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We present a new approach for answering short path queries in planar graphs. For any fixed
constant k and a given unweighted planar graph G = (V, E) one can build in O(|V]) time a data
structure, which allows to check in O(1) time whether two given vertices are at distance at most
k in G and if so a shortest path between them is returned. Graph G can be undirected as well as
directed.

Our data structure works in fully dynamic environment. It can be updated in O(1) time
after removing an edge or a vertex while updating after an edge insertion takes polylogarithmic
amortized time. Besides deleting elements one can also disable ones for some time. It is motivated
by a practical situation where nodes or links of a network may be temporarily out of service.

Our results can be easily generalized to other wide classes of graphs — for instance we can take
any minor-closed family of graphs.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems— Computations on discrete structures; G.2.2
[Mathematics of Computing]: Discrete Mathematics—Graph Algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Bounded length, dynamic environment, oracle, planar graph,
shortest path

1. INTRODUCTION

Computing shortest paths in planar graphs is a fundamental problem with nu-
merous practical applications — for an extensive survey see Ahuja et al. [1993],
Ramalingam [1996]. It is also often used as a black box in other graph algorithms.
In this case the complexity of computing the shortest paths has often a crucial
influence on the overall complexity.

Recently the following problem attracts a lot of attention: for a given n-vertex
planar graph, construct a data structure which allows to process quickly queries
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concerning shortest paths between vertices. Results in this area are often given in a
form of a trade-off between the preprocessing space (or time) and the time needed
to answer the shortest path query. For instance Djidjev [1996] showed a data
structure which takes C’)(n4/ 3) space and supports queries in O(nl/ 3logn) time.
When query time is constant or close to constant the data structure constructed in
the preprocessing phase is called an oracle.

1.1 New Results

A Combinatorial Result. The core of our paper is a new combinatorial result
on planar graphs describing the structure of bounded length shortest paths in these
graphs. Roughly, we show that for any constant & we can orient edges of a planar
graph, biorienting some of the edges, so that each vertex has bounded outdegree,
and if in the original graph there is a path of length [ < k between vertices u and v
then in the oriented graph there are two directed paths, first from u to some vertex
x and the second from v to x such that the lengths of these two paths sum up to
[. (See Theorem 5.9 for a precise formulation). We use this and similar results to
design efficient oracles for bounded length shortest paths.

Shortest Paths. We study the following version of the shortest path problem.
We fix a constant integer k. For an undirected unweighted planar graph G (without
given plane embedding) we describe a preprocessing which takes time and space
O(n). Then we provide a query algorithm which checks in O(1) time whether two
given vertices are at distance at most k and if so it computes a corresponding short-
est path. The query algorithm searches for paths using a data structure computed
in the preprocessing phase. Our oracle can be updated in O(1) time after deleting
any edge or any vertex of G. Moreover, updating the oracle after edge insertion
takes polylogarithmic amortized time, namely (’)(logk n) time, thus it can work in
the fully dynamic environment. Additionally, one can enable and disable edges and
vertices of GG in constant time. The query algorithm acts as the disabled elements
were deleted from the graph. It models a real-life situation where nodes or links of
some network may be out of service for some time.

The Girth. The girth of a graph G is the length of the shortest cycle in G. For
any fixed constant k our approach can be used to construct a linear time algorithm
which verifies whether a given graph has girth at most k£ and if so it computes the
corresponding cycle.

Given Length Paths and Cycles. We also show a constant time algorithm
for another natural type of queries. For two given vertices v and v and an integer
t < k the query returns a simple u, v-path of length exactly ¢ or reports that there
is no such a path in graph G. As we can put u = v it can be also used to find a
given length cycle containing u and further to find a cycle of given length in planar
graph in linear time.

Generalizations. We would like to emphasize that we consider undirected un-
weighted input graphs merely for the sake of simplicity. We also decided to focus
on the family of planar graphs because it is widely recognized and particularly im-
portant in applications. Nevertheless our results can be further generalized. Our
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oracle can be easily extended to service directed graphs and some weighted graphs
(weights are positive integers). Moreover, the family of planar graphs can be re-
placed by any class C of graphs satisfying the following three conditions:

(i) Graphs from C are sparse, i.e. there exists a constant ¢ such that for every
GeC, |EG)| <dV(G),

(ii) C is closed under taking subgraphs,

(iii) If a graph G from C is a subdivision of a graph H, then H € C.

We show that every class of graphs closed under taking minors satisfies the above
conditions. It follows that for arbitrary constant number g the class of graphs
embeddable in a surface of genus g satisfies our conditions. Another example of a
class closed under taking minors is the class the graphs of bounded tree-width.

1.2 Related Work

Shortest Paths Oracles. There is a number of results concerning general
distance queries in weighted planar digraphs. Lipton and Tarjan [1979], Frederick-
son [1987], Arkati et al. [1996] and Djidjev [1996] have shown that after prepro-
cessing that uses space s the distance queries can be answered in O(n?/s) time.
For space s € [n*3,n%/?] Djidjev [1996] improved query time to O(n/y/slogn).
Further improvements were presented by Chen and Xu [2000] but still it is not
known whether it is possible to achieve near-linear preprocessing space/time with
near-constant query time.

The situation gets better when we consider approximate distances. Mikkel Tho-
rup [2001] presented an oracle answering (1 + €)-approximate distance queries in
planar graphs. For undirected graphs it takes O(¢ ~!nlogn) space and the queries
are processed in O(e 1) time. For digraphs his oracle has O(s~'nlognlog A) space
and O(loglog A+e~1) query time, where A is the largest finite distance in the graph
and weights of edges are non-negative integers. This oracle can be used to process
queries of our type. In order to get exact answer for vertices at distance at most
k it suffices to put ¢ = k~!. For every constant k the result of Thorup yields
an oracle for undirected planar graphs with O(nlogn) oracle space and constant
query time. For planar digraphs the bounds for oracle space and query time in-
crease to O(nlognlog A) and O(loglog A) respectively. Similar results, but only
for undirected planar graphs, were discovered independently by P. Klein [2002].

The shortest path problem addressed in our paper was considered previously by
David Eppstein [1999]. He applied methods developed for subgraph isomorphism
problem. His approach uses also a linear preprocessing but the queries are answered
in O(logn) time. The algorithm of Eppstein combines methods of tree decomposi-
tion with clustering techniques of Frederickson [1997]. In the same paper, Eppstein
presents another algorithm, based on tree decomposition technique, which uses
O(nlogn) time preprocessing and the queries are processed in O(1) time. Both
algorithms of Eppstein need a plane embedding of the input graph.

Shortest Paths Avoiding Failure Elements. The paper of Demetrescu and
Thorup [2002] describes an oracle answering the queries of the form: “What is the
length of a shortest path from vertex z to vertex y avoiding a failed link (u,v)
and what edge leaving = should be used to get on such a shortest path?”. The
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oracle works for general graphs, takes space O(n?logn) and queries are answered
in O(logn). Thus, for integer edge weights, the shortest path of length k can be
computed using at most k queries in O(klogn) time. The structure allows only
one failure edge. Thus, as soon as a failure in a graph is noticed the oracle returns
shortest paths avoiding it but then the structure has to be computed from the
scratch in the background.

Finding Given Length Cycles and Computing the Girth. The problem of
finding cycles of specified lengths in a planar graphs attracted many researchers.
There was a number of linear algorithms for finding cycles of particular lengths
from 3 to 6, see Papadimitriou and Yannakakis [1981], Chiba and Nishizeki [1985],
Chrobak and Eppstein [1991], Richards [1986], Kowalik [2003]. Alon et al. [1997]
designed an algorithm for finding cycles of arbitrary fixed length working in O(n)
expected time or O(nlogn) worst case time. Finally, Eppstein [1999] presented a
linear algorithm for finding any fixed pattern in a planar graph. His results can be
also used to compute the girth of a bounded value in O(n) time. If the girth is not
bounded the problem seems to be harder — the best known algorithm is due to H.
Djidjev [2000] and runs in O(n®/*logn) time.

2. BASIC NOTIONS AND NOTATION

We start with some basic definitions. A plane graph is a planar graph G = (V, E)
together with its fixed planar embedding. A path is a non-empty graph P = (V, E)
with vertices V' = {zg,...2¢} and edges E = {xox1,2122,...,T—12+} where the
x; are all distinct. The vertices x1,...x;_1 are called inner vertices of P. We also
say that P joins vertices xg,x; and we call path P an xg, xx-path. When zg = x4
such a path is called a cycle. A walk in a graph G is a nonempty alternating
sequence vgegvies ...eq—1v¢ of vertices and edges in G such that e; = v;v;41 for
allt =0,...t — 1. Note that in a walk the same vertices may occur many times.
The vertices v1,...v;—1 are called inner vertices of the walk (observe that vy or
vy can be inner when walk visits them many times). If all the vertices of a walk
are distinct, it corresponds to a path in G. Sometimes, instead of path we will say
stmple path to emphasize that the vertices are visited only once.

A multigraph in which edges are assigned directions is called a directed graph
(or digraph in short). Then (u,v) denotes an edge that leaves u and enters v. A
directed path (or dipath in short) is a is a non-empty digraph P = (V| E) with
vertices V = {xo,...2:} and edges E = {(zxo,x1), (x1,22),...,(xt—1,2)} where
the z; are all distinct. A directed walk is also defined similarly as in undirected
case but now each edge e; leaves v; and enters v;.

For a vertex v in a digraph G we define the outdegree as the number of edges
leaving v and the indegree as the number of edges entering v. We denote these
values by indeg(v) and outdeg (v) respectively. A digraph is d-oriented when the
outdegree of each vertex is bounded by d. We say that a graph is O(1)-oriented
when it is d-oriented for some d = O(1). Let G be a undirected graph and let H be
a directed graph. Assume that H can be obtained from G by replacing each edge
uv of G by either (u,v) or (v,u) or the pair (u,v) and (v,u). We say that digraph
H is a biorientation of graph G. When a biorientation does not contain a 2-cycle
we call it an orientation. Let H be an orientation of G. When H is d-oriented
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we call it d-orientation of G and we say that G can be d-oriented. G will denote
certain orientation of a graph G. In our proofs we will need the following simple
fact bounding the number of colors needed to color a d-oriented graph.

LEMMA 2.1. FEvery d-oriented graph can be vertex (2d+1)-colored in linear time.

PROOF. Let G be an arbitrary d-oriented graph. We use induction on the number
of vertices. Since ), indeg(v) = ), outdeg(v) there exists in G a vertex v such
that indeg(v) < outdeg(v). Thus deg(v) < 2d. We can color inductively G — {v}
and assign to v a free color. O

3. KEY IDEAS

It is widely known that for any simple planar graph G we can find its 5-orientation
—

G (i.e. orientation with outdegrees at most 5) using the following simple algorithm.
While G is not empty pick a vertex v of degree at most 5 (it always exists), orient
every incident edge vw € G as (v, w) in G1 and remove v from G. Then xy € E(G)
iff (x,y) € E(CT{) or (y,z) € E(a) Thus after a linear preprocessing we can
process the queries of the form: “Are vertices x and y adjacent?” in O(1) time.

We generalize this result to much wider class of queries, i.e. we can check in O(1)
time whether given vertices are at distance at most k and if so we can compute a
shortest path between them.

Now we focus on the case k = 2 which reveals some key ideas of our approach.
The general case is considered in the latter sections. Let v, w be vertices at distance
2 in G. Consider a path p of length 2 between v and w. Edges of p are oriented in
CT{ in one of three possible ways excluding the symmetrical one (see Fig. 1).

(1) (2) (3)

Fig. 1. Possible cases of orienting edges of a 2-path.

As one can see the cases (1) and (2) are easy to detect in O(1) time. The main
obstacle is to detect the last case because the indegrees of v and w can be arbitrarily
large. In order to resolve this problem we extend G by adding edges of weight 2
between each pair of vertices v and w which match the third case. The graph
compound of edges with weight 2 is denoted by G3. Formally vw € G iff there
exists a vertex x € V(é—{) such that (z,v) € E(é—{) and (z,w) € E(a) The vertex
x is said to support the edge vw (See Fig. 2). Since C.T'I has bounded outdegree every
vertex supports O(1) edges in G2. Consequently G2 can be constructed in linear
time. All we need is to verify adjacency in G in constant time. Although G is
not necessarily a planar graph we show how to compute a decomposition of G5 into
O(1) planar graphs.

To this end we start with 5-coloring of the vertices of G and then we partition
graph G5 into 5 subgraphs. Each of them contains edges supported by vertices from
the same color class. Observe that for each vertex v there are at most (g) edges in
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Fig. 2. Edges e1,e2,e3 € E(G2) are supported by v.

G2 supported by v. Each of the 5 subgraphs is further partitioned into (g) plane
graphs in such a way that none of them contains two edges supported by the same
vertex. Hence we partitioned G5 into 5 - (g) = O(1) graphs. Moreover each of these
graphs is a subdrawing of G: it can be embedded in the plane in such a way that
its embedding is completely contained in the embedding of G. In another words
their edges are embedded like the corresponding 2-paths in G. Moreover, the way
we partitioned the edges guarantees that each of the resulting O(1) graphs contains
no pair of crossing edges. It follows that these graphs are planar.

Each of the O(1) planar graphs that sum up to Ga can be 5-oriented. Hence
we obtain an O(1)-orientation of G5 and adjacency queries in G5 can be processed
in exactly the same way as in G. It follows that the case (3) from Fig. 1 can be
detected in O(1) time.

The approach described above can be extended to any fixed natural number k.
We start from creating a , an O(1)-orientation of G. Then we build successively
undirected graphs: Go,Gs,..., Gy and their orientations 5;, EJZ, ceey é}; All the
graphs have the same vertex set as the initial graph G. For any ¢t > 1 an edge wv
belongs to Gy iff there exists © € V(G) such that (z,u) € E((_JZ) and (z,v) € E(CT;)
for some 4, j satisfying ¢ + j = ¢t. Thus, every edge in graph G corresponds to
certain walk of length ¢ in G.

— —_—
A union of graphs G; is called a shortcut graph and denoted by Si(G). The edges

in G have weights equal to t. The weight of a path in Si(G) is the sum of weights
of its edges. The following properties allow us to use the shortcut graph as a short
paths oracle:

(i) Each graph G; is a union of a bounded number of plane graphs and therefore
it can be O(1)-oriented. Notice that after such an orientation only a bounded
number of vertices is reachable from any vertex v by paths of weight at most k
in the shortcut graph.

(ii) Let v and w be vertices at distance [ < k in G. Then in the shortcut graph
there are two dipaths v ~ & and w ~» x such that the sum of their weights is [.

Observe that by property (i) we can easily find the paths described in (ii) in O(1)
time. For an example of a shortcut graph see Fig. 3. The input graph is a path of
length 12 and k = 7. Vertices v and w are at distance 7, dipaths described in (ii)
are bold.

It turns out that any shortcut graph can be significantly simplified. Once we
build the shortcut graph we can transform it simply to a biorientation of the input
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Fig. 3. An example of a Shortcut Graph.

graph G. The biorientation has similar properties as the shortcut graph and can
be also used for finding shortest paths of bounded length with the same perfor-
mance as before. However, the biorientation cannot be maintained in the dynamic
environment.

Organization of the Paper The rest of this paper is organized as follows. In
Section 4 we define operation ® which is used in latter sections to describe formally
the construction of the shortcut graph. Then we show properties of the introduced
operation (see Corollary 4.3) that easily imply the constraint (i) above. Section 5
contains detailed description and time complexity analysis of the shortcut graph
construction algorithm as well as the shortest path query algorithm. We also show
that constraint (ii) holds (see Theorem 5.3) which provides correctness of the query
algorithm. Next in Section 5.4 we show the transformation of the shortcut graph
to the biorientation mentioned above which constitutes the most important combi-
natorial result of this paper.

In Section 6 we show how to upgrade the shortcut graph to allow constant-time
updates after deletions of edges or vertices. We also describe how to update the
shortcut graph in amortized O(logk n) time after insertion of an edge. Section 7
shows flexibility of our structure; we show that it can be extended to service directed
or weighted graphs and that it can process other natural query types. Eventually
in Section 8 we discuss which classes of graphs can replace planar graphs in our
results.

4. SUBDRAWINGS AND OPERATION &

Recall that graph F' is a subdivision of graph H if F' can be obtained from H by
subdividing some of the edges, that is, by replacing the edges by paths. We say
that F'is a t-subdivision of H if F' can be obtained from H by replacing some edges
of H by paths of length at least 1 and at most ¢t. H is a subdrawing of G if a certain
subdivision of H is a subgraph of G. Similarly, H is a t-subdrawing of G if certain
t-subdivision of H is a subgraph of G. If edge e € E(H) is replaced by a path p in
G we say that e corresponds to p. In this case we denote e = ey (p) and p = pi(e).

Example Figure 4 shows a 5-subdrawing H of the 4 x 4 grid graph G. Edge
xy € E(H) corresponds to 4-path xzabcy in grid G. We can write xy = ey (xabey)
and zabcy = pg(xy). Observe that if G is a plane graph and H is its subdrawing
every edge of H can be drawn in the plane as a union of drawings of edges of G
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obtaining a plane embedding of H.

x x —® x
a a
b < b ¢
Y Y Y
4 x 4 grid subdrawing

Fig. 4. An exemplary subdrawing of the 4 x 4 grid graph.

Let G and H be undirected graphs. If H can be decomposed into s t-subdrawings
of G then such a decomposition is called (G, t)-representation of H of thickness s.
When H is directed and each of the s subdrawings is d-oriented we say that the
representation is d-oriented.

Let F' and H be a pair of directed subdrawings of a graph G. We define a
relation on the set of edges of F'. We say that an edge ey = (u,v) € E(F) points
with H to a different edge e2 = (x,y) € E(F) when there exists an edge h =
(u,w) € E(H) such that vertices of pg(h) and inner vertices of pg(es) intersect,

Le. V(pa(h) 0 (V(pc(e2)) — {2,y}) # 0 (see Fig. 5).

Fig. 5. Edge e points to edge es.

The following lemma binds the notions of the subdrawing and the pointing rela-
tion.

LEMMA 4.1. Let G be an arbitrary graph. Let A and B be 1-oriented digraphs
such that A is subdrawing of G and B is b-subdrawing of G. Let e be an edge in
graph A. Then e points with B to at most b edges in A.

PROOF. Let e = (u,v). Since B is l-oriented there is at most one edge in B
leaving u. If there is no such edge we have nothing to prove since then e does not
point with B to any edge. Otherwise, let h be the edge leaving u. Observe that
no two paths corresponding to some two edges in A share a common inner vertex.
Hence each of at most b+ 1 vertices of path pg(h) is an inner vertex of at most one
path corresponding to an edge in A. Moreover v is not an inner vertex of the path
corresponding to an edge in A. Thus e points with B to at most b edges in A. O
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Now we define a binary operation ®. Its arguments are two digraphs G, H
while the result is an undirected simple graph with vertex set V(G) UV (H). Two
distinct vertices v and v are adjacent in G ® H iff there exists a vertex x such
that (z,u) € F(G) and (x,v) € E(H). We say that an edge uv is supported by x.
Observe that one edge can be supported by many vertices.

u GOH

G H
x

Fig. 6. An edge uv from graph G ® H is supported by vertex z.

We will show a useful fact concerning the introduced operation.

THEOREM 4.2. Let G be an arbitrary graph. Let A and B be 1-oriented digraphs.
Moreover let A and B be a-subdrawing and b-subdrawing of G respectively. Then
graph A © B has a (G, a + b)-representation of thickness 5- (2a+1)(2b+1). If a
and b are bounded, this representation can be computed in linear time.

PROOF. From Lemma 4.1 each edge of A points with B to at most b other edges.
In another words the set of edges of A and the pointing relation define a b-oriented
digraph. By Lemma 2.1 we can (2b + 1)-color the edges of A in such a way that
if one edge points to another then they are given different colors. Hence we can
partition A into 2b + 1 graphs:

A:AlUAQU...UAQbUA2b+1,

each formed by the edges from the same color class. Similarly we can divide graph
B into 2a + 1 graphs:

B=DB1UByU...UBag U Baqy1.

The above decomposition guarantees that in each graph A; (respectively B;) there
is no edge which points to another edge with B (respectively A). In order to
compute (G, a + b)-representation of A ® B we use the following formula:

AeoB= |J AioB;
1<i<2b41
125220+1
Now it suffices to show that each component A; ® B; is a union of at most five
(a+b) - subdrawings of G. To this end we need one more decomposition. Consider
graph A;UDB;, for arbitrary ¢, j. Observe that it is 2-oriented. Applying Lemma 2.1
we get a vertex 5-coloring of graph A;UB;. The vertices of the same color are neither
connected in A; nor in B;.
Let ¢ be any of the 5 colors used to color A; U B;. Denote by A;. graph A;
restricted to the edges leaving the vertices colored c. Similarly we denote by B .
graph B; restricted to the edges leaving the vertices colored c. Obviously the

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 . t. Kowalik and M. Kurowski

following equality holds:

A;®Bj = U Ai. ® Bje.
1<e<5

Now it suffices to show that for every 1, j, c graph R; j . = Ai.c © Bj . is a (a+b)-
subdrawing of G. To this end for each edge of graph R; ;. we need to assign a
corresponding path. Let vw be any edge of R; ;.. According to the definition of
the operation ©® there exists a vertex x such that (x,v) is an edge in A; . and (z,w)
is an edge in Bj .. If there is more than one such vertex we choose an arbitrary
one. We will build path pg(vw) using some edges from pg(ve) and pe(zw). Let
we (vw) be the walk that begins in v, then visits successive edges and vertices of
path pg(vz) including vertex x and finally visits successive edges and vertices of
path pg(zw) with vertex w in the very end. Observe that we (vw) is not necessarily
a path, since pg(zv) and pg(zw) can intersect in many vertices. Instead, as pg(vw)
we take the shortest path between v and w in graph pg(2v)Upg(zw). Nevertheless,
we will need the notion of walk wg(vw) in the remaining part of the proof.

As a result in graph R; ;. each edge e is assigned a path in G of length at most
a+b. Let H be a graph obtained from R; ; . by replacing its edges by corresponding
paths. Clearly, H C G. To prove that R; ;. is an (a + b)-subdrawing we need to
show that H is a subdivision of R; j, i.e. there is no pair of edges ey, ez such that
a certain inner vertex of path pg(er) belongs to pa(e2). It will be convenient for
us to show a stronger fact: there is no pair of edges ej, e such that a certain inner
vertex of walk wg(e1) belongs to walk wg(ez). Assume on the contrary that such a
pair exists. Let e; = vywy and let eo = vawsy. Let a1 (respectively z3) be the vertex
that supports e; (respectively es). W.l.o.g. we assume that xjv1, xovg € A and
r1wr, vowe € Bj . There are three cases to be considered:

X1 = Vg

case (ii) case (iii)

Fig. 7. Cases (i)-(iii)

(i) An inner vertex of path pg(z1v1) is a vertex of path pg(zev2) (see Fig. 7 case
(1)). This is impossible because A;. is a subdrawing of G. Similarly it is
impossible that an inner vertex of path pg(z1w1) is a vertex of path pg(z2ws).

(ii) An inner vertex of path pg(z1v1) is a vertex of path pg(zows) (see Fig. 7
case (ii)). We see that zave € A; . points with B to zqv1 € A; . which is a
contradiction. We can also exclude the symmetrical case when an inner vertex
of path pg(z1w;) is a vertex of path pg(zavs).
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(iii) Vertex x; is a vertex of walk wg(ez) (see Fig. 7 case (iii)). Since we excluded
cases (i) and (ii), 1 cannot be an inner vertex of either pg(x2v2) or pe(za2ws).
As A;. and Bj. are l-oriented subdrawings of G, we know that z; # wa.
Hence, x; has to be either vy or wy. Then z; and z; are adjacent in A4; . or in
Bj ., respectively. It cannot happen since £ and x» have got the same color c.

We have shown that R, ;. is an (a+b)-subdrawing of G. This completes the
proof that the set

R={Rij.:1<i<2b+1;1<j<2+1; 1<c<5}

is a (G, a + b)-representation of A ® B. The decomposition R can be computed
using Algorithm 4.1. It is easy to see that it works in linear time with respect to
the size of G (we use the algorithm described in the proof of Lemma 2.1 for coloring
graphs I'4,I'g and A; U By).

Algorithm 4.1 Finding (G,a + b)-representation R for A @ B of thickness
5(2a+1)(2b+1)

Input: 1-oriented graphs A and B; A is a-subdrawing of G; B is b-subdrawing of G}
every edge e of A or B stores a corresponding path pg(e).
Output: (G, a + b)-representation R for A ® B of thickness 5(2a + 1)(2b + 1)

. R0
2: Compute graphs I'4, I'g described by the pointing relation on edges of A and
B, resp.

3: (2b+ 1)-color graph I'4

4: (2a + 1)-color graph I'p

5: fori«— 1 to 20+ 1 do

6: forj«—1 to 2a+1do

7: A; « graph formed by edges of A of color i

8: B; « graph formed by edges of B of color j

9: 5-color A; U B;
10: forc—1 to 5do
11: A; . — A; restricted to the edges leaving vertices colored ¢
12: Bj . «+ Bj restricted to the edges leaving vertices colored ¢
13: Rijc«— Aijc© Bj; for each edge of R; j . compute corresponding path

in G

14: R—RU {Ri,j,c}

O

COROLLARY 4.3. Let G be a n-vertex graph. Let A be a digraph with given da-
oriented (G, a)-representation of thickness ta and let B be a digraph with given
dp-oriented (G,b)-representation of thickness tg. Then the graph A ® B has a
(G, a+b)-representation of thickness 5-da-dp-ta-tp-(2a+1)-(20+1). If a and
b are bounded, this representation can be computed in O(n-da-dp-ta-tg) time.
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PROOF. Let A = A1UA2U...UAtA and B = B1UB2U...UBtB be (G,a)—
representation and (G, b)-representation of graphs A and B respectively. Notice
that the following holds:

ta tp

AoB=JJ4oB;

i=1j=1

Each of graphs A; can be further decomposed into a union of 1-oriented subdrawings
of G: A;q1, ... A;q,. Similarly for every j =1,...tp we decompose B; into a union
of 1-oriented subdrawings of G: Bj 1, ... Bj 4. Observe that

da dg
A;0B; = J |J 4ip © Bjg
p=1qg=1
Finally we obtained

ta tp da dp

A0B=JU U UA4i,»oBj.

i=1j=1p=1g=1

Now we apply Theorem 4.2 to each of d4 -dp -t 4 - tp components of the union. [

5. THE SHORTCUT GRAPH DATA STRUCTURE

From now on we assume that k is a fixed constant and G is an undirected planar

—_—
graph with n vertices. We describe a data structure Si(G) called a shortcut graph
of G with the following properties:

(i) construction of S;(G) takes O(n) time and space,

(ii) for arbitrary vertices u and v one can check in O(1) time whether « and v are
at distance at most k in graph G.

5.1 Construction
—_—

Sk(G) is a directed graph with the vertex set V(G). Edges have integer weights
———

from the set {1...k}. We denote by C-T'Z the subgraph of Si(G) containing all the
edges with weight 7. The underlying undirected graph is denoted by G;. In the
_

sequel we will also refer to undirected version of graph Sy (G), denoted by Si(G).
We build Sk(G) by constructing successively graphs G1,Ga,...Gy. For each
—

graph G; we compute and maintain a 3-oriented (G, i)-representation. This is
achieved by repeating alternately the following two steps:

Step 1 — Computation of G;. The initial graph G; is simply equal to G. For
i > 1 we compute the graph G; applying operation ® to the previously constructed
graphs:

— —
Gi= U Gp © Gy (1)
1<p<q<i
ptq=i

Each of the operations 6'; ® C.T',; is performed separately by applying Corollary 4.3.
As a result we obtain a (G,i)-representation of the graph G;. Notice that the
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thickness of the representation is a function of ¢ but independent of n, therefore it
is O(1).

Step 2 — Orienting the Edges of G;. We are given the graph G; and its (G, 1)-
representation of thickness O(1). Observe that every subdrawing of a planar graph
is planar. It follows that edges of each member of the representation can be oriented
by applying the following result:

THEOREM 5.1 CHROBAK, EPPSTEIN [1991]. For every planar graph one can
compute its 3-orientation in linear time.

|

After orienting all the edges of (G; we obtain the resulting graph ;. Notice
—
that we have computed also a relevant 3-oriented (G, i)-representation for G;. The

|

thickness of this representation is O(1) therefore the outdegrees in G; are also
bounded by O(1).

—_
COROLLARY 5.2. For every planar graph G the structure Si(G) satisfies the
following conditions:

e

(i) Edge (u,v) in Sk(G) with weight t indicates that there is a path in G from u to
v of length at most t.

—_—

(i) The graph Si(G) is d-oriented, d = O(1).
(ii) The construction of Sk(G) takes time and space O(n) .

5.2 Processing the Queries
—_—

Weight of a path p in Sg(G) is the sum of the weights of all the edges that form p
and will be denoted by w(p) (analogously we define weight of a walk). Now we will
prove a crucial property of the shortcut graph:

—_

THEOREM 5.3. Let G be a planar graph and let Sk(G) be a shortcut graph for

G. Let vertices u and v be joined by a path of length | < k in G. Then there are
—_—

two directed paths in Sk(G), the first from u to some vertex x and the second from
v to x such that their weights sum up to l.

PROOF. The proof is by the induction on [. Theorem trivially holds for [ = 0.
Now we move to the induction step. Let P be the w,v-path in G of length [ > 0
and let us denote by P; and P» the paths from u to x and from v to x that we want
to find. Let u; be the neighbor of v on path P. By the induction hypothesis there
are two dipaths in the shortcut graph, the first from u; to some vertex x and the
second from v to x such that their weights sum up to [ — 1. We will denote these
paths by Q1 and )5 respectively.

774.—”—~7... PRI
¢ o e e B m

Fig. 8. Proof of Theorem 5.3.
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14 . t. Kowalik and M. Kurowski

Let u1,us, ... u, = x be successive vertices of path @ (see Fig. 8). Let distg, (a, b)
denote the distance between vertices a and b in path @i, treated as a weighted
graph. We define a set Z as follows:

Z={i:1<i<rand uu; € E(G1ydisto, (ur,u))}

Asuuy € E(G1),1 € Z and Z # (). Let +* = max Z.

If i* =7, le. wui =z graph Giydistg, (u;.0) contains either (u,z) or (z,u). If it
contains (u,z) we can put P, = {(u,2)} and P, = Q2. Then w(P;) =1+ w(Q1)
and w(P2) = w(Q2). In the other case we put an empty path as P; and P, =
Q2 U {(z,u)}. Then w(P;) = 0 and w(P2) = w(Q2) + 1 + w(Q1). Hence in both
cases w(Py) + w(Py) = 1.

Assume i* < r. Let a = distg, (ui+,ui+41) and b = 1 + distg, (u1,ui=). We
know that either (u;«,u) € E(CT;) or (u,u;) € E((?b)) If (wi,u) € E(CT;) then
Uir41u € E(Gqqp) and i*+1 € Z, the contradiction. Finally when (u, u;+) € E(C.T'l:)
then P, = Q2 and P; consists of edge (u,u;~) and the successive edges of @1, i.e.
edges (Ui, Uix4+1)s - - -, (Ur—1,Ur). Again one can see that w(Py) + w(P) =1. O

The Shortest Path Query Algorithm. Theorem 5.3 yields a simple O(1) time
algorithm which verifies whether dist(u,v) < k and if so it computes a relevant

shortest path between u and v. As it was proved the outdegree in the shortcut
—_—

graph Si(G) is bounded by O(1). Let us denote the maximum outdegree in m
by A(k). Let ‘%) be the subgraph of the shortcut graph induced by all vertices
that are reachable in m from u via paths of weight at most k. Since each such
path consists of at most &k edges graph % has at most (A(k))**! = O(1) edges.
Similarly we define graph % which also has bounded size.

—

Let graph T'(u,v) be the union of undirected versions of STuS and S(v), ie.
T(u,v) = S(u) U S(v). Theorem 5.3 implies that if the distance between u and v
in G is I < k then there exists a path with weight ! in T'(u, v). To find this path we
simply use the standard Dijkstra’s algorithm in graph T'(u, v). It works in constant
time since graph T'(u, v) has bounded size. Let P denote the shortest path between
uw and v in T(u,v) found using Dijkstra’s algorithm. Clearly, P has weight at most
l.

P is a path in graph Sk(G). The shortest path between u and v in G can be
reconstructed in O(1) time from P as follows. Recall that during the computation
of (G, i)-representation of a graph G; (see Section 4) for each edge ab of G; we
compute a corresponding path in G of length at most ¢, denoted by pg(ab). Thus
a reconstruction of a shortest path in G from P can be done easily by replacing
edges with weights greater than 1 by corresponding paths. As a result we get a
walk w of length at most [ from u to v. We see that the length of the walk is equal
to [ and each vertex of walk w appears in w only once, for otherwise the distance
between u and v would be smaller than [. Thus walk w corresponds to a simple
path of length [ joining w and v. Clearly this last step also takes constant time.
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5.3 More Precise Estimations

In this section we show how the time complexity of preprocessing and query algo-
rithms described in sections 5.1 and 5.2 depends on constant k. We will show an
upper bound for thickness of (G, i)-representation of graph G;, denoted as t(G;),
fori =1,...k. From Equation (1) we get

HG) <3587 (2] +1)(2(i — ) + VUG HHGCiy)

j=1
i 1o ) L))
<45. ; 5 tH(GHUGi—)

L4
<45 - (Z + 1)2 . t(Gj)t(Gz;j)

J=1

Let ¢ = 45- (k+1)2. Since i < k in order to bound #(G;) we can solve the following

recurrence:
T, =1
o eilmn e )
i—C'ijl yIi—; fore>2
Let C,, denote n-th Catalan number. Let us recall its definition:
Co=1
oo s Q)
i =2—0C;Ci—j—1 fori>1
PROPOSITION 5.4. T; = ¢ 1C;_;.

PRrROOF. We use the induction on i. Clearly, Ty = 1 = ¢°Cy. Moreover, T; = ¢ -
i—1 i—1 i i i i—2 i
2321 ;T = 0'23‘21 IO TG =T Zézo CiCi_j_a =101,
It settles the proof. O

To estimate the value of T}, we need the well-known estimation of Catalan numbers
(see e.g. Graham et al. [1994]):

PROPOSITION 5.5. C; = = (1 + O(1/i)).
Finally we obtained the following bound:
t(Gy) = O((180(k + 1)2)") = 201k, (4)

COROLLARY 5.6. For any n-vertex planar graph G the shortcut graph structure

0 9O (klogk),, 4
Sk(G) can be created in 2°%1°8F)n time and space. The structure processes shortest
path queries in 2°*198K) time.
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5.4 Compressing the Shortcut Graph to at Most 2| E(G)| Edges

In the previous section we showed that the data structure Sy, (G) occupies 2°(*10gF)p,
space. In this section we show that after computing the shortcut graph we can
compress it in linear time to a very succinct data structure having similar properties
as Sk(QG).

—_— —

Now we describe a linear algorithm that compresses S;(G). Let G be a digraph
obtained from G by replacing every edge uv by a pair of directed edges (u,v) and
(v, u). Initially, all the edges of ‘G are marked as unused. Moreover, with every edge
(u,v) € CT{ we store pointers to edges (u,v) and (v, u) in ‘G . Since (7{ is 3-oriented
we can access the edges of G in constant time. Next, for every edge e = (x,y) €
Sk(G) corresponding to a path pg(e) = zx; ...y we mark the edge (x,21) as used
in 'G. The graph consisting of the edges of ‘G’ marked as used will be denoted by

_—
or(G) and called succinct shortcut graph. Thus, o (G) is simply a biorientation
of G and occupies O(|E(G)|) space for every value of k. The above construction

guarantees that for every vertex v of G, outdegm(v) < outdegm (v).

s

COROLLARY 5.7. For any planar graph G the succinct shortcut graph o (G) is
O(1)-oriented.

To show that the succinct shortcut graph can be used to process short-path
queries we will need the following lemma.

LEMMA 5.8. Let (u,v) be an edge Of(.;’; corresponding to a path pg(e) = w...v1v

—_

of length i. Then the succinct shortcut graph o;(G) contains a directed path from u
to v of length i and a directed path from vy to u of length i — 1.

PrROOF. The proof is by the induction on 4. In the case when ¢ = 1 it suffices to

—_— —

observe that o1 (G) = G1. Assume that ¢ > 1. Recall from the proof of Theorem 4.2

that there exists a vertex x and edges (x,u) € (7,1), (x,v) € Gy such that a + b = i
and pg(ru) U pg(zv) = pe(uv). Let uy be the neighbor of w in pg(uv). Clearly

a b

U U1 € v
b1 D2

Fig. 9. Proof of Lemma 5.8.

pa(azu) = ... uju. By the induction hypothesis we get that there is a path p; of
_—

length @ — 1 from w;y to z in graph o,(G) (See Fig. 9). Also there is a path ps of

—_— —

length b from x to v in 0,(G). Since 04(G) U 0p(G) C 04(G) and (u,u1) € 04(QG)
the desired wu, v-path is formed by {(u,u1)} Up1 U pa.

Similarly we can show the existence of the other path. We see that a path of

—_—

—
length b — 1 from v; to z is in 04(G), a path of length a from z to u is in 0, (G)
and the union of these paths forms the desired vy, u-path. O
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THEOREM 5.9. For any n-vertex planar graph G and a natural number k it is
s
possible to find in 20F1°8F)y time 0, (G), a biorientation of G such that

(i) ox(G) has outdegrees bounded by 2°k1°8 %)

(i) for any pair of vertices u, v at distance at most k in G there is a shortest path p
in G between u and v and a vertex x € p such that edges of p form two directed

_—
paths in o(G): a path from u to x and a path from v to x.

Theorem 5.9 follows immediately from Theorem 5.3 and Lemma 5.8. It guaran-
tees that the algorithm for finding shortest paths in S;(G) described in Section 5.2
can be also used in the succinct shortcut graph and still it works in O(1) time. It
is even more simple: now there are no weights so it suffices to use BFS in graph
T (u,v).

6. DYNAMIC ENVIRONMENT

An important asset of our data structure is that it can be adapted to work in a
fully dynamic environment. We show in this section that after deleting an arbitrary
edge or vertex from G the shortcut graph Si(G) can be updated in O(1) time.
Additionally one can enable or disable edges and vertices in graph G still needing
only constant time to update the shortcut graph. Finally we show how to refresh
the shortcut graph after adding an edge (adding a vertex is trivial). The amortized
time needed to perform such an operation is bounded by (’)(logk n) but the question
whether this bound is tight is open. We emphasize that the query algorithm stays
almost unchanged and it still works in constant time.

6.1 Deleting an Edge

Imagine that an edge e = uv was deleted from graph G. Let us think which elements
of the shortcut graph should be changed or deleted. Recall the successive phases
of building the shortcut graph. In the very beginning one builds graph C.T'I , an
orientation of G. Hence in CT{ there is an edge joining u and v, say (u,v). Clearly
it has to be deleted. However, there may be another edge leaving u in EJY , say
(u, w). Then edges (u,v) and (u,w) cause edge vw in graph G2 and w supports vw.
This edge should also be deleted but only if there is no other vertex supporting
vw. Deleting vw can further cause deleting some edges from Gg an so on. T@is
we get the whole set of edges that should be removed from graphs G1, G, ..., Gy.
We need to answer the following two questions: (i) how numerous can be the set
of deleted edges; (ii) how to find those edges quickly. It can be seen that the
number of deleted edges is O(1) and they can be found in O(1) time.

6.1.1 FEaxtension of the Shortcut Graph. To be more precise we need to introduce
some definitions. Let ey = (z,v), e2 = (x,w) be edges in graphs G, H respectively.
Let e be an edge of CTJr; equal to (v,w) or (w,v). We say that edges e; and ey
support e. We say also that e; and es are supporters of e and e is a dependant of
e1 and e;. We say that the pair {e1,e2} is a supporting couple of e.

For convenience, we will use the notions defined above also for undirected versions
of edges. Thus, when edge (z,v) € C-T'Z supports edge (v,w) € (Tﬂ) then also
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— —

(z,v) € G; supports vw € G,4;, zv € G; supports (v,w) € Gi1; and zv € G;
supports vw € G ;.

Notice that each edge may have more than one supporting couples. For example

consider the situation in Figure 10. Edge uv of graph G5 has two supporting

Fig. 10. Supporters and dependants. Labels denote weights of edges.

couples: {(z,u), (z,v)} and {(y,u), (y,v)}. On the other hand edge (u,y) of graph

G1 has two dependants: uv and uz.
The following theorem holds:

THEOREM 6.1. Let G be a planar graph and Si(G) a shortcut graph for G. Each

———y

edge e = (v,w) € Sk(G) has O(1) dependants.

PROOF. Recall that A(k) denotes a constant that bounds outdegrees in Si(G).
The number of the edges leaving v distinct from e is at most A(k) — 1. It implies
that the number of dependants of e is bounded by A(k) —1=0(1). O

————

—_
We assume that during the construction of Si(G) for each edge e € Si(G) the
following pieces of information are stored:

(i) the list S(e) of all supporting couples of e,

(ii) the list D(e) of all pairs (d,p) such that for some edge f, pair {e, f} is a
supporting couple of d and p is a pointer to {e, f} in the list S(d).

6.1.2  An Algorithm for Deleting an Edge. Assume that e is an edge of C.T'; and
it is going to be deleted. For each pair (d,p) € D(e) we have to perform the
following operations: remove the pair {e, f} referenced by pointer p from list S(d),
remove the pair (d,p) from the list D(f). If list S(d) becomes empty delete edge
d recursively. As each edge has O(1) dependants (see Theorem 6.1) and the depth
of recursion is bounded by the constant & the whole operation takes O(1) time. In
order to delete an edge from the initial graph G it is enough to delete the relevant

-3
directed edge from Gj.
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6.1.3 Processing the Queries in the Dynamic Environment. Recall that during
execution of queries we need to find a path in G corresponding to a given edge in
Sk(G). In the static environment it was sufficient to store a fixed path pg(e) for
each edge e. As we have seen it is possible that some edge of pg(e) is deleted but
edge e remains in the shortcut graph. Thus in the dynamic environment we find
a path corresponding to a given edge e using the structure of supporters stored in
lists S(-). We start from a path p = e and we successively replace edges of p by
their supporting couples until all the edges in p have weight 1. Clearly, as a result
we get some walk of length equal to the weight of e. Hence, in our query algorithm
for two vertices u, v at distance d we transform a path of weight d in the shortcut
graph to a walk of length d in the input graph. This walk must be a simple path
for otherwise the walk would contain a shorter simple path between u and v and
the distance between u and v would be smaller than d.

6.2 Deleting a Vertex

Observe that in order to delete a vertex v efficiently we cannot simply delete all

the incident edges because there can be Q(n) ones. Instead, we remove from
—_—

graph S;(G) all the edges leaving v using the recursive procedure described in

Section 6.1.2. It takes O(1) time since the outdegree of v in S (G) is bounded by a
constant. Then we mark v as deleted. It ends the vertex deletion algorithm. Cer-
tainly, the query algorithm ignores edges entering a deleted vertex (or, equivalently,
every such edge is deleted immediately after the query algorithm finds it).

6.3 Inserting an Edge

In this section we show how to update the shortcut graph Si(G) after inserting an
edge in such a way that the outdegrees remain bounded and it is still a shortcut
graph of G. We show that the structure supports insertions in amortized O(logk n)
time. To simplify the presentation, we assume that graph G initially contains no
edges.

Let us start from the case when £ = 1. Then the shortcut graph is simply an ori-
entation (71) of G with bounded outdegrees. During insert operation we sometimes
need to reorient some of the edges of CT{ in order to keep outdegrees bounded.

Lazy Reorienting Scheme We use the result of G. Brodal and R. Fager-
berg [1999]. They show how to keep bounded outdegree in an orientation of a
graph with bounded arboricity. An arboricity of a graph G, denoted by a(G), can
be defined as the smallest number of forests needed to cover all edges of G. (It is
widely known that arboricity of a planar graph does not exceed 3.) Let a be the
arboricity of graph G and let D = 4a. Brodal and Fagerberg consider the following
routine for keeping outdegrees in E') bounded by D after inserting an edge (u,v). If
outdegu = D + 1, repeatedly a node w with outdegree larger than D is picked, and
the orientation of all the edges leaving w is changed. We will refer to this method
as lazy reorienting scheme, as reorientation of edges is done as late as possible.
They show in [Brodal and Fagerberg 1999] that for graphs of bounded arboricity
this simple approach guarantees that amortized number of edge reorientations is
O(1) for one insertion and O(logn) for one deletion in a sequence of operations.
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However, it is straightforward to modify their analysis to get O(logn) amortized
insertion time and O(1) worst-case deletion time. Let us note that it is not known
whether the above logarithmic bounds are tight; the best known lower bound for
amortized insertion time is (1). If the value of arboricity is not known a priori, the
algorithm can estimate it (by doubling the value of D when too much reorientations
is done).

Insertion Algorithm Now we move to general case and describe a recursive
algorithm INSERT(uv,i) for inserting an edge uv to graph G;, for any i = 1,...k.
We start from orienting wv arbitrarily in C_v';, say as (u,v). Then we use lazy
reorienting scheme for keeping outdegrees in 5; bounded by 4 - a(G;). Whenever
any edge changes its orientation we act as if it was deleted and we perform the
algorithm described in Section 6.1.2. Moreover, when any edge (x,y) appears in
C_v'; , both after simply inserting it and after reorienting (y, z), we recursively add an
edge yz to G4, for each edge (x, z) present in C_v'; such that i + 5 < k.

PROPOSITION 6.2. Let Sk(G) be a shortcut graph for graph G. Then the graph
obtained as a result of INSERT (uv,1) algorithm is a shortcut graph of G U {uv}.

PRrROOF. It follows immediately from the fact that the equation (1) holds after
any insertion or deletion. [

LEMMA 6.3. For any ¢ < k, after any sequence of edge insertions and deletions
—
the graph G; is O(1)-oriented and has (G, 1)-representation of thickness O(1).

PROOF. The proof is by the induction on ¢. For ¢ = 1 it is actually the re-
sult of G. Brodal and R. Fagerberg [1999]. Now we move to the induction step.
Assume that the lemma holds for all j < ¢, i.e. G; is d;-oriented and has (G, j)-
representation of thickness ¢;, where d; = O(1), t; = O(1). Each member of this
(G, j)-representation is d;-oriented. Observe that the equation (1) is preserved after
any insertion and deletion. Hence by Corollary 4.3 for any a, b such that a +b =1
after any sequence of insert/delete operations the graph G, ® Gy has (G,a + b)-
representation of thickness 5-dg - dp - o - t5(2a + 1)(2b + 1) = O(1). Thus G; has
thickness ¢ = O(1). Since the arboricity of a planar graph G is at most 3, G; has
arboricity at most 3t = O(1). Thus our algorithm keeps outdegrees of G; bounded
by 4-3t=0(1). O

Now it is clear that our insert routine properly updates the shortcut graph and
after each insertion queries are still processed in O(1) time. Now we move to the
amortized time complexity of insertions. The following lemma is a straightforward
corollary from results contained in Brodal and Fagerberg [1999].

LEMMA 6.4 BRODAL AND FAGERBERG [1999]. Let o be an arbitrary sequence
of p edge insertions and q edge deletions performed on an n-vertex graph, initially
containing no edges. If at every stage the arboricity of the graph is bounded the lazy
reorienting scheme is used after each insertion, there are O(plogn) edge reorienta-
tions performed.

LEMMA 6.5. For arbitrary sequence of t insert operations in graph G (possibly
alternated by deletions) for any i < k there are O(tlog" n) edge reorientations and
O(tlog" ™' n) edge insertions/deletions in graph G.
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PROOF. The proof is by the induction on i. For ¢ = 1 it follows from Lemma 6.4.
For ¢ > 1 the induction hypothesis implies that for every j < ¢ INSERT algorithm
—

performed O(tlog? n) edge reorientations and insertions in graph G;. Since the
—_

outdegrees in Si(G) are bounded, each of these reorientations and insertions causes
O(1) insertions and deletions in graph G;. Hence the total number of insert/delete
operations in G; is O(tlog" ' n). By Lemma 6.3 G; has bounded arboricity so by
Lemma 6.4 these operations require O(t - log’ n) edge reorientations in G;. O

COROLLARY 6.6. The amortized time complexity of the INSERT operation is
O(log" n).

What Means n When We Can Add/Delete Vertices? Observe that in the
environment that allows deleting vertices of graph G insertions in a sequence 7 of
operations can be performed in amortized (’)(logk 7) time where 7 refers to maximal
number of vertices present in G during the execution of 7. Then the outdegrees of
vertices cannot be stored. Each time the lazy reorienting scheme needs to check the
outdegree of some vertex x one has to compute it by counting all the edges (z,v)
such that vertex v is not disabled. Whenever an edge entering a disabled vertex is
found it is immediately deleted.

Building the Shortcut Graph in Dynamic Environment Analyzing the time
complexity of insertion algorithm we assumed that graph G initially contained no
edges. However, in many applications we start from some nonempty graph G and
then we perform some changes on it. Building a graph with m edges using INSERT
algorithm takes O(m logk n) time. However, one can ask whether it is possible to
build the shortcut graph for a given planar graph in linear time and then perform
some updates with amortized O(log® n) time per insertion. We answer that it is

possible and we show below how to do it.
—_—

We build the shortcut graph Si(G) using the linear-time algorithm from sec-
tion 5.1. Then appears some sequence o of insert/delete operations performed in

—_ —_

graph G. Let Ax(G) be the subgraph of S;(G) induced by the edges added in the
—_—— ———

sequence o. Each operation in o either deletes an edge from Si(G) — Ax(G) or

inserts/deletes an edge to/from Aj(G). The algorithms for inserting and deleting

_
edges work like before, but the edges from S (G) — Ax(G) do not change their ori-
IR
entations and we use the lazy reorientation scheme only in graph Ax(G). Clearly,
outdegrees in the shortcut graph are still bounded and insertions work in (’)(logk n)

. . — = . . . .
time, since Ay(G) initially contained no edges.

7. VARIATIONS
7.1 Weighted Graphs

When we consider arbitrary nonnegative weights assigned to edges of the input
graph any oracle that processes shortest path queries of our type can be used
to obtain shortest paths and distances between any pair of vertices because it is
possible to scale the weights of the input graphs to make them smaller than k.
Even if we do not allow for weights smaller than one is seems to be hard to extend
our approach to the continuous case. However we note that our method trivially
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applies to weighted planar graphs when the weights are natural numbers. In the
preprocessing phase we start from removing the edges of weights greater than k —
as they cannot be a part of any path of length at most k. Then each edge of weight
w is replaced by a path of length w. Clearly, since we treat k as a constant, the
resulting graph has linear size and all our results still hold.

7.2 Directed Graphs

It is a very natural step to extend our results to directed input graphs. It can be
achieved by minor modifications in the construction of the shortcut graph. Let G
be the input directed graph and let G* be the underlying undirected graph. In
the directed case, the graph CT{ is an O(1)-orientation of G*. Moreover, now for
every edge e = xy € Si(G) we store two directed paths in G corresponding to e:
path pg(x,y) is a corresponding directed path from z to y and path pg(y, z) is a
corresponding directed path from y to z. At most one of these paths may not exist
and then we store an empty path in a corresponding variable. In the directed case,
the graphs G; for i > 1 are defined as follows: uwv € E(G;) if and only if there
exists a vertex z and integers a, b such that (z,u) € E(G,) and (z,v) € E(Gp)
for a + b = i and at least one of the following conditions is satisfied: (i) pg(u,x)
is non-empty and pg(z,v) is non-empty; (ii) pg (v, z) is non-empty and pg(x,u) is
non-empty. Certainly when (i) is satisfied, we assign pg(u,v) to a path contained
in the walk pg(u,z) U pg(z,v). We proceed similarly when (ii) holds. Now for
every ¢ > 1

Gc |J God,

1<p<q<i
ptaq=i

Thus, again by Corollary 4.3 for every i such that 1 < i < k graph G; is a (G, i)-
representation of G of thickness O(1) and one can find in linear time an O(1)-
— —
orientation of G;, denoted by G;. Now edge (u,v) in graph G; indicates that there
is a directed path between v and v in G of length at most 3.
—_—

Let p be a directed path in Si(G). We call p a forward path if for every edge
(z,y) € p the path pg(x,y) is non-empty. Similarly, p is a backward path if for
every edge (z,y) € p the path pg(y, ) is non-empty. Note that p can be forward
and backward path at the same time. It is straightforward to verify that to show
the following result it suffices to slightly modify the proof of Theorem 5.3.

THEOREM 7.1 (A COUNTERPART OF TH. 5.3 FOR DIGRAPHS). Let G be a di-

—_—

rected planar graph and let Si(G) be the shortcut graph. For any directed path of
length | < k in G from a vertex u to a vertex v there there is a vertex x such that
Sk(G) contains a forward u,z-path and a backward v,z-path and the sum of the
weights of the paths is at most [.

The above theorem guarantees the correctness of the shortest path query algo-
rithm in the directed case. As the shortcut graph is O(1)-oriented the query time
remains constant. In fact the directed case is so similar to the undirected one that
all the other of our results easily extend to digraphs.
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7.3 Searching For Paths Avoiding Link- or Node-Failures

In real-life networks such as road networks or huge computer networks it is common
that some local failures occur. We can focus on situation when certain links or nodes
may be out of service for some time and we want the short path queries to act like
the damaged elements were absent in the input graph. We could simply remove the
failure edges and vertices from graph G and add them again as soon as the failure
is fixed. However, adding edges takes amortized polylogarithmic time. Instead,
we can allow to perform new operations on edges and vertices of the input graph:
disable and enable, both with only constant time complexity.

Initially, all the vertices and edges are marked as enabled. For each edge e € Si(G)
we store a new list denoted dS(e). The list dS(e) stores all pairs {e1, e} which are
supporting couples of e and such that at least one of edges e, e2 is disabled.

Operation DISABLE(e) executed for an edge e acts similarly as ‘delete’: It starts
from marking e as disabled. Then for each pair (d,p) € D(e) we move the pair
{e, f} referenced by the pointer p from the list S(d) to the list dS(d); if the list
S(d) becomes empty we disable edge d recursively. When we want to disable a
vertex it suffices to mark it as disabled and disable all the edges leaving it.

Operation ENABLE(e) executed for an edge e works as follows. For each ele-
ment (d,p) in list D(e) we perform the following operations: let {e, f} be the pair
referenced by pointer p; if f is enabled move the pair {e, f} from dS(d) to S(d).
If f is enabled, d is disabled and d leaves an enabled vertex execute ENABLE(d)
recursively. Again, to enable a vertex v it suffices to mark it as enabled and enable
every edge e leaving v such that S(e) is not empty.

To show that the above operations work in constant time we can use the same
arguments as in the case of deletions. Certainly, we assume that query algorithms
ignore disabled edges and vertices — it is straightforward to see that the queries are
answered properly. Note that there can be an arbitrary number of disabled edges
and vertices.

7.4 An Application: Computing the Girth

Let k be a fixed constant and G a planar graph. We consider the following problem:
verify whether the girth of G is bounded by k and if so compute the corresponding

shortest cycle. We show here a simple linear-time algorithm for this problem. The
—_—

algorithm uses the shortest graph Si(G) adapted to allow enabling and disabling
edges (see the previous section). After building the shortcut graph we perform the
following three operations for each edge e = (v,w) € G:

(i) disable e,

(ii) verify whether distg(v, w) < k — 1 and if so find the cycle compound of e and
the shortest path between v and w; store this cycle if it is shorter than the
cycles found before,

(iii) enable e.

Each step takes O(1) time. It follows that the whole algorithm works in linear
time.
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7.5 Searching for Paths of Given Length

In this section we show how to modify our structure to allow a new type of queries
called given length path queries. For two given vertices u and v and an integer t < k
the query returns a u-v path of length exactly ¢ or reports that there is no such
path in graph G. The new query is answered in constant time. As in these queries
we allow u = v it is also possible to find a cycle of specified fixed length containing
given vertex in O(1) time. Obviously we can use it for finding given fixed length
cycle in planar graph in linear time.

7.5.1 Generating Walks. Let W be a walk of weight ¢ in Si(G) and let W
contain an edge e = uv of weight greater than 1. Edge e has at least one supporting
couple, say {(z,u), (x,v)}. Then we can replace e by path uzv obtaining another
walk of weight ¢ in S (G). We can repeat this step several times each time obtaining
a walk of weight ¢. Let W’ be the resulting walk. We say that W generates W'.

Formally, walk W generates walk W' if there is a sequence of walks Wy, W1, ... W,
such that Wy = W, W; = W' and for every ¢« = 1,...[ the walk W; can be obtained
from W;_; by replacing some edge e = uv € E(W;_1) by path uzv such that edges
(x,u), (x,v) € Sg(G) form a supporting couple of e.

Note that if the sequence of walks is long enough we obtain a walk in the initial
graph G. Since an edge may have many supporting couples it follows that a walk
may generate many walks in G. Observe that in particular every walk generates
itself. For convenience we will extend the notion of generating to paths, since we
can treat paths as walks. Hence a path may generate another path or a walk. We
will also use the idea of generating for directed walks or paths, i.e. directed walk
W generates walk W’ iff its undirected version W generates W’. We will also say
that edge e generates a walk W when the path consisting of edge e generates .

Assume we are looking for a path of length ¢ between u and v. If it exists
Theorem 5.3 implies that there are two directed paths beginning in « and v and
meeting in a common vertex x such that their weights sum up to ¢t. We can find
such pair of paths. From these paths we can generate two walks in G. Further,
these two walks form a walk of length ¢ joining « and v in G. However, we cannot
be sure that this walk is a simple path. Even if we consider all walks generated by
all pairs of paths Theorem 5.3 does not imply that any of these walks is a simple
path. Hence we need a stronger result:

THEOREM 7.2. For every u,v-path P in G of length at most k (possibly u = v)

— — —
there exists a vertex x € P and two directed paths in Sk(G), P1 from u to x and P
from v to x, such that walk Py U Py generates P.

PROOF. The proof is analogous to the proof of Theorem 5.3. We use the induc-
tion on the length of P. When the length is 1 the theorem is obvious.

Now let us move to the induction step. For any vertices a,b € V(P) let Pla,]
denote the path between a and b consisting of edges of P. As before, let u; be the
neighbor of u on path P. By the induction hypothesis there are two dipaths in the
shortcut graph, CTQT from u; to x and @z from v to x, such that Q1 U Q2 generates
Pluy,v]. Let ug,ug,...u, = x be successive vertices of path Q1. Let distg, (a,b)
denote the distance between vertices a and b in path @i, treated as a weighted
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graph. We define a set Z as follows:

Z={i:1<i<rand E(GHdiSth(uhui)) contains edge uu; which
generates path Plu, u;]}.

Again, since uuq € E(G1) and uuq generates itself, i.e. path Plu,u1], we get that
1 € Z and Z # (). We can finish the proof exactly like the proof of Theorem 5.3. [

Fig. 11. Searching for a u,v-path of length 4.

7.5.2 Difficulties to Cope With. Consider the shortcut graph presented in Fig-
ure 11. Assume we are looking for a path of length ¢ = 4 between vertices v and v.
There is one such path, i.e. path uxyzv. Theorem 7.2 says us that it is generated by
some pair of dipaths beginning in u and v and meeting in the same vertex. There
is a path of weight 2 from u to w consisting of edge (u,w). There is also a path of
weight 2 from v to w and it consists of edge (v, w). The weights of these paths sum
up to 4 but they do not generate any simple path in G.

Luckily, this is not a serious problem — we can consider all pairs of directed paths
beginning in w and v and meeting in the same vertex. Since the outdegrees in
the shortcut graph are bounded the number of such pairs is also bounded. Let
us come back to the situation in Figure 11. There is one more pair of paths: the
first path consists of edge (u,y) and the second one of edge (v,y). The first path
generates path uxy. Edge (v,y) has two supporting couples, i.e. {(z,y),(z,v)}
and {(z,y), (z,v)}. Hence, our pair of dipaths generates two walks in G: uzyzv
and uzxyzv. Only the latter one is a simple path. We see that it is not enough to
generate only one walk in G for each pair of paths. However since an edge may
have Q(n) supporters a path may generate Q2(n) walks. Hence we cannot generate
all walks because would like to get constant query time. We will cope with this
problem as follows:

—We observe that some supporting couples are “useless”. For example see Fig-
ure 12. Edge uv € E(G4) has one supporting couple, i.e. (z,u),(z,v). However,
the path consisting of edges (x,u), (z,v) does not generate any simple path in G.
We will not store in the shortcut graph useless supporting couples.

—During execution of the query algorithm we will generate only a constant-sized
set of carefully selected walks in G. We will show that if none of these walks is
a simple path then in G there is no simple path of requested length.
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v

Fig. 12. Useless supporting couple.

7.5.3  Algorithm for Given Length Path Query. We will say that Si(G) is [-clean
when for every edge e of weight w < [ and for every supporting couple of e, say
r = {e1,e2}, the path consisting of edges ej, ea generates some simple path in G.
We will call this simple path a path corresponding to r. Note that the length of this
path is equal to the weight of e. We assume that in an [-clean shortcut graph every
supporting couple r of an edge of weight at most [ stores a corresponding path (an
arbitrary one if there are many of them) denoted as pg(r).

Now we describe the given length path query algorithm which finds a path in
G of given length t between a given pair of vertices u and v. The algorithm uses
information stored in the shortcut graph. We assume that the shortcut graph is
k-clean. In Section 7.5.4 we discuss how to make the shortcut graph k-clean in
linear time. o

As we mentioned before, in our algorithm we consider all pairs of paths P;, Py in

P - . . . = . .
Sk(G) such that P; is a directed path from wu to certain vertex x, P is a directed

— — - =
path from v to z, and the weights of paths P, and P2 sum up to t. Since Sk(G) is
O(1)-oriented, the number of such pairs of paths is bounded by a constant.

Assume that the requested path between u and v exists and it is denoted by
P. For each pair of dipaths ]3{ , F; described above we consider the walk in Si(G)
corresponding to the union of undirected paths P; and P,. Theorem 7.2 implies
that one of these walks generates P. Clearly we can restrict ourselves only to
walks which correspond to simple paths in S (G). Let @ be such the path. In the
following we will show how to find in constant time a simple path in G which is
generated by a simple path @ in Si(G).

Let A be some constant which will be defined later. A walk W will be called a
A-walk if each edge of W either has weight 1 or has at least A supporting couples.
A path is called a A-path when it corresponds to a A-walk.

The algorithm for finding a simple path in G generated by a path @ consists of
two steps.

Step One: From a Path Q in Sp(G) to a A-path Q. We execute routine A-
Li1sT(Q); see Alg. 7.1. It is clear that it returns a set of A-walks. We will show
that it is of bounded size. The recursion depth is at most k — 1, because the initial
path @ has weight at most k£ and before each recursive call the path passed as
the parameter grows by one edge but its weight is not altered. Each invocation of
routine A-LIST performs fewer than A recursive calls. Hence the size of the returned
set of walks is bounded by (A —1)*~!, which is a constant. Consequently algorithm
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A-LIST works in constant time.

Algorithm 7.1 (A-LiST)

Input: path @ in Si(G)
Output:a set of A-walks generated by Q.

A-LIST(Q):
1. if @ is a A-walk then return {Q}
2: else
3: L—0
4: e« an edge of @ of weight > 1 and such that |S(e)| < A
5. for all r € S(e) do
6: @' < path obtained from @ by replacing e by pg(r)
7 L — LUMNLIST(Q')
8 return L

Observe that if () generates some walk, say w, then some A-walk returned by
A-L1sT(Q) generates w. Hence, if none of the returned walks is a simple path there
is no simple path in G generated by ). Otherwise, let @ be any A-path generated
by Q. If Q) is a path in G, i.e. all edge weights in @) are equal to 1 we are done.
In the other case we perform step two.

Step Two: Finding a Simple Path P in G generated by Q. In order to find
a path in G that is generated by @ we apply the following simple method (see
Alg. 7.2: \-SEARCH). While @, contains an edge of weight > 1 we try to replace
it by a path corresponding to one of its supporting couples. If the resulting walk
is not a path we try another supporting couple. Below we prove Proposition 7.4
which guarantees that when A is large enough, after checking at most A\ supporting
couples we obtain a simple path. It follows that the algorithm always finds a path
in G generated by @ and it works in constant time.

Algorithm 7.2 (A\-SEARCH)

Input: A-path Q) in Sk(G)
Output: path P in G generated by @ .

1: P— Q)

2: while exists 2y € F(P) such that zy has weight > 1 do
3: X « arbitrary A supporting couples of zy

4:  for all r = {(z,2),(z,9)} € X do

5 if (V(pa(r) \ {z,y}) N V(P) = 0 then

6: Replace the edge xy in path P by the path pg(r).
7

8:

exit from the for loop
return P

We say that edge xy € Si(G) crosses vertex x when xy generates a path R such
that x is an inner vertex of R.
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LEMMA 7.3. There exists a constant A1 (k) such that for every vertex x the num-
ber of edges in Si(G) crossing x is bounded by A1 (k).

PROOF. It suffices to prove that for any weight w = 1,..., k the number of edges
of weight w crossing x, which will be denoted by ~v(w), is bounded by a constant —
we can add these constants to get A1 (k).

Obviously, there are no edges of weight 1 crossing x. Hence we can put (1) = 0.
Now let us consider an edge e = wv of weight w > 1 that crosses x. There are
two types of such edges. Edges of type 1 have a supporting couple of the form
(x,u), (x,v). Recall that A(k) denotes the constant that bounds outdegrees in

Sk(G). Clearly, the number of type 1 edges is bounded by (A(k))?. When e is
not of type 1 then it has is a supporting couple (z,u), (z,v) such that one of edges
zu, zv crosses . Note that both zu and zv have weights smaller than w. Assume
that zu crosses  and let 7 be its weight. Then there is at most one edge (z,v)
of weight w — 7. Hence the number of type 2 edges is bounded by Z;’;l ~v(i). It
follows that for w > 1, y(w) < (A(k))? + Z;’;l ~(7). As A(k) is bounded, for each
w=1,...,k, y(w) is also bounded and consequently A\;(k) is a constant. [

PROPOSITION 7.4. Let Si(G) be an l-clean shortcut graph. Then there exists a
constant A(k) such that for arbitrary A-path Q) with each edge of weight at most |
Algorithm 7.2 finds a simple path in G generated by Q.

Proor. We put

AME) :=EkE(M\ (k) +k—1)+1.
Let xy be an edge chosen by Algorithm 7.2. The algorithm picks a supporting
couple r = {(z,z), (z,y)} and verifies whether after replacing zy in the path P by
pc(r) one obtains a path. If so, r is called successful. Otherwise, r is called failed
and subsequent supporting couples are checked. Observe that if r is failed then
(a) one of edges zx, zy crosses some vertex of P or (b) z € V(P). (It may happen
that both conditions are satisfied). Observe that since P has at most k vertices the
number of supporters of xy that cross one of these vertices is bounded by kA; (k).
Hence there are at most kA1 (k) failed couples of type (a). Now note that for any
vertex ¢ € V(P) there are at most k — 1 supporting couples {(q, ), (¢,v)}, since
weights of (¢, z) and (g,y) sum up to weight of zy which does not exceed k and in
graphs (_12 each pair of vertices is joined by at most one edge. Since |V (P)| < k it
follows that there are at most k(k — 1) failed couples of type (b). Hence there can
be at most k(A1 (k) + k — 1) failed supporting couples of zy. It follows that after
checking at most A\(k) supporting couples the algorithm finds a successful one. O

In steps one and two we showed how to find a simple path P in G that is generated
by a path @Q in the shortcut graph. Let mw(Q) be the maximal edge weight in path
Q. Note that these steps take constant time, provided that the shortcut graph is
mw(Q)-clean. We will need this fact in the following subsection.

7.5.4 Cleaning the Shortcut Graph. Now let us show how to make a shortcut
graph k-clean in linear time. Observe that S;(G) is always 2-clean. We make it
3-clean as follows.

Let e be an arbitrary edge of weight 3 and let » = {e1, ea} be one of its supporting
couples. Let @ be the path consisting of edges ej, es. Observe that the maximal
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edge weight in @ is at most 2. Hence using steps one and two from the previous
section we can verify in constant time whether @) generates a simple path in G. If
so, we store the path we found as pg(r). Otherwise we remove r from the shortcut
graph. If e has no more supporting couples we remove e in constant time using the
algorithm from Section 6.1.2. Clearly, if we apply this algorithm to each supporting
couple of each edge in E(G3) the shortcut graph becomes 3-clean.

Analogously, having c-clean shortcut graph we can make it (¢+ 1)-clean in linear
time. After k — 2 such phases we obtain k-clean shortcut graph.

8. GENERALIZATIONS

It is clear that all the algorithms presented in this paper can be performed for an
arbitrary input graph. Nevertheless the performance of the shortcut graph structure
was analyzed for the class of planar graphs. We can ask a natural question: which
properties of planar graphs were actually needed in our proofs? In other words,
what conditions should a class of graphs C satisfy to replace planar graphs in our
approach? One can easily check that planarity was used only twice. Recall orienting
edges of G; in section 5.1. It was needed that every subdrawing of a planar graph
is planar and it can be O(1)-oriented in linear time. The second time was in
Section 6.3 when we used the fact that planar graphs have bounded arboricity.
However, any 1-orientation is a collection of paths and cycles and has arboricity at
most 2. Hence a graph that can be O(1)-oriented has bounded arboricity. Thus it
suffices to require that:

(a) C is closed under taking subdrawings,

(b) there exists a constant d such that every graph from C can be d-oriented in
linear time.

Let us consider the following three more basic conditions:

(i) C is sparse, i.e. there exists a constant ¢ such that for every G € C, |E(G)| <
V(G),

(ii) C is closed under taking subgraphs,

(iii) if a graph G from C is a subdivision of a graph H, then H € C.

We claim that class C satisfies conditions (a) and (b) if and only if it satisfies
(i)—(iii). (b) implies (i) — we can put ¢ = d. Trivially (a) implies (ii) since every
subgraph is a 1-subdrawing. Also (a) implies (iii) because if G is a subdivision of
H then H is a subdrawing of G. On the other hand (ii) and (iii) imply (a). Now
assume (i) and (ii). It is easy to show that every graph in C contains a vertex of
degree at most 2c and therefore a simple greedy algorithm (2¢)-orients graphs from
C in linear time (it was observed by Aichholzer et al. [1995]). It follows that (b)
is satisfied with constant d = 2¢. Thus (i) and (ii) imply (b) and the proof of the
equivalence of conditions (a)-(b) and (i)-(iii) is finished.

COROLLARY 8.1. For any class of graphs satisfying conditions (i)-(iii) the short-
cut graph s created in linear time. The shortest path queries and the queries on
given length paths are serviced in constant time. Updating the shortcut graph after
deleting a vertex or an edge and after adding a vertexr takes constant time while
updates after edge insertions are processed in amortized O(logk n) time.
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Observe that if a class of graphs is closed under taking minors then it immediately
implies that conditions (ii) and (iii) above are satisfied. This proves the following
proposition.

PROPOSITION 8.2. Any sparse class of graphs which is closed under taking mi-
nors satisfies conditions (i)-(ii). O

Let Forbg(H) denote the class of all graphs without a minor in H. In the rest
of this section we show that when H is a finite set of fixed graphs then Forbg(H)
satisfies our three conditions. The following lemma is due to Mader [1968] (see
also textbook by R. Diestel [2000]). Awverage degree of graph G is defined as

e Lvevi(c) dega(v) = 2[E(G)|/[V(G)].

LEMMA 8.3. There is a function h : N — N such that every graph of average
degree at least h(r) contains K, as a minor, for every r € N.

PROPOSITION 8.4. For any finite set of fized graphs H, the class Forbg(H) sat-
isfies conditions (i)-(ii).

PROOF. Since the minor relation is transitive Forbg(H) is closed under taking
minors and hence by Proposition 8.2 it suffices to show that Forbg(H) is sparse.
Let G € Forbg(H) and M € H. As G does not contain M as a minor, then also
K\v(ar)) is not a minor of G. Then by Lemma 8.3 the average degree of G is smaller
than h(]V(M)]), which is a constant number. Since G was an arbitrary graph in
Forbg(H), then this class is sparse. It establishes the proof. 0O

By the Graph Minor Theorem any minor-closed family of graphs can be defined
as Forb4(H) for some finite set of graphs H. Hence we get the following corollary.

COROLLARY 8.5. Any minor-closed class of graphs satisfies conditions (i)-(iii).
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