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Abstract

Verifying that test executions are correct is a crucial

step in the testing process. Unfortunately, it can be

a very arduous and error-prone step, especially when

testing a concurrent system. System developers can

therefore benefit from oracles automating the verifi-

cation of test executions.

This paper examines the use of Graphical Interval

Logic (GIL) for specifying temporal properties of con-

current systems and describes a method for construct-

ing oracles from GIL specifications. The visually

intuitive representation of GIL specifications makes

them easier to develop and to understand than spec-

ifications written in more traditional temporal logics.

Additionally, when a test execution violates a GIL

specification, the associated oracle provides informa-

tion about a fault. This information can be displayed

visually, together with the execution, to help the sys-

tem developer see where in the execution a fault was

detected and the nature of the fault.

1 Introduction

Testing is a necessary activity in all stages of system

development to assure the final system is of high qual-

ity. While testing complex systems is extremejy labor

intensive and tedious, many of the tasks performed

during testing are routine and repetitive. Thus, sys-

tem developers can benefit from tools that automate

various testing tasks.
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One such task involves the verification of test ex-

ecutions. Once test executions are generated, they

must be examined to determine if the system behaves

correctly. If the test executions exhibit a fault, then

the nature of the fault must be ascertained. Typi-

cally, large numbers of test executions must be ex-

amined in order to ensure sufficient ‘coverage’ of the

space of possible executions of a system. When test-

ing concurrent ~systems, the need to ensure coverage

of the system’s global synchronization structure dra-

matically increases the sizes of test sets. Moreover,

verifying correctness of an execution of a concurrent

system requires examination of the ordering and tim-

ing of events that occur throughout the potentially

long execution. Thus, verification of test executions

tends to be tedious and error-prone, especially when

testing concurrent systems.

Test oracles based on formal specifications can au-

tomatically verify that test executions conform to the

specifications [116]. In particular, oracles based on

temporal specifications permit verification of the or-

dering of events in executions of concurrent systems.

This paper examines the use of Graphical Inter-

val Logic (GIL) [5] for specifying temporal proper-

ties of concurrent systems and describes a method

for constructing oracles from GIL specifications. The

visually intuitive representation of GIL specifications

makes them easier to develop and to understand than

specifications written in more traditional (textual)

temporal logics Additionally, when a test execution

violates a GIL specification, the associated oracle pro-

vides information about a fault. This information can

be displayed visually, together with the execution, to

help the system developer see where in the execution

a fault was detected and the nature of the fault.

Previous work on GIL produced a toolset that sup-

ports the specification of systems in GIL and supports

reasoning about properties guaranteed by GIL speci-

fications [10]. More recently, researchers at the Uni-

versity of California, Irvine have produced a compre-
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hensive toolkit, called TAOS (Testing and Analysis

with Oracle Support) [15], that supports the defini-

tion of oracles in GIL.

The rest of the paper is organized aa follows. Sec-

tion 2 describes the textual logic on which GIL is

based and then indicates how textual formulas are

represented in GIL. Section 3 presents some sample

specifications, which we use in Section 4 to demon-

strate the capabilities of GIL-based oracles. Section 5

presents the algorithm for verifying the correctness of

a test execution and Section 6 shows how information

about a fault is displayed so as to help the system de-

veloper understand what has occurred. We discuss

related work in Section 7 and future research direc-

tions in Section 8.

2 The Logic

We believe the visual representation of GIL formulas

is more natural and intuitive than that of textual tem-

poral logics. In particular, the timing-diagram look

and feel of GIL corresponds closely to one’s intuitive

mental picture of time.

However, textual representations produce more

concise formulas and facilitate definitions of seman-

tics and of algorithms that manipulate formulas. Fu-

ture Interval Logic (FIL) was invented to allow tex-

tual encoding of the semantic information in a GIL

formula. 1 We use a fragment of FIL in Section 5

for describing the construction of GIL-based oracles.

This section describes the FIL fragment used in this

paper and then indicates how FIL formulas are rep-

resented graphically in GIL.

FIL is a propositional, linear-time temporal logic.

A FIL formula is evaluated at a state in an infinite

sequence of states with the semantics for the boolean

connective defined in the usual manner. A formula

viewed as a specification must hold at the first state of

all state sequences that represent possible executions

of a system. (A finite execution determines a finite

state sequence, which we identify with the infinite se-

quence obtained by stuttering the terminal state.) In

the following informal description, we use the term

“context” to mean a sequence of states obtained by

extracting a subsequence of contiguous states from a

given sequence and, if the subsequence is finite, stut-

tering its final state.

The key construct of FIL is the interval, which pro-

vides a context over which properties are asserted

to hold. The typical interval modality in FIL has

the form [61 102), where 01 and 02 specify series of

I .Fu~ueM because ~ Sea&eS are into the future of the

current state.

searches to states in the future at which designated

target formulas hold.2 The modality [81 It%) extracts

the subcontext of the current context beginning with

the state located by the searches specified in 01 and

ending with that preceding the state located by the

searches specified in 62. If this subcontext is finite,

it is made infinite by stuttering the last state. If

this subcontext can be constructed within the present

context, then the FIL formula [01 [62 )~ requires that

the formula $ hold at the first state within the sub-

context. If the target of a search in 01 or 02 can-

not be located in the current context or if 62 locates

the current state (the state at which 62 is evaluated),

then [01 102) cannot be constructed and the formula

[01 16z)~ is regarded to hold vacuously. For brevity,

we refer to a state at which a target formula a holds

as an a-state. We say that a search to a ‘succeeds,”

if the future within the present context contains an

a-state (the search locates a state at which a holds),

and “fails,” otherwise. If a search fails, then all sub-

sequent searches in a search pattern are also regarded

to fail.

For example, in the modality [Dal, Da2 lDa3), each

Da; denotes a search to the formula ai, i = 1,2,3, and

the comma denotes composition of searches. The left

endpoint of this interval is found by searching for the

first al-state and then from that state for the first

az-state. The right endpoint of the interval is found

by starting at the left endpoint and searching for the

first a3-state.3 The interval can be constructed if all

three searches succeed and if a3 does not hold at the

state located by the search to a2 (the interval is not

empty). In this case, the formula [Dal, Paz [Das)~ as-

serts that $ holds at the first state within the con-

text that begins with the state located by the search

to a2 and that extends up to, but does not include,

the state located by the search to a3. If any of the

searches fails or if the search to a3 locates the current

state, then [Dal, oa2 lDa3)f holds vacuously.

FIL defines two trivial search patterns, in addi-

tion to the non-trivial search patterns obtained by

composing one or more searches. The trivial search

patterns are used in the following situations: The

modality [– ID6’z) attempts to construct a prefix of

the present context (ending with the state preceding

2 We adopt a non-strict interpretation of “future”, which

includes the present state, in order that FIL is insensitive to

finite stuttering of states [1 I]. Thus, if the target of a search

holds at the current state (the state at which the search is

evaluated), then the search locates the current state.

3 More generally, FIL permits the specification of indepen-

dent searches, in which the searches for the right endpoint start

at the same state as the searches for the left endpoint. How-

ever, we do not consider independent searehes in this paper.
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that located by %), and the modality [01 ID) attempts

to construct a suffix of the present context (beginning

with the state located by 81).

The henceforth 0 and eventually O operators of

Propositional Temporal Logic (PTL) are defined in

FIL as derived operators: D$ abbreviates the formula

[t=flb)fake and Of abbreviates in-If. Informally,

❑.f requires that the formula =$ never holds in the

future of the current state (this interpretation follows

from the ‘default-to-true’ semantics of the search to

-f) and of requires that there is some state in the

future at which f holds.

The default-to-true semantics of the interval and

search modalities described above yields “weak” op-

erators in the sense that the targets of searches need

not be located and the specifications for the begin-

ning and ending of an interval can designate an empty

context. Strong versions of the interval and search

operators are provided in FIL as derived operators,

using definitions similar to those illustrated above for

henceforth and eventually. A strong search to a for-

mula a is denoted ma, and a strong interval with

endpoints specified by 01 and (?2 is written [01 ~02)).

Searches in the patterns 01 and 62 can be strong

or weak. A weak search has the interpretation de-

scribed above. A strong search is predicated on lo-

cating the targets of all prior searches in 01 and 192,

if any prior searches exist. Under this condition, the

strong search must not fail. Similarly, if the search

targets in 01 and 02 are located, then [61 [02)) requires

the interval to be non-empty.

These conventions yield the following interpreta-

tions for the interval formulas [01 102)fand [01 [62)) f.

Both formulas require that

+ if the interval modality can be constructed

within the present context, then f holds at the

first state within this interval, and

● a strong search in 131or 02 can fail only if a prior

weak search fails.

Additionally, [01 [02)) requires that

● if the searches in 191and L92succeed, then 02 does

not locate the current state (the interval is not

empty).

Consider, for example, the formula g =

❑ [DT2, Da [cob))O f. In effect, the weak searches pred-

icate the invariant in g on locating a positive tran-

sition of the formula a. If a positive transition of

a is located, the strong search guarantees the exis-

tence of a future b-state. However, b must not hold

at the state following a positive transition of a since

the strong interval precludes an empty context. Thus,

g requires that every positive transition of a causes

a (later) positive transition of b and that f holds at

some state wit hin every interval that begins with the

state following a positive transition of a and ends with

the state preceding the next positive transition of 6.

The graphical representation of this formula in GIL

is

. *.--* .,.--.--M

‘Isa
L-------

*I
r?=y==+b

Briefly, a GIL formula is read from top to bottom

and left to right. The topmost interval represents the

outermost context (implicit in the corresponding FIL

formula) and the horizontal dimension represents the

progression of statea in time (time increases from left

to right). Composition of searches is represented by

horizontal concatenation of search arrows and search

targets are left-justified below the arrowheads. The

type of arrowhead indicates the type of search: a sin-

gle arrowhead for a weak search and a double ar-

rowhead for a strong one. Similarly, the type of line

segment denoting an interval indicates the type of in-

terval: a single line for a weak interval and a double

line for a strong one.

To assert that a formula holds at the first state in

an interval, the formula is drawn left-justified below

the left endpoint of the interval. To assert that a for-

mula is h’arbnt over an interval, the formula is po

sitioned below the interval and indented to the right

of its left endpoint. To assert that a formula even-

tually holds within an interval, a diamond is placed

on the interval and the formula is left-justified be-

low the diamond. To assert that a formula holds at

the first state of a suffix interval [61 {b), the formula

is left-justified beneath a triangle positioned directly

below the final arrowhead in the representation of 01.

In all cases, tlhe horizontal extent of a formula lies

within the horizontal extent of the contexts in which

the formula is nested.

Boolean composition can be laid out vertically in

GIL; in vertical layout, a conjunction is indicated by

stacking formulas one below the other without the

conjunct ion operator. Right braces are used to visu-

ally delimit formulas and eliminate ambiguity.

In general, the formulas a, b, and f in the above

examples can be arbitrary. In this paper, however,

we require the targets of all searches to be strictly

propositional and we do not permit nesting of inter-

vals. A large range of temporal properties can be

naturally expressed in the corresponding fragment of

GIL. Moreover, the semantics of formulas contain-
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ing temporal search targets or nested intervals can be

counterintuitive due to the interaction of default val-

uations (when searches fail or intervals are empty).

Further, state sequences are more simply and effi-

ciently checked in the absence of these featurea.

A detailed definition of GIL can be found in [6],

and of FIL in [13]. The former paper also defines the

translation of graphical formulas to textual ones.

3 Example Specifications

This section illustrates the use of GIL for specifying

temporal properties of a sample concurrent system.

The specifications are for an Ada simulation of an

automated gas station derived from that presented

in [8]. In this simulation, an operator task models a

human operator who oversees the use of several gaso-

line pumps by multiple customers. The pumps are

modeled by an array of Pump tasks and customers by

an array of Customer tasks. For simplicity, we con-

sider a version with a single Pump task. Customers is

the name given to the array of Customer tasks.

A Customer prepays before pumping gasoline and

collects change afterward. Prepayment is represented

by a rendezvous on the entry Operator.pre_pay.

The amount paid and the index of the Customer

task are passed to operator in the rendezvous. A

Customer calls Pump.St art-pumping to start pump-

ing and Pump. Finish_pumping to finish, obtaining

the amount charged from Pumpas a result of the

latter rendezvous. After pumping, a Customer re-

ceives change from Operator in a rendezvous on the

Customer’s Change entry.

Pump is activated by a call from Operator to

Pump. Activate for a limited amount of gasoline, af-

ter which Pump accepts a call to pump. start _pumping

followed by a call to Pump.Finish+umping. It then

notifies Operator of the current charges in a call to

Operat or. Charge and waits to be reactivated.

Operator maintains a queue of prepayment records

for Customer tasks that have prepaid and not yet

received change. It activates Pump upon adding a

Customer to an empty queue and after dispensing

change if the queue is not empty. Upon accepting

a call on its Charge entry, operator dequeues the

first prepayment record and dispenses change to the

Customer indicated in the record.

Although the gas station example is a relatively

simple concurrent program, it exhibits subtle tempo-

ral properties that are difficult to verify. The debug-

ger described in [8] was used to discover deadlocks

in two versions of the program. The third version,

which we use below, prevents this particular dead-

lock from occurring but contains a different deadlock,

which can only occur when more than two customers

have prepaid for gasoline.

The primitive propositions in a GIL formula can be

viewed as representing “conditions” that summarize

important properties of execution histories. For the

purposes of the example, we assume that conditions

are triggered by the occurrence of specific events and

cancelled by others, although more flexible definitions

for conditions could be used. We further assume that

the initiation and termination of rendezvous define

events.

For GIL formulas to describe properties of exe-

cutions of a system, definitions are needed for the

conditions appearing in the formulas. Various meth-

ods could be used for defining conditions. For

example, the programmer might annotate a pro-

gram with formal comments specifying the initial

values of conditions and the events that trigger

and cancel conditions. For the gas station exam-

ple, we assume definitions for two types of condi-

tions: pay$n and purnp$n, where $n represents an

integer in the indexing range for Customers. By

definition, all conditions are initially false; pay$n

is triggered by initiation of a rendezvous with

Customers(%) on Operator. Pre_pay and cancelled

by initiation of a rendezvous with operator on

Customers ($n).Change; and pump$n is triggered

by initiation of a rendezvous with Customers

on Pump.St art +unping and cancelled by termi-

nation of a rendezvous with Customers on

Pump.Finish_pumping. Thus, pay$n is true when

Customers has prepaid but not yet received

change, and pump$n is true when customers(%) is

pumping gasoline.

The following specifications are representative of

the kinds of temporal properties that one might wish

to verify about the gas station system.

SafePumpl. Customers(1) pumps gasoline only when

it has prepaid.

[ )
pumpl

3
payl

DoesPumpl. Whenever Customers(1) prepays, it

eventually pumps gasoline and, at some later point,

it receives change.

L #
..-. b+--- ..-. --bl

~ payl payl
l-------------------

-’ “Y’ II
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Fairl.2.

If Customers(1) prepays before Custoxnexs(2), then

Customers(2) does not gain access to the pump be-

fore Customers(l).

. .--w--------~
-payl payl

A }
T PY2J

>
*-. -U.---------U

~payl payl
. . . . . . . . . . . . . . . . . .

VP”’

For convenience, we shorten the names of condi-

tions (primitive propositions) in later sections of the

paper. Using p for payl, m for pumpl, p’ for pay2,

and m’ for pump2, we obtain the following FIL trans-

lations for the GIL specifications shown above:

● SafePumpl: ❑l(m * p)

● DoesPumpl: lJIDYp, Dp@Yp))Om

● Fairl.2:

‘([m=P, Wlb)=p’ * [bqp, Dplbm)nwn’)

4 Using Test Oracles

GIL specifications describe properties of state se-

quences, whereas oracles check properties of system

executions. To reconcile these two viewpoints, system

executions are represented as traces of events. The

definitions of conditions determine events that must

be monitored during testing and the system developer

might indicate additional events of interest. Traces

generated during testing induce state sequences on

which to evaluate specifications .4 The traces satisfy

the GIL specifications if the specifications are true

when evaluated on these state sequences.

Figure 1 shows a prefix of an event trace that was

generated by executing the Ada simulation of the au-

tomated gas station described above. We have traced

only the events that affect conditions in the specifi-

cations. A vertical dashed line labeled acc TI: T2. E

(end Ti: T2. E) denotes the initiation (termination)

of a rendezvous with TI on T2. E, where long iden-

tifiers are shortened to save space. The pseudo-

event initial represents the start of the execution.

The state sequence induced by the trace is displayed

graphically below the trace. Shaded bars show where

conditions are true and clear bars show where they

4 If a system is dktributed, then an execution defines a

partiaf order on events and a trace is any linear ordering that

is consistent with this partiaf order.

are false. The full trace is easily seen to satisfy the

specifications ilm Section 3.

If a trace violates a GIL specification, an oracle can

construct a formula describing the trace and contra-

dicting the specification. The contradiction produced

by the oracle will either be the negation of the spec-

ification or a .qpecial case of said negation. 5 To help

the system developer discover the nature and loca-

tion of a fault, the oracle can display the trace and

the contradiction one below the other and horizon-

tally aligned, so as to show the points in the trace

at which individual subformulas in the contradiction

hold.

Figures 2 and 3 show faulty traces that were gener-

ated by executing the gas station program. We trace

some call events in addition to rendezvous events to

help in understanding the behavior in Figure 2. In

this trace, the second rendezvous with Customers(1)

on Operator. pre-pay produces a positive transition

of payl that is never followed by a negative transi-

tion. Thus, the strong search in the invariant of Doe-

sPumpl fails when evaluated at any state between

the first and second rendezvous with Customers(l)

on Operator. pre_pay. This is shown by the contra-

diction displayed below the trace. Alignment shows

states at whichl subformulas hold, Inspection of the

trace shows that the system is deadlocked at the end

of the execution.

The trace in Figure 3 violates Fairl.2. As shown

by the contradiction displayed below the state se-

quence, the first rendezvous with Customers(l) on

Operator. pre+ay produces a positive transition of

payl when pay2 does not hold. However, pump2

holds within the interval that begins after this tran-

sition and that extends up to the next pumpl-state.

Thus, the invariant in Fairl. 2 is violated at the first

state of the execution.

5 Constructing Test Oracles

Automata theory provides the theoretical foundation

for constructing oracles from GIL specifications. A

GIL formula cletermines an equivalent finite state

automaton, which accepts precisely those state se-

quences satisfying the formula. Thus, a state se-

quence s violates a GIL specification ~ if the automa-

ton associated with ~f accepts s. By using the au-

tomaton for ~,f, rather than f, information in the

accepting run can be used, in case s violates f, to

align the trace that produced s with a formula con-

5 For brevity, we say “contradiction”, rather than “contra-

diction to the specification”, and do not mean “contradiction”

in the sense of being unsatisfiable.
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Figure 1: Asample trace and themsociated state sequence.
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Figure 3: A trace violating Fairl. 2 and a formula that shows a fault.

tradicting f and satisfied by s. For convenience, we

give all results in this section in terms of FIL for-

mulas, which are obtained by translating (restricted)

GIL specifications into FIL.

The automata constructed by the FIL decision pro-

cedure [13] do not provide a practical foundation for

an oracle procedure. In the first place, the decision

procedure assumes formulas are expressed exclusively

in terms of weak searches, weak intervals and propo-

sitional connective. Higher level temporal operators

must be translated into weak searches and weali in-

tervals. This increases the size of formulas and the

depth of interval nesting. A minimal set of temporal

primitives simplifies the definition of the automaton

for a formula, but generally requires a larger, more

complex formula, which in turn produces a (expo-

nentially) larger automaton.

Additionally, the FIL decision procedure requires

Bucchi automata [3] because FIL formulas are inter-

preted over infinite state sequences, However, the

event traces generated during testing are finite. Thus,

oracles do not require the power, or additional com-

plexity, of Bucchi automata.

This section describes an algorithm for associating

finite state automata with FIL formulas that provides

a more practical foundation for oracles. The algo-

rithm requires a FIL formula in which negation has

been pushed into propositions; the only boolean con-

nective are conjunction, disjunction and negation;

search targets are strictly propositional; and the max-

imum depth of interval nesting is one. Given a for-

mula ~ of the required form, the algorithm builds a

deterministic finite state automaton (DFA) that ac-

cepts precisely tlhose finite state sequences satisfying

~. We denote the DFA for a formula ~ as Dj.

The DFA for ia formula is produced using a varia-

tion of the well-known tableau method6 that simul-

taneously builds and determinizes the automaton for

restricted FIL formulas. The nodes of Df are annc-

tated with sets of formulas that are derived from j

through a series of reductions. 7 Intuitively, the sets

annotating a node can be viewed as imposing alter-

native requirements on the future of a state sequence:

The remaining state sequence must satisfy the formu-

las in at least one of the ‘requirement sets’ associated

with the node.

—
6See, for example, the satisfiability algorithm for PTL pre-

sented in [12].

7 We refer to the! states of the automaton as ‘nodes’, rather

than ‘states’, to avc)id confusion between the states of the au-

tomaton and the states of a concurrent system, which comprise

the automaton’s input alphabet.
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5.1 Definitions and terminology

We adhere to the following notational conventions

in the description below. The symbols p, q (with

or without subscripts) denote primitive propositions;

a, b denote propositional formulas; and 0 denotes a

search pattern, either a (possibly empty) sequence of

searches or a trivial search pattern. The symbols ~,

g denote FIL formulas of the required form. We as-

sume that all formul= are syntactically well-formed,

so that the context in which a symbol appears may

impose additional restrictions on its form. We write

{01 I@z} to represent either of the interval modalities

[01 162) or [61~02)) and *a to represent either of the

search modalities Da or @a.

The next operator o of PTL is not expressible in

FIL. However, tableau methods use the next operator

to describe requirements that must be checked at the

next state of a sequence of states. We therefore use

the next operator, in this section only, in describing

the construction of the DFA. As in PTL, the formula

Of holds at the itk state of a sequence of states if ~

holds at the i + 1 ‘h state of the sequence. A formula

of the form Of is said to be “deferred” and f is called

the “core” of Of. We refer to a formula that does not

contain the next operator aa a “basic formula.”

Tableau methods typically represent formulas as

sets. The manipulation of formulas is then easily

described using set operations. In the following, we

regard a set X of formulsa as representing the con-

junction of its elements, A~ex j, and a set Y of sets of

formulas as representing the disjunction of (the for-

mulas represented by) its elements, VXeY (Ajex ~).

We abuse notation slightly, identifying a set repre-

senting a formula with the formula itself. Thus, for

instance, we say that X and Y are equivalent if the

formulas that they represent are equivalent. By con-

vention, the empty set represents true.

We refer to primitive propositions and their nega-

tions as “atomic formulas.” A set of atomic formulas

that doea not contain a primitive proposition and its

negation is said to be “consistent. ” The symbol A de-

notes a consistent set of atomic formulas regarded as

“assumptions” that are made about the current state.

The identification of A with the conjunction of its el-

ements permits us to write A ~ a to signify that the

assumptions in A guarantee that the (propositional)

formula a holds in the current state.

A family of parameterized reduction relations are

used in generating the requirement sets for the suc-

cessors of a node in a DFA. Intuitively, if ~ is a re-

quirement that must hold at the current state, a is

assumed to hold in the current state, and a reduce~

-f to g, written ~ > g, then we may substitute g, a
a

boolean combination of syntactically simpler formu-

1ss and deferred formulas, for j.

Definition 1 The relations > are defined to be the

smallest relations satisfying t;e following rules.

Uj ~~e(f A @U~) and Of ~:e(f V @of)

a > @true and a > Ofake
-la

{Ojh}f:

- {*a, @~l19~}f ;{8~10~}f, if 19~ is not empty

- {*alO~}f;{-10~}f

- {*a,0~102}f~O{*a, tJll~2}f

{-k}f:

- {–l*a, %}f ~{–[61}f, if 01 is not empty

- [–l*a)f; @true and [–[*a))f ~ @false

- {–l*a, &}bT~b(3[–[*a,d~)tme

- {-l*a, e~}~qa:=b O[-ll*a, %))fa~se

- {-l*a,Ol}Of >

{~lxa, Ol}f A @[-l*a, O1)Clf

- {-l*a, %}of;

{-l*a, t?l}f V @[-[*a, 0~))0~

- {-lp}f ,~ef

f>g, if f>gandb+a
b a

The reduction of f to g under the assumption a is

formally justified by observing that ~ > g only if the

conjunctions f A a and g A a are equiv~lent.

The formulas used in representing requirements can

be characterized as follows.

Definition 2 Given a basic FIL formula f, Cj is de-

fined to be the smallest set of formulas such that

●

●

●

A

fEcj;

if gl E Cf, the main connective of gl is a

boolean operator or the next operator, and g2

is an operand of said connective, then g2 E C’j;

and

if gl E Cj and gl reduces to g2 (under any as-

sumption) then gz E Cf

“requirement set ,“ denoted by the symbol R, is

a subset of Cj that is regarded as constraining the

future of the current state: The conjunction of the

formulas in R must hold at the current state. A set

of requirement sets, denoted by the symbol S, is re-

garded as imposing alternative requirements on the

future: At least one of the requirement sets in S must
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hold at the current state. We say R is “deferred” if all

formulas in R are deferred. If R is deferred, then we

define Core(R) a { f I of c R}. shnilarly, we W

S is deferred if all requirement sets in S are deferred.

We extend the scheme for representing formulas as

sets to also specify a pairing of formulas regarded as

expressing assumptions with those regarded as ex-

pressing requirements. If X is a set representation

for a formula and A is a set of assumptions, we iden-

tify the pair (A, X) with the conjunction A AX, and

we identify a set Y of such pairs with the disjunction

V(A,XJCY(A A X). Intuitively, a pair (A, X) 6 Y rep-

resents one way of satisfying Y: Assuming that A is

true in the current state, Y holds at the current state

if X does.

The symbol N denotes a node of a DFA. The in-

put alphabet for Dj is the set of states (interpreta-

tions for primitive propositions). However, we label

transitions in Df with propositional formulas, rather

than states, and interpret the label on a transition

as describing the states on which the transition is

taken. Thus, a transition in Dj corresponds to mul-

tiple transitions in a conventional DFA representation

(in which input symbols label transitions). A transi-

tion from Ni to Nj with label a is denoted (Ni, a, Nj ).

The labels on the transitions leaving a node “parti-

tion” the state space, in the sense that one and only

one of the labels holds in any state.

5.2 The Decomposition Procedure

We first describe the decomposition procedure that

is the heart of the algorithm for constructing Df.

This procedure decomposes a set of requirement

sets S into a set of assumption-requirement pairs

{(Ai, Si) I 1< i < k}, for some k ~ 1, with the fol-

lowing properties

(1)

(2)

(3)

S is equivalent to vl<i<~(Ai A @Si);--

the assumptions Ai, 1 < i < k, partition the

state space; and

either (OAi) + Si or (OAi) + ~Si, 1 < i < k.

If S is the annotation for a node N, properties (1)

and (2) justify a transition with label Ai from N to

a node Ni that is annotated with Si. Property (3)

permits Ni to be classified as accepting (final) or not.

If Ai holds in the last state of an input sequence, then

(DAi) + Si guarantees that Si holds at the last state,

so that Ni is a final node. If (UAi) ~ ~Si, then Ni

is not accepting.

We define a predicate that is used to ensure (3).

The rules in Figure 4 define Accept (a, ~), for a ba-

sic formula ~ and propositional formula a, provided

that a is strong enough to evaluate the conditions

in the rules. It can be shown that (3) is implied by

Accepi(Ai, Si).

f Accept(a, f)

1

glA gz Accept(a, gl ) A Accept(a, g2 )

gl v g-2

❑gOg{*ZI,e,l(h}g
{*ble,}g

{oh, 81 I%z}g

{rob, 0, [&}g

{–l*b, &}g

[-l*b)g

!i-l*b))g

{–lDb,&}g

{-bd, %}g

$+)9

b

Accept(a, gl) V Accept(a, gz)

Accept(a, g)

Accept(a, g)

Amept(a, {8110z}g), if a +- b, and

01 is not empty

Accept(a, {–lth}g), if a + b

true, if a ~ ?b

false, if a +. ~b

Accept(a, {–18z}g), if a + b, and

62 is not empty

true, if a + b

false, if a + b

true, if a + ~b

false, if a + ~b

Accept(a, g)

true, if a + b

false, if a + ~b

Figure 4: Rules for evaluating Accept(a, ~)

The decomposition procedure makes use of the fol-

lowing operations, which are defined for a set X

that pairs assumptions with (flat) requirement sets.

Each operation can be shown to transform a given

assumption-requirement pairing into any equivalent

one.

Boolean decomposition. If the pair (A, R) E X and

if the formula ~1 A f2 c R, then replace (A, R) in X

witll(A, R–{fl Afz}U{fl, fz }).

If (A, R) e X and if fl V f2 c R, then replace

(A, R) in X with (A, R-{ f1Vf2}U{f1}) and

(A, R-{ flVfa}U{fz}).

Requirement reduction. If the pair (A, R) 6 X,

fl G R, and fl ~ fz, then replace (A, R) in X with

(A, R- { f, } U{-f2 }).

Assumption introduction. If (A, R) G X, Al V A2 =

true, and A U Al and A U A2 are consistent, then re-

place (A, R) in X with (AU Al, R) and (AU Az, R).

Subsumption. If (Al, RI) E X, (A2, R2) G X, RI +

Rz, and Al + Az, then delete (AI, Rl) from X.

If (A, R) c X, ,fl G R, f2 c R, and f2 + fl, then

replace (A, R) in X with (A, R – { fl }).

The decomposition procedure is shown in Figure 5.

Step 1 initializes X to be equivalent to S. X is then

decomposed in steps 2 and 3 using the operations de

fined above to obtain an equivalent representation of
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Input:

output:

A set S of requirement sets

Aset Yoftheform {( Ai, Si)l l~i~~},

k ~ 1, such that Vl<i<kAi = true;

Ai U Aj is inconsist;n~ if 1< i < j < k;

Accept(Ai, Sg) is defined, for 1 ~ i < k;

and S is equivalent to vl<i<~(Ai A @Si).

l. Set X:={(O, R)l RES}. ‘-

2. Repeatedly apply operations to X until all

requirement sets appearing in X are deferred.

3. Continue applying assumption introduction

to X until dntinct assumptions appearing in X are

pairwise-inconsistent and Accept(A, Core(R)) is

defined, for each (A, R) c X.

4. Assuming X has the form { (A,, Ri) I 1 ~ i ~ k’ },

k’ ~ 1, set Y := ul<i<~j { (Ait Si) }, where

S, = U)CJ,{ core(~j~}, ~, a {j I A, = Aj}.

Figure 5: The decomposition procedure

S in which all requirements are deferred, distinct zw-

sumptions are pairwise inconsistent, and assumptions

are strong enough to determine acceptance. In step 4,

sets of requirement sets are formed from the cores

of requirements sets that are associated with identi-

cal assumptions. Clearly, the formula Vi (A~ A osi),

where i ranges over representative elements from dis-

tinct Ji, is equivalent to X, and, hence, also to S.

The disjunction of the assumptions in Y is true since

the only operations that affect assumptions are as-

sumption introduction and subsumption, and these

operations preserve the disjunction of the assump-

tions (which is initially true). Thus, the decomposi-

tion procedure is correct.

Termination of step 2 follows from the observations

that pairing a requirement that is not deferred with

strong enough assumptions permits it to be decom-

posed using boolean decomposition or requirement re-

duction, and that assumptions can be strengthened to

whatever degree is necessary using assumption intro-

duction. (If (A, R) c X and A does not assume a val-

uation for p, then (A, R) can be split into (AU{ p }, R)

and (A U { ~p }, R). ) The conditions for termination

of step 3 are met if assumptions are introduced for

each atomic formula in ~, although assumptions sel-

dom need to be split to this extent. Thus, the de-

composition procedure terminates. The subsumption

operations can be used to streamline the decomposi-

tion procedure, but are not needed for correctness.

The size of Y is sensitive to the choice of opera-

tions that are applied to X and to the order in which

they are applied. In particular, assumption introduc-

tion should be used, in step 2, only when needed to

reduce a requirement and, in step 3, only when neces-

sary to obtain mutually inconsistent assumptions or

to determine acceptance. Subsumption can help re-

duce the sizes of requirement sets, as well as the num-

ber of requirement sets that are generated. However,

if applied inconsistently, subsumption can increase

the size of the DFA and, if applied indiscriminately,

the cost of checking the conditions for subsumption

can be prohibitive. The development of heuristics for

streamlining the decomposition procedure is a topic

of ongoing research.

5.3 The DFA construction

Figure 6 shows the algorithm for constructing Df

from a formula j of the required form.

Input: A basic FIL formula ~ in which

negation has been pushed into propositions;

the only boolean connective are A, V, and =;

search targets are strictly propositional; and

the maximal depth of interval nesting is 1

Output: A set NODES of nodes

A set START of start nodes,

A set FINAL of accepting nodes,

A set TRA NS of transitions

An annotation function S: NODES + 2CI

1. Set TRANS := FINAL:= 0.

2. Create a (unmarked) node NO.

3. Set NODES:= START:={ NO } and S(NO) := { { .f} }.

4. Whale some node in NODES is not marked:

a. Select an unmarked node N c NODES and mark it.

b. Use the procedure in Figure 5 to decompose

S(N) into the pairs (A,, S,), 1< i < k, k ~ 1.

c. For each i, 1 < i < k:

If Accept(A,, S,) then

If some N, G FINAL satisfies S(NJ ) = Si,

&d (N, aa, NJ) to TRANS;

else create a (unmarked) node Ni,

add N, to NODES and to FINAL,

add (N, a~, N,) to TRANS, and

set S(Ni) := S,;

elseif some NJ c NODES — FINAL satisfies

S(NJ) = Si,

add (N, a,, N,) to TRANS;

else create a (unmarked) node Ni

add Ni to NODES,

add (N, a,, N,) to TRANS, and

set S(N, ) := S;;

Figure 6: The DFA construction algorithm

A start node is created in step 2 and annotated

with the single requirement set { f } in step 3, indi-

cating that f must hold at the first state of the input
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sequence. Step 4 generates the transitions leaving a

node and the corresponding successor nodes, repeat-

edly, until all successors of existing nodes have been

generated. A marking scheme is used to distinguish

nodes whose successors have yet to be calculated (un-

marked nodes) from nodes that have been selected for

said calculation (marked nodes). Step 4 is guaranteed

to terminate because Cf is finite.

We use the negation of DoesPumpl to illustrate

the DFA constructed by this algorithm. Pushing

negation into an interval formula changes the modes

(strong to weak and weak to strong) of the interval

and of the searches for its endpoints. Thus, we write

the negation of DoesPumpl as

fl = o[~~p, M+W)n-wn

and then apply the algorithm of Figure 6 to ~1. This

produces the automaton shown in Figure 7, where the

nodes of Dfl are annotated with the requirement sets

shown below the automaton. Nodes 3–5 each contain

an accepting requirement set, indicated in the dia-

gram by an “(A) .“ These are, therefore, final nodes.

lp

P

Node O

Node 2

w

Node 4

Figure 7: The DFA for ~1

Node I

I { [~=p, t0plDYp)t17n }

Node 3

{ O[m=p, KDplhp)cl-v?l }

Node 5

{ true} (A)

In the worst case, the size of the DFA con-

structed by the algorithm in Figure 6 can be expo-

nentially larger than that of the corresponding non-

deterministic finite automaton (NFA) produced by

the GIL proof checker. However, preliminary investi-

gation suggests that the DFAs for formulas expressing

standard safety and liveness requirements are typi-

cally much smaller than the corresponding NFAs and

that, on such formulas, the running time of the algo-

rithm for build ing DFAs is much better. For exam-

ple, from the formula ~1, the GIL proof checker first

builds a ‘local automaton’ containing 63 nodes and 75

transitions. Elimination of unsatisfiable eventualities

reduces these numbers by approximately 50Y0. Simi-

larly, the DFA D_ F=,rl,2 constructed using the algo-

rithm in Figure 6 contains 8 nodes and 27 transitions,

while the corresponding local automaton produced by

the GIL proof checker contains 677 nodes and 1,055

transitions, which numbers are then reduced by ap-

proximately 85%.

6 Displaying a Fault

If a trace violates a specification, the oracle should

provide the system developer with information about

where a fault w,as detected and the nature of the fault.

The graphical representation of GIL permits a for-

mula describing a trace and contradicting a specifica-

tion to be displayed, appropriately aligned with the

trace, in order to help the system developer see what

has occurred.

While we have yet to develop a systematic method

for displaying faults that can be shown to work in

all cases, we ha,ve obtained hueristics that appear to

work well for specifications of standard system prop-

erties. This section presents an example illustrating

the basic technique.

We consider the trace in Figure 2, which is repro-

duced in Figure 8. Node numbers below the vertical

dashed lines in Figure 8 indicate the nodes encoun-

tered in the run of Df, on this state sequence. For

convenience in the discussion below, we write N for

the sequence of nodes in the accepting run and N(i)

for the ith nodle in N, i = O . . .19. Thus, N(0) is

Node O, N(1) is Node 2, and so on. Similarly, we

write s for the state sequence induced by the trace

and s(i) for the ith state in the state sequence. Thus,

s(i) is represented by the bar lines between the dashed

lines over N(i) and N(i + 1), i = 0...18.

use the following abbreviations for various

in Cfl

jl = q-p, COpID=p)n=m

f2 = [m% cw{D=p)Q-m

We also

formulas
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Figure 8: Run of Df, on the state sequence generated by the trace in Figure 2 and the sequence of

requirement sets used for displaying the contradiction.

f3 ~ [~p[D~p)a-m

.f4 S [–lD~p)D1m

The method for building the contradiction begins

by choosing a path R through the requirement sets in

N that generates the accepting requirement set { td }

in the final node of N. A path is generated in re-

verse order. We start by taking R( 19) = { ~4 } and,

given suitable choices for R(i+ 1), R(i+2),. . . . R(19),

choose R(i) E N(i) such that (A(i), oll(i + l)),

where Ai denotes the label of the transition from

N(i) to N(i + 1), is generated by decomposition of

the assumption-requirement pair (0, R(i)), for i =

18...0. For the example, we take R to be the se-

quence of requirement sets shown below N in Fig-

ure 8, that is, we let R(i) denote the requirement set

directly below N(i), i = 0...19.

The requirement sets extracted from the run of Dj,

ons indicate states at which formulas in Cf, hold. We

use the requirement sets in R to determine how to dis-

play a contradiction that shows a fault in the trace.

We can assert fz at any state i such that ~z c R(i+ 1).

For the example, we choose the first such i. We there-

fore align a diamond with s(3) and look for a formula

that can be drawn at s(3) to assert fz. The next two

changes in the requirement sets are brought about by

reducing f2 ~ R(5) by =p E s(5) to ~3 and by reduc-

ing ~3 E R(6) by p c s(6) to f4. These reductions

signify that, when ~2 is evaluated at s(3), the strong

searches to -p and to p locate, respectively, s(5) and

s(6). The failure to reduce { ~4 } indicates that the

last search to Yp (=payf ) fails, i.e. p is invariant over

the future of s(6). Thus, we obtain the contradic-

tion displayed in Figure 2 using the requirement sets

shown in Figure 8.

Different paths through the requirement sets in the

accepting run can produce other contradictions or al-

ter the manner in which a contradiction is displayed.

For example, we can take

● R(i) -{~1}, fori==O ...5

. R(6) -{~3}, fori=6 and

● R(i) ={~q}, fori=7. ..l9.

With this definition for R, it takes two steps to gen-

erate R(6) from R(5). The reduction of R(5) - { ~1 }

by true generates { f2 }, which -p then reduces to

R(6) s { ~3 }. The first of these reductions causes

the diamond to be aligned with s(6) and the second,

which corresponds to locating the first search target

in tz at s(6), causes -p and f3 to be drawn at this

point. This latter choice of requirement sets thus re

suits in the contradiction being displayed as shown in

Figure 9.

7 Related Work

Model checking is typically used for verifying that

a concurrent system satisfies temporal specifications

[1, 4]. However, because model checking requires ex-

amination of all reachable system states, it suffers

from state explosion. Such exhaustive techniques are

computationally infeasible except for special classes

of systems, and so their potential for practical use

is also limited. Dynamic analysis methods, such as

testing and run-time monitoring, must be used when
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Figure9: Contradiction displayed using a different sequence of requirement sets than that in Figure8.

exhaustive analysis techniques are impractical. More

over, even when model checking is feasible, testing is

needed to check that the model analyzed is an accu-

rate representation of the final system.

Interval logic (IL) [18] largely inspired the design of

FIL. However, there are several presentational as well

as semantic differences between IL and FIL, which

makes them different with respect to expressiveness,

decision procedures and complexity. A detailed com-

parison of IL and FIL can be found in [13].

Oracles for concurrent systems can be based on any

formal specification language with a suitable proce-

dure for checking traces. The IDD debugger for dis-

tributed programs uses a limited subset of IL for ex-

pressing synchronization constraints. IDD checks as-

sertions at runtime, stopping execution if an assertion

is violated [7].

Real-Time Interval Logic (RIL) [14] was designed

to provide oracles for real-time systems. RIL is unde-

cidable, but permits traces to be efficiently checked.

An RIL trace checker is currently being integrated

into the TAOS toolkit for use with RIL oracles.

Sequencing constraints expressed in TSL (Task Se-

quencing Language) are used as oracles by the TSL

Runtime System, which monitors executions of Ada

tasking programs [17]. Also, state transition dia-

grams have been interpreted as describing sequenc-

ing constraints and used as oracles for testing proto-

cols [2]. However, TSL and state transition diagrams

are not formal Iogics and do not support reasoning

about propertie:~ of systems to the same degree as

GIL.

TAOS supports the use of GIL oracles by means

of a very simple prototype trace checker [15]. The

checker scans the trace several times to locate inter-

vals and evaluate formulas within them. Thus, it does

not scale for use with long traces and does not sup-

port on-line checking.

In contrast, tlhe approach described in this paper

depends on DFAs that are derived from GIL formu-

las (via translation to FIL). It permits traces to be

checked as they are generated and a violation of a

specification to be reported as early in a trace as

possible. Consequently, our approach can support

run-time monitoring and debugging, in addition to

postexecution checking of logged traces. Also, when

a trace violates a specification, we are able to con-

struct a formulaL that describes a fault in the trace,

providing valuak~le feedback to the user. The formula

and trace can be displayed graphically to help the

user see the violation that was detected.

Since concurrent systems are often distributed and

are inherently nondeterministic, collecting traces and

regenerating executions pose difficult research prob-

lems. We obtained the traces for this paper by man-

ually instrumenting the Ada source program and ex-

ecuting it on a uniprocessor. Delay statements were

inserted to induce different behaviors.

152



8 Future Directions

Automating the techniques described in this paper

will permit us to undertake a longer term study

aimed at assessing the effectiveness of GIL-based or-

acles. We therefore plan to automate the algorithm

for checking traces described in Section 5. Our tools

will build on the existing GIL tools and be integrated

into the TAOS toolset, which provides comprehensive

support for testing, including generation of traces and

management of test artifacts.

To automate the display of faults, it will be nec-

essary to refine the heuristics illustrated in Section 6

into a systematic procedure. We are also investigat-

ing more effective methods for displaying traces. Dis-

play tools should support different views of traces at

different levels of abstraction in order to help the user

interactively examine sections of a trace.

Studies involving substantial applications will also

permit us to investigate tradeoffs between expressive-

ness and efficiency of analysis. The current reduc-

tion rules can be extended to accommodate arbitrary

GIL formulas with no restrictions on search targets

or nesting of intervals. We have not found reason

to use such features in numerous experiments with

GIL. However, these experiment involved relatively

small-scale applications. Complex properties of larger

systems may be more naturally expressed in less re-

strictive subsets of GIL, which admit suitable trace

checking procedures. For example, searches to inter-

val formulas might be prohibited and nested intervals

otherwise permitted up to a limited depth. We hope

to achieve a tenable balance between expressiveness

and analyzability through such investigation.
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