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ABSTRACT 

Calcium (Ca2+) is a physiological key factor, and the precise modulation of free cytosolic 

Ca2+ levels regulates multiple cellular functions. Store-operated Ca2+ entry (SOCE) is a major 

mechanism controlling Ca2+ homeostasis, and is mediated by the concerted activity of the 

Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Dominant gain-of-function mutations in 

STIM1 or ORAI1 cause tubular aggregate myopathy (TAM) or Stormorken syndrome, while 

recessive loss-of-function mutations are associated with immunodeficiency. Here we report 

the identification and functional characterization of novel ORAI1 mutations in TAM patients. 

We assess basal activity and SOCE of the mutant ORAI1 channels, and we demonstrate that 

the G98S and V107M mutations generate constitutively permeable ORAI channels, while 

T184M alters the channel permeability only in the presence of STIM1. These data indicate a 

mutation-dependent pathomechanism and a genotype/phenotype correlation, as the ORAI1 

mutations associated with the most severe symptoms induce the strongest functional cellular 

effect. Examination of the non-muscle features of our patients strongly suggest that TAM and 

Stormorken syndrome are spectra of the same disease. Overall, our results emphasize the 

importance of SOCE in skeletal muscle physiology, and provide new insights in the 

pathomechanisms involving aberrant Ca2+ homeostasis and leading to muscle dysfunction. 
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INTRODUCTION 

Skeletal muscle physiology directly depends on changes in free cytosolic calcium (Ca2+) 

levels, and small disturbances in Ca2+ homeostasis can severely impact on muscle 

contraction, differentiation, or gene transcription. A major mechanism controlling Ca2+ 

homeostasis is store-operated Ca2+ entry (SOCE), which is triggered by Ca2+ store depletion 

of the endoplasmic/sarcoplasmic reticulum (ER/SR), and results in extracellular Ca2+ influx 

through Ca2+ release-activated Ca2+ (CRAC) channels as ORAI1 (MIM# 610277). This 

highly Ca2+-selective plasma membrane channel is composed of tetramers or hexamers 

forming three concentric rings around the central pore (Hou, et al. 2012; Thompson and 

Shuttleworth 2013; Cai, et al. 2016). Each ORAI1 subunit is composed of 4 alpha-helical 

transmembrane domains (M1 to M4) linked by two external (I and III) and one internal (II) 

loop, with the N- and C-termini facing the cytosol. The M1 transmembrane domain 

constitutes the ~55 Å long channel pore with an acidic glutamate ring at position E106 

forming the selectivity filter and, together with negative residues in the first external loop, 

conferring high selectivity for Ca2+ ions (Vig, et al. 2006; Zhou, et al. 2010; McNally, et al. 

2012; Frischauf, et al. 2015). The central segment of the pore contains a rigid hydrophobic 
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section responsible for the low channel conductance, a gating hinge controlling pore opening, 

and a basal component potentially avoiding backward Ca2+ efflux from the cytoplasm 

(Zhang, et al. 2011).  

Channel opening is mediated through the interaction of the cytoplasmic N- and C-termini of 

the ORAI1 subunits with STIM1 (MIM# 605921), a transmembrane protein in the ER/SR 

able to sense luminal Ca2+ (Muik, et al. 2008; Navarro-Borelly, et al. 2008; Zheng, et al. 

2013). Ca2+ store depletion induces a conformational change resulting in oligomerization and 

cytosolic extension of the STIM1 molecules. The exposure of lipid-binding and channel 

activating domains (CAD) promotes the accumulation of the STIM1 oligomers at junctional 

ER/SR structures near the plasma membrane, where they trap and gate the ORAI channels 

(Luik, et al. 2006; Stathopulos, et al. 2006; Park, et al. 2009).  

We previously identified STIM1 gain-of-function mutations as genetic cause of autosomal 

dominant tubular aggregate myopathy (TAM, MIM# 160565) (Bohm, et al. 2013). TAM 

mostly involves elevated creatine kinase (CK) levels and slowly progressive muscle 

weakness predominantly affecting the proximal muscles of the lower limbs, but also myalgia, 

cramps, and asymptomatic CK elevation have been described (Bohm, et al. 2013; Bohm, et 

al. 2014; Hedberg, et al. 2014; Walter, et al. 2015). Muscle biopsies from patients with TAM 

typically show regular arrays of 70-200 nm long membrane tubules as the main 

histopathological hallmark (Chevessier, et al. 2005). Tubular aggregates can also arise as 

secondary features in various inherited and acquired muscle disorders, and accumulate in 

normal muscle with age (Boncompagni, et al. 2012). All TAM mutations affect highly 

conserved amino acids in the Ca2+-sensing EF hand domains of STIM1. The only cytosolic 

STIM1 mutation R304W has been associated with Stormorken syndrome (MIM# 185070), a 

multisystemic disorder involving tubular aggregate, elevated CK levels, miosis, 
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thrombocytopenia, ichthyosis, asplenia, dyslexia, and short stature (Misceo, et al. 2014; 

Morin, et al. 2014; Nesin, et al. 2014). Mutations in STIM1 causing either TAM or 

Stormorken syndrome were both shown to induce constitutive STIM1 oligomerization, 

CRAC channel activation and Ca2+ influx in the absence of store depletion (Bohm, et al. 

2013; Bohm, et al. 2014; Misceo, et al. 2014; Nesin, et al. 2014). Recently, three gain-of-

function mutations causing TAM or a Stormorken-like syndrome were also described in 

ORAI1 (Nesin, et al. 2014; Endo, et al. 2015). These mutations did not alter ORAI1 

localization at the plasma membrane, but resulted in increased SOCE and diminished Ca2+-

dependent channel inactivation (CDI). 

This study reports the identification of three ORAI1 gain-of-function mutations (two in the 

channel pore and one in M3) in patients with TAM with or without isolated characteristics of 

Stormorken syndrome. Based on clinical, histological, genetic, and functional data, we 

establish a genotype/phenotype correlation and conclude that TAM and Stormorken 

syndrome clinically overlap, and have to be considered as spectra of the same disease. We 

provide the functional evidence that mutations in the first transmembrane domain induce a 

STIM1-independent permeable Ca2+ channel resulting in a more severe phenotype, while the 

mutation in the third transmembrane domain requires activation through STIM1 to generate 

an excessive Ca2+ influx and causes a milder phenotype, suggesting that the ORAI1 mutations 

involve different pathological mechanisms.  

 

MATERIALS AND METHODS 

Patients 
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Sample collection was performed with informed consent from the patients according to the 

declaration of Helsinki and experimentation was performed following institutional IRB-

accepted protocols and the Comité de Protection des Personnes Est IV (DC-2012-1693). 

Patients were from Honduras (Family 1), the United Kingdom (Family 2), and Italy (Family 

3). 

Sequencing and segregation analysis 

Genomic DNA was prepared from peripheral blood by routine procedures and STIM1 

mutations were excluded by Sanger sequencing. Whole exome sequencing was carried out 

for patient 11200 from Family 1, and for patients II.1, II.3, and IV.1 from Family 2 using the 

SureSelect Human All Exon Kit v4 (Agilent, Santa Clara, USA) and the Illumina HiSeq 2000 

or 2500 systems (San Diego, USA). Sequence data were aligned to the GRCh37/hg19 

reference genome using the Burrows-Wheeler aligner software (http://bio-

bwa.sourceforge.net), and variant calling was performed with SAMtools (Li, et al. 2009) or 

the UnifiedGenotyper (https://www.broadinstitute.org/gatk). Following databases were used 

for SNP annotation and filtering: Exome Variant Server (http://evs.gs.washington.edu/EVS/), 

ExAC Browser (http://exac.broadinstitute.org/), dbSNP 

(http://www.ncbi.nlm.nih.gov/projects/SNP/), 1000 genomes 

(http://www.1000genomes.org/), as well as the in-house exome databases in Illkirch and 

Manchester. Impacts of variations were predicted using Alamut v.2.5 

(http://www.interactive-biosoftware.com). 

For patient 5510 from Family 3, direct Sanger-sequenced for both coding exons of ORAI1 

and the adjacent splice-relevant regions was performed. Segregation analyses for Families 1 

and 2 were also performed by Sanger sequencing. The ORAI1 mutations were numbered 

according to GenBank NM_032790.3 and NP_116179.2. Nucleotide position reflects cDNA 

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
https://www.broadinstitute.org/gatk
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.1000genomes.org/
http://www.interactive-biosoftware.com/
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numbering with +1 corresponding to the A of the ATG translation initiation codon. All 

identified mutations have been submitted to the LOVD database 

(http://www.lovd.nl/ORAI1). 

Histology and electron microscopy 

For histology, transverse sections (10 µm) of the muscle biopsies were stained with modified 

Gomori Trichrome, NADH tetrazolium reductase (NADH-TR) and Succinic dehydrogenase 

(SDH) and assessed for fiber morphology, fiber type distribution, and 

accumulations/infiltrations.  

For electron microscopy, muscle sections were fixed in 2.5% paraformaldehyde, 2.5% 

glutaraldehyde, and 50 mM CaCl2 in 0.1 M cacodylate buffer (pH 7.4). Samples were 

postfixed with 2% OsO4, 0.8% K3Fe(CN)6 in 0.1 M cacodylate buffer (pH 7.4) for 2 h at 4 °C 

and incubated with 5% uranyl acetate for 2 h at 4 °C. Muscles were dehydrated in a graded 

series of ethanol and embedded in epon resin. Thin sections were examined with an electron 

microscope (Philips CM120, FEI Company, Hillsboro, USA). 

Protein studies 

Immunofluorescence was performed with routine protocols using following antibodies: rabbit 

anti-Orai1 (Abcam, Paris, France), mouse anti-GOK/Stim1 (BD Biosciences, Franklin Lakes, 

USA), mouse Anti-Ryanodine receptor Clone 34C Product R-12 (Sigma-Aldrich, Saint 

Louis, USA), NCL-SERCA2 mouse monoclonal antibody, clone IID8 (Novocastra, 

Newcastle, UK). Sections were mounted with antifade reagent (Invitrogen, Carlsbad, USA) 

and viewed using a laser scanning confocal microscope (TCS SP2; Leica Microsystems, 

Wetzlar, Germany).  

http://www.lovd.nl/ORAI1
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Constructs 

The human ORAI-eGPF and mCherry-STIM1 constructs were kind gifts from Liangyi Chen 

(Beijing University, China) and Richard S. Lewis (Stanford University, USA). The ORAI1 

point mutations (c.292G>A, c.319G>A, c.551C>T) were introduced by site-directed 

mutagenesis using the Pfu DNA polymerase (Stratagene, La Jolla, USA). The plasmid 

carrying an untagged STIM1 was purchased from OriGene (NM_003156; OriGene 

Technologies, Rockville, USA), and the control vector pEGFP-C1 from Clontech (Palo Alto, 

CA). 

Cells and transfections 

Stim1-/-/Stim2-/- mouse embryonic fibroblasts (MEF-DKO), generated by targeted gene 

disruption, were a kind gift from Masatsugu Oh-Hora (Tokyo Medical and Dental University, 

Japan), and HEK-293T cells were purchased from ATCC (CRL-11268; Manassas, USA). 

MEF-DKO and HEK-293T cells were respectively cultured in DMEM 15140-122 and 

31966-021 (Gibco Life Technologies, Carlsbad, USA) supplemented with 10% fetal bovine 

serum (10270-106, Gibco Life Technologies), 5 μg/ml streptomycin and 5 units/ml penicillin 

(15140-122, Gibco Life Technologies), and were maintained at 37 °C in 5 % CO2.  Cells 

were seeded on poly-L-lysine (P4832; Sigma-Aldrich) coated glass coverslips, and 

transfected at 50% confluency with Lipofectamine® 2000 (11668-019; Invitrogen). For co-

expression experiments, mCherry-STIM1 and ORAI1-eGFP constructs were transfected in a 

3:1 ratio by mass. For cells transfected with the ORAI1-eGFP G98S mutant and the 

respective controls, low Ca2+ containing medium (0.2 mM CaCl2) was used to prevent Ca2+ 

toxicity. All subsequent experiments were performed within 24h post transfection.  

TIRF microscopy 
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To assess the impact of the ORAI1 mutations on the channel distribution at the plasma 

membrane (PM), HEK-293T cells were co-transfected with wild type (WT) or mutated 

ORAI1-eGFP and an untagged STIM1 construct, and cultured overnight in low Ca2+ 

containing medium complemented with 5 µM lanthanum. The TIRF plane was determined 

according to the PM GFP fluorescence at resting state, and images were collected by a Nikon 

Eclipse Ti microscope (Tokyo, Japan) equipped with a Perfect Focus System, a 100x 1.49 Oil 

CFI Apochromat TIRF objective and a cooling EMCCD iXon camera (DU-897E-CS0-#BV-

500; Andor Technology Ltd, Belfast, Northern Ireland). Cells were excited with a 488 nm 50 

mW laser and light was collected through the TIRF Quad dichroic beamsplitter 

405/488/561/640 and the emission filter FITC 525/50 from Nikon. The experiment was 

performed at room temperature. Cells were treated with 1 µM Thapsigargin (Sigma-Aldrich) 

to follow the kinetics of ORAI1 clustering at the PM. Live images were acquired with the 

NIS-Elements AR software V4.30.02 (Nikon), and ORAI1 clusters were quantified and 

characterized with a granularity detection journal on Metamorph software 7.8.12.0 

(Molecular Devices, Sunnyvale, USA) after background subtraction. Regions containing 

clusters were identified at the end of each experiment and their increasing intensities were 

plotted over time. The results were normalized as follows: Fc(t=n) = (Fcr(t=n) - Frr(t=n)); F/F0(t=n) 

= (Ʃ Fc(t=n)/nb. clusters + Frr(t=0))/ Frr(t=0), where Fc(t=n) is the fluorescence intensity of a 

cluster at a given time, Fcr(t=n) the intensity measured in a region that will contain a cluster 

following store depletion, and Frr(t=n) the intensity of a reference region devoid of clusters 

throughout the experiment. The average fluorescence intensity of cumulated clusters at the 

cellular level (F(t=n)) was normalized to the fluorescence of the empty region at the beginning 

of the experiment (F0=Frr(t=0)). The percentage of the PM covered by clusters (density) was 

determined as the summed area of clusters divided by the total surface of the PM visible in 

the TIRF plane.  
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Ca
2+

 measurements 

To assess cytosolic Ca2+ levels, cells were loaded at room temperature with 4 µM of the Ca2+ 

sensor Fura-2 AM and 1 µM Pluronic acid F-127 (F-1201 and P-3000MP; Invitrogen) in 2 or 

0.2 mM CaCl2 recording solution. After 30 minutes in the dark, cells were washed and 

allowed for de-esterification for at least 15 min. Fura-2 ratiometric fluorescence emission was 

recorded with an Axio Observer microscope (Zeiss, Jena, Germany) equipped with a Lambda 

DG4 175 watts xenon arc lamp (Sutter Instrument Company, Novato, USA) and a rapidly 

changing filter wheel (Ludl Electronic Products, München, Germany). Excitation filters 

340AF15 and 380AF15 were purchased from Omega Optical (Brattleboro, USA). Exposure 

time was 500 ms every 3 seconds for each wavelength. Emission was collected through the 

dichroic/filter couple 415DCLP/510WB40 (Omega Optical), by a 12-bit CCD cooling 

camera (CoolSnap HQ, Ropper Scientific, Trenton, USA) with a 2x gain and a binning of 4. 

To measure store-operated Ca2+ entry, 1 µM Thapsigargin was used to passively deplete the 

Ca2+ stores. For Mn2+ quenching experiments, 500 µM Mn2+ were added while cells were 

excited at 360 nm (360BP10, Omega Optical). Recording solutions contained 140 mM NaCl, 

5 mM KCl, 1 mM MgCl2, 10 mM Hepes, 10 mM D-(+)-glucose and the indicated amounts of 

CaCl2. The Ca2+-free solution contained 1 mM EGTA instead of CaCl2. The pH was adjusted 

to 7.4 at 37 °C with NaOH. All experiments were achieved at 37 °C with pre-heated 

solutions. Ca2+ recordings were acquired and analyzed with the Metafluor 6.3 software 

(Universal Imaging, West Chester, USA) after background subtraction. For cells co-

expressing mCherry-STIM1 and ORAI1-eGFP constructs, only cells with a mCherry/eGFP 

fluorescence ratio above 1 were analyzed. 

Statistics 
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GraphPad Prism 6.05 was used for statistical evaluation of the data. Statistical significance 

was determined by the two-tailed unpaired Student's test with systematic Welch correction 

for variance. 

 

RESULTS 

Clinical reports 

The patients characterized in this study belong to three unrelated families with a broad range 

of symptoms and signs with different ages of onset and disease severity, but sharing 

prominent tubular aggregates on muscle biopsies as the main histopathological hallmark. 

Patient 11200 (Family 1) is a singleton, Family 2 has an ancestral history of a muscle 

phenotype segregating as a dominant disease over at least four generations, and Family 3 

displays a mother to son disease inheritance (clinical features summarized in Table 1).  

Patient 11200 from Family 1 is now 12 years old. Pregnancy, birth and neonatal history were 

uneventful, although motor milestones were slightly delayed. The patient achieved sitting at 

the age of 8 months, and independent walking at 24 months. Tip-toe-walking and frequent 

falls were noticed since age 2, and contractures of elbows and Achilles tendons were 

diagnosed in the following years. Clinical examination at the age of 10 revealed ichthyosis, 

stiffness, proximal muscle weakness and reduced tendon reflexes of the lower limbs. The 

patient was unable to jump, and had a waddling gait. He reported cramps and myalgia, both 

at rest and after exercise, headaches, and frequent episodes of bleeding from mouth, nose, and 

bowel. He had anemia but not thrombocytopenia, and blood calcium levels were repeatedly 

normal or only mildly reduced.  Eye examination showed miosis, heart and lung functions 

were normal, and cognitive assessment showed results within the normal range. CK levels 
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were repeatedly elevated, with values up to 2052 U/l. Motor nerve conduction velocities were 

normal and EMG showed chronic neurogenic abnormalities and mild myopathic changes in 

the proximal lower limbs. Muscle MRI revealed fibro-fatty replacements in the posterior and 

medial compartments of the thigh and of the posterior compartment of the calf (Supp. Figure 

S1). Abdominal ultrasound excluded asplenia/hyposplenia. The parents and the younger sister 

are healthy. 

For Family 2, five affected members underwent regular clinical examinations. They are now 

between 6 and 47 years old, and pregnancy, birth, and early childhood was normal for all. 

Slightly delayed motor milestones as well as slight dyslexia were reported for patients IV.1, 

and IV.2, and might have been overlooked for the older generations. All showed tip-toe 

walking associated to Achilles tendon contractures by the age of 8 years. Only the youngest 

patient, now 6 years old, does not show tip-toe walking. The proximal muscle of the lower 

limbs were predominantly affected, and involved weakness (II.1, III.1, III.2), stiffness (II.1, 

III.2), cramps (II.1, III.2), and myalgia (II.1, III.1, IV.1, IV.2). All had difficulties running 

and climbing stairs. Calf hypertrophy was noted for patients III.1 and IV.1. CK levels were 

elevated for all and ranged between 484 and 1538 U/I. Motor nerve conduction velocity, 

assessed for patient III.1 was normal, and EMG showed myopathic changes.  

Patient 5510 from Family 3 was diagnosed with asymptomatic hyperCKemia through routine 

blood tests at the age of 56. Medical examination at age 60 revealed mild general muscle 

weakness, and the patient reported myalgia of the lower limbs and cramps, but motor nerve 

conduction velocity and EMG did not reveal any abnormalities. The patient also presented 

with hypereosinophilia resulting from allergic diathesis, pectus excavatum, and arched palate. 

CK levels were repeatedly elevated and ranged between 400 and 600 U/I, and his mother was 

also reported to have asymptomatic hyperCKemia.  
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Histology and ultrastructural analyses reveal tubular aggregates  

Muscle biopsies from all patients described in this study displayed tubular aggregates 

appearing on Gomori trichrome and on NADH-TR staining (Figure 1). In agreement with 

previously described TAM cases, the aggregates are less detectable with SDH, suggesting a 

reticulum and not a mitochondrial origin (Chevessier, et al. 2005; Bohm, et al. 2013). 

Aggregates were observed in both fiber types in all analyzed biopsies. Additional 

observations comprise fiber size variability and internalized nuclei.  

Ultrastructural analyses demonstrated that the tubular aggregates are of variable size and 

consist of single or double-walled membranes of different diameter (Figure 1). Overall, the 

histological and ultrastructural features of the biopsies were strikingly similar and strongly 

suggestive of tubular aggregate myopathy. 

Exome sequencing identifies mutations in ORAII 

Sanger sequencing of the known TAM gene STIM1 did not reveal any putative pathogenic 

variant in the families described here. We performed exome sequencing for Families 1 and 2, 

and identified heterozygous missense mutations in ORAI1. Patient 11200 from Family 1 

carries the ORAI1 c.292G>A (p.Gly98Ser) de novo mutation in exon 1, and the affected 

members of Family 2 harbor the ORAI1 c.319G>A (p.Val107Met) mutation in exon 2 (Figure 

2A). Another missense mutation (c.551C>T; p.Thr184Met) in exon 2 was found by direct 

ORAI1 Sanger sequencing of patient 5510 from Family 3. None of the three mutations was 

found in the available healthy family members and none was listed in the public or internal 

SNP databases. However, the p.Gly98Ser mutation was previously described in an unrelated 

Japanese family with TAM involving diffuse muscle weakness, joint contractures, a rigid 

spine and hypocalcaemia (Endo, et al. 2015). 
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All three missense mutations affect highly conserved amino acids in ORAI1 (Figure 2B) The 

mutations p.Gly98Ser and p.Val107Met affect amino acids in M1, and p.Thr184Met affects 

an amino acid in M3 (Figure 2C). M1 forms the ion conduction pathway, while M2 and M3 

encircle the pore and are surrounded by the M4 outer ring (Hou, et al. 2012; Frischauf, et al. 

2015). The residue G98 is located in the rigid section of the channel responsible for ion 

conduction, and the residue V107 neighbors E106, involved in Ca2+ selectivity. 

Tubular aggregates contain STIM1 

To characterize the structure and composition of the tubular aggregates associated with 

ORAI1 mutations, we performed immunolocalization experiments on muscle biopsies from 

patient 11200 (Family 1) and II.1 (Family 2) (Figure 1). We previously showed that tubular 

aggregates in TAM patients with STIM1 mutations contain various SR proteins as STIM1, the 

Ca2+ channel RYR1 (MIM# 180901), the RYR1-effector triadin (MIM# 603283), or the Ca2+ 

pump SERCA (MIM# 108730), and that RYR1 and STIM1 are exclusively found in the 

aggregate periphery (Bohm, et al. 2013). In agreement with our previous observations, the 

aggregates in the TAM patients with ORAI1 mutations also contain SERCA, and RYR1 is 

mainly found in the periphery of the aggregates (Figure 1). The aggregates display strong 

STIM1 signals, thereby linking STIM1 and ORAI1-related TAM. Of note, STIM1 signals are 

not restricted to the aggregate periphery; this is in contrast to the immunolocalization 

experiments in STIM1 patients, and might reflect different ways of tubular aggregate 

formation in patients with STIM1 or ORAI1 mutation. Aggregated ORAI1 is barely or not 

detectable on the biopsies of the analyzed patients, supporting the idea that tubular aggregates 

essentially consist of sarcoplasmic reticulum membrane and proteins. 

ORAI1 mutants traffic normally to plasma membrane clusters  
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In order to assess the impact of the three ORAI1 mutations on channel localization and 

trafficking, we generated wild type (WT) and ORAI1-eGFP G98S, V107M, and T184M 

constructs, exogenously co-expressed them with human STIM1 in HEK-293T cells, and 

imaged the formation of ORAI1 clusters at the PM by total internal reflection fluorescence 

(TIRF) microscopy. WT and mutant ORAI1 were homogenously distributed in the TIRF 

plane in resting cells, and accumulated in clusters following depletion of ER Ca2+ stores with 

the SERCA inhibitor Thapsigargin (Tg) (Figure 3A). The intensity of the clusters and the 

extent of cell membrane covered by clusters was comparable in cells expressing WT or 

mutant ORAI1 at resting or activated state (Figure 3B and 3C). We therefore conclude that 

the mutations do not significantly alter the ORAI1 localization at the plasma membrane, nor 

its clustering upon SOCE activation. 

ORAI1 mutations produce constitutively active channels   

To evaluate the impact of the ORAI1 mutations on the basal channel activity, we measured 

the cytosolic Ca2+ levels ([Ca2+]cyt) in HEK-293T cells transfected with the ORAI1-eGFP 

constructs, and loaded with the ratiometric Ca2+ sensor Fura-2, AM. Cells were sequentially 

exposed to Ca2+-rich and Ca2+-poor media to assess the extent of Ca2+ entry across the 

channel in cells with replete stores (Figures 4A-C). Mean basal Fura-2 ratio values were 

elevated in cells expressing ORAI1 V107M (0.52, SD ± 0.14) or T184M (0.48, SD ± 0.10) 

compared to cells expressing WT ORAI1 (0.39, SD ± 0.08), and decreased significantly upon 

Ca2+ removal. HEK-293T cells expressing the ORAI1 G98S construct displayed extremely 

high [Ca2+]cyt in Ca2+-rich conditions and were cultured in 0.2 mM CaCl2 to minimize 

cytotoxicity. Under these conditions, mean basal Fura-2 ratio was significantly elevated 

(0.68, SD ± 0.19, compared to WT 0.35, SD ± 0.03), decreased upon Ca2+ removal, and 

markedly increased upon addition of 2 mM Ca2+ (1.28, SD ± 0.20, compared to WT 0.36, SD 
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± 0.04, Figures 4B and 4C). These results suggest that the mutated ORAI1 channels are Ca2+ 

permeable even in the absence of store depletion, with a more pronounced degree of 

permeability for G98S compared to V107M or T184M ORAI1. 

G98S and V107M alter ORAI1 activity independently of STIM1 

In order to assess the STIM-dependence of the constitutive activation of mutant ORAI1 

channels, we next transfected mouse embryonic fibroblasts bearing a targeted disruption in 

the Stim1 and Stim2 genes (MEF-DKO). Since steady-state [Ca2+]cyt reflects the combined 

activity of Ca2+ pumps, channels and exchangers, we used the Mn2+ quench assay (Figures 

4D-F). Mn2+ permeates through Ca2+ channels and quenches the Fura-2 fluorescence, thereby 

allowing the individual quantification of the influx component. In these experiments, we 

observed a massive Mn2+ influx in MEF-DKO cells expressing ORAI1-eGFP V107M or 

G98S, while only a small Mn2+ influx was detectable in cells expressing ORAI1-eGFP 

T184M or WT, with no significant difference among these two conditions. Similar results 

were obtained by measuring the amplitude of the Ca2+ elevation evoked by the readmission of 

2 mM Ca2+ to MEF-DKO cells treated with Tg (Supp. Figure S2), where Fura-2 ratio 

increase was observed only in cells expressing G98S or V107M ORAI1. In conclusion, G98S 

and V107, but not T184M ORAI1 channels appear constitutively active in the absence of 

STIM proteins. Accordingly, Mn2+ quench experiments in HEK-293T cells endogenously 

expressing STIM1 and STIM2 demonstrated that cells transfected with any of the mutant 

channels including ORAI1-T184M displayed significant cation entry (Supp. Figure S3). 

The ORAI1 mutants mediate excessive Ca
2+

 entry when gated by STIM1 

To test whether the ORAI1 mutations also impact on the STIM1-gated maximal channel 

activity, we co-transfected HEK-293T cells with mCherry-STIM1 and WT or mutated 
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ORAI1-eGFP constructs. We induced passive reticular Ca2+ depletion through Tg treatment 

in Ca2+-free medium, and measured SOCE upon readmission of 0.5 mM Ca2+ to the medium. 

Cells expressing any of the ORAI1 mutants displayed significantly increased SOCE with 2-3 

fold steeper slope of Fura-2 ratio increase compared to cells expressing WT ORAI1 (Figures 

5A and 5B). Analysis of the response kinetics 60 s after Ca2+ admission demonstrated a 30 % 

Fura-2 ratio decrease for cells transfected with WT or T184M ORAI1, while the ratio 

remained at near maximal levels in cells expressing G98S or V107M ORAI1 (Figure 5C).  

To specifically assign ORAI1 channel activation to STIM1, we repeated the co-expression 

experiments in MEF-DKO cells (Figures 5D-F). Following Tg treatment and readmission of 

Ca2+, cells co-expressing STIM1 and V107M or T184M ORAI1 mutants displayed a strongly 

increased SOCE slope compared to cells co-expressing STIM1 and WT ORAI1. Expression 

of a control vector did not affect the Ca2+ response of the recipient cells, and expression of 

STIM1 alone fully restored SOCE in the MEF-DKO cells (Supp. Figure S2). Unexpectedly, 

MEF-DKO expressing STIM1 and WT or G98S ORAI1 and cultured in low Ca2+ exhibited a 

high SOCE slope (Figures 5D-E), potentially reflecting a specific adaptation of these cells to 

Ca2+ deprivation, and resulting in a more efficient activation of the SOCE pathway. However, 

and in agreement with the results obtained in transfected HEK-293T cells, the Fura-2 ratio 

remained elevated 60 s post Ca2+ readmission in cells expressing the G98S and V107M 

mutants while the ratio decreased in cells expressing T184M ORAI1 (Figure 5F).  

Overall and in accordance with the Mn2+ quenching data, these results strongly indicate a 

mutation-dependent pathomechanism. All three ORAI1 mutations G98S, V107M, and 

T184M involve maximal SOCE in presence of active STIM1, but only G98S and V107M 

generate a constant Ca2+ influx independently of STIM1 activation.  
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DISCUSSION 

Here we report three ORAI1 mutations causing tubular aggregate myopathy, and we support 

our findings by clinical, histological, genetic and functional data. Our patients presented with 

different age of onset, disease severity, and additional non-muscular features, suggesting that 

TAM and Stormorken syndrome are spectra of the same disease. We functionally 

demonstrate for the first time that the mutations in different ORAI1 transmembrane domains 

appear to involve different pathomechanisms, and thereby uncover a genotype-phenotype 

correlation. 

Tubular aggregates in ORAI1 patients contain STIM1  

As both STIM1 and ORAI1 mutations lead to TAM, we compared the structure and 

composition of the tubular aggregates in our ORAI1 patients with the published STIM1 

patients (Bohm, et al. 2013). The tubular aggregates in STIM1 patients were shown to contain 

diverse sarcoplasmic reticulum proteins as RYR1, triadin, SERCA, and STIM1, and STIM1 

was mainly found in the periphery of the aggregates (Bohm, et al. 2013). 

Immunohistofluorescence on muscle sections from ORAI1 patients also demonstrated the 

presence of STIM1 and other sarcoplasmic reticulum proteins in the aggregates. This 

observation provides a link between STIM1 and ORAI1-related TAM at the histopathological 

level, and suggests that secondary STIM1 aggregation plays a role in the pathogenesis of 

ORAI1 mutations. Of note, the STIM1 signals were detectable in the periphery as well as in 

the center of the aggregates, potentially reflecting a difference in tubular aggregate formation 

in patients with STIM1 and ORAI1 mutation. Even if mutated, the plasma membrane Ca2+ 

channel ORAI1 is barely or not detectable in the aggregates, confirming that the tubular 

aggregates are primarily of sarcoplasmic reticulum origin. Considering the increased Ca2+ 

entry resulting from STIM1 or ORAI1 mutations, we might speculate that the excessive 
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cellular Ca2+ is in large parts stored in the reticulum, provoking reticular overload and 

dilatation, and resulting in cisternal pinching off to form the primary stage of the tubular 

aggregates. This is line with the observation that tubular aggregates contain large amounts of 

Ca2+ (Salviati, et al. 1985; Chevessier, et al. 2005). 

ORAI1 mutations involve different pathomechanisms 

To mechanistically investigate the impact of the ORAI1 G98S, V107M, and T184M 

mutations, we analyzed the channel activity in presence or absence of STIM1. Expression of 

any of the mutant ORAI1-eGFP constructs in HEK-293T cells resulted in elevated basal Ca2+ 

levels, but in mouse fibroblasts devoid of STIM (Stim1-/-/Stim2-/-), only G98S and V107M 

induced significant cation influx in the Mn2+ quench assay. This demonstrates that both G98S 

and V107M ORAI1 channels are constantly permeable for Ca2+, while the overactivity of the 

T184M ORAI1 channel is conditioned by the presence of STIM. Accordingly, and 

considering that the constant fluctuation of Ca2+ levels within cellular compartments results 

in a varying sub-pool of activated STIM1/STIM2, and that STIM2 with is lower Ca2+ affinity 

and higher lipid-binding avidity has been shown to be pre-recruited to the cortical ER at basal 

ER Ca2+ concentrations (Parvez, et al. 2008), the endogenous STIM proteins in HEK-293T 

cells might be sufficient to partially activate the T184M ORAI1 channel. It is possible that 

the T184M mutation increases the binding sensitivity of the channel to STIM1 and STIM2 or 

to the transient receptor potential canonical (TRPC) channels to form a ternary complex with 

STIM1 at the plasma membrane (Lu, et al. 2010), which might explain the higher basal Ca2+ 

level in cells expressing the T184M mutant even in the absence of store depletion. The 

extensive characterization of the T184M mutation might reveal a residue or domain 

regulating STIM-mediated channel gating. Excessive Ca2+ entry was also reported for other 
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ORAI1 mutations (Nesin, et al. 2014; Endo, et al. 2015), but the STIM-dependence of the 

channel activation was not investigated in these studies. 

Further evidence for a different pathomechanism of the ORAI1 mutations comes from the co-

expression experiments. HEK-293T or MEF-DKO cells co-expressing mCherry-STIM1 and 

any of the ORAI1-eGFP mutants induced excessive Ca2+ influx following SOCE activation, 

but only G98S and V107M generated a continuous and long lasting Ca2+ influx. In contrast, 

Ca2+ influx significantly decreased over time in HEK-293T or MEF-DKO cells co-expressing 

STIM1 and T184M ORAI1. This discrepancy potentially reflects a difference in Ca2+-

dependent inactivation (CDI) of the mutant channels and/or their dissociation kinetics from 

STIM1. Alternatively, the higher basal Ca2+ levels in cells expressing ORAI1 G98S or 

V107M might increase the threshold triggering CDI or Ca2+ extrusion. It is also possible that 

the G98S and V107M mutations directly or indirectly impact on the Ca2+ extrusion systems.  

In summary, our results suggest a mutation-specific pathomechanism. G98S and V107M 

induce constitutive channel opening independently of STIM, while T184M overactivation is 

conditioned by the presence of STIM. In accordance, the amino acid G98 resides in the 

hydrophobic gating hinge, and V107 locates near the Ca2+ selectivity filter of the M1 

transmembrane domain (Zhou, et al. 2010; Hou, et al. 2012). Disturbance of these key 

functions is expected to impact on ion flow, which is confirmed by our functional data 

demonstrating constitutive Ca2+ permeability independently of STIM. This conclusion is also 

sustained by similar findings based on the functional characterization of artificial M1 

mutations (Zhang, et al. 2011). Conversely, T184 is not located in the channel pore, and the 

STIM-dependent overactivation of the mutant channel strongly suggests that transmembrane 

domain M3 is directly or indirectly implicated in STIM-mediated ORAI1 gating. 

ORAI1 mutations in M1 induce a more severe phenotype 
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Considering the clinical presentation of our and all previously published patients with 

activating ORAI1 mutations (Nesin, et al. 2014; Endo, et al. 2015), the most severe muscle 

phenotypes result from mutations in M1, a moderate muscle phenotype from a mutation in 

M2, and milder muscle phenotypes from mutations in M3 and M4. This correlates well with 

our functional data, demonstrating a stronger impact of M1 mutations on channel function.  

Our patients were diagnosed with tubular aggregate myopathy based on biochemical blood 

tests and histological findings. All displayed repeatedly elevated serum CK levels in 

combination with prominent tubular aggregates as the major structural aberration on muscle 

biopsies. The clinical presentation was however variable, ranging from severe early-onset 

muscle weakness and contractures (patient 11200 from Family 1) to mild late-onset muscle 

weakness (patient 5510 from Family 3). A similar interfamilial variability was recently 

described for other families with ORAI1 mutations. G98S was described in two Japanese 

family presenting childhood-onset TAM, joint contractures, hypocalcaemia, rigid spine, and 

elevated CK levels (Endo, et al. 2015). We identified the same mutation in our unrelated 

Family 1, and the clinical manifestations were comparable. The same study reported a third 

Japanese family harboring the ORAI1 L138F mutation, and presenting with weaker clinical 

features involving adolescence-onset TAM, minor joint contractures, and slightly elevated 

CK levels. In addition, a family carrying the ORAI1 P245L mutation was described with late-

onset TAM and increased CK levels (Nesin, et al. 2014).  

Taking into account the clinical manifestation of all TAM patients with ORAI1 mutation, our 

functional data, and the published ORAI1 protein structure, we conclude that mutations 

affecting the pore lead to constitutive channel permeability, and result in early-onset muscle 

weakness often associated with contractures. In contrast, mutations affecting the concentric 
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channel rings involve a STIM-dependent overactivity of ORAI1, and result in less severe 

symptoms with minor muscle weakness.  

ORAI1 patients present discrete signs of Stormorken syndrome  

Tubular aggregate myopathy in combination with miosis, thrombocytopenia, asplenia, 

ichthyosis, dyslexia/intellectual disability, and short stature defines Stormorken syndrome. 

Both TAM and Stormorken syndrome are caused by gain-of-function mutations in STIM1 

and ORAI1 (Bohm, et al. 2013; Misceo, et al. 2014; Morin, et al. 2014; Nesin, et al. 2014; 

Endo, et al. 2015). To explore the possibilities that TAM and Stormorken syndrome are either 

different nosological entities or spectra of the same disease, we examined our patients for 

non-muscle phenotypes and reviewed the published ORAI1 cases. We noticed miosis (patient 

11200, Family 1, and (Nesin, et al. 2014)), frequent episodes of bleeding (patient 11200, 

Family 1), ichthyosis, (patient 11200, Family 1), and dyslexia/intellectual disability (patients 

IV.1, and IV.2, Family 2, Family A (Endo, et al. 2015)). These data show that signs of 

Stormorken syndrome are found in many patients with activating ORAI1 mutations, and we 

conclude that TAM and Stormorken syndrome are spectra of the same disease. This is of high 

importance for genetic diagnosis and counseling, as ORAI1 mutations should be considered 

in patients with elevated CK levels and prominent tubular aggregates on muscle biopsies, 

especially if they present signs of Stormorken syndrome. 

Overactive SOCE versus underactive SOCE in Mendelian disorders 

STIM1 and ORAI1 act within the same SOCE pathway regulating Ca2+ homeostasis in 

various tissues. The identification of gain-of-function mutations in STIM1 and ORAI1 

represents a strong proof for the implication of aberrant SOCE in the development of 
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TAM/Stormorken syndrome. This is sustained by our functional and immunolocalization 

studies demonstrating a pathomechanistic link between both proteins. 

While heterozygous gain-of-function mutations in STIM1 or ORAI1 generate excessive Ca2+ 

influx and result in the development of TAM/Stormorken syndrome (Bohm, et al. 2013; 

Bohm, et al. 2014; Hedberg, et al. 2014; Misceo, et al. 2014; Morin, et al. 2014; Nesin, et al. 

2014; Endo, et al. 2015; Markello, et al. 2015), homozygous loss-of-function mutations in 

either of the genes suppress Ca2+ influx and are associated with severe immunodeficiency 

(Feske, et al. 2006; McCarl, et al. 2009; Picard, et al. 2009; Byun, et al. 2010; Fuchs, et al. 

2012; Lacruz and Feske 2015) (MIM# 612782, # 612783). We conclude that strict regulation 

of Ca2+ homeostasis ensures normal physiology of muscle, leucocytes, platelets, skin, and 

other cells and tissues, and that overactive SOCE causes tubular aggregate 

myopathy/Stormorken syndrome, while underactive SOCE causes immunodeficiency.   

Conclusions 

Our work indicates for the first time a mutation-specific pathomechanism for ORAI1 gain-of-

function mutations, thereby uncovers a clear genotype-phenotype correlation, and improves 

the understanding of the pathology of TAM/Stormorken syndrome and store-operated Ca2+ 

entry, altered in rare and common diseases. 
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FIGURE LEGENDS  

Figure 1 - Histological, ultrastructural, and immunohistochemical characterization of 

the biopsies 

 (A) Muscle biopsies from patients from all three families display tubular aggregates 

appearing in red on Gomori trichrome and in dark blue on NADH-TR staining in both fiber 

types. The aggregates are barely detectable with SDH. Minor fiber size variability and 

internalized nuclei are also noted. Ultrastructural analyses demonstrate that the tubular 

aggregates are of variable size and consist of single or double-walled membranes of different 

diameter. EM pictures were not available for Family 2. (B) Immunolocalization studies on 

biopsies from Family 1 and Family 2 show that the tubular aggregates contain STIM1, 

RYR1, SERCA, whereas ORAI1 is barely or not trapped. Note that STIM1 signals are found 

in the periphery and in the center of the aggregates, while RYR1 is mainly found in the 

periphery (arrows). * indicate identical fibers of serial sections. 
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Figure 2 - Identification of ORAI1 mutations 

(A) Heterozygous ORAI1 missense mutations were identified in all three families, and 

segregated with the disease. (B) The mutations affect highly conserved amino acids in 

ORAI1. (C) Schematic representation of ORAI1. Mutations found in our patients are depicted 

in blue, published mutations appear in red. G98S and V107M affect amino acids in 

transmembrane domain 1 (M1), and T84M affects an amino acid in M3. Residue G98 is 

located in the rigid section of the channel, and V107 neighbors the Ca2+ selectivity filter 

E106.  
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Figure 3 - Effect of ORAI1 mutations on channel localization and clustering at the PM 

(A) TIRF images of HEK-293T co-expressing STIM1 and wild-type (WT) or mutated 

(V107M, T184M, G98S) ORAI1-eGFP taken before and 10 min after addition of 1 µM 

Thapsigargin (Tg). Insets show cluster morphology at higher magnification. (B) Changes in 

intensity of eGFP clusters and in cluster density (% PM covered by clusters) in the TIRF 

plane following Tg addition in cells co-expressing STIM1 and WT or mutated ORAI1-eGFP. 

(C) Statistical evaluation of eGFP cluster intensity and density before and after Tg treatment. 

Data are mean ± SEM of 33, 24, 25, and 14 cells for WT, V107M, T184M and G98S, 

respectively. No statistically significant differences were observed between WT and mutated 

channels in resting and store-depleted conditions. 
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Figure 4 - Effect of ORAI1 mutations on basal Ca
2+

 level 

(A) Representative Fura-2 recordings of HEK-293T cells expressing wild-type (WT) or 

mutated (V107M, T184M) ORAI1-eGFP during Ca2+ removal (2 mM Ca2+ replaced by 1 

mM EGTA). (B) Recordings of cells expressing WT or G98S ORAI1-eGFP during Ca2+ 

removal and readmission. Cells were cultured in a Ca2+-poor medium (0.2 mM) to mitigate 

the toxicity associated with the G98S mutation. (C) Statistical evaluation of the responses 

illustrated in (A) and (B), measured between the time points indicated with # (n = 79, 39, 49 

for WT, V107M, T184M respectively, and n = 38, 20 for WT and G98S cultured in low 

Ca2+). (D), (E) Representative Mn2+ quench recordings of MEF-DKO cells (Stim1-/-/Stim2-/-) 

expressing WT or mutated ORAI1-eGFP. Fura-2 fluorescence was recorded at 360 nm in the 

presence of 2 mM Ca2+. Traces are offset to facilitate comparison. (F) Statistical evaluation of 

Mn2+ quench rates in (D) and (E), measured between the time points indicated with # (n = 17, 

20, 21 and 23, 32 for WT, V107M, T184M, and WT, G98S cultured in low Ca2+, 

respectively). Data are mean ± SEM, statistically significant differences versus respective 

WT conditions are indicated by **** p < 0.0001. 
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Figure 5 - Effect of ORAI1 mutations on maximal SOCE 

(A), (D) Fura-2 responses evoked by the readmission of 0.5 mM Ca2+ (HEK-293T) or 2 mM 

Ca2+ (MEF-DKO) to cells co-expressing mCherry-STIM1 and ORAI1-eGFP (WT, V107M, 

T184M or G98S) treated with Tg. (B), (E) Statistical evaluation of the influx rate evoked by 

Ca2+ readmission in (A) and (D), measured as the Fura-2 increase slope between the time 

points indicated with #. (C), (F) Statistical evaluation of the Ca2+ level 60 seconds after the 

peak of the response in (A) and (D), illustrated by the dotted line, and expressed as 

percentage of the peak. Data are mean ± SEM of 24-51 cells for (B), (C) and of 17-29 cells 

for (E), (F). Statistically significant differences versus respective WT conditions are indicated 

by ** p < 0.01, *** p< 0.001, and **** p < 0.0001.  
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Table 1. Genetic, clinical and histological features in patients with ORAI1 mutations 

 Family 1 Family 2 Family 3 

Individual 11200 I.1 II.1 II.2 III.1 III.2 IV.1 IV.2 5510 

Gender M F F M F F M M M 

Mutation 

c.292G>A 

p.Gly98Ser 

c.319G>A 

p.Val107Met 

c.319G>A 

p.Val107Met 

c.319G>A 

p.Val107Met 

c.319G>A 

p.Val107Met 

c.319G>A 

p.Val107Met 

c.319G>A 

p.Val107Met 

c.319G>A 

p.Val107Met 

c.551C>T 

p.Thr184Met 

Onset childhood unknown childhood unknown childhood childhood childhood childhood adulthood 

Age at last examination 10 no examination 47 
no 

examination 
25 31 8 6 60 

Muscle symptoms 

proximal and distal 
weakness of lower 

limbs, myalgia, 
cramps, stiffness 

NA 
stiffness, 
cramps 

NA 

proximal 
weakness of 
lower limbs, 

exercise-induced 
myalgia 

weakness of 
arms, cramps 

myalgia, 
stiffness 

myalgia 

mild general 
weakness, myalgia 

in lower limbs, 
cramps 

Walking 
tip-toe walking, 
waddling gait 

NA 
tip-toe walking, 

difficulty 
climbing stairs 

NA 
tip-toe walking, 

difficulty 
climbing stairs 

tip-toe 
walking 

tip-toe 
walking 

normal normal 

Contractures 
elbows, Achilles 

tendons 
NA Achilles tendons NA Achilles tendons NA 

Achilles 
tendons 

Achilles 
tendons 

no 

CK level (U/I) 2052 NA 791 NA 1383 597 1538 484 600 

http://dx.doi.org/
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normal range 60-180 

Histology 

TAs in type I/II 
fibers, fiber size 

variability, 
internalized nuclei 

NA 

TAs in type I/II 
fibers, fiber size 

variability, 
internalized 

nuclei 

NA NA NA NA NA 

TAs in type I/II 
fibers, fiber size 

variability, 
internalized nuclei 

Signs of Stormorken 

syndrome 

ichtyosis, miosis, 
bleeding episodes 

NA no NA no no dyslexia dyslexia no 

Other features 
occasional mild 
hypocalcemia 

COPD, 
cerebrovascular 

disease 
no NA calf hypertrophy no 

calf 
hypertrophy, 

seizures 

calf 
hypertrophy, 

scapular 
winging 

hypereosinophilia, 
pectus excavatum, 

arched palate 

NA = not assessed 

 

 


