞∑
i=1

[1 − λi(X)]θiλi(X)σiξi
∣∣∣∣∣

≤ B−1Eθ
∞∑
i=1

[1 − λi(X)]2θ2
i

+ ε2B log(NS)Eθ sup
i

σ 2
i λ

2
i (X)+ ε2B log(NS)min

λ∈� sup
i

σ 2
i λ

2
i

≤ B−1Eθ
∞∑
i=1

[1 − λi(X)]2θ2
i + 2BEθFε[λ(X)].

(31)
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To bound the last term in (30) we use Lemma 2 with vi = σ 2
i λ

2
i (X), K = S,

q = 1. The inequalities |λi(X)| ≤ 1 and (12) entailm(v)≤ ρ(λ(X))≤ √
C1. Thus,

M(1) = ∑
v∈V exp{−1/m(v)} ≤ M . Note also that mV ≤ ρ and

√
log(NS) +

mV log(M(q)S)≤ √
2L�. Therefore, application of Lemma 2 yields

ε2Eθ

∣∣∣∣∣
∞∑
i=1

σ 2
i λ

2
i (X)(ξ

2
i − 1)

∣∣∣∣∣
≤D√2L�ε

2

{
Eθ

[ ∞∑
i=1

σ 4
i λ

4
i (X)

]1/2

+ S−1/2

[
Eθ

∞∑
i=1

σ 4
i λ

4
i (X)

]1/2}
.

Next, by (13),

S−1/2

[
Eθ

∞∑
i=1

σ 4
i λ

4
i (X)

]1/2

≤ min
λ∈� sup

i

σiλi

[
Eθ

∞∑
i=1

σ 2
i λ

2
i (X)

]1/2

≤
[

Eθ sup
i

σ 2
i λ

2
i (X)Eθ

∞∑
i=1

σ 2
i λ

2
i (X)

]1/2

.

Hence, for any B > 0,

ε2Eθ

∣∣∣∣∣
∞∑
i=1

σ 2
i λ

2
i (X)(ξ

2
i − 1)

∣∣∣∣∣
≤D√2L�ε

2Eθ

[
sup
i

|σi| |λi(X)|
( ∞∑
i=1

σ 2
i λ

2
i (X)

)1/2]

+D√2L�ε
2

[
Eθ sup

i

σ 2
i λ

2
i (X)Eθ

∞∑
i=1

σ 2
i λ

2
i (X)

]1/2

(32)

≤ 2ε2B−1Eθ
∞∑
i=1

σ 2
i λ

2
i (X)+D2L�ε

2BEθ sup
i

σ 2
i λ

2
i (X)

= 2ε2B−1Eθ
∞∑
i=1

σ 2
i λ

2
i (X)+D2BEθFε[λ(X)].

Combining (30)–(32) we complete the proof. �
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5. Proof of the theorems. Denote by λ0 = (λ0
1, λ

0
2, . . .) the oracle λ0 =

arg minλ∈�Rε[λ, θ]. We have

EθU [λ∗,X] = EθRε[λ∗, θ] −
∞∑
i=1

θ2
i

+2εEθ
∞∑
i=1

(λ∗2
i − 2λ∗

i )θiσiξi + ε2Eθ
∞∑
i=1

(λ∗2
i − 2λ∗

i )σ
2
i (ξ

2
i − 1)

= EθRε[λ∗, θ] −
∞∑
i=1

θ2
i

+2εEθ
∞∑
i=1

(1 − λ∗
i )

2θiσiξi + ε2Eθ
∞∑
i=1

(λ∗2
i − 2λ∗

i )σ
2
i (ξ

2
i − 1).

(33)

We now bound the last two terms in (33). First, note that[
(1 − λ∗

i )
2 − (1 − λ0

i )
2]2 = [(1 − λ∗

i )+ (1 − λ0
i )]2[λ∗

i − λ0
i ]2

≤ 2
[
(1 − λ∗

i )
2 + (1 − λ0

i )
2](λ∗2

i + λ02
i ).

(34)

Then we have, by Lemma 1 with K = S and (34),

εEθ
∞∑
i=1

(1 − λ∗
i )

2θiσiξi

= εEθ
∞∑
i=1

[
(1 − λ∗

i )
2 − (1 − λ0

i )
2]θiσiξi

≥ −εEθ
∣∣∣∣∣

∞∑
i=1

[
(1 − λ∗

i )
2 − (1 − λ0

i )
2]θiσiξi

∣∣∣∣∣
≥ −ε

√
2 log(NS)Eθ

{ ∞∑
i=1

[
(1 − λ∗

i )
2 − (1 − λ0

i )
2]2θ2

i σ
2
i

}1/2

−2ε
√

log(NS)/S

{
Eθ

∞∑
i=1

[
(1 − λ∗

i )
2 − (1 − λ0

i )
2]2θ2

i σ
2
i

}1/2

≥ −2ε
√

log(NS)Eθ

{ ∞∑
i=1

[
(1 − λ∗

i )
2 + (1 − λ0

i )
2](λ∗2

i + λ02
i )θ

2
i σ

2
i

}1/2

−2ε
√

2 log(NS)/S

{
Eθ

∞∑
i=1

[
(1 − λ∗

i )
2 + (1 − λ0

i )
2](λ∗2

i + λ02
i )θ

2
i σ

2
i

}1/2

.
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The argument as in the proof of Lemma 3 gives, for any B > 0,

2ε
√

log(NS)Eθ

{ ∞∑
i=1

[
(1 − λ∗

i )
2 + (1 − λ0

i )
2](λ∗2

i + λ02
i )θ

2
i σ

2
i

}1/2

≤ 1

2B
Eθ

∞∑
i=1

[
(1 − λ∗

i )
2 + (1 − λ0

i )
2]θ2

i

+2Bε2 log(NS)Eθ

{
sup
i

σ 2
i λ

∗2
i + sup

i

σ 2
i λ

02
i

}
and

2ε
√

2 log(NS)/S

{
Eθ

∞∑
i=1

[
(1 − λ∗

i )
2 + (1 − λ0

i )
2](λ∗2

i + λ02
i )θ

2
i σ

2
i

}1/2

≤ 2ε
√

2 log(NS)/S

{
Eθ

∞∑
i=1

[
(1 − λ∗

i )
2 + (1 − λ0

i )
2]θ2

i

}1/2

×
(

max
λ∈� sup

i

{
σ 2
i λ

2
i + σ 2

i λ
02
i

})1/2

≤ 1

2B
Eθ

∞∑
i=1

[
(1 − λ∗

i )
2 + (1 − λ0

i )
2]θ2

i

+4Bε2 log(NS)Eθ

{
sup
i

σ 2
i λ

∗2
i + sup

i

σ 2
i λ

02
i

}
.

Putting together these inequalities, we find

εEθ
∞∑
i=1

(1 − λ∗
i )

2θiσiξi

≥ −B−1Eθ
∞∑
i=1

(1 − λ∗
i )

2θ2
i

−B−1
∞∑
i=1

(1 − λ0
i )

2θ2
i − 6Bε2 log(NS)Eθ

{
sup
i

σ 2
i λ

∗2
i + sup

i

σ 2
i λ

02
i

}

≥ −B−1Eθ
∞∑
i=1

(1 − λ∗
i )

2θ2
i −B−1Rε[λ0, θ] − 6BEθFε[λ∗] − 6BFε[λ0].

(35)

Now, we bound the last term in (33) using Lemma 2 with K = S, q = 3 and
vi = (λ∗2

i − 2λ∗
i )σ

2
i . Note that

λ2
i ≤ (λ2

i − 2λi)
2 ≤ 9λ2

i ∀ |λi | ≤ 1.
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This and (12) entail

m(v)= supi |λ2
i − 2λi|σ 2

i[∑∞
i=1 σ

4
i (λ

2
i − 2λi)2

]1/2 ≤ 3ρ(λ)≤ 3
√
C1.

Hence,M(3)=∑
v∈V exp{−3/m(v)} ≤M . Furthermore, mV ≤ 3ρ, and√

log(NS)+mV log
(
M(3)S

)≤ C√L�.
Therefore, by Lemma 2, we obtain

ε2Eθ
∞∑
i=1

(1 − λ∗
i )

2σ 2
i (ξ

2
i − 1)

≥ −C√L�ε2Eθ

[ ∞∑
i=1

(λ∗2
i − 2λ∗

i )
2σ 4
i

]1/2

−C√L�ε2S−1/2

[
Eθ

∞∑
i=1

(λ∗2
i − 2λ∗

i )
2σ 4
i

]1/2

≥ −C√L�ε2

{
Eθ

[ ∞∑
i=1

σ 4
i λ

∗4
i

]1/2

+ S−1/2

[
Eθ

∞∑
i=1

σ 4
i λ

∗4
i

]1/2}
.

Here and below in this section C is a generic notation for positive constants that
depend only on C1. Repeating the argument of (32) to bound the last expression
we finally get

ε2Eθ
∞∑
i=1

(1 − λ∗
i )

2σ 2
i (ξ

2
i − 1)

≥ −2ε2B−1Eθ
∞∑
i=1

σ 2
i λ

∗2
i −Cε2BL�Eθ sup

k

σ 2
k λ

∗2
k(36)

= −2ε2B−1Eθ
∞∑
i=1

σ 2
i λ

∗2
i −CBEθFε[λ∗].

Now we are ready to complete the proof of Theorems 1 and 2. From (35), (36)
we have

2εEθ
∞∑
i=1

(1 − λ∗
i )

2θiσiξi + ε2Eθ
∞∑
i=1

(1 − λ∗
i )

2σ 2
i (ξ

2
i − 1)

≥ −2B−1Rε[λ∗, θ] − 2B−1Rε[λ0, θ] −CBEθFε[λ∗] −CBFε[λ0].
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This and (33) yield

EθRε[λ∗, θ] ≤ EθU [λ∗,X] +
∞∑
i=1

θ2
i + 2B−1EθRε[λ∗, θ]

+CBEθFε[λ∗] + 2B−1Rε[λ0, θ] +CBFε[λ0].
(37)

By definition of λ∗ and (9),

EθU [λ∗,X] ≤ EθU [λ0,X] =Rε[λ0, θ] −
∞∑
i=1

θ2
i .

This and (37) imply

(1 − 2B−1)EθRε[λ∗, θ] ≤ (1 + 2B−1)Rε[λ0, θ]
+CBEθFε[λ∗] +CBFε[λ0].(38)

Next, by Lemma 3 for any B > 0,

Eθ‖θ∗ − θ‖2 ≤ (1 + 2B−1)EθRε[λ∗, θ] +CBEθFε[λ∗].(39)

Inequalities (38) and (39) entail Theorems 1 and 2. In fact, to get Theorem 1 we
use the following argument. Note that, for any x > 0,

sup
i

σ 2
i λ

2
i = sup

i

σ 2
i λ

2
i I

{
x sup

i

σ 2
i λ

2
i <

∞∑
i=1

σ 2
i λ

2
i

}

+ sup
i

σ 2
i λ

2
i I

{
x sup

i

σ 2
i λ

2
i ≥

∞∑
i=1

σ 2
i λ

2
i

}

≤ 1

x

∞∑
i=1

σ 2
i λ

2
i + max

λ∈� sup
i

σ 2
i λ

2
i I

{
x sup

i

σ 2
i λ

2
i ≥

∞∑
i=1

σ 2
i λ

2
i

}

= 1

x

∞∑
i=1

σ 2
i λ

2
i +ω(x)≤ 1

xε2Rε[λ, θ] +ω(x) ∀ θ ∈ �2.

This inequality with x = B2L�, the definition of Fε[λ] and (38), (39) yield
Theorem 1.

PROOF OF THEOREM 2. Note first that, in view of (11),

supi σ
2
i λ

2
i∑∞

i=1 σ
2
i λ

2
i

≤ ρ supi σ
2
i λ

2
i(∑∞

i=1 σ
4
i λ

4
i

)1/2 ≤ ρ2.

Thus,

Fε[λ] ≤ ρ2L�Rε[λ, θ] ∀λ ∈�, θ ∈ �2.(40)
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Substitution of (40) into (38) and (39) gives, respectively,

EθRε[λ∗, θ] ≤ 1 + 2B−1 + γ5Bρ
2L�

1 − 2B−1 − γ6Bρ2L�
Rε[λ0, θ](41)

(provided the denominator here is positive) and

Eθ‖θ∗ − θ‖2 ≤ (1 + 2B−1 + γ7Bρ
2L�)EθRε[λ∗, θ].(42)

The constants γi here are positive and depend only on C1. There exists γ4 > 0
small enough such that if ρ2L� < γ4, the choice of B = (ρ2L�)

−1/2 satisfies the
inequality 2B−1 + γ6Bρ

2L� < 1/2. With this choice of B , (41) and (42) entail
Theorem 2. �

6. Application to sharp adaptive estimation. In this section we apply the
oracle inequalities of Section 2 to show that sharp minimax adaptive estimators
for inverse problems can be obtained by the principle of unbiased risk estimation.
We study the problem where sharp adaptive estimators were not known previously,
namely a recovery of anisotropic smooth functions from indirect noisy data. For
brevity, we restrict the discussion to a specific example (measuring the temperature
of the earth). However, the key elements of the proofs are given under general
assumptions and the result can be easily extended.

Let φ = (φ1, φ2) be the polar coordinates of a point on the surface of the earth
(we suppose for simplicity that the earth is a sphere). Consider the problem of
measuring the temperature t (φ) at the point φ. The function t (φ) is sufficiently
smooth (since it is a solution of a thermal conductivity equation) and, of course,
periodic. More specifically, we assume that t (φ) belongs the following anisotropic
Sobolev ball:

Wm
2 (p)=

{
t :
∫
T

[
p2

1

(
∂m1 t

∂φ
m1
1

)2

+ p2
2

(
∂m2 t

∂φ
m2
2

)2]
dφ ≤ 1

}
,(43)

where T = [0,2π ] × [0,2π ] and the parameters m = (m1,m2), p = (p1,p2)

characterize the smoothness of the function t (φ)with respect to φ1 and φ2 (mi ∈ N,
pi > 0). The anisotropic character of smoothness here is important and reflects the
fact that the temperature changes more rapidly along the meridians than along the
parallels.

Next, it is assumed that temperature is measured by means of remote infrared
detectors located for instance on satellites or on planes. It means that one cannot
measure temperature at a given point directly, but one rather measures an average
temperature in a vicinity of this point, that is,

Et(φ)= 1

C(α0)

∫ ∞
−∞

∫ ∞
−∞

exp{−2πα0‖φ − φ′‖}t (φ′
1, φ

′
2) dφ

′
1 dφ

′
2.

Here C(α0) is the normalizing constant,

C(α0)=
∫ ∞
−∞

∫ ∞
−∞

exp{−2πα0‖φ‖}dφ1 dφ2
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and ‖φ‖2 = φ2
1 +φ2

2 . The parameter α−1
0 characterizes the size of the vicinity of the

point where we measure the temperature. (We consider here and below integration
over the whole line instead of integration over T , in order to simplify the technical
details and the resulting sequence model.)

The measurements are contaminated by a noise inherent to infrared detection.
We may write the resulting model as

y(φ)= Et(φ)+ εn(φ), φ ∈ T,(44)

where n(φ) is a standard white Gaussian noise in the Hilbert space of periodic
functions. Writing (44) means that for every g ∈ L2(T ) we observe the random
variable Y (g)= (g,Et)+ εξ(g), where ξ(g)∼ N (0,‖g‖2) and E(ξ(g)ξ(g′))= 0
if (g, g′)= 0 [here (·, ·) and ‖ · ‖ are the scalar product and the norm in L2(T )].

Since the function t (φ1, φ2) is periodic it is convenient to consider the statistical
model (44) in the Fourier domain. Denote by

θkl =
∫
T

exp(ikφ1 + ilφ2)t (φ) dφ, k, l = 0,±1,±2, . . . ,

the Fourier coefficients of t (φ). Then (44) is equivalent to the model

zkl = θkl + εσklξkl,(45)

where zkl = Y (exp(ikφ1 + ilφ2)), ξkl are i.i.d. N (0,1) random variables and

σ−2
kl = 1

C(α0)

∫ ∞
−∞

∫ ∞
−∞

exp{ikφ1 + ilφ2 − 2πα0‖φ‖}dφ = α3
0

(α2
0 + k2 + l2)3/2 .

[For the last equality see, for instance, Stein and Weiss (1971), Theorem 1.14.]
Note also that the image of Sobolev’s ball Wm

2 (p) in the Fourier domain has the
form

Lm2 (p)=
{
{θkl} :

∞∑
k,l=−∞

θ2
kla

2
kl ≤ 1

}
,(46)

where akl = [p2
1(2πk)

2m1 + p2
2(2πl)

2m2]1/2. Thus our problem is equivalent to
recovering the Fourier coefficients θ = {θkl} based on the data (45) under the prior
information provided by (46).

Recall that an estimator θ̂M is called asymptotically minimax on Lm2 (p) if, as
ε→ 0,

rε[Lm2 (p)] = inf
θ̃

sup
θ∈Lm2 (p)

E‖θ̃ − θ‖2 = (
1 + o(1)) sup

θ∈Lm2 (p)
E‖θ̂M − θ‖2,

where the infimum is taken over all estimators. The next proposition derived from
Pinsker’s (1980) theorem gives an asymptotically minimax estimator and its risk.

Denote by µ a root of the equation

ε2

µ

∑
k,l

σ 2
klakl[1 −µakl]+ = 1.(47)
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PROPOSITION 4. The linear estimator

θ̂Mkl = [1 −µakl]+zkl, k, l = 0,±1,±2, . . . ,(48)

is asymptotically minimax on Lm2 (p) with risk

sup
θ∈Lm2 (p)

E‖θ̂M − θ‖2 = ε2
∑
k,l

σ 2
kl[1 −µakl]+.

Using this proposition one can compute the asymptotic minimax risk with the
exact constant. The calculations are cumbersome and we do not reproduce them
here, since the knowledge of the exact asymptotic minimax risk is not needed to
prove sharp adaptivity of our estimator. We need only to evaluate the order of
rε[Lm2 (p)]:

LEMMA 4. Let m2 ≥m1. Then, as ε→ 0,

rε[Lm2 (p)] ≤ C(α3
0p

4/m1
1 p

1/m2
2

)−γ
ε2γ

and

µ=O(εγ ),
where the constant C > 0 does not depend on α0,p1,p2 and

γ = 2m1m2

2m1m2 +m1 + 4m2
.

REMARK 4. We can write γ = 2s/(2s + 1), where

1

s
= 1

m2
+ 4

m1
= 1

max(m1,m2)
+ 4

min(m1,m2)
.

It is remarkable that the respective roles of m1 and m2 are not equivalent, unlike
the case where σkl ≡ 1. The coefficient σkl is symmetric in k, l, and nevertheless
the rate is asymmetric. This effect is due to the anisotropy of the class Lm2 (p).

PROOF OF LEMMA 4. Denote Vi = (2π)−1(piµ)
−1/mi , i = 1,2. Since σ 2

kl is
increasing in k, l we have

ε2
∑
k,l

σ 2
kl[1 −µakl]+ ≤ Cε2V1V2σ

2
V1V2

.(49)

Here and later we denote by C positive constants, possibly different on different
occasions. It is clear from (47) that µ → 0 (and thus V1 → ∞, V2 → ∞), as
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ε→ 0. Consequently, for ε small enough we get∑
k≥V1/2, l≥V2/2

akl[1 −µakl]+

≥ 2−m2µ−1
∑

k≥V1/2, l≥V2/2

[
1 −

√
(k/V1)2m1 + (l/V2)2m2

]
+

≥ 2−m2µ−1
∫
x≥V1/2+1

∫
y≥V2/2+1

[
1 −

√
(x/V1)2m1 + (y/V2)2m2

]
+ dx dy

≥ 2−m2V1V2µ
−1
∫
x≥1/2+1/V1

∫
y≥1/2+1/V2

[
1 −

√
x2 + y2

]
+ dx dy

≥ CV1V2µ
−1,

(50)

where we used that m1 ≥ 1, m2 ≥ 1. Noting that σ 2�k/2��l/2� ≥ cσ 2
kl, where c > 0

does not depend on k, l, and using (50) one obtains

1 = ε2

µ

∑
k,l

σ 2
klakl[1 −µakl]+ ≥ cε2

µ

∑
|k|≥V1/2,|l|≥V2/2

σ 2
V1V2

akl[1 −µakl]+

≥ Cε2µ−2V1V2σ
2
V1V2

= Cα−3
0 ε2µ−2V1V2(α

2
0 + V 2

1 + V 2
2 )

3/2.

The proof follows now from this inequality, (49), Proposition 4 and simple
algebra. �

The minimax estimator θ̂M defined by (48) depends on the parameters (m,p) of
the functional classLm2 (p), which are usually not known in practice. To overcome
this drawback of θ̂M we construct another estimator which is asymptotically
minimax but does not depend on the parameters of the Sobolev ball. This estimator
is called sharp adaptive. We show that a sharp adaptive estimator can be obtained
by using the filter (10) with appropriately chosen set �.

Let �0 be the set of all filters with weights λkl having the form

λkl(W,β)= λkl(W1,W2, β1, β2)=
[
1 −

√
(k/W1)2β1 + (l/W2)2β2

]
+,

where W ∈ [log(1/ε),∞) × [log(1/ε),∞), β ∈ [1,∞) × [1,∞). The minimax
filter belongs to this set for ε small enough [cf. (48) and note that µ = O(εγ )

by Lemma 4]. Unfortunately �0 contains infinitely many elements and we cannot
apply Theorem 1 for �=�0. Note also that the direct numerical minimization of
the unbiased risk estimator over�0 is very time consuming. Therefore we look for
a finite subfamily which approximates well the filters in�0. To make the estimator
numerically feasible we will pick an approximating set containing the “minimal”
number of elements.

Let δ = log−1(1/ε). Denote wδ(k) = (1 + δ)k , k = 1,2, . . . , and βδ(k) =
(1 − δk)−1, k = 1,2, . . . , �1/δ�. Define the approximating finite subfamily �δ as
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a set of filters of the following form: λ= {λkl(wδ(i),wδ(j), βδ(s), βδ(p))}, where
i, j, s,p ∈ N are such that (wδ(i),wδ(j)) ∈ [log(1/ε), ε−1] × [log(1/ε), ε−1] and
(βδ(s), βδ(p)) ∈ (1,√log(1/ε)] × (1,√log(1/ε)].

Although, for the sake of simplicity, we assumed here a specific form of σkl , our
results hold for the general situation where σkl satisfy the following assumption.

ASSUMPTION 3. The sequence σ 2
kl is positive, monotone nondecreasing in k

and l, and there exists c∗ > 0 such that σ 2�k/2��l/2� ≥ c∗σ 2
kl for all k, l.

LEMMA 5. Let Assumption 3 hold. For any λ ∈�0 there exists a filter λ′ ∈�δ
such that, for all θ ∈ l2,

Eθ‖θ̂ (λ′)− θ‖2 ≤ (1 +Cδ)Eθ‖θ̂ (λ)− θ‖2,(51)

where C > 0 does not depend on θ,λ,λ′.

PROOF. Since

Eθ‖θ̂ (λ)− θ‖2 =∑
k,l

(1 − λkl)2θ2
kl + ε2

∑
k,l

σ 2
klλ

2
kl

it suffices to show that for any λ ∈ �0 there exists a filter λ′ ∈ �δ such that
λkl ≤ λ′

kl for all k, l and ∑
k,l

σ 2
klλ

′2
kl ≤ (1 +Cδ)∑

k,l

σ 2
klλ

2
kl .

To prove this, first note that the componentwise inequality (W,β) ≤ (W ′, β ′)
implies

λkl(W,β)≤ λkl(W ′, β ′).(52)

Fix (W,β)= (W1,W2, β1, β2) and define

i0 = max{i :wδ(i)≤W1}, j0 = max{j :wδ(j)≤W2},
s0 = max{s :βδ(s)≤ β1}, p0 = max{p :βδ(p)≤ β2}.

Set

(W 0, β0)= (
wδ(i0),wδ(j0), βδ(s0), βδ(p0)

)
,

(W 1, β1)= (
wδ(i0 + 1),wδ(j0 + 1), βδ(s0 + 1), βδ(p0 + 1)

)
.

We have (W 0, β0)≤ (W,β)≤ (W 1, β1), and thus

λkl(W
0, β0)≤ λkl(W,β)≤ λkl(W 1, β1).(53)

Set λ′
kl = λkl(W 1, β1). In view of (53) it suffices to show that∑

k,l

σ 2
klλ

2
kl(W

1, β1)≤ (1 +Cδ)∑
k,l

σ 2
klλ

2
kl(W

0, β0).(54)
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Let V (W1,W2, β1, β2) = ∑
k,l σ

2
klλ

2
kl(W1,W2, β1, β2). From Lemma 6 of the

Appendix we have

V (W 1, β1)− V (W 0, β0)

≤ CV (W 0, β0)max
k

(
wδ(k + 1)−wδ(k)

wδ(k)
+ βδ(k + 1)− βδ(k)

β2
δ (k + 1)

)
.

This and the obvious inequalities

βδ(k + 1)− βδ(k)≤ δβ2
δ (k + 1), wδ(k + 1)−wδ(k)= δwδ(k)

imply (54). Lemma 5 is proved. �

Now, choose the data-driven filter λ∗ = (λ∗
kl , k, l = 0,±1,±2, . . .) in the finite

family of filters �=�δ using the unbiased risk estimator as in (10):

λ∗ = arg min
λ∈�δ

{∑
k,l

(λ2
kl − 2λkl)z

2
kl + 2ε2

∑
k,l

σ 2
klλkl

}
.

THEOREM 3. The estimator θ∗ = (θ∗
kl , k, l = 0,±1,±2, . . .), where θ∗

kl =
λ∗
klzkl , is minimax sharp adaptive on the scale of Sobolev classes; that is, for

every (m,p) such that mi ∈ N, pi > 0 we have

sup
θ∈Lm2 (p)

Eθ‖θ∗ − θ‖2 ≤ (1 + o(1)) inf
θ̃

sup
θ∈Lm2 (p)

Eθ‖θ̃ − θ‖2, ε→ 0,(55)

where inf
θ̃

is the infimum over all estimators.

PROOF. We apply Theorem 1. First, we check Assumptions 1 and 2.
Assumption 1 is obvious; Assumption 2 follows from the inequalities [cf. (59)
of the Appendix]∑

k,l

σ 4
klλ

4
kl ≥ c∗σ 4

W1W2

∑
|k|≥W1/2,|l|≥W2/2

λ4
kl ≥ CW1W2σ

4
W1W2

(56)

and ∑
k,l

σ 4
klλ

2
kl ≤

∑
|k|≤W1, |l|≤W2

σ 4
kl ≤ CW1W2σ

4
W1W2

,

where the constants C > 0 do not depend on (W,β). Again using (56), we find

ρ(λ)≤ sup
|k|≤W1, |l|≤W2

σ 2
kl

(∑
k,l

σ 4
klλ

4
kl

)−1/2

≤ C(W1W2)
−1/2 ≤ C log−1(1/ε),
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where the constants C > 0 do not depend on (W,β). Furthermore, using (59) of
the Appendix, we obtain

ω(x)≤ max
λ∈�0

max
k,l
σ 2
klλ

2
klI

{∑
k,l

σ 2
klλ

2
kl ≤ xmax

k,l
σ 2
klλ

2
kl

}

≤ max
W1,W2

max|k|≤W1,|l|≤W2
σ 2
klI

{
CW1W2σ

2
W1W2

≤ x max|k|≤W1,|l|≤W2
σ 2
kl

}
≤ C max

W1,W2
[W 2

1 +W 2
2 ]3/2I {W1W2 ≤ Cx} ≤ Cx3 log−3(1/ε),

where we used that Wi ≥ log(1/ε). Next, N = Card(�δ) is of the order log6(1/ε)
and the parameter S has the order ε−3. Thus by Theorem 1 and Lemma 5 one
concludes that for ε small enough the estimator θ∗ satisfies the oracle inequality

Eθ‖θ∗ − θ‖2 ≤ (1 +CB−1) min
λ∈�δ

Eθ‖θ̂ (λ)− θ‖2 +Cε2B7 log(1/ε)

≤ (1 +CB−1)(1 +Cδ) min
λ∈�0

Eθ‖θ̂ (λ)− θ‖2 +Cε2B7 log(1/ε)(57)

= (1 +CB−1)(1 +Cδ)Eθ‖θ̂M − θ‖2 +Cε2B7 log(1/ε),

where θ̂M is the asymptotically minimax estimator defined in (48). For the last
equality we used that this estimator belongs to �0 for ε small enough [in view
of (48) and the fact that µ = O(εγ ) by Lemma 4]. Choose B = ε−r/4, where
r = 1 − γ > 0 and γ is defined in Lemma 4. Taking the supremum of (57) w.r.t.
θ ∈Lm2 (p), using Proposition 4 and observing that by Lemma 4 the minimax risk
overLm2 (p) has the order ε2−2r , we get (55). �

Note that Theorem 3 remains valid if m in the definition of the ellipsoid Lm2 (p)
is real-valued. Furthermore, it is easy to see from the proof that the o(1) in (55)
converges to 0 uniformly over a large set of values m,p.

APPENDIX

LEMMA 6. Let Assumption 3 hold. Let (W1,W2, β1, β2) belong to the set W =
[log(1/ε),∞) × [log(1/ε),∞) × [1,√log(1/ε)] × [1,√log(1/ε)]. The partial
derivatives of logV satisfy uniformly over W the inequalities∣∣∣∣ ∂∂Wi logV

∣∣∣∣≤ CW−1
i ,

∣∣∣∣ ∂∂βi logV
∣∣∣∣≤ Cβ−2

i , i = 1,2.(58)
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PROOF. Using Assumption 3 and acting as in (50) we get, for Wi ≥ log(1/ε),

V (W1,W2, β1, β2)

=∑
k,l

σ 2
klλ

2
kl(W1,W2, β1, β2)

≥ c∗σ 2
W1W2

∑
|k|≥W1/2,|l|≥W2/2

λ2
kl(W1,W2, β1, β2)

≥ c∗σ 2
W1W2

∫
|x|≥W1/2+1

∫
|y|≥W2/2+1

[
1 −

√
(x/W1)2β1 + (y/W2)2β2

]2

+ dx dy

≥ c∗W1W2σ
2
W1W2

∫
|x|≥1/2+1/W1

∫
|y|≥1/2+1/W2

[
1 −

√
x2 + y2

]2

+ dx dy

≥ CW1W2σ
2
W1W2

,

(59)

where the constant C > 0 does not depend on (W,β). For brevity write A(x, y)=
(x2β1 + y2β2)−1/2. Since A(x, y)≤ x−β1 , ∀ x > 0, y > 0, one obtains∣∣∣∣ ∂∂W1

V

∣∣∣∣=
∣∣∣∣∣ ∂∂W1

∑
k,l

σ 2
klλ

2
kl(W1,W2, β1, β2)

∣∣∣∣∣
= 4β1W

−1
1

∑
k,l

σ 2
klλkl(W1,W2, β1, β2)A

(
k

W1
,
l

W2

)(
k

W1

)2β1−1

≤ 4β1W
−1
1 σ 2

W1W2

∑
|k|≤W1,|l|≤W2

(
k

W1

)β1−1

≤ Cβ1W
−1
1 σ 2

W1W2
W2

[
W1

∫ 1

0
xβ1−1dx + 1

]
≤ CW2σ

2
W1W2

,

(60)

where the constants C > 0 do not depend on (W,β), and we used that W1 ≥
log(1/ε),β1 ≤ √

log(1/ε). Combining (59) and (60) we get the first inequality
in (58). The second inequality in (58) is checked similarly. In fact, it suffices to
use (59) and the relation

∣∣∣∣ ∂∂β1
V

∣∣∣∣=
∣∣∣∣∣ ∂∂β1

∑
k,l

σ 2
klλ

2
kl(W1,W2, β1, β2)

∣∣∣∣∣
= 4

∑
k,l

σ 2
klλkl(W1,W2, β1, β2)A

(
k

W1
,
l

W2

)(
k

W1

)2β1

log
k

W1

≤ 4σ 2
W1W2

∑
k,l

[
1 −

√√√√( k
W1

)2β1

+
(
l

W2

)2β2
]

+

(
k

W1

)β1 ∣∣∣∣log
k

W1

∣∣∣∣
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≤ CW2σ
2
W1W2

∑
|k|≤W1

(
k

W1

)β1 ∣∣∣∣log
k

W1

∣∣∣∣
≤ CW2σ

2
W1W2

[
W1

∫ 1

0
xβ1 | log(x)|dx + 1

]
≤CW1W2σ

2
W1W2

β−2
1 ,

where the constants C > 0 do not depend on (W,β), and we used that W1 ≥
log(1/ε),β1 ≤ √

log(1/ε). �
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