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ORACLE INEQUALITIES FOR NETWORK MODELS AND SPARSE
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Inhomogeneous random graph models encompass many network mod-
els such as stochastic block models and latent position models. We consider
the problem of statistical estimation of the matrix of connection probabili-
ties based on the observations of the adjacency matrix of the network. Taking
the stochastic block model as an approximation, we construct estimators of
network connection probabilities—the ordinary block constant least squares
estimator, and its restricted version. We show that they satisfy oracle inequal-
ities with respect to the block constant oracle. As a consequence, we derive
optimal rates of estimation of the probability matrix. Our results cover the
important setting of sparse networks. Another consequence consists in estab-
lishing upper bounds on the minimax risks for graphon estimation in the L2
norm when the probability matrix is sampled according to a graphon model.
These bounds include an additional term accounting for the “agnostic” error
induced by the variability of the latent unobserved variables of the graphon
model. In this setting, the optimal rates are influenced not only by the bias and
variance components as in usual nonparametric problems but also include the
third component, which is the agnostic error. The results shed light on the dif-
ferences between estimation under the empirical loss (the probability matrix
estimation) and under the integrated loss (the graphon estimation).

1. Introduction. Consider a network defined as an undirected graph with n

nodes. Assume that we observe the values Aij ∈ {0,1} where Aij = 1 is inter-
preted as the fact that the nodes i and j are connected and Aij = 0 otherwise. We
set Aii = 0 for all 1 ≤ i ≤ n and we assume that Aij is a Bernoulli random variable
with parameter (�0)ij = P(Aij = 1) for 1 ≤ j < i ≤ n. The random variables Aij ,
1 ≤ j < i ≤ n, are assumed independent. We denote by A the adjacency matrix,
that is, the n × n symmetric matrix with entries Aij for 1 ≤ j < i ≤ n and zero di-
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agonal entries. Similarly, we denote by �0 the n×n symmetric matrix with entries
(�0)ij for 1 ≤ j < i ≤ n and zero diagonal entries. This is a matrix of probabilities
associated to the graph; the nodes i and j are connected with probability (�0)ij .
The model with such observations A′ = (Aij , 1 ≤ j < i ≤ n) is a special case of
inhomogeneous random graph model that we will call for definiteness the network
sequence model1 to emphasize a parallel with the Gaussian sequence model.

1.1. Graphons and sparse graphon models. Networks arise in many areas
such as information technology, social life and genetics. These real-life networks
are in permanent movement and often their size is growing. Therefore, it is natu-
ral to look for a well-defined “limiting object” independent of the network size n

and such that a stochastic network can be viewed as a partial observation of this
limiting object. Such objects, called the graphons, play a central role in the re-
cent theory of graph limits introduced by Lovász and Szegedy [12]. For a detailed
description of this theory, we refer to the monograph by Lovász [11]. Graphons
are symmetric measurable functions W : [0,1]2 → [0,1]. In the sequel, the space
of graphons is denoted by W . The main message is that every graph limit can be
represented by a graphon. This beautiful theory of graph limits was developed for
dense graphs, that is, graphs with the number of edges comparable to the square
of the number of vertices.

Graphons give a natural way of generating random graphs [9, 11]. The proba-
bility that two distinct nodes i and j are connected in the graphon model is the
random variable

(1) (�0)ij = W0(ξi, ξj ),

where ξ1, . . . , ξn are unobserved (latent) i.i.d. random variables uniformly dis-
tributed on [0,1]. As above, the diagonal entries of �0 are zero. Conditionally
on ξ = (ξ1, . . . , ξn), the observations Aij for 1 ≤ j < i ≤ n are assumed to be
independent Bernoulli random variables with success probabilities (�0)ij . For
any positive integer n, a graphon function W0 defines a probability distribution on
graphs of size n. Note that this model is different from the network sequence model
since the observations Aij are no longer independent. If W0 is a step-function with
k steps, we obtain an analog of the stochastic block model with k groups. More
generally, many exchangeable distributions on networks [9], including random dot
product graphs [14] and some geometric random graphs [13] can be expressed as
graphons.

Given an observed adjacency matrix A′ sampled according to the model (1), the
graphon function W0 is not identifiable. The topology of a network is invariant with
respect to any change of labelling of its nodes. Consequently, for any given func-
tion W0(·, ·) and a measure-preserving bijection τ : [0,1] → [0,1] (with respect to

1In some recent papers, it is also called the inhomogeneous Erdős–Rényi model, which is some-
what ambiguous since the words “Erdős–Rényi model” designate a homogeneous graph.
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the Lebesgue measure), the functions W0(x, y) and W τ
0 (x, y) := W0(τ (x), τ (y))

define the same probability distribution on random graphs. The equivalence classes
of graphons defining the same probability distribution are characterized in a
slightly more involved way based on the following result.

PROPOSITION 1.1 ([11], Section 10). Two graphons U and W in W are
called weakly isomorphic if there exist measure preserving maps φ, ψ : [0,1] →
[0,1] such that Uφ = Wψ almost everywhere. Two graphons U and W define the
same probability distribution if and only if they are weakly isomorphic.

This proposition motivates considering the equivalence classes of graphons that
are weakly isomorphic. The corresponding quotient space is denoted by W̃ .

It is easy to see that the expected number of edges in model (1) is a constant
times the squared number of vertices, which corresponds to the dense case. Net-
works observed in the real life are often sparse in the sense that the number of
edges is of the order o(n2) as the number n of vertices tends to infinity. The situ-
ation in the sparse case is more complex than in the dense case. Even the almost
dense case with n2−o(1) edges is rather different from the dense case. The ex-
tremely sparse case corresponds to the bounded degree graph where all degrees
are smaller than a fixed positive integer. It is an opposite extreme to the dense
graph. Networks that occur in the applications are usually between these two ex-
tremes described by dense and bounded degree graphs. They often correspond to
inhomogeneous networks with density of edges tending to 0 but with the maximum
degree tending to infinity as n grows.

For a given ρn > 0, one can modify the definition (1) to get a random graph
model with O(ρnn

2) edges. It is usually assumed that ρn → 0 as n → ∞. The
adjacency matrix A′ is sampled according to graphon W0 ∈ W with scaling pa-
rameter ρn if for all j < i,

(2) (�0)ij = ρnW0(ξi, ξj ),

where ρn > 0 is the scale parameter that can be interpreted as the expected pro-
portion of nonzero edges. Alternatively, model (2) can be considered as a graphon
model (1) that has been sparsified in the sense that its edges have been indepen-
dently removed with probability 1 − ρn and kept with probability ρn. This sparse
graphon model was considered in [2, 3, 16, 17].

1.2. Our results. This paper has two contributions. First, we study optimal
rates of estimation of the probability matrix �0 under the Frobenius norm from
an observation A′ = (Aij ,1 ≤ j < i ≤ n) in the network sequence model. We esti-
mate �0 by a block-constant matrix and we focus on deriving oracle inequalities
with optimal rates (with possibly nonpolynomial complexity of estimation meth-
ods). Note that estimating �0 by a k × k block constant matrix is equivalent to
fitting a stochastic block model with k classes. Estimation of �0 has already been



SPARSE GRAPHON ESTIMATION 319

considered by [5, 6, 17] but convergence rates obtained there are far from being
optimal. More recently, Gao, Lu and Zhou [10] have established the minimax es-
timation rates for �0 on classes of block constant matrices and on the smooth
graphon classes. Their analysis is restricted to the dense case (1) corresponding to
ρn = 1 when dealing with model (2). In this paper, we explore the general setting
of model (2). In particular, our aim is to understand the behavior of least squares
estimators when the probabilities (�0)ij can be arbitrarily small. This will be done
via developing oracle inequalities with respect to the block constant oracle. Two
estimators will be considered—the ordinary block constant least squares estimator,
and its restricted version where the estimator is chosen in the ℓ∞ cube of a given
radius. As corollaries, we provide an extension for the sparse graphon model of
some minimax results in [10] and we quantify the impact of the scaling parameter
ρn on the optimal rates of convergence.

Second, we consider estimation of the graphon function W0 based on observa-
tion A′. In view of Proposition 1.1, graphons are not identifiable and can only be
estimated up to weak isomorphisms. Hence, we study estimation of W0 in the quo-
tient space W̃ of graphons. In order to contrast this problem with the estimation of
�0, one can invoke an analogy with the random design nonparametric regression.
Suppose that we observe (yi, ξi), i = 1, . . . , n, that are independently sampled ac-
cording to the model y = f (ξ) + ε where f is an unknown regression function, ε

is a zero mean random variable and ξ is distributed with some density h on [0,1].
Given a sample of (yi, ξi), estimation of f with respect to the empirical loss is
equivalent to estimation of the vector (f (ξ1), . . . , f (ξn)) in, for instance, the Eu-
clidean norm. On the other hand, estimation under the integrated loss consists in
constructing an estimator f̂ such that the integral

∫
(f̂ (t) − f (t))2h(t) dt is small.

Following this analogy, estimation of �0 corresponds to an empirical loss problem
whereas the graphon estimation corresponds to an integrated loss problem. How-
ever, as opposed to nonparametric regression, in the graphon models (1) and (2)
the design ξ1, . . . , ξn is not observed, which makes it quite challenging to derive
the convergence rates in these settings.

In Section 3, we obtain L2 norm nonasymptotic estimation rates for graphon
estimation on classes of step functions (analogs of stochastic block models) and
on classes of smooth graphons in model (2). This result improves upon previously
known bounds by Wolfe and Olhede [16]. For classes of step function graphons,
we also provide a matching minimax lower bound allowing one to characterize
the regimes such that graphon optimal estimation rates are slower than probability
matrix estimation rates. In a work parallel to ours, Borgs, Chayes and Smith [4]
have analyzed the rates of convergence for estimation of step function graphons
under the privacy model. Apart from the issues of privacy that we do not consider
here, their results in our setting provide a weaker version of the upper bound in
Corollary 3.3, with a suboptimal rate, which is the square root of the rate of Corol-
lary 3.3 in the moderately sparse zone. We also mention the paper by Choi [7]
devoted to the convergence of empirical risk functions associated to the graphon
model.



320 O. KLOPP, A. B. TSYBAKOV AND N. VERZELEN

1.3. Notation. We provide a brief summary of the notation used throughout
this paper:

• For a matrix B, we denote by Bij [or by Bi,j , or by (B)ij ] its (i, j)th entry.
• For an integer m, set [m] = {1, . . . ,m}.
• Let n, k and n0 be integers such that 2 ≤ k ≤ n, n0 ≤ n. We denote by Zn,k,n0

the set of all mappings z from [n] to [k] such that mina=1,...,k |z−1(a)| ≥ n0 (the
minimal size of each “community” is n0). For brevity, we set Zn,k = Zn,k,1.

• We denote by R
k×k
sym the class of all symmetric k × k matrices with real-valued

entries.
• The inner product between matrices D,B ∈ R

n×n will be denoted by 〈D,B〉 =∑
i,j Dij Bij .

• Denote by ‖B‖F and by ‖B‖∞ the Frobenius norm and the entry-wise supre-
mum norm of matrix B ∈R

n×n, respectively.
• We denote by ⌊x⌋ the maximal integer less than x ≥ 0 and by ⌈x⌉ the smallest

integer greater than or equal to x.
• We denote by E the expectation with respect to the distribution of A if we con-

sider the network sequence model and the expectation with respect to the joint
distribution of (ξ ,A) if we consider the graphon model.

• We denote by C positive constants that can vary from line to line. These are
absolute constants unless otherwise mentioned.

• We denote by λ the Lebesgue measure on the interval [0,1].

2. Probability matrix estimation. In this section, we deal with the network
sequence model and we obtain optimal rates of estimation in the Frobenius norm
of the probability matrix �0. Fixing some integer k > 0, we estimate the matrix
�0 by a block constant matrix with k × k blocks.

2.1. Least squares estimator. First, we study the least squares estimator �̂ of
�0 in the collection of all k × k block constant matrices with block size larger
than some given integer n0. Recall that we denote by Zn,k,n0 the set of all possible
mappings z from [n] to [k] such that mina=1,...,k |z−1(a)| ≥ n0. For any z ∈ Zn,k,n0 ,
Q ∈ R

k×k
sym , we define the residual sum of squares

L(Q, z) =
∑

(a,b)∈[k]×[k]

∑

(i,j)∈z−1(a)×z−1(b),j<i

(Aij − Qab)
2

and consider the least squares estimator of (Q, z):

(Q̂, ẑ) ∈ arg min
Q∈Rk×k

sym ,z∈Zn,k,n0

L(Q, z).

The block constant least squares estimator of (�0)ij is defined as �̂ij = Q̂ẑ(i)ẑ(j)

for all i > j . Note that �̂ij ∈ [0,1]. Finally, we denote by �̂ the symmetric ma-
trix with entries �̂ij for all i > j and with zero diagonal entries. According to the
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stochastic block models terminology, Q̂ stands for the estimated connection prob-
abilities whereas ẑ is the estimated partition of the of nodes into k communities.
The only difference between this estimator and the one considered in [10] is the
restriction |z−1(a)| ≥ n0. This prevents the partition z from being too unbalanced.
A common choice of n0 is of the order n/k, which is referred to as balanced par-
tition. Taking larger n0 when we have additional information allows us to obtain
simpler estimators since we reduce the number of configurations.

2.2. Restricted least squares estimator. Given r ∈ (0,1], consider the least
squares estimator restricted to the l∞ ball of radius r ,

(Q̂r , ẑr) ∈ arg min
Q∈Rk×k

sym :‖Q‖∞≤r,z∈Zn,k

L(Q, z).

The estimator �̂
r

of matrix �0 is defined as the symmetric matrix with entries
�̂

r
ij = (Q̂r)ẑr (i)ẑr (j) for all i > j , and with zero diagonal entries. Note that here we

consider any partitions, including really unbalanced ones (n0 = 1).

2.3. Oracle inequalities. Let �∗,n0 be the best Frobenius norm approximation
of �0 in the collection of matrices

Tn0[k] =
{
� : ∃z ∈ Zn,k,n0,Q ∈R

k×k
sym such that �ij = Qz(i)z(j), i �= j,

and �ii = 0 ∀i
}
.

In particular, T1[k] is the set of all probability matrices corresponding to k-
class stochastic block models without group size restriction. For brevity, we write
T1[k] = T [k], and �∗,1 = �∗.

PROPOSITION 2.1. Consider the network sequence model. There exist posi-
tive absolute constants C1, C2, C3 such that for n0 ≥ 2,

E

[
1

n2
‖�̂ − �0‖2

F

]
≤ C1

n2
‖�0 − �∗,n0‖2

F + C2‖�0‖∞

(
log(k)

n
+ k2

n2

)

(3)

+ C3 log(n/n0)

n0

(
log(k)

n
+ k2

n2

)
.

To discuss some consequences of this oracle inequality, we consider the case of
balanced partitions.

COROLLARY 2.2. Consider the network sequence model. Let n0 ≥ Cn/k for
some C > 0 (balanced partition), n0 ≥ 2, and ‖�0‖∞ ≥ k log(k)

n
. Then, there exist

positive absolute constants C1, C2, such that

(4) E

[
1

n2
‖�̂ − �0‖2

F

]
≤ C1

n2
‖�0 − �∗,n0‖2

F + C2‖�0‖∞

(
log(k)

n
+ k2

n2

)
.
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In particular, if �0 ∈ Tn0[k] (i.e., when we have a k-class stochastic block
model with balanced communities), the rate of convergence is of the order

‖�0‖∞(
log(k)

n
+ k2

n2 ). In [10], the rate (
log(k)

n
+ k2

n2 ) is shown to be minimax over
all stochastic block models with k blocks, with no restriction on ‖�0‖∞ ex-
cept the obvious one, ‖�0‖∞ ≤ 1. We prove in the next subsection that the rate

‖�0‖∞(
log(k)

n
+ k2

n2 ) obtained in Corollary 2.2 exhibits the optimal dependency on
‖�0‖∞. Before doing this, we provide an oracle inequality for the restricted least
squares estimator �̂

r
.

PROPOSITION 2.3. Consider the network sequence model. There exist posi-
tive absolute constants C1 and C2 such that the following holds. If ‖�0‖∞ ≤ r ,
then

(5) E

[
1

n2

∥∥�̂
r − �0

∥∥2
F

]
≤ C1

n2
‖�0 − �∗‖2

F + C2r

(
log(k)

n
+ k2

n2

)
.

As opposed to Corollary 2.2, the risk bound (5) is applicable for unbalanced
partitions and for arbitrarily small values of ‖�0‖∞. However, this restricted least
squares estimator requires the knowledge of an upper bound of ‖�0‖∞. Whereas
the mean value of (�0)ij is easily inferred from the data, the maximal value
‖�0‖∞ is difficult to estimate. If the matrix �0 satisfies the sparse graphon model
(2), one can set r = rn = unA where A = 2

∑
j<i Ai,j/(n(n − 1)) is the edge den-

sity of the graph and un is any sequence that tends to infinity (e.g., un = log logn).
For n large enough, A/ρn is close to

∫
[0,1]2 W0(x, y) dx dy in the sparse graphon

model (2) with probability close to one and, therefore, rn is greater than ‖�0‖∞.
The price to pay for this data-driven choice of rn is that the rate in the risk bound
(5) is multiplied by un.

2.4. Stochastic block models. Given an integer k and any ρn ∈ (0,1], consider
the set of all probability matrices corresponding to k-class stochastic block model
with connection probability uniformly smaller than ρn:

(6) T [k,ρn] =
{
�0 ∈ T [k] : ‖�0‖∞ ≤ ρn

}
.

Gao, Lu and Zhou [10] have proved that the minimax estimation rate over T [k,1]
is of order the k2

n2 + log(k)
n

. The following proposition extends their lower bound to
arbitrarily small ρn > 0.

PROPOSITION 2.4. Consider the network sequence model. For all k ≤ n and
all 0 < ρn ≤ 1,

(7) inf
T̂

sup
�0∈T [k,ρn]

E�0

[
1

n2 ‖T̂ − �0‖2
F

]
≥ C min

(
ρn

(
log(k)

n
+ k2

n2

)
, ρ2

n

)
,

where E�0 denotes the expectation with respect to the distribution of A when the
underlying probability matrix is �0 and infT̂ is the infimum over all estimators.
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If ρn ≥ log(k)
n

+ k2

n2 , the minimax rate of estimation is of the order ρn(
log(k)

n
+ k2

n2 ).
This rate is achieved by the restricted least squares estimator with r ≍ ρn and by
the least squares estimator if the partition is balanced and ρn ≥ k log(k)/n. For

really sparse graphs (ρn smaller than log(k)
n

+ k2

n2 ), the estimation problem becomes

rather trivial since both the null estimator T̂ = 0 and the constant least squares
estimator �̂ with all entries �̂ij = A achieve the optimal rate ρ2

n .

2.5. Smooth graphons. We now use Propositions 2.1 and 2.3 to obtain rates
of convergence for the probability matrix estimation when �0 satisfies the sparse
graphon model (2) and the graphon W0 ∈ W is smooth. For any α > 0, L > 0, de-
fine the class of α-Hölder continuous functions �(α,L) as the set of all functions
W : [0,1]2 → [0,1] such that

∣∣W
(
x′, y′) −P⌊α⌋

(
(x, y),

(
x′ − x, y′ − y

))∣∣ ≤ L
(∣∣x′ − x

∣∣α−⌊α⌋ +
∣∣y′ − y

∣∣α−⌊α⌋)

for all (x′, y′), (x, y) ∈ [0,1]2, where ⌊α⌋ is the maximal integer less than α, and
the function (x′, y′) �→ P⌊α⌋((x, y), (x′ − x, y′ − y)) is the Taylor polynomial of
degree ⌊α⌋ at point (x, y). It follows from the standard embedding theorems that,
for any W ∈ �(α,L) and any (x′, y′), (x, y) ∈ [0,1]2,

(8)
∣∣W

(
x′, y′) − W(x,y)

∣∣ ≤ M
(∣∣x′ − x

∣∣α∧1 +
∣∣y′ − y

∣∣α∧1)
,

where M is a constant depending only on α and L. In the following, we will use
only this last property of W ∈ �(α,L).

The following two propositions give bounds on the bias terms ‖�0 − �∗,n0‖2
F

and ‖�0 − �∗‖2
F .

PROPOSITION 2.5. Consider the graphon model (2) with W0 ∈ �(α,L)

where α,L > 0. Let n0 ≥ 2 and k = ⌊n/n0⌋. Then

(9) E

(
1

n2 ‖�0 − �∗,n0‖2
F

)
≤ CM2ρ2

n

(
1

k2

)α∧1
.

We will also need the following proposition proved in [10], Lemma 2.1.

PROPOSITION 2.6. Consider the graphon model (2) with W0 ∈ �(α,L)

where α,L > 0. Then, almost surely,

(10)
1

n2 ‖�0 − �∗‖2
F ≤ CM2ρ2

n

(
1

k2

)α∧1
.

COROLLARY 2.7. Consider the graphon model (2) with W0 ∈ �(α,L) where
α,L > 0 and 0 < ρn ≤ 1. Set k = ⌈(ρ1/2

n n)1/(1+α∧1)⌉.
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(i) Assume that ρn ≥ n−2(α∧1)/(1+2(α∧1))(logn)2(1+α∧1) and there exists n0 ≥
2 such that k = ⌊n/n0⌋. Then there exists a positive constant C depending only on
L and α such that the least squares estimator �̂ constructed with this choice of n0
satisfies

(11) E

[
1

n2
‖�̂ − �0‖2

F

]
≤ C

{
ρ(2+α∧1)/(1+α∧1)

n n−2(α∧1)/(1+α∧1) + ρn logn

n

}
.

(ii) Assume that r ≥ ρn ≥ Cn−2. Then there exists a positive constant C de-
pending only on L and α such that the restricted least squares estimator �̂

r
satis-

fies

(12) E

[
1

n2

∥∥�̂
r − �0

∥∥2
F

]
≤ C

{
r(2+α∧1)/(1+α∧1)n−2(α∧1)/(1+α∧1) + r logn

n

}
.

Corollary 2.7 extends the results obtained in Gao, Lu and Zhou [10] to arbi-
trary ρn ∈ (0,1]. To simplify the discussion assume that α ≤ 1. There are two
ingredients in the rates of convergence in Corollary 2.7, the nonparametric rate

ρ
(2+α)/(1+α)
n n−2α/(1+α) and the clustering rate ρn logn

n
. The smoothness index α

has an impact on the rate only if α ∈ (0,1) and only if the network is not too
sparse, that is, if ρn ≥ Cnα−1(logn)1+α .

In [10], Gao, Lu and Zhou prove a lower bound showing that the rate
n−2(α∧1)/(1+α∧1) + log(n)

n
is optimal if ρn = 1. Following the same lines as in

Proposition 2.4, one can readily extend their result to prove that the rate in (11) is
minimax optimal for ρn ≥ n−2+ε with an arbitrarily small ε > 0.

3. Graphon estimation problem. In this section, our purpose is to estimate
the graphon function W0(·, ·) in the sparse graphon model (2).

3.1. From probability matrix estimation to graphon estimation. We start by
associating a graphon to any n × n probability matrix �. This provides a way of
deriving an estimator of f0(·, ·) = ρnW0(·, ·) from an estimator of �0.

Given a n × n matrix � with entries in [0,1], define the empirical graphon f̃�

as the following piecewise constant function:

(13) f̃�(x, y) = �⌈nx⌉,⌈ny⌉

for all x and y in (0,1]. The empirical graphons associated to the least squares
estimator and to the restricted least squares estimator with threshold r will be
denoted by f̂ and f̂r , respectively:

f̂ = f̃�̂, f̂r = f̃�̂
r .

They will be used as graphon estimators. For any estimator f̌ of f0 = ρnW0, define
the squared error

(14) δ2(f̌ , f0) := inf
τ∈M

∫ ∫

(0,1)2

∣∣f0
(
τ(x), τ (y)

)
− f̌ (x, y)

∣∣2 dx dy,
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where M is the set of all measure-preserving bijections τ : [0,1] → [0,1]. It has
been proved in [11], Chapters 8 and 13, that δ(·, ·) defines a metric on the quotient
space W̃ of graphons.

The following lemma is a simple consequence of the triangle inequality.

LEMMA 3.1. Consider the graphon model (2). For any W0 ∈ W , ρn > 0, and
any estimator T̂ of �0 such that T̂ is an n × n matrix with entries in [0,1], we
have

(15) E
[
δ2(f̃T̂, f0)

]
≤ 2E

[
1

n2
‖T̂ − �0‖2

F

]
+ 2E

[
δ2(f̃�0, f0)

]
.

The bound on the integrated risk in (15) is a sum of two terms. The first term
containing ‖T̂ − �0‖2

F has been considered in Section 2 for T̂ = �̂ and T̂ = �̂
r
.

It is the estimation error term. The second term containing δ2(f̃�0, f0) measures
the distance between the true graphon f0 and its discretized version sampled at
the unobserved random design points ξ1, . . . , ξn. We call it the agnostic error. The
behavior of δ2(f̃�0, f0) depends on the topology of the considered graphons as
shown below for two examples, namely, the step function graphons and the smooth
graphons.

3.2. Step function graphons. Define W[k] the collection of k-step graphons,
that is, the subset of graphons W ∈ W such that for some Q ∈ R

k×k
sym and some

φ : [0,1] → [k],

(16) W(x,y) = Qφ(x),φ(y) for all x, y ∈ [0,1].

A step function W ∈ W[k] is called balanced if λ(φ−1(1)) = · · · = λ(φ−1(k)) =
1/k where λ is the Lebesgue measure on [0,1]. The agnostic error associated to
step function graphons is evaluated as follows.

PROPOSITION 3.2. Consider the graphon model (2). For all integers k ≤ n,
W0 ∈ W[k] and ρn > 0 we have

E
[
δ2(f̃�0, f0)

]
≤ Cρ2

n

√
k

n
.

Combining this result with Lemma 3.1 and Propositions 2.1 and 2.3, we obtain
the following risk bounds for the least squares and restricted least squares graphon
estimators.

COROLLARY 3.3. Consider the graphon model (2) with W0 ∈ W[k]. There
exist absolute constants C1 and C2 such that the following holds.
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(i) If ρn ≥ k log(k)
n

, n0 = ⌊n/2k⌋, and the step function W0 is balanced, then
the least squares graphon estimator f̂ constructed with this choice of n0 satisfies

E
[
δ2(f̂ , f0)

]
≤ C1

[
ρn

(
k2

n2
+ log(k)

n

)
+ ρ2

n

√
k

n

]
.

(ii) If ρn ≤ r , the restricted least squares graphon estimator f̂r satisfies

(17) E
[
δ2(f̂r , f0)

]
≤ C2

[
r

(
k2

n2 + log(k)

n

)
+ ρ2

n

√
k

n

]
.

As an immediate consequence of this corollary, we get the following upper
bound on the minimax risk:

(18) inf
f̂

sup
W0∈W[k]

EW0

[
δ2(f̂ , f0)

]
≤ C3

{[
ρn

(
k2

n2 + log(k)

n

)
+ ρ2

n

√
k

n

]
∧ ρ2

n

}
,

where C3 is an absolute constant. Here, EW0 denotes the expectation with respect
to the distribution of observations A′ = (Aij ,1 ≤ j < i ≤ n) when the underlying
sparse graphon is ρnW0 and inff̂ is the infimum over all estimators. The bound
(18) follows from (17) with r = ρn and the fact that the risk of the null estimator
f̃ ≡ 0 is smaller than ρ2

n .
The next proposition shows that the upper bound (18) is optimal in a minimax

sense (up to a logarithmic factor in k in one of the regimes).

PROPOSITION 3.4. There exists a universal constant C > 0 such that for any
sequence ρn > 0 and any positive integer 2 ≤ k ≤ n,

(19) inf
f̂

sup
W0∈W[k]

EW0

[
δ2(f̂ , f0)

]
≥ C

{[
ρn

(
k2

n2
+ 1

n

)
+ ρ2

n

√
k − 1

n

]
∧ ρ2

n

}
,

where EW0 denotes the expectation with respect to the distribution of observations
A′ = (Aij ,1 ≤ j < i ≤ n) when the underlying sparse graphon is ρnW0 and inff̂
is the infimum over all estimators.

The proof is given in Section 4.9. Showing the rate ρ2
n

√
(k − 1)/n relies on two

arguments. First, we construct a family of graphons that are well separated with re-
spect to the δ(·, ·) distance. The difficulty comes from the fact that this is not a clas-
sical L2 distance but a minimum of the L2 distance over all measure-preserving
transformations. Second, we show that the behavior of the Kullback–Leibler di-
vergences between the graphons in this family is driven by the randomness of the
latent variables ξ1, . . . , ξn while the nature of the connection probabilities can be
neglected. This argument is similar to the “data processing” inequality.

Proposition 3.4 does not cover the case k = 1 (Erdős–Rényi models). In fact, in
this case the constant graphon estimator f̂ = f̃A achieves the optimal rate, which
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is equal to ρn/n2. The suboptimality of the bound of Proposition 3.2 for k = 1 is
due to the fact that the diagonal blocks of f̂ and f̂ r are all equal to zero. By care-
fully defining the diagonal blocks of these estimators, we could have achieved the
optimal bound ρ2

n

√
(k − 1)/n but this would need a modification of the notation

and of the proofs.
The bounds (18) and (19) imply that there are three regimes depending on the

sparsity parameter ρn:

(i) Weakly sparse graphs: ρn ≥ log(k)√
kn

∨ ( k
n
)3/2. The minimax risk is of the

order ρ2
n

√
k/n, and thus it is driven by the agnostic error arising from the lack of

knowledge of the design.
(ii) Moderately sparse graphs: log(k)

n
∨ ( k

n
)2 ≤ ρn ≤ log(k)√

kn
∨ ( k

n
)3/2. The risk

bound (18) is driven by the probability matrix estimation error. The upper bound

(18) is of the order ρn(
k2

n2 + log(k)
n

), which is the optimal rate of probability matrix
estimation, cf. Proposition 2.4. Due to (19), it is optimal up to log(k) factor with
respect to the δ(·, ·) distance.

(iii) Highly sparse graphs: ρn ≤ log(k)
n

∨ ( k
n
)2. The minimax risk is of the order

ρ2
n , and it is attained by the null estimator.

In a work parallel to ours, Borgs, Chayes and Smith [4] provide an upper bound
for the risk of step function graphon estimators in the context of privacy. If the par-
titions are balanced, Borgs, Chayes and Smith [4] obtain the bound on the agnostic
error as in Proposition 3.2. When there is no privacy issues, comparing the upper
bound of [4] with that of Corollary 3.3, we see that it has a suboptimal rate, which
is the square root of the rate of Corollary 3.3 in the moderately sparse zone. Note
also that the setting in [4] is restricted to balanced partitions while we consider
more general partitions.

3.3. Smooth graphons. We now derive bounds on the mean squared error of
smooth graphon estimation. The analysis will be based on the results of Section 2
and on the following bound for the agnostic error associated to smooth graphons.

PROPOSITION 3.5. Consider the graphon model (2) with W0 ∈ �(α,L)

where α,L > 0 and ρn > 0. Then

(20) E
[
δ2(f̃�0, f0)

]
≤ C

ρ2
n

nα∧1
,

where the constant C depends only on L and α.

Combining Proposition 3.5 with Lemma 3.1 and with Propositions 2.1 and 2.3,
we obtain the following risk bounds for the least squares and restricted least
squares graphon estimators.
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COROLLARY 3.6. Consider the graphon model (2) with W0 ∈ �(α,L) where
α,L > 0 and 0 < ρn ≤ 1. Fix k = ⌈(ρ1/2

n n)1/(1+α∧1)⌉.

(i) Assume that ρn ≥ n−2(α∧1)/(1+2(α∧1))(logn)2(1+α∧1), and there exists n0 ≥
2 such that k = ⌊n/n0⌋. Then there exists a positive constant C1 depending only
on L and α such that the least squares graphon estimator f̂ constructed with this
choice of n0 satisfies

(21) E
[
δ2(f̂ , f0)

]
≤ C1

{
ρ(2+α∧1)/(1+α∧1)

n n−2(α∧1)/(1+α∧1) + ρn logn

n
+ ρ2

n

nα∧1

}
.

(ii) Assume that r ≥ ρn ≥ Cn−2. Then there exists a positive constant C2 de-
pending only on L and α such that the restricted least squares graphon estimator
f̂r satisfies

(22) E
[
δ2(f̂r , f0)

]
≤ C2

{
r(2+α∧1)/(1+α∧1)n−2(α∧1)/(1+α∧1) + r logn

n
+ ρ2

n

nα∧1

}
.

For the purpose of the discussion, assume that r ≍ ρn. If ρn ≤ nα−1 log(n), the
rate of convergence is of the order ρn log(n)/n, the same as that of the probabil-
ity matrix estimation risk E[‖�̂r − �0‖2

F /n2], cf. Corollary 2.7. Observe that the
above condition is always satisfied when α ≥ 1. If ρn ≥ nα−1 log(n), the rate of
convergence in (22) for α ≤ 1 is of the order ρ2

n/nα due to the agnostic error. This

is slower than the optimal nonparametric rate ρ
(2+α)/(1+α)
n n−2α/(1+α) for probabil-

ity matrix estimation. We conjecture that this loss is unavoidable when considering
graphon estimation with the δ2(·, ·) error measure. We also note that the rates in
(22) are faster than those obtained by Wolfe and Olhede [16] for the maximum
likelihood estimator. In some cases, the improvement in the rate is up to n−α/2.

4. Proofs. In this section, we will repeatedly use Bernstein’s inequality that
we state here for reader’s convenience: Let X1, . . . ,XN be independent zero-mean
random variables. Suppose that |Xi | ≤ M almost surely, for all i. Then, for any
t > 0,

(23) P

{
N∑

i=1

Xi ≥

√√√√2t

N∑

i=1

E
(
X2

i

)
+ 2M

3
t

}
≤ e−t .

In the proofs of the upper bounds, to shorten the notation, we assume that in-
stead of the n(n − 1)/2 observations A′ we have the symmetrized observation
matrix A, and thus

L(Q, z) = 1

2

∑

(a,b)∈[k]×[k]

∑

(i,j)∈z−1(a)×z−1(b),j �=i

(Aij − Qab)
2.

This does not change the estimators nor the results. The changes are only in the
values of constants that do not explicitly appear in the risk bounds.
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4.1. Proof of Proposition 2.1. Since �̂ is a least squares estimator, we have

(24) ‖�̂ − �0‖2
F ≤ ‖�0 − �∗‖2

F + 2〈�̂ − �0,E〉 + 2〈�0 − �∗,E〉,
where E = A − �0 is the noise matrix. The last summand on the right-hand side
of (24) has mean zero. So, to prove the proposition it suffices to bound the expec-
tation of 〈�̂ − �0,E〉. For any z ∈ Zn,k,n0 , denote by �̃z the best Frobenius norm
approximation of �0 in the collection of matrices

Tz :=
{
� : ∃Q ∈ R

k×k
sym such that �ij = Qz(i)z(j), i �= j, and �ii = 0 ∀i

}
.

We have the following decomposition:

〈�̂ − �0,E〉 = 〈�̃ẑ − �0,E〉 + 〈�̂ − �̃ẑ,E〉 = (I ) + (II).

In this decomposition, (I) is the error due to mis-clustering and (II) is the error due
to the Bernoulli noise. We bound each of these errors separately.

Control of (I). We apply Bernstein’s inequality (23) together with the union
bound over all z ∈ Zn,k,n0 and we use that 〈�̃z − �0,E〉 = 2

∑
1≤j<i≤n(�̃z −

�0)ij Eij . Since the variance of Eij satisfies Var(Eij ) ≤ ‖�0‖∞ while Eij ∈
[−1,1], and the cardinality of Zn,k,n0 satisfies |Zn,k,n0 | ≤ kn, we obtain

P

[
〈�̃ẑ − �0,E〉 ≥ 2‖�̃ẑ − �0‖F

√
‖�0‖∞

(
n log(k) + t

)

+ 4

3
‖�̃ẑ − �0‖∞

(
n log(k) + t

)]

≤ e−t ,

for all t > 0. Since the entries of �̃ẑ are equal to averaged entries of �0 over
blocks, we obtain that ‖�̃ẑ − �0‖∞ ≤ ‖�0‖∞. Using this observation, decou-
pling the term 2‖�̃ẑ −�0‖F

√
‖�0‖∞(n log(k) + t) via the elementary inequality

2uv ≤ u2 + v2 and then integrating with respect to t we obtain

(25) E

[
〈�̃ẑ − �0,E〉 − 1

8
‖�̃ẑ − �0‖2

F

]
≤ C‖�0‖∞n log(k).

Control of (II). The control of the error due to the Bernoulli noise is more in-
volved. We first consider the intersection of Tz with the unit ball in the Frobenius
norm and construct a 1/4-net on this set. Then, using the union bound and Bern-
stein’s inequality, we can write a convenient bound on 〈�,E〉 for any � from this
net. Finally we control (II) using a bound on 〈�,E〉 on the net and a bound on
the supremum norm ‖Ãẑ − �̃ẑ‖∞. We control the supremum norm ‖Ãẑ − �̃ẑ‖∞
using the definition of ẑ and Bernstein’s inequality.

For any z ∈ Zn,k,n0 , define the set Tz,1 = {� ∈ Tz : ‖�‖F ≤ 1} and denote by
Ãz the best Frobenius norm approximation of A in Tz. Then Ẽz = Ãz − �̃z is the

projection of E onto Tz. Notice that Ãz−�̃z

‖Ãz−�̃z‖F
= Ẽz

‖Ẽz‖F
maximizes 〈�′,E〉 over all
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�′ ∈ Tz,1. Denote by Cz the minimal 1/4-net on Tz,1 in the Frobenius norm. To
each V ∈ Cz, we associate

Ṽ ∈ arg min
�′∈Tz,1∩B‖·‖F (V,1/4)

∥∥�′∥∥
∞,

which is a matrix minimizing the entry-wise supremum norm over the Frobenius
ball B‖·‖F

(V,1/4) of radius 1/4 centered at V. Finally, define C̃z := {Ṽ : V ∈ Cz}.
A standard bound for covering numbers implies that log |C̃z| ≤ Ck2, where |S|

denotes the cardinality of set S. By Bernstein’s inequality combined with the union
bound, we find that with probability greater than 1 − e−t ,

〈�,E〉 ≤ 2
√

‖�0‖∞
(
n log(k) + k2 + t

)
+ 4

3
‖�‖∞

(
n log(k) + k2 + t

)

simultaneously for all � ∈ C̃z with any z ∈ Zn,k,n0 . Here, we have used that
‖�‖F ≤ 1 for all � ∈ C̃z.

Assume w.l.o.g. that Ãẑ − �̃ẑ �= 0. By the definition of C̃z, there exists � ∈ C̃ẑ,
such that

∥∥∥∥� − Ãẑ − �̃ẑ

‖Ãẑ − �̃ẑ‖F

∥∥∥∥
F

≤ 1

2
and ‖�‖∞ ≤ ‖Ãẑ − �̃ẑ‖∞

‖Ãẑ − �̃ẑ‖F

.

Note that for this �, the matrix 2(� − Ãẑ−�̃ẑ

‖Ãẑ−�̃ẑ‖F
) belongs to Tz,1. Thus,

〈
Ãẑ − �̃ẑ

‖Ãẑ − �̃ẑ‖F

,E

〉
≤ 〈�,E〉 + 1

2
max

�′∈Tẑ,1

〈
�′,E

〉
= 〈�,E〉 + 1

2

〈
Ãẑ − �̃ẑ

‖Ãẑ − �̃ẑ‖F

,E

〉

since Ãẑ−�̃ẑ

‖Ãẑ−�̃ẑ‖F
maximizes 〈�′,E〉 over all �′ ∈ Tẑ,1. Using the last two displays,

we obtain that

〈Ãẑ − �̃ẑ,E〉 ≤ 4‖Ãẑ − �̃ẑ‖F

√
‖�0‖∞

(
n log(k) + k2 + t

)

(26)

+ 8

3
‖Ãẑ − �̃ẑ‖∞

(
n log(k) + k2 + t

)

with probability greater than 1 − e−t .
Next, we are looking for a bound on ‖Ãẑ − �̃ẑ‖∞. Since Ãẑ − �̃ẑ = Ẽẑ we

have

[Ãẑ − �̃ẑ]ij =
∑

l′ �=l:ẑ(l′)=ẑ(i),ẑ(l)=ẑ(j) El′l

|(l′, l) : l′ �= l, ẑ(l′) = ẑ(i), ẑ(l) = ẑ(j)|
for all i �= j . Consequently, we have ‖Ãẑ − �̃ẑ‖∞ ≤ supm=n0,...,n

sups=n0,...,n
Xms

where

Xms := sup
V1:|V1|=m

sup
V2:|V2|=s

|∑
(i,j)∈V1×V2:i �=j Eij |
ms − |V1 ∩ V2|

.
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Since n0 ≥ 2, we have ms − |V1 ∩ V2| ≥ ms − m ∧ s ≥ ms/2 for all m,s ≥ n0.
Furthermore, |{V1 : |V1| = m}| ≤

(n
m

)
≤ (en/m)m. Therefore, Bernstein’s inequal-

ity combined with the union bound over V1,V2 leads to

P

[
Xms ≤ C

(√

‖�0‖∞
m log(en/m) + s log(en/s) + t

ms

+ m log(en/m) + s log(en/s) + t

ms

)]

≥ 1 − 2e−t

for any t > 0. From a union bound over all integers m,s ∈ [n0, n], we conclude
that

(27) P

[
‖Ãẑ − �̃ẑ‖∞ ≤ C

(
‖�0‖∞ + log(n/n0) + t

n0

)]
≥ 1 − 2e−t .

Decoupling (26) by use of the inequality 2uv ≤ u2 + v2 and combining the result
with (27), we obtain

〈Ãẑ − �̃ẑ,E〉 ≤ ‖Ãẑ − �̃ẑ‖2
F

16
+ C

(
‖�0‖∞

(
n log(k) + k2 + t

)

+ log(n/n0)(n log(k) + k2) + t (n log(k) + k2 + t)

n0

)

with probability greater than 1 − 3e−t . Integrating with respect to t leads to

E

[
〈Ãẑ − �̃ẑ,E〉 − ‖Ãẑ − �̃ẑ‖2

F

16

]

(28)

≤ C

(
‖�0‖∞

(
n log(k) + k2)

+ log(n/n0)(n log(k) + k2)

n0

)
.

Now, note that �̂ = Ãẑ, and hence ‖�̃ẑ − �0‖F ≤ ‖�̂ − �0‖F by definition of
�̃ẑ. Thus, ‖Ãẑ − �̃ẑ‖F = ‖�̂ − �̃ẑ‖F ≤ 2‖�̂ − �0‖F . These remarks, together
with (25) and (28), imply

E
[
〈�̂ − �0,E〉

]
≤ 3

8
E‖�̂ − �0‖2

F + C

(
‖�0‖∞

(
n log(k) + k2)

+ log(n/n0)(n log(k) + k2)

n0

)
.

The result of the proposition now follows from the last inequality and (24).
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4.2. Proof of Proposition 2.3. We first follow the lines of the proof of Propo-
sition 2.1. As there, we have

∥∥�̂
r − �0

∥∥2
F ≤ ‖�0 − �∗‖2

F + 2〈�̃ẑr
− �0,E〉

+ 2
〈
�̂

r − �̃ẑr
,E

〉
+ 2〈�0 − �∗,E〉.

Here, E〈�0 − �∗,E〉 = 0, and analogously to (25),

(29) E

[
〈�̃ẑr

− �0,E〉 − 1

8
‖�̃ẑr

− �0‖2
F

]
≤ C‖�0‖∞n log(k).

It remains to obtain a bound on the expectation of 〈�̂r − �̃ẑr
,E〉, which corre-

sponds to the term (II) in the proof of Proposition 2.1 (the error due to the Bernoulli
noise). To do this, we consider the subset A of matrices in Tẑr

such that their supre-
mum norm is bounded by 2r and Frobenius norm is bounded by ‖�̂r − �̃ẑr

‖F .
As �̂

r − �̃ẑr
belongs to this set it is enough to obtain a bound on the supremum

of 〈�,E〉 for � ∈ A. To control this supremum, we construct a finite subset C∗
z

that approximates well the set A both in the Frobenius norm and in the supremum
norm.

Consider the set

A=
{
� ∈ Tẑr

: ‖�‖∞ ≤ 2r,‖�‖F ≤
∥∥�̂

r − �̃ẑr

∥∥
F

}
.

Then

(30)
〈
�̂

r − �̃ẑr
,E

〉
≤ max

�∈A
〈�,E〉 := 〈T̂,E〉F ,

where T̂ is a matrix in A that achieves the maximum. If ‖T̂‖F < 2r , we have a
trivial bound 〈T̂,E〉F ≤ 2rn since all components of E belong to [−1,1]. Thus, it
suffices to consider the case ‖T̂‖F ≥ 2r . In order to bound 〈T̂,E〉F in this case,
we construct a finite subset of Tẑr

that approximates well T̂ both in the Frobenius
norm and in the supremum norm.

For each z ∈ Zn,k , let Cz be a minimal 1/4-net of Tz,1 in the Frobenius norm. Set
ε0 = r and εq = 2qε0 for any integer q = 1, . . . , qmax, where qmax is the smallest
integer such that 2rn ≤ εqmax . Clearly, qmax ≤ C log(n). For any V ∈ Cz, any q =
0, . . . , qmax, and any matrix U ∈ {−1,0,1}k×k , define a matrix Vq,U,z ∈ R

n×n with
elements V

q,U,z
ij such that V

q,U,z
ii = 0 for all i ∈ [n], and for all i �= j ,

(31) V
q,U,z
ij = sign(Vij )

(
|εqVij | ∧ (2r)

)(
1 − |Uz(i)z(j)|

)
+ rUz(i)z(j).

Finally, denote by C∗
z the set of all such matrices:

C
∗
z :=

{
Vq,U,z : V ∈ Cz, q = 0, . . . , qmax,U ∈ {−1,0,1}k×k}

.

For any z ∈ Zn,k we have log |C∗
z | ≤ C(k2 + log log(n)) while log |Zn,k| ≤ n log(k).

Also, the variance of Eij satisfies Var(Eij ) ≤ ‖�0‖∞ ≤ r , and Eij ∈ [−1,1]. Thus,
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from Bernstein’s inequality combined with the union bound we obtain that, with
probability greater than 1 − e−t ,

〈V,E〉 ≤ 2‖V‖F

√
r
(
k2 + n log(k) + t

)
+ 4

3
r
(
k2 + n log(k) + t

)

simultaneously for all matrices V ∈ C∗
z and all z ∈ Zn,k . Here, we have used that

‖V‖∞ ≤ 2r for all V ∈ C∗
z , cf. (31). It follows that, with probability greater than

1 − e−t ,

(32) 〈V,E〉 − 1

50
‖V‖2

F ≤ Cr
(
k2 + n log(k) + t

)

simultaneously for all matrices V ∈ C∗
z and all z ∈Zn,k .

We now use the following lemma proved in Section 4.10.

LEMMA 4.1. If ‖T̂‖F ≥ 2r there exists a matrix V̂ in C∗
ẑr

, such that:

• ‖T̂ − V̂‖F ≤ ‖T̂‖F /4,
• ‖T̂ − V̂‖∞ ≤ r .

Thus, on the event ‖T̂‖F ≥ r , as a consequence of Lemma 4.1 we obtain that
2(T̂ − V̂) ∈ A. This and the definition of T̂ imply 〈T̂ − V̂,E〉 ≤ 〈T̂,E〉F /2, so that
〈T̂,E〉F ≤ 2〈V̂,E〉, and thus

〈
�̂

r − �̃ẑr
,E

〉
/2 ≤ 〈V̂,E〉.

Furthermore, by Lemma 4.1

‖V̂‖F ≤ 5‖T̂‖F /4 ≤ 5
∥∥�̂

r − �̃ẑr

∥∥/4.

These remarks (recall that they hold on the event ‖T̂‖F ≥ r), and (32) yield

P

[(〈
�̂

r − �̃ẑr
,E

〉
− ‖�̂r − �̃ẑr

‖2
F

16

)
1{‖T̂‖F ≥r} ≥ Cr

(
k2 + n log(k) + t

)]
≤ e−t

for all t > 0. Integrating with respect to t and using that 〈�̂r − �̃ẑr
,E〉 ≤ rn for

‖T̂‖F < r , we obtain

E�0

[〈
�̂

r − �̃ẑr
,E

〉
− ‖�̂r − �̃ẑr

‖2
F

16

]
≤ Cr

(
n log(k) + k2)

.

In view of this inequality and (29), the proof is now completed by the same argu-
ment as in Proposition 2.1.
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4.3. Proof of Proposition 2.4. The proof follows the lines of Theorem 2.2 in
[10]. So, for brevity, we only outline the differences from that proof. The remaining
details can be found in [10]. First, note that to prove the theorem it suffices to
obtain separately the lower bounds of the order ρn(k/n)2 ∧ ρ2

n and of the order
ρn log(k)/n ∧ ρ2

n . Next, note that the Kullback–Leibler divergence K(ρnp,ρnq)

between two Bernoulli distributions with parameters ρnp and ρnq such that 1/4 <

p,q < 3/4 satisfies

K(ρnp,ρnq) = ρnq log
(

q

p

)
+ (1 − ρnq) log

(
1 − ρnq

1 − ρnp

)

≤ ρn

q(q − p)

p
+ ρn

1 − ρnq

1 − ρnp
(p − q)(33)

= ρn

(q − p)2

p(1 − ρnp)
≤ 16

3
ρn(q − p)2.

The main difference from the proof in [10] is that now the matrices �0 defining
the probability distributions in the Fano lemma depend on ρn. Namely, to prove
the ρn(k/n)2 ∧ ρ2

n bound we consider matrices of connection probabilities with
elements ρn

2 + c1
√

ρn(
k
n

∧ √
ρn)ωab with suitably chosen ωab ∈ {0,1} and c1 > 0

small enough (for ρn = 1, this coincides with the definition of elements Qω
ab in

[10]). Then the squared Frobenius distance between matrices �0 in the corre-
sponding set is of the order n2(ρn(k/n)2 ∧ ρ2

n), which leads to the desired rate,
whereas in view of (33) the Kullback–Leibler divergences between the probabil-

ity measures in this set are bounded by Cn2ρn(
k2

n2ρn
∧ 1) ≤ Ck2. Thus, the lower

bound of the order ρn(k/n)2 ∧ ρ2
n follows.

The argument used to prove the lower bound of the order ρn log(k)/n ∧ ρ2
n

is quite analogous. To this end, we modify the corresponding construction of [10]

only in that we take the connection probabilities of the form ρn

2 +c2
√

ρn(

√
log(k)

n
∧√

ρn)ωa with suitably chosen ωa ∈ {0,1} and c2 > 0 small enough (for ρn = 1 this
coincides with the definition of probabilities Ba in the proof of [10]).

4.4. Proof of Proposition 2.5. We prove that there exists a random matrix �

measurable with respect to ξ1, . . . , ξn and with values in Tn0[k] satisfying

(34) E

(
1

n2 ‖�0 − �‖2
F

)
≤ CM2ρ2

n

(
1

k2

)α∧1
.

Obviously, this implies (9). To obtain such �, we construct a balanced partition z∗

where the first k − 1 classes contain exactly n0 elements and the last class contains
n − n0(k − 1) elements. Then we construct � using block averages on the blocks
given by z∗.



SPARSE GRAPHON ESTIMATION 335

Let n = n0k + r where r is a remainder term between 0 and n0 − 1. Define
z∗ : [n] → [k] by

(
z∗)−1

(a) =
{
i ∈ [n] : ξi = ξ(j) for some j ∈

[
(a − 1)n0 + 1, an0

]}

for each a ∈ {1, . . . , k − 1} and
(
z∗)−1

(k) =
{
i ∈ [n] : ξi = ξ(j) for some j ∈

[
(k − 1)n0 + 1, n

]}
,

where ξ(j) denotes the j th order statistic. Note that with this partition the first k−1
classes contain n0 elements and the last class contains n0 + r elements. We define

n∗
ab =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n2
0, if a �= b, a �= k, b �= k,

(n0 + r)n0, if a = k or b = k and a �= b,

(n0 − 1)n0, if a = b and a �= k,

(n0 + r)(n0 + r − 1), if a = b = k.

Using the partition z∗, we define the block average

Q∗
ab = 1

n∗
ab

∑

i∈(z∗)−1(a),j∈(z∗)−1(b),i �=j

ρnW(ξi, ξj ).

Finally, the approximation � of �0 is defined as a symmetric matrix with entries
�ij = Q∗

z∗(i)z∗(j) for all i �= j and �ii = 0 for all i. We have

E

(
1

n2 ‖�0 − �‖2
F

)
= 1

n2

∑

a∈[k],b∈[k]
E

∑

i∈(z∗)−1(a),j∈(z∗)−1(b),i �=j

(
�ij − Q∗

ab

)2

= 1

n2

∑

a∈[k],b∈[k]
E

∑

i∈(z∗)−1(a),j∈(z∗)−1(b),i �=j

(
ρnW(ξi, ξj )

−
∑

u∈(z∗)−1(a),v∈(z∗)−1(b),u�=v ρnW(ξu, ξv)

n∗
ab

)2
.

Define Ja = [(a−1)n0 +1, an0] if a < k and Jk = [(k−1)n0 +1, n]. By definition
of z∗, we have

E

(
1

n2 ‖�0 − �‖2
F

)
= ρ2

n

n2

∑

a∈[k],b∈[k]
E

∑

i∈Ja,j∈Jb,i �=j

(
W(ξ(i), ξ(j))

−
∑

u∈Ja,v∈Jb,u�=v W(ξ(u), ξ(v))

n∗
ab

)2

(35)

≤ ρ2
n

n2

∑

a∈[k],b∈[k]

∑

i∈Ja,j∈Jb,i �=j

(
1

n∗
ab

∑

u∈Ja,v∈Jb,u�=v

E
(
W(ξ(i), ξ(j))

− W(ξ(u), ξ(v))
)2

)
.
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Using (8) and Jensen’s inequality, we obtain

E
(
W(ξ(i), ξ(j)) − W(ξ(u), ξ(v))

)2 ≤ M2
E

[(
|ξ(i) − ξ(u)|α

′ + |ξ(j) − ξ(v)|α
′)2]

≤ 2M2((
E|ξ(i) − ξ(u)|2

)α′
+

(
E|ξ(j) − ξ(v)|2

)α′)
,

where we set for brevity α′ = α ∧1. Note that by definition of z∗ we have |i −u| <
2n0 and |j − v| < 2n0. Therefore, application of Lemma 4.10 (see Section 4.10)
leads to

E
(
W(ξ(i), ξ(j)) − W(ξ(u), ξ(v))

)2 ≤ C(n0/n)2α′ ≤ C(1/k)2α′
,

where we have used that k = ⌊n/n0⌋. Plugging this bound into (35) proves the
proposition.

4.5. Proof of Proposition 3.2. For any W0 ∈ W[k], we first construct an or-
dered graphon W ′ isomorphic to W0 and we set f ′ = ρnW

′. Then we construct
an ordered empirical graphon f̂ ′ isomorphic to f̃�0 and we estimate the δ(·, ·)-
distance between these two ordered versions f ′ and f̂ ′.

Consider the matrix �′
0 with entries (�′

0)ij = ρnW(ξi, ξj ) for all i, j . As op-
posed to �0, the diagonal entries of �′

0 are not constrained to be null. By the
triangle inequality, we get

(36) E
[
δ2(f̃�0, f0)

]
≤ 2E

[
δ2(f̃�0, f̃�′

0
)
]
+ 2E

[
δ2(f̃�′

0
, f0)

]
.

Since the entries of �0 coincide with those of �′
0 outside the diagonal, the differ-

ence f̃�0 − f̃�′
0

is null outside of a set of measure 1/n. Also, the entries of �′
0

are smaller than ρn. It follows that E[δ2(f̃�0, f̃�′
0
)] ≤ ρ2

n/n. Hence, it suffices to
prove that

E
[
δ2(f̃�′

0
, f0)

]
≤ Cρ2

n

√
k/n.

We prove this inequality by induction on k. The result is trivial for k = 1 as
δ2(f̂�′

0
, f0) = 0. Fix some k > 1 and assume that the result is valid for W[k − 1].

Consider any W0 ∈ W[k] and let Q ∈ R
k×k
sym and φ : [0,1] → [k] be associated to

W0 as in definition (16). We assume w.l.o.g. that all the rows of Q are distinct
and that λa := λ(φ−1(a)) is positive for all a ∈ [k], since otherwise W0 belongs to
W[k − 1]. For any b ∈ [k], define the cumulative distribution function

Fφ(b) =
b∑

a=1

λa

and set Fφ(0) = 0. For any (a, b) ∈ [k]×[k] define �ab(φ) = [Fφ(a−1),Fφ(a))×
[Fφ(b − 1),Fφ(b)) where 1A(·) denotes the indicator function of set A. Finally,
we consider the ordered graphon

W ′(x, y) =
k∑

a=1

k∑

b=1

Qab1�ab(φ)(x, y).
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Obviously, f ′ = ρnW
′ is weakly isomorphic to f0 = ρnW0. Let

λ̂a = 1

n

n∑

i=1

1{ξi∈φ−1(a)}

be the (unobserved) empirical frequency of group a. Here, ξ1, . . . , ξn are the i.i.d.
uniformly distributed random variables in the graphon model (2).

Note that the relations
∑k

a=1 λa = ∑k
a=1 λ̂a = 1 imply

(37)
∑

a:λa>λ̂a

(λa − λ̂a) =
∑

a :̂λa>λa

(̂λa − λa).

Consider a function ψ : [0,1] → [k] such that:

(i) ψ(x) = a for all a ∈ [k] and x ∈ [Fφ(a − 1),Fφ(a − 1) + λ̂a ∧ λa),
(ii) λ(ψ−1(a)) = λ̂a for all a ∈ [k].

Such a function ψ exists. Indeed, for each a such that λa > λ̂a , conditions (i) and
(ii) are trivially satisfied if we take ψ−1(a) = [Fφ(a − 1),Fφ(a − 1) + λ̂a), and
there is an interval of Lebesgue measure λa − λ̂a left nonassigned. Summing over
all such a, we see that there is a union of intervals with Lebesgue measure m+ :=∑

a:λa>λ̂a
(λa − λ̂a) left nonassigned. On the other hand, for a such that λa < λ̂a ,

we must have ψ(x) = a for x ∈ [Fφ(a − 1),Fφ(a − 1) + λa) to satisfy (i), while
to meet condition (ii) we need additionally to assign ψ(x) = a for x on a set of
Lebesgue measure λ̂a −λa . Summing over all such a, we need additionally to find
a set of Lebesgue measure m− := ∑

a :̂λa>λa
(λa − λ̂a) to make such assignments.

But this set is readily available as a union of nonassigned intervals for all a such
that λa > λ̂a since m+ = m− by virtue of (37).

Finally, define the graphon f̂ ′(x, y) = Qψ(x),ψ(y). Notice that in view of (ii) f̂ ′

is weakly isomorphic to the empirical graphon f̃�0 . Since δ(·, ·) is a metric on the
quotient space W̃ ,

δ2(f̃�0, f0) = δ2(
f̂ ′, f ′) ≤

∫

[0,1]2

∣∣f̂ ′(x, y) − f ′(x, y)
∣∣2 dx dy

≤ ρ2
n

∫

[0,1]2
1{f ′(x,y) �=f̂ ′(x,y)} dx dy.

The two functions f0(x, y) and f̂ (x, y) are equal except possibly the case when
either x or y belongs to one of the intervals [Fφ(a − 1)+ λ̂a ∧λa,Fφ(a − 1)+λa)

for a ∈ [k]. Hence, the Lebesgue measure of the set {(x, y) : f ′(x, y) �= f̂ ′(x, y)}
is not greater than 2m+ = m+ + m− = ∑k

a=1 |λa − λ̂a|. Thus,

δ2(f̂�′
0
, f0) ≤ ρ2

n

k∑

a=1

|λa − λ̂a|.

Since ξ1, . . . , ξn are i.i.d. uniformly distributed random variables, nλ̂a has a bino-
mial distribution with parameters (n, λa). By the Cauchy–Schwarz inequality, we
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get E[|λa − λ̂a|] ≤
√

λa(1−λa)
n

. Applying again the Cauchy–Schwarz inequality, we
conclude that

E
[
δ2(f̂�′

0
, f0)

]
≤ ρ2

n√
n

k∑

a=1

√
λa ≤ ρ2

n

√
k

n
.

4.6. Proof of Proposition 3.5. Arguing as in the proof of Proposition 3.2, we
have

E
[
δ2(f̃�0, f0)

]
≤ 2ρ2

n

n
+ 2E

[
δ2(f̃�′

0
, f0)

]
,

where we recall that �′
0 is defined by (�′

0)ij = ρnW(ξi, ξj ) for all i, j . Hence, it
suffices to prove that

E
[
δ2(f̃�′

0
, f0)

]
≤ C

ρ2
n

nα∧1
.

We have

δ2(f̃�′
0
, f0) = inf

τ∈M

n∑

i,j=1

∫ j/n

(j−1)/n

∫ i/n

(i−1)/n

∣∣f0
(
τ(x), τ (y)

)
−

(
�′

0
)
ij

∣∣2 dx dy.

The infimum over all measure-preserving bijections is smaller than the minimum
over the subclass of measure-preserving bijections τ satisfying the following prop-
erty:

∫ j/n

(j−1)/n

∫ i/n

(i−1)/n
W

(
τ(x), τ (y)

)
dx dy =

∫ σ(j)/n

(σ (j)−1)/n

∫ σ(i)/n

(σ (i)−1)/n
W(x,y) dx dy

for some permutation σ = (σ (1), . . . , σ (n)) of {1, . . . , n}. Such τ correspond to
permutations of intervals [(i − 1)/n, i/n] in accordance with σ . For (x, y) ∈
[(σ (i) − 1)/n,σ (i)/n] × [(σ (j) − 1)/n,σ (j)/n] we use the bound

∣∣ρnW0(x, y) − ρnW0(ξi, ξj )
∣∣ ≤

∣∣∣∣ρnW0(x, y) − ρnW0

(
σ(i)

n + 1
,

σ (j)

n + 1

)∣∣∣∣

+
∣∣∣∣ρnW0

(
σ(i)

n + 1
,

σ (j)

n + 1

)
− ρnW0(ξ(σ (i)), ξ(σ (j)))

∣∣∣∣(38)

+
∣∣ρnW0(ξ(σ (i)), ξ(σ (j))) − ρnW0(ξi, ξj )

∣∣,

where ξ(m) denotes the mth largest element of the set {ξ1, . . . , ξn}. We choose
a random permutation σ = (σ (1), . . . , σ (n)) such that ξσ−1(1) ≤ ξσ−1(2) ≤ · · · ≤
ξσ−1(n). With this choice of σ , we have that (ξ(σ (i)), ξ(σ (j))) = (ξi, ξj ) and
|ρnW0(ξ(σ (i)), ξ(σ (j))) − ρnW0(ξi, ξj )| = 0 almost surely.

For the first summand in (38), as W0(·, ·) satisfies (8) and
(

σ(i)

n + 1
,

σ (j)

n + 1

)
∈

[(
σ(i) − 1

)
/n,σ (i)/n

]
×

[(
σ(j) − 1

)
/n,σ (j)/n

]
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we get

(39)
∣∣∣∣W0(x, y) − W0

(
σ(i)

n + 1
,

σ (j)

n + 1

)∣∣∣∣ ≤ 2Ln−α′
,

where we set for brevity α′ = α ∧ 1. To evaluate the contribution of the second
summand on the right-hand side of (38), we use that

∣∣∣∣W0

(
σ(i)

n + 1
,

σ (j)

n + 1

)
− W0(ξ(σ (i)), ξ(σ (j)))

∣∣∣∣
(40)

≤ M

(∣∣∣∣
σ(i)

n + 1
− ξ(σ (i))

∣∣∣∣
α′

+
∣∣∣∣
σ(j)

n + 1
− ξ(σ (j))

∣∣∣∣
α′)

.

Squaring, integrating and taking expectation we obtain

E

[∑

i,j

∫ σ(j)/n

(σ (j)−1)/n

∫ σ(i)/n

(σ (i)−1)/n

∣∣∣∣
σ(i)

n + 1
− ξ(σ (i))

∣∣∣∣
2α′

dx dy

]

= 1

n
E

[
n∑

m=1

∣∣∣∣
m

n + 1
− ξ(m)

∣∣∣∣
2α′]

(41)

≤ max
m=1,...,n

E

[∣∣∣∣
m

n + 1
− ξ(m)

∣∣∣∣
2α′]

≤ max
m=1,...,n

(
Var(ξ(m))

)α′
≤ Cn−α′

,

where we have used the relations E(ξ(m)) = m
n+1 , Var(ξ(m)) ≤ C/n, and Jensen’s

inequality. The contribution corresponding to the second summand on the right-
hand side of (40) is evaluated analogously. Combining (39)–(41) with (38), we
get

E
[
δ2(f̃�′

0
, f0)

]
≤ Cρ2

nn−α′
.

4.7. Proof of Corollary 2.7. To prove the first part of the corollary, notice that
its assumptions imply that the partition is balanced and ρn ≥ k log(k)/n. Thus,
similarly to Corollary 2.2, we obtain from Proposition 2.1 that

E

[
1

n2
‖�̂ − �0‖2

F

]
≤ C

n2
‖�0 − �∗,n0‖2

F + Cρn

(
log(k)

n
+ k2

n2

)
.

Using Proposition 2.5 to bound the expectation of the first summand on the right-
hand side, we get

(42) E

[
1

n2 ‖�̂ − �0‖2
F

]
≤ C

{
ρ2

n

k2(α∧1)
+ ρn

(
log(k)

n
+ k2

n2

)}
.

Now (11) follows from (42) by taking k = ⌈(ρnn
2)1/(2(1+α∧1))⌉. Bound (12) for

the restricted least squares estimator follows from Propositions 2.3 and 2.6.
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4.8. Proof of Corollary 3.3. To prove part (i) of the corollary, we control the
size of each block of �0. For any a in [k], the number Na of nodes belonging to
block a is a binomial random variable with parameters (n,1/k) since the graphon
W is balanced. By Bernstein’s inequality,

P

[
Na − n

k
≤ −t

]
≤ exp

[
− t2/2

n/k + t/3

]
.

Taking t = n/(2k) in the above inequality, we obtain

P

[
Na ≤ n

2k

]
≤ exp[−Cn/k].

This inequality and the union bound over all a ∈ [k] imply that the size of all
blocks of �0 is greater than n0 with probability greater than 1 − k exp(−Cn/k).
Together with Propositions 2.1 and 3.2, this yields

E
[
δ2(f̂ , f0)

]
≤ C′

(
ρn

k2

n2 + ρn

log(k)

n
+ ρ2

n

√
k

n

)
+ k exp(−Cn/k),

where the last summand is negligible. The second part of the corollary is a straight-
forward consequence of Propositions 2.1 and 2.3.

4.9. Proof of Proposition 3.4. It is enough to prove separately the following
three minimax lower bounds:

inf
f̂

sup
W0∈W[k]

EW0

[
δ2(f̂ , ρnW0)

]
≥ Cρ2

n

√
k − 1

n
,(43)

inf
f̂

sup
W0∈W[k]

EW0

[
δ2(f̂ , ρnW0)

]
≥ C

(
ρn

k2

n2 ∧ ρ2
n

)
,(44)

inf
f̂

sup
W0∈W[2]

EW0

[
δ2(f̂ , ρnW0)

]
≥ C

(
ρn

n
∧ ρ2

n

)
.(45)

4.9.1. Proof of (43). Without loss of generality, it suffices to prove (43) for
k = 2 and for all k = 16k̄ with integer k̄ large enough. Indeed, for any k > 2, there
exists k′ ≤ k such that k − k′ ≤ 15 and k′ is either a multiple of 16 or equal to 2,
so that

inf
f̂

sup
W0∈W[k]

EW0

[
δ2(f̂ ;f0)

]
≥ inf

f̂
sup

W0∈W[k′]
EW0

[
δ2(f̂ ;f0)

]

≥ Cρ2
n

√
k′ − 1

n
≥ C

4
ρ2

n

√
k − 1

n
.

We first consider k which is a multiple of 16. The case k = 2 is sketched afterward.
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The proof follows the general scheme of reduction to testing of finite number
of hypotheses (cf., e.g., [15]). The main difficulty is to obtain the necessary lower
bound for the distance δ(·, ·) between the graphons generating the hypotheses since
this distance is defined as a minimum over all measure-preserving bijections. We
start by constructing a matrix B from which the step-function graphons will be
derived.

LEMMA 4.2. Fix η0 = 1/16 and assume that k is a multiple of 16 and is
greater than some constant. There exists a k × k symmetric {−1,1} matrix B sat-
isfying the following two properties:

• For any (a, b) ∈ [k] with a �= b, the inner product between the two columns
〈Ba,·,Bb,·〉 satisfies

(46)
∣∣〈Ba,·,Bb,·〉

∣∣ ≤ k/4.

• For any two subsets X and Y of [k] satisfying |X| = |Y | = η0k and X ∩ Y = ∅

and any labelings π1 : [η0k] → X and π2 : [η0k] → Y , we have

(47)
η0k∑

a,b=1

[Bπ1(a),π1(b) − Bπ2(a),π2(b)]2 ≥ η2
0k

2/2.

Note that any Hadamard matrix satisfies condition (46) since its columns are
orthogonal. Unfortunately, the second condition (47) seems difficult to check for
such matrices. This is why we adopt a probabilistic approach in the proof of this
lemma showing that, with positive probability, a symmetric matrix with indepen-
dent Rademacher entries satisfies the above conditions.

The graphon “hypotheses” that we consider in this proof are generated by the
matrix of connection probabilities Q := (J + B)/2 where B is a matrix from
Lemma 4.2 and J is a k × k matrix with all entries equal to 1.

Fix some ε < 1/(4k). Denote by C0 the collection of vectors u ∈ {−ε, ε}k sat-
isfying

∑k
a=1 ua = 0. For any u ∈ C0, define the cumulative distribution Fu on

{0, . . . , k} by the relations Fu(0) = 0 and Fu(a) = a/k + ∑a
b=1 ub for a ∈ [k].

Then, set �ab(u) = [Fu(a − 1),Fu(a)) × [Fu(b − 1),Fu(b)) and define the
graphon Wu ∈ W[k] by

Wu(x, y) =
∑

(a,b)∈[k]×[k]
Qab1�ab(u)(x, y).

The graphon Wu is slightly unbalanced as the weight of each class is either 1/k−ε

or 1/k + ε.
Let PWu denote the distribution of observations A′ := (Aij ,1 ≤ j < i ≤ n) sam-

pled according to the sparse graphon model (2) with W0 = Wu. Since the matrix Q

is fixed the difficulty in distinguishing between the distributions PWu and PWv for
u �= v comes from the randomness of the design points ξ1, . . . , ξn in the graphon
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model (2) rather than from the randomness of the realization of A′ conditionally
on ξ1, . . . , ξn. The following lemma gives a bound on the Kullback–Leibler diver-
gences K(PWu,PWv ) between PWu and PWv .

LEMMA 4.3. For all u, v ∈ C0, we have

K(PWu,PWv ) ≤ 16nk2ε2/3.

Next, we need the following combinatorial result in the spirit of the Varshamov–
Gilbert lemma ([15], Chapter 2). It shows that there exists a large subset of C0
composed of vectors u that are well separated in the Hamming distance. We state
this result in terms of the sets Au := {a ∈ [k] : ua = ε} where u ∈ C0. Notice that,
by definition of C0, we have |Au| = k/2 for all u ∈ C0.

LEMMA 4.4. There exists a subset C of C0 such that log |C| ≥ k/16 and

(48) |Au�Av| > k/4

for any u �= v ∈ C.

Lemmas 4.4 and 4.2 are used to obtain the following lower bound on the dis-
tance δ(Wu,Wv) between two distinct graphons in C. This lemma is the main in-
gredient of the proof.

LEMMA 4.5. For all u, v ∈ C such that u �= v, the graphons Wu and Wv are
well separated in the δ(·, ·) distance:

δ2(Wu,Wv) ≥ η2
0kε/2,

so that

(49) δ2(ρnWu, ρnWv) ≥ ρ2
nη2

0kε/2 ∀u, v ∈ C : u �= v.

Now, choose ε such that ε2 = 3
(16)3nk

. Then it follows from Lemmas 4.3 and 4.4
that

(50) K(PWu,PWv ) ≤ 1

16
log |C| ∀u, v ∈ C : u �= v.

In view of Theorem 2.7 in [15], inequalities (49) and (50) imply that

inf
f̂

sup
W0∈W[k]

EW0

[
δ2(f̂ , ρnW0)

]
≥ Cρ2

n

√
k

n
,

where C > 0 is an absolute constant. This completes the proof for the case when k

is a large enough multiple of 16.
Let now k = 2. Then we reduce the lower bound to the problem of testing

two hypotheses. We consider the matrix B =
( 1

1
1

−1

)
and the two corresponding
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graphons Wu1 and Wu2 with u1 = (ε,−ε) and u2 = (−ε, ε). Adapting the argu-
ment of Lemma 4.5, one can prove that δ2(ρnWu1, ρnWu2) ≥ ρ2

nε. Moreover, ex-
actly as in Lemma 4.3, the Kullback–Leibler divergence between PWu1

and PWu2

is bounded by Cnε2. Taking ε of the order n−1/2 and using Theorem 2.2 from
[15], we conclude that

inf
f̂

sup
W0∈W[2]

EW0

[
δ2(f̂ , ρnW0)

]
≥ Cρ2

n

√
1

n
,

where C > 0 is an absolute constant.

PROOF OF LEMMA 4.2. Let B be a k × k symmetric random matrix such that
its elements Ba,b, a ≤ b ∈ [k], are independent Rademacher random variables. It
suffices to prove that B satisfies properties (46) and (47) with positive probability.
Fix a �= b. Then 〈Ba,·,Bb,·〉 is distributed as a sum of k independent Rademacher
variables. By Hoeffindg’s inequality,

P
[∣∣〈Ba,·,Bb,·〉

∣∣ ≥ k/4
]
≤ 2 exp[−k/32].

By the union bound, property (46) is satisfied for all a �= b with probability greater
than 1−2k2 exp[−k/32]. For k larger than some absolute constant, this probability
is greater than 3/4.

Fix any two subsets X and Y of [k] such that |X| = |Y | = η0k and X ∩ Y =
∅. Let π1 and π2 be any two labelings of X and Y . Then define Tπ1,π2 :=
∑η0k

a,b=1[Bπ1(a),π1(b) − Bπ2(a),π2(b)]2. By symmetry of B, Tπ1,π2/8 is greater than
∑

a<b[Bπ1(a),π1(b) − Bπ2(a),π2(b)]2/4 (we have put aside the diagonal terms)
where all the summands [Bπ1(a),π1(b) − Bπ2(a),π2(b)]2/4 are independent Bernoulli
random variables with parameter 1/2 since π1([η0k]) ∩ π2([η0k]) = ∅. Thus,
Tπ1,π2/8 is stochastically greater than a binomial random variable with parame-
ters η0k(η0k − 1)/2 and 1/2. Applying again Hoeffding’s inequality, we find

P

[
Tπ1,π2/8 ≤ η2

0k
2

8
− η0k

4

]
≤ exp

[
−η2

0k
2

32

]
.

For k large enough, we have η0k/4 ≤ η2
0k

2/16 so that Tπ1,π2 ≥ η2
0k

2/2 with
probability greater than 1 − exp(−η2

0k
2/32). There are less than k2η0k such

maps (π1, π2) so that property (47) is satisfied with probability greater than
1 − exp(2η0k log(k) − η2

0k
2/32). Again, this probability is greater than 3/4 for

k large enough. Applying once again the union bound, we find that properties (46)
and (47) are satisfied with probability greater than 1/2. �

PROOF OF LEMMA 4.4. Let C be a maximal subset C0 of points u such that
the corresponding Au are k/4-separated with respect to the measure of symmetric
difference distance. By maximality of C, the union of all balls in the Hamming
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distance centered at u ∈ C with radii k/4 covers C0. Denoting by B[u, k/4] such a
ball, we obtain by a volumetric argument

(51)
∣∣B[u, k/4]

∣∣/|C0| ≥ |C|−1.

If we endow C0 with the uniform probability, then |B[u, k/4]||C0|−1 is the prob-
ability to draw a point from B[u, k/4]. Note that a point v is in B[u, k/4] if
|Av \ Au| ≤ k/8. One can construct the set Av doing k/2 sampling without re-
placement from the set [k]. We call an a ∈ [k] a success if a ∈ Au. There are k/2
of them. Let Sk denotes the number of success, then Sk follows an hypergeometric
distribution with parameters (k, k/2, k/2) and we have

|B[u, k/4]|
|C0|

= P[Sk ≥ 3k/8].

Now we only have to bound the deviations of Sk . It follows from [1], page 173, that
Sk has the same distribution as the random variable E[η|B] where η is a binomial
random variable with parameters (k/2,1/2) and B is some suitable σ -algebra.
Thus, by a convexity argument, we obtain that, for any λ > 0,

Eeλ(Sk−k/4) ≤ Eeλ(η−k/4) ≤ eλ2k/16,

where the last bound is due to Hoeffding’s inequality. Applying the exponential
Markov inequality and choosing λ = 1, we obtain

P

[
Sk − k

4
≥ k/8

]
≤ exp[−k/16]

and, in view of (51), we conclude that |C| ≥ exp[k/16]. �

PROOF OF LEMMA 4.5. Let u and v be two different vectors in C and let τ be
a measure preserving bijection [0,1] �→ [0,1]. We aim to prove that, for any τ ,

(52)
∫ ∣∣Wu(x, y) − Wv

(
τ(x), τ (y)

)∣∣2 dx dy ≥ η2
0kε/2,

where we recall that η0 = 1/16.
If x and x′ correspond to two different classes of Wu, that is, x ∈ [Fu(a − 1),

Fu(a)) and x′ ∈ [Fu(b−1),Fu(b)) for some a �= b, then the inner product between
Wu(x, ·) and Wu(x

′, ·) satisfies
∣∣∣∣
∫ (

Wu(x, y) − 1/2
)(

Wu

(
x′, y

)
− 1/2

)
dy

∣∣∣∣ =
∣∣∣∣∣
1

4

k∑

c=1

(
1

k
+ uc

)
BacBbc

∣∣∣∣∣

≤ 1

4k
〈Ba,·,Bb,·〉 + 1

4
kε(53)

≤ 1/8,

since we assume that 4kε ≤ 1.
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For any a, b ∈ [k], define ωab the Lebesgue measure of [Fu(a − 1),Fu(a)] ∩
τ([Fv(b − 1),Fv(b)]). Since τ is measure preserving,

∑
b ωab = 1/k + ua and∑

a ωab = 1/k + vb. For any a and b ∈ [k] define hu,a(y) = Wu(Fu(a − 1), y) −
1/2 and kv,b(y) = Wv(Fv(b − 1), τ (y)) − 1/2. Then we have

∫ ∣∣Wu(x, y) − Wv

(
τ(x), τ (y)

)∣∣2 dx dy =
k∑

a=1

k∑

b=1

ωa,b

∫ ∣∣hu,a(y) − kv,b(y)
∣∣2 dy.

Let 〈·, ·〉2 and ‖ · ‖2 denote the standard inner product and the Euclidean norm in
L2([0,1]). By definition of Wu we have that |kv,a(y)| = 1/2 for all y ∈ [0,1] and
any a ∈ [k] which implies ‖kv,a‖2 = 1/2. Now for b1 �= b2, ‖kv,b1 − kv,b2‖2

2 ≥
1/2 − 1/4 = 1/8 by (53). By the triangle inequality, this implies that

‖hu,a − kv,b1‖2
2 + ‖hu,a − kv,b2‖2

2 ≥ ‖kv,b1 − kv,b2‖2
2

2
≥ 1/16.

As a consequence, for any a ∈ [k] there exists at most one b ∈ [k] such that ‖hu,a −
kv,b‖2 < 1/32. If such an index b exists, it is denoted by π(a). Exactly the same
argument shows that for any b ∈ [k] there exists at most one a ∈ [k] such that
‖hu,a − kv,b‖2 < 1/32 which implies that there exists no a �= a′ such that π(a) =
π(a′). Thus, it is possible to extend π to a permutation of [k]. We get

∫ ∣∣Wu(x, y) − Wv

(
τ(x), τ (y)

)∣∣2 dx dy ≥ 1

32

k∑

a=1

∑

b �=π(a)

ωa,b

= 1

32

k∑

a=1

(1/k + ua − ωa,π(a)).

If the sum
∑k

a=1 1/k + ua − ωa,π(a) is greater than kε/16, then (52) is satisfied.
Thus, we can assume in the sequel that

∑k
a=1 1/k + ua − ωa,π(a) ≤ kε/16. Us-

ing that ωa,b ≤ (1/k + ua) ∧ (1/k + vb) and the cardinality of the collection
{a ∈ [k] : ua > 0} is k/2 we deduce that the collection {a ∈ [k] : ua > 0, vπ(a) >

0 and ωa,π(a) ≥ 1/k} has cardinality greater than 7k/16. Since for u �= v ∈ C,
|Au ∩ Av| ≤ 3k/8 (Lemma 4.4), there exist subsets A ⊂ Au and B ⊂ Av of
cardinality η0k (recall that η0 = 1/16) such that π(A) = B , A ∩ B = ∅, and
ωa,π(a) ≥ 1/k for all a ∈ A. Hence,

∫ ∣∣Wu(x, y) − Wv

(
τ(x), τ (y)

)∣∣2 dx dy

≥
∑

a1∈A

∑

a2∈A

∫

[Fu(a1−1),Fu(a1))×[Fu(a2−1),Fu(a2))

∣∣Wu(x, y)

− Wv(τ (x), τ (y)
∣∣2 dx dy
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≥
∑

a1∈A

∑

a2∈A

ωa1,π(a1)ωa2,π(a2)[Qa1,a2 − Qπ(a1),π(a2)]2

≥ 1

4k2

∑

a1∈A

∑

a2∈A

[Ba1,a2 − Bπ(a1),π(a2)]2,

where the last inequality follows from the facts that Q = (J + B)/2 and ωa,π(a) ≥
1/k. Finally, we apply the property (47) of B to conclude that

∫ ∣∣Wu(x, y) − Wv

(
τ(x), τ (y)

)∣∣2 dx dy ≥ η2
0/8 ≥ η2

0kε/2.

This proves (52), and thus the lemma. �

PROOF OF LEMMA 4.3. For u ∈ C0, let ζ(u) = (ζ1(u), . . . , ζn(u)) be the vec-
tor of n i.i.d. random variables with the discrete distribution on [k] defined by
P[ζ1(u) = a] = 1/k + ua for any a ∈ [k]. Let �0 be the n × n symmetric ma-
trix with elements (�0)ii = 0 and (�0)ij = ρnQζi(u),ζj (u) for i �= j . Assume that,
conditionally on ζ(u), the adjacency matrix A is sampled according to the net-
work sequence model with such probability matrix �0. Notice that in this case
the observations A′ = (Aij ,1 ≤ j < i ≤ n) have the probability distribution PWu .
Using this remark and introducing the probabilities αa(u) = P[ζ(u) = a] and
pAa = P[A′ = A|ζ(u) = a] for a ∈ [k]n, we can write the Kullback–Leibler di-
vergence between PWu and PWv in the form

K(PWu,PWv ) =
∑

A

∑

a

pAaαa(u) log
(∑

a pAaαa(u)
∑

a pAaαa(v)

)
,

where the sums in a are over [k]n and the sum in A is over all triangular upper
halves of matrices in {0,1}n×n. Since the function (x, y) �→ x log(x/y) is convex,
we can apply Jensen’s inequality to get
(54)

K(PWu,PWv ) ≤
∑

a

αa(u) log
(

αa(u)

αa(v)

)
= n

∑

a∈[k]
(1/k + ua) log

(
1/k + ua

1/k + va

)
,

where the last equality follows from the fact that αa(u) are n-product probabilities.
Since the Kullback–Leibler divergence does not exceed the chi-square divergence,
we obtain

∑

a∈[k]
(1/k + ua) log

(
1/k + ua

1/k + va

)
≤

∑

a∈[k]

(ua − va)
2

1/k + va

≤ 16k2ε2/3,

where last inequality uses that |va| ≤ ε ≤ 1/(4k), and |ua − va| ≤ 2ε. Combining
this with (54) proves the lemma. �
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4.9.2. Proof of (44). As in the proof of Proposition 2.4, we use here Fano’s
method. The main difference is that the graphon separation in δ(·, ·) distance is
more difficult to handle than the matrix separation in the Frobenius distance.

First, note that it is sufficient to prove (44) for k > k0 where k0 is any fixed
integer. Indeed, if k ≤ k0, the lower bound (44) immediately follows from (45).

Let C0 denote the set of all symmetric k × k matrices with entries in {−1,1}.
The graphon hypotheses that we consider in this proof are generated by matrices of
intra-class connection probabilities of the form QB := (J + εB)/2 where B ∈ C0,
ε ∈ (0,1/2), and J is a k × k matrix with all entries equal to 1. Given a matrix QB,
define the graphon WB ∈W[k] by the formula

WB(x, y) =
∑

(a,b)∈[k]×[k]
(QB)ab1[(a−1)/k,a/k)×[(b−1)/k,b/k)(x, y).

As in the previous proof, we use the following combinatorial result in the spirit
of the Varshamov–Gilbert lemma [15], Chapter 2, that grants the existence of a
large subset C of C0 such that the matrices B ∈ C are well separated in some sense.
Given any two permutations π and π ′ of [k] and any matrix B, we denote by Bπ,π ′

a matrix with entries B
π,π ′
ab = Bπ(a)π ′(b).

LEMMA 4.6. Let k0 be an integer large enough. For any k > k0, there exists
a subset C of C0 satisfying log |C| ≥ k2/32 and such that

(55)
∥∥B1 − B

π,π ′
2

∥∥2
F ≥ k2

2

for all permutations π , π ′ and all B1 �= B2 ∈ C.

We assume in the rest of this proof that k is greater than k0. As noticed above,
it is enough to prove (44) only in this case. We choose a maximal subset C satis-
fying the properties stated in Lemma 4.6. The next lemma shows that the separa-
tion between matrices B in C translates into separation between the corresponding
graphons WB.

LEMMA 4.7. Let C be a maximal set satisfying the properties stated in
Lemma 4.6. For any two distinct B1 and B2 in C, we have

(56) δ2(ρnWB1, ρnWB2) ≥ ρ2
nε2/8.

Finally, in order to apply Fano’s method, we need to have an upper bound on the
Kullback–Leibler divergence between the distributions PWB

for B ∈ C. It is given
in the next lemma.

LEMMA 4.8. For any B1 and B2 in C, we have

K(PWB1
,PWB2

) ≤ 3n2ρnε
2.
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Choosing now ε = ( k
n
√

ρn
∧ 1)/32 we deduce from Lemmas 4.8 and 4.6 that

(57) K(PWB1
,PWB2

) ≤ 1

10
log |C| ∀B1,B2 ∈ C : B1 �= B2.

In view of Theorem 2.7 in [15], inequalities (56) and (57) imply that

inf
f̂

sup
W0∈W[k]

EW0

[
δ2(f̂ , ρnW0)

]
≥ C

(
ρn

k2

n2 ∧ ρ2
n

)
,

where C > 0 is an absolute constant. This completes the proof of (44).

PROOF OF LEMMA 4.6. Define the pseudo-distance d� on C0 by d�(B1,

B2) := minπ,π ′ ‖B1 − B
π,π ′
2 ‖F , where the minimum is taken over all permuta-

tions of [k]. Let C be a maximal subset C0 of matrices B that are
√

k(k + 1)/2-
separated with respect to d�. By maximality of C, the union of all balls in
d� distance centered at B ∈ C with radii

√
k(k + 1)/2 covers C0. Denoting by

B[B,
√

k(k + 1)/2, d�] such a ball, we obtain by a volumetric argument
∣∣B

[
B,

√
k(k + 1)/2, d�

]∣∣/|C0| ≥ |C|−1.

Since d�(B1,B2) is the infimum over all k!2 permutations of the distance ‖B1 −
B

π,π ′
2 ‖F , we have

∣∣B
[
B,

√
k(k + 1)/2, d�

]∣∣ ≤ k!2
∣∣B

[
B,

√
k(k + 1)/2,‖ · ‖F

]∣∣,

where B[B,
√

k(k + 1)/2,‖·‖F ] is the ball centered at B with respect to the Frobe-
nius distance. Given B1 and B2 in C0, ‖B1 − B2‖2

F /4 is equal to the Hamming
distance between B1 and B2. Consider the ball B[B, k(k + 1)/8, dH ] centered at
B with respect to the Hamming distance. As matrices in C0 are symmetric, C0 is
in bijection with {0,1}k(k+1)/2. Using Hamming bound and Varshamov–Gilbert
lemma [15], Chapter 2, we obtain

2−k(k+1)/2∣∣B
[
B, k(k + 1)/8, dH

]∣∣ ≤
∣∣C′∣∣−1 ≤ e−k(k+1)/16,

where C′ is a maximal subset of matrices B that are k(k+1)
4 -separated with respect

to the Hamming distance. We then conclude that

|C| ≥ |C0|
k!2|B[B,

√
k(k + 1)/2,‖ · ‖F ]| ≥ exp

[
k

{
(k + 1)/16 − 2 log(k)

}]
,

which is larger exp(k2/32) for k large enough. �

PROOF OF LEMMA 4.7. Let B1 and B2 be two distinct matrices in C and let τ

be a measure preserving bijection [0,1] �→ [0,1]. Our aim is to prove that, for any
such τ ,

(58)
∫ ∣∣WB1(x, y) − WB2

(
τ(x), τ (y)

)∣∣2 dx dy ≥ ε2/8.
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For any a, b ∈ [k], let ωab denote the Lebesgue measure of [(a − 1)/k, a/k] ∩
τ([(b − 1)/k, b/k]). Since τ is measure preserving,

∑
b ωab = 1/k and

∑
a ωab =

1/k. Hence, the k ×k matrix kω, where ω = (ωab)a,b∈[k], is doubly stochastic. For
any permutation π of [k], denote H(π) the corresponding permutation matrix. By
the Birkhoff–von Neumann theorem [8], kω is a convex combination of permuta-
tion matrices, that is, there exist positive numbers γπ such that

∑
π γπ = 1/k, and

ω = ∑
π γπH(π) where the summation runs over all permutations. Using these

remarks, we obtain
∫ ∣∣WB1(x, y) − WB2

(
τ(x), τ (y)

)∣∣2 dx dy

= ε2

4

∑

a1,a2,b1,b2∈[k]
ωa1a2ωb1b2

[
(B1)a1b1 − (B2)a2b2

]2

= ε2

4

∑

π1,π2

∑

a1,a2,b1,b2∈[k]
γπ1γπ2H(π1)a1a2H(π2)b1b2

[
(B1)a1b1 − (B2)a2b2

]2

(by the definition of permutation matrices)

= ε2

4

∑

π1,π2

γπ1γπ2

∑

a,b

[
(B1)ab − (B2)π1(a)π2(b)

]2

= ε2

4

∑

π1,π2

γπ1γπ2

∥∥B1 − B
π1,π2
2

∥∥2
F

≥
∑

π1,π2

γπ1γπ2

ε2k2

8
= ε2

8
,

where we have used Lemma 4.6 and the property
∑

π γπ = 1/k. �

PROOF OF LEMMA 4.8. The proof is quite similar to that of Lemma 4.3. Fix
two matrices B1 and B2 in C. Let ζ = (ζ1, . . . , ζn) be the vector of n i.i.d. ran-
dom variables with uniform distribution on [k]. Let �1 be the n × n symmetric
matrix with elements (�1)ii = 0 and (�1)ij = ρn[1 + (B1)ζi ,ζj

]/2 for i �= j . As-
sume that, conditionally on ζ(u), the adjacency matrix A is sampled according
to the network sequence model with such probability matrix �1. Notice that in
this case the observations A′ = (Aij ,1 ≤ j < i ≤ n) have the probability distribu-
tion PWB1

. Using this remark, we introduce the probabilities αa = P[ζ = a] and

p
(1)
Aa = P[A′ = A|ζ = a] for a ∈ [k]n. Next, we introduce the analogous probabili-

ties p
(2)
Aa for a matrix �2 depending on B2 in the same way as �1 depends on B1.

The Kullback–Leibler divergence between PWB1
and PWB2

has the form

K(PWB1
,PWB2

) =
∑

A

∑

a

αap
(1)
Aa log

(∑
a αap

(1)
Aa∑

a αap
(2)
Aa

)
,
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where the sums in a are over [k]n and the sum in A is over all triangular upper
halves of matrices in {0,1}n×n. Since the function (x, y) �→ x log(x/y) is convex,
we can apply Jensen’s inequality to get

K(PWB1
,PWB2

) ≤
∑

a

αa

∑

A

p
(1)
Aa log

(
p

(1)
Aa

p
(2)
Aa

)
.

Here, the sum in A for fixed a is the Kullback–Leibler divergence between two
n(n− 1)/2-products of Bernoulli measures, each of which has success probability
either ρn(1 + ε)/2 or ρn(1 − ε)/2. Thus, for p = (1 + ε)/2 and q = (1 − ε)/2 we
have

(59) K(PWB1
,PWB2

) ≤ n(n − 1)

2
ρnκ(p, q),

where κ(p, q) is the Kullback–Leibler divergence between the Bernoulli measures
with success probabilities p and q . Since the Kullback–Leibler divergence does
not exceed the chi-square divergence, we obtain κ(p, q) ≤ (p−q)2(p−1 +q−1) =
4ε2/(1 − ε2) ≤ 16ε2/3 for any ε < 1/2. The lemma now follows by substitution
of this bound on κ(p, q) into (59). �

4.9.3. Proof of (45). We use here a reduction to the problem of testing two
simple hypotheses by Le Cam’s method. Fix some 0 < ε ≤ 1/4. Let W1 be the
constant graphon with W1(x, y) ≡ 1/2, and let W2 ∈ W[2] be the 2-step graphon
with W2(x, y) = 1/2 + ε if x, y ∈ [0,1/2)2 ∪ [1/2,1]2 and W2(x, y) = 1/2 − ε

elsewhere. Obviously, we have

(60) δ2(ρnW1, ρnW2) = ρ2
nε2.

We have

inf
f̂

max
W0∈{W1,W2}

EW0

[
δ2(f̂ , ρnW0)

]

≥ 1

2

∫ (
δ2(f̂ , ρnW1) + δ2(f̂ , ρnW2)

)
min(dPW1, dPW2)

(61)

≥ δ2(ρnW1, ρnW2)

4

∫
min(dPW1, dPW2)

≥ ρ2
nε2

8
exp

(
−χ2(PW2,PW1)

)
,

where χ2(PW2,PW1) is the chi-square divergence between PW2 and PW1 . In the
last inequality, we have used (2.24) and (2.26) from [15], and (60). Finally, the
following lemma allows us to conclude the proof by setting ε =

√
c0
nρn

∧ 1
4 .

LEMMA 4.9. There exists an absolute constant c0 > 0 such that χ2(PW2,

PW1) ≤ 1/4 if ε satisfies nρnε
2 ≤ c0.
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PROOF. Let L(A′) be likelihood ratio of PW2 with respect to PW1 . Since
χ2(PW2,PW1) = EW1[L(A′)2] − 1 it remains to prove that EW1[L(A′)2] ≤ 5/4.

For the sake of brevity, we write in what follows E[·] = EW1[·]. We also set
p0 := ρn/2, p1 := ρn(1/2 + ε) and p2 := ρn(1/2 − ε).

As the graphon ρnW2 is a 2-step function, we may assume that the compo-
nents of ξ = (ξ1, . . . , ξn) are i.i.d. uniformly distributed on {0,1}. Given ξ , define
the collection S := {{a, b} : ξa = ξb} of subsets of indices with identical position.
For {i, j} in S (resp., Sc), Ai,j follows a Bernoulli distribution with parameter p1

(resp., p2). Denote μ the distribution of S and n(2) = n(n − 1)/2 the number of
subsets of size 2 of [n]. Then the likelihood has the form

L
(
A′) =

∫
LS

(
A′)dμ(S),

LS

(
A′) :=

(
1 − p1

1 − p0

)|S|(1 − p2

1 − p0

)n(2)−|S| ∏

{a,b}∈S

(
p1(1 − p0)

p0(1 − p1)

)Aab

×
∏

{a,b}∈Sc

(
p2(1 − p0)

p0(1 − p2)

)Aab

.

By Fubini’s theorem, we may write

E
[
L2(

A′)]
=

∫
E

[
LS1

(
A′)LS2

(
A′)]

dμ(S1) dμ(S2),

where

E
[
LS1

(
A′)LS2

(
A′)]

=
(

1 − p1

1 − p0

)|S1|+|S2|(1 − p2

1 − p0

)2n(2)−|S1|−|S2|
E

[ ∏

{a,b}∈S1∩S2

(
p1(1 − p0)

p0(1 − p1)

)2Aab

×
∏

{a,b}∈Sc
1∩Sc

2

(
p2(1 − p0)

p0(1 − p2)

)2Aab ∏

{a,b}∈S1�S2

(
p1p2(1 − p0)

2

p2
0(1 − p1)(1 − p2)

)Aab
]

=
[
1 + (p1 − p0)

2

p0(1 − p0)

]|S1∩S2|[
1 + (p2 − p0)

2

p0(1 − p0)

]|Sc
1∩Sc

2 |

×
[
1 + p1p2 + p2

0 − p1p0 − p2p0

p0(1 − p0)

]|S1�S2|
.

Using the definition of p0, p1 and p2, we find

E
[
LS1

(
A′)LS2

(
A′)]

=
[
1 + ρ2

nε2

p0(1 − p0)

]|S1∩S2|+|Sc
1∩Sc

2 |[
1 − ρ2

nε2

p0(1 − p0)

]|S1�S2|
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≤
[
1 + ρ2

nε2

p0(1 − p0)

]|S1∩S2|+|Sc
1∩Sc

2 |−|S1�S2|

≤ exp
[(

2|S1 ∩ S2| + 2
∣∣Sc

1 ∩ Sc
2

∣∣ − n(2))4ρnε
2]

.

Thus, to bound the second moment of L(A′), it suffices to control an exponential
moment of T := |S1 ∩ S2| + |Sc

1 ∩ Sc
2| where S1 and S2 are independent and dis-

tributed according to μ. To handle this quantity, we denote by ξ = (ξ1, . . . , ξn) and
by ξ ′ = (ξ ′

1, . . . , ξ
′
n) the positions for the first and second sample corresponding to

S1 and S2, respectively. Next, for any i, j ∈ {0,1}2, define

Nij :=
∣∣{a : ξa = i and ξ ′

a = j
}∣∣.

Then we have 2|S1 ∩ S2| + n = N2
00 + N2

01 + N2
10 + N2

11 and 2|Sc
1 ∩ Sc

2| =
2N00N11 + 2N01N10 so that 2T + n = (N00 + N11)

2 + (N01 + N10)
2. Define the

random variable Z := N00 + N11 − n/2. It has a centered binomial distribution
with parameters n and 1/2. We have

2T − n(2) = (n/2 + Z)2 + (n/2 − Z)2 − n − n(2) = 2Z2 − n/2.

Plugging this identity into the expression for E[L2(A′)], we conclude that

E
[
L2(

A′)]
≤ E

[
exp

(
8ρnε

2Z2)]
,

where E[·] stands for the expectation with respect to the distribution of Z. By
Hoeffding’s inequality, Z has a sub-Gaussian distribution with sub-Gaussian norm
smaller than n1/2. Consequently, E[L2(A′)] ≤ 5/4 as soon as 8ρnnε2 is smaller
than some numerical constant. �

4.10. Technical lemmas.

LEMMA 4.10. Let X1, . . . ,Xn be i.i.d. uniformly distributed variables on
[0,1] and X(i) is the ith element of the ordered sample X(1) ≤ X(2) ≤ · · · ≤ X(n).
Then, for any n0 ≤ n, and 0 ≤ s < n0,

E(X(i) − X(i+s))
2 = s(s + 1)

(n + 1)(n + 2)
≤

(
n0

n

)2
.

PROOF. Note that X(i) − X(i+s) ∼ Beta(s, n − s + 1). For Y ∼ Beta(β, γ ) we
have

E
(
Y 2)

= β(β + 1)

(β + γ + 1)(β + γ )

which implies the lemma. �

PROOF OF LEMMA 4.1. Since ‖T̂‖∞ ≤ 2r , the definition of qmax and the
fact that ‖T̂‖F ≥ r imply ε0 ≤ ‖T̂‖F ≤ εqmax . Denote by q̂ the integer such that
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2−1εq̂ ≤ ‖T̂‖F < εq̂ . Let V̂0 be a matrix minimizing ‖T̂/‖T̂‖F − V‖F over all V

in Cẑr
. Then take V̂ = V̂

q̂,Û,ẑr

0 where Û is a minimizer of ‖T̂ − V̂
q̂,U,ẑr

0 ‖F over all

U ∈ {−1,0,1}k×k . Notice that Û is also a minimizer of ‖T̂ − V̂
q̂,U,ẑr

0 ‖∞ over all

U ∈ {−1,0,1}k×k since both T̂ and V̂
q̂,U,ẑr

0 are block-constant matrices with the
same block structure determined by ẑr .

Denoting by 0 the zero k × k matrix, we have

‖T̂ − V̂‖F ≤
∥∥T̂ − V̂

q̂,0,ẑr

0

∥∥
F

(
since Û is a minimizer of

∥∥T̂ − V̂
q̂,U,ẑr

0

∥∥
F

)

= ‖T̂ − εq̂V̂0‖F

(
since ‖T̂‖∞ ≤ 2r

)

=
∥∥T̂ − εq̂T̂/‖T̂‖F

∥∥
F + εq̂

∥∥T̂/‖T̂‖F − V̂0
∥∥
F

≤
(
‖T̂‖F − εq̂

)
+ εq̂

∥∥T̂/‖T̂‖F − V̂0
∥∥
F

≤
(
‖T̂‖F − εq̂

)
+

εq̂

4
(since Cẑr

is a 1/4-net)

≤ ‖T̂‖F /4.

Next, since V̂ = V̂
q̂,Û,ẑr

0 minimizes ‖T̂ − V̂
q̂,U,ẑr

0 ‖∞ over U we have

‖T̂ − V̂‖∞ ≤
∥∥T̂ − V̂

q̂,U∗,ẑr

0

∥∥
∞,

where U∗ is the matrix with elements defined by the relation U∗
ab = sign(T̂ij ) if

i ∈ ẑ−1
r (a), j ∈ ẑ−1

r (b) for (a, b) ∈ [k] × [k]. Thus, all the entries of V̂
q̂,U∗,ẑr

0 in

each block are either equal to r or to −r depending on whether the value of T̂ on
this block is positive or negative, respectively. Since ‖T̂‖∞ ≤ 2r , we obtain that

‖T̂ − V̂
q̂,U∗,ẑr

0 ‖∞ ≤ r . �
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