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Abstract

Oropharyngeal candidiasis (OPC, thrush) is an opportunistic infection caused by the commensal 

fungus Candida albicans. IL-17 and IL-22 are cytokines produced by Type 17 lymphocytes. Both 

cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. 
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While much is now understood about how IL-17 promotes immunity in OPC, the activities of 

IL-22 are far less well delineated. We show that, despite having similar requirements for induction 

from Type 17 cells, IL-22 and IL-17 function non-redundantly during OPC. We find that the IL-22 

and IL-17 receptors are required in anatomically distinct locations within the oral mucosa; loss of 

IL-22RA1 or STAT3 in the oral basal epithelial layer (BEL) causes susceptibility to OPC, whereas 

IL-17RA is needed in the suprabasal epithelial layer (SEL). Transcriptional profiling of the tongue 

linked IL-22/STAT3 to oral epithelial cell proliferation and survival, but also, unexpectedly, to 

driving an IL-17-specific gene signature. We show that IL-22 mediates regenerative signals on the 

BEL that replenish the IL-17RA-expressing SEL, thereby restoring the ability of the oral 

epithelium to respond to IL-17 and thus to mediate antifungal events. Consequently, IL-22 

signaling in BEL ‘licenses’ IL-17 signaling in the oral mucosa, revealing spatially distinct yet 

cooperative activities of IL-22 and IL-17 in oral candidiasis.

One sentence summary

IL-22 signaling limits oral candidiasis via proliferation of basal epithelial cells and replenishment 

of an IL-17-responsive layer.

INTRODUCTION

Fungal infections are a serious threat to public health, but our understanding of immunity to 

fungi lags behind that of other microbes (1). Even today there are no licensed vaccines to 

any fungal microbes (2, 3). Oropharyngeal candidiasis (OPC, thrush) is an opportunistic 

infection of the oral mucosa caused by the commensal fungus Candida albicans. OPC occurs 

commonly in the settings of HIV/AIDS, head and neck cancer radiation treatment, 

immunosuppressive therapies, or the suboptimal immune responses in infants and the elderly 

(4, 5). OPC is also a characteristic infection of patients with gene mutations impairing the 

IL-17/Th17 pathway, such as STAT3, ACT1, IL17RA or IL17RC, among others (6–9). 

Consistently, whereas immunocompetent wild type (WT) mice are resistant to OPC, 

corticosteroid immunosuppression or loss-of-function mutations in the IL-17 receptor 

(Il17ra, Il17rc) or related genes (Act1, Il23, Il12b or Rorc) result in high susceptibility to 

OPC (10–14). However, peak oral fungal burdens in susceptible Il17ra−/− mice are still 

lower than in animals immunosuppressed with corticosteroids (12), indicating that signals in 

addition to IL-17 are needed for full protection in OPC.

Although IL-17 is the eponymous cytokine of Th17 cells and other ‘Type 17’ lymphocytes, 

IL-22 is also characteristic of these cells (15). Multiple studies indicate that IL-22, like 

IL-17, helps control oral candidiasis. For example, OPC occurs in patients with autoimmune 

polyendocrine syndrome type 1 (APS-1), a congenital autoimmune syndrome caused by 

mutations in AIRE and characterized by circulating auto-antibodies that neutralize not only 

IL-17A and IL-17F but also IL-22 (16–19). Mice with IL-22 impairments (via gene 

deficiency or antibody neutralization) are susceptible to OPC (12, 20, 21), and reduced 

IL-22 expression is associated with human chronic mucocutaneous candidiasis (CMC) (8). 

Nonetheless, relatively little is known about the mechanisms of antifungal immunity 

mediated by IL-22 in this setting or in other oral diseases.
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The oral mucosa provides a vital physical barrier to limit pathogen invasion, yet mechanisms 

of oral mucosal immunity remain surprisingly under-studied, especially compared to other 

mucosal tissues such as the lung or gut. During OPC, oral epithelial cells (OECs) sense the 

transition of C. albicans from a benign yeast morphotype to a damaging, invasive hyphal 

state (22). This early recognition is mediated in part by EGFR family receptors and also 

involves sensing of oral tissue damage induced by a secreted fungal toxin, candidalysin (23–

27). This OEC immunosurveillance response triggers production of IL-17 from lymphocytes 

(both innate and adaptive) via IL-1-dependent signals (28–30). IL-17 then activates essential 

antifungal responses in OECs, including myeloid and lymphoid chemoattractants and 

antimicrobial peptides (AMPs), particularly β defensin-3 (BD3) (5, 12, 31–33).

The oral mucosa is a stratified non-keratinizing tissue composed of distinct epithelial layers 

(34, 35). A proliferative basal epithelial layer (BEL) undergoes a program of differentiation 

that gives rise to the post-mitotic suprabasal epithelial layer (SEL). This differentiation 

process maintains the tissue and restores barrier immunity after infection or injury (35–37). 

Each layer is characterized by expression of specific pairs of cytokeratin filaments. Like 

most stratified epithelia, BEL expresses keratins-5 and −14 (K14, K5). However, the SEL 

expresses K4 and K13, which have a more restricted expression pattern. IL-17R signaling 

activity is generally restricted to non-hematopoietic cells (38, 39), and we previously 

demonstrated that IL-17RA in K13+ SEL cells is essential for immunity to OPC (31). 

Similar to the IL-17R, the IL-22 receptor is expressed mainly in non-hematopoietic cells and 

is implicated in gastric C. albicans infections (40), yet remarkably little is known about 

IL-22 signaling and function in the oral mucosa.

Here, we show that IL-22 functions non-redundantly with IL-17 to limit fungal infection. 

Although expression kinetics are similar between these cytokines, there were unexpected 

differences in cellular sources, downstream target gene expression and the nature and 

localization of the essential cytokine-responsive cells within the stratified oral epithelium. 

Transcriptomic analysis revealed that IL-22 signaling through STAT3 induces proliferation 

and survival of BEL cells. Moreover, IL-22-dependent signals are required for renewing the 

IL-17-responsive SEL. Hence, IL-22/STAT3 signaling ‘licenses’ the oral IL-17 signaling 

response, despite acting in a distinct epithelial layer.

RESULTS

IL-22 is non-redundant with IL-17 in mediating protection against OPC

To compare the roles of IL-22 and IL-17 in OPC, we tracked the time course of Il22 and 

Il17a mRNA expression in the oral mucosa (tongue) of wild-type (WT) immunocompetent 

mice following sublingual C. albicans infection (41, 42). Il22 and Il17a transcripts were not 

detectable at baseline but were induced contemporaneously at ~16–24 h post-infection (p.i.). 

Expression of both peaked at 48 h and returned to undetectable levels by 96 h (Fig. 1A). As 

previously observed (12), Il22−/− mice were susceptible to OPC, with fungal loads 

consistently averaging ~103 CFU/g of tongue tissue at 4–5 days p.i., whereas control WT 

mice fully cleared the infection by this time point (Fig. 1B). Fungal loads in Il22−/− mice 

were typically ~1/2 log lower than in mice with IL-17 signaling defects (Il17ra−/− or 

Act1−/−), also consistent with prior findings (Fig 1B) (12, 14, 43).
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We next evaluated the impact of IL-22 on antifungal events in OPC. In line with previous 

data, Il17ra−/− mice exhibited impaired neutrophil recruitment to the tongue following 

infection, measured at day 2 (12). Unexpectedly, Il22−/− mice showed increased oral 

neutrophil frequencies and numbers (Fig. 1C, fig. S1A), despite no differences in fungal load 

compared to Il17ra−/− mice at this time point (fig. S1B). Il17a and Il17f mRNA were 

elevated in Il22−/− mice, which may explain this observation (Fig. 1D, E). Because mice are 

naïve to C. albicans, the IL-17 produced during a first encounter derives from innate immune 

cells (43–47). We previously showed that antigen-independent CD4+TCRαβ+ cells that 

express IL-17 [‘natural’ Th17 cells, nTh17 (48)] are required for effective immunity to OPC 

(29, 44, 49). These nTh17 cells undergo proliferative expansion during the first two days of 

C. albicans infection in an IL-1R-dependent manner (28, 29, 44). In Il22−/− mice, the 

frequencies of proliferating (Ki67+) CD4+TCRαβ+ cells were comparable to WT mice 

following infection (fig S1C), indicating that IL-22 does not regulate nTh17 proliferation.

In view of the many similar functions ascribed to IL-22 and IL-17 at mucosal surfaces (50), 

we asked whether IL-22 acts redundantly with IL-17 in OPC. Treatment with neutralizing 

Abs against IL-22 in Act1−/− mice (which are fully impaired for IL-17R signaling (51)) 

resulted in higher fungal burdens than isotype-treated controls (Fig. 1F). Similarly, blocking 

IL-17A in Il22−/− mice led to higher fungal burdens compared to isotype-treated controls 

(Fig. 1G). Weight loss was more pronounced in mice lacking IL-22 than in WT mice, but 

addition of anti-IL-17A Abs did not cause further weight loss (Fig 1H). Thus, IL-22 and 

IL-17 act cooperatively but non-redundantly to control OPC.

Determinants of IL-22 production in acute OPC

Conventional adaptive Th17 responses to C. albicans are triggered by sensing of β-glucans 

in the fungal cell wall via the Dectin-1/CARD9 signaling, which induces Th17-polarizing 

cytokines (IL-23 and IL-6) (52–58). Here, we assessed the essential triggers of IL-22 in 

innate responses to OPC. As expected, Il23r−/− mice showed impaired oral Il22 expression 

following C. albicans infection (Fig 2A), consistent with elevated fungal loads seen in Il23r
−/− mice (12, 30). However, mice lacking Dectin-1 (Clec7a−/−) or CARD9 induced Il22 

mRNA normally (Fig. 2A). In some settings, IL-22 is induced in Th17 cells by the aryl 

hydrocarbon receptor (AhR) or serum amyloid A (SAA) (59, 60). However, Ahr−/− mice did 

not exhibit an obvious deficit in Il22 induction and were resistant to OPC (fig. S2A, B). 

Similarly, SAA1/2-deficient mice were resistant to OPC and Il17a, Il17f and Il22 were 

induced normally in the oral mucosa (fig. S2C, D). Since these prototypical IL-22-inducing 

signals were dispensable for acute IL-22 induction, we next evaluated the role of 

candidalysin, a recently-described trigger of anti-Candida immunity. This fungal cytolytic 

peptide is generated by proteolytic cleavage of the fungal Ece1 protein (encoded by the 

ECE1 gene). Candidalysin is produced only by hyphae and is needed for optimal expression 

of IL-17 and proliferation of nTh17 cells after oral C. albicans challenge (29, 61). WT mice 

were infected with C. albicans strains lacking either the full ECE1 gene (ece1Δ/Δ), or just 

the candidalysin peptide (ClysΔ/Δ), or an ECE1 re-complemented strain (Rev). Infection 

with ece1Δ/Δ or ClysΔ/Δ caused reduced Il22 mRNA expression compared to Rev (Fig 2B). 

IL-22 protein levels were similarly affected, assessed using IL22TdTomato reporter mice 

(62) (fig. S2E). Notably, these strains showed similar fungal burdens at this time point (fig. 
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S2F). Thus, IL-23 and candidalysin but not Dectin-1/CARD9, AhR or SAA1/2 are required 

for innate IL-22 production during OPC.

We next delineated the oral cellular sources of IL-22 during OPC using bone marrow (BM) 

BM chimeras created from WT and Il22−/− mice. As expected, mice receiving Il22−/− BM 

regardless of host genotype developed OPC, indicating that IL-22 in hematopoietic cells was 

required for C. albicans clearance (Fig. 2C). We then analyzed tongue tissue from 

IL22TdTomato reporter mice at day 2 p.i., the time point when Il22 mRNA expression peaks 

(Fig 1A). There were almost no detectable CD45+TdTomato+ cells prior to infection, 

indicating that IL-22 is not expressed in the oral mucosa at baseline. After infection, 

however, a substantial population of reporter-positive cells was present (Fig. 2D). Of these, 

γδ-T cells constituted the dominant TdTomato+ population (58%), followed by 

CD4+TCRαβ+ cells (26%). A population of CD4−TCRαβ+ cells (8%) and of TCR-negative 

cells (8%) also expressed the reporter (Fig 2D). This expression pattern contrasts to some 

extent with that of IL-17, based on prior studies using an IL-17A fate tracking reporter 

mouse (63) (Fig 2E) (29, 44).

IL-22 signaling in the basal epithelial layer is required to control OPC

IL-22 signals via the IL-10R2 and IL-22RA1 subunits, and the latter is shared among several 

cytokines (64). Il22ra1−/− mice showed a similar, albeit not statistically identical, 

susceptibility to OPC compared to Il22−/− mice (Fig. 3A); the difference could be indicative 

of a contribution of other IL-22R-dependent cytokines, though this possibility was not 

pursued. By 14 days p.i., most Il22ra1−/− mice had cleared the infection (fig. S3A), which 

contrasts with Il17ra−/− mice that were previously shown to maintain oral fungal loads as 

long as 17 days p.i. (12, 31). To identify cell compartments requiring IL-22RA1 in OPC, we 

created reciprocal BM chimeras with WT and Il22ra1−/− mice. Regardless of BM source, 

WT recipients were resistant to OPC, whereas irradiated Il22ra1−/− recipients failed to clear 

C. albicans (Fig. 3B). Thus, IL-22RA1-mediated signaling in non-hematopoietic cells is 

required for effective antifungal immunity.

Oral epithelial tissue is characterized by morphologically distinct expression of cytokeratins. 

Keratin 13 (K13) is expressed in differentiating SEL cells in the post-mitotic, terminally 

differentiated layer, which overlies the proliferative K14-expressing BEL (35). 

Consequently, K13+ epithelial cells make first contact with C. albicans during hyphal 

invasion and are highly subject to fungal-induced tissue damage. Moreover, this SEL layer is 

then sloughed and swallowed as part of the antimicrobial clearance response (34). The SEL 

is replenished by proliferation of the underlying basal K14+ cells which have stem-like 

properties, but how this is controlled in OPC is unclear. Immunofluorescent (IF) staining 

indicated that IL-22RA1 was prominent in the K14+ BEL, with some staining in K13+ SEL 

and papillae (Fig 3C). Isotype controls verified Ab specificity (fig. S3B, C).

To define the relative contributions of IL-22RA1 in oral epithelial cell subtypes, Il22ra1fl/fl 

mice were crossed to K13Cre or K14CreERT2 mice (31, 65). Conditional deletion of Il22ra1 in 

SEL and BEL was efficient, as verified by IF (Fig 3D, E). Il22ra1K13 mice were resistant to 

OPC (mean fungal load ~19), indicating that IL-22 signaling in SEL is dispensable for 

fungal control (Fig 3D). Remarkably, these results show that IL-22 signals in a spatially 
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distinct manner from IL-17, since deletion of Il17ra in K13+ cells resulted in significant 

susceptibility to OPC (31). To delete IL-22RA1 in BEL, Il22ra1K14ERT2 mice and controls 

(Il22ra1fl/fl, Il22ra1fl/-K14ERT2, Il22ra1K14ERT2) were administered tamoxifen for 5 days and 

infected with C. albicans. In contrast to Il22ra1K13 mice, loss of Il22ra1 in K14+ cells led to 

markedly increased susceptibility to OPC (fungal load ~508), demonstrating that IL-22R 

signaling is commensurate with its expression profile in the BEL (Fig. 3E). Hepatic IL-22R 

is needed for pulmonary bacterial immunity (66), but mice with a liver-specific deletion of 

IL-22RA1 (Il22ra1Alb) were resistant to OPC (fig. S3D). Hence, these data show that 

IL-22RA1 signaling in the K14+BEL, but not the K13+SEL, is required for oral fungal 

control, and accordingly that IL-17 and IL-22 function in different epithelial compartments.

IL-22 activates STAT3 in the BEL to sustain epithelial proliferation and antifungal immunity

To determine the mechanisms by which IL-22 promotes immunity during OPC and whether 

this differs from IL-17-driven responses, we evaluated RNASeq profiles of total tongue 

mRNA from C. albicans-infected Il22−/−, II17ra−/− and WT mice. In keeping with the 

observation that IL-17 and IL-22 act non-redundantly, there were distinct gene sets induced 

by IL-22 (368 genes) versus IL-17RA (931 genes). There were also many overlapping genes 

controlled by both cytokines (215 genes) (Fig. 4A). As expected (15), Geneset Enrichment 

Analysis (GSEA) identified downregulation of IL-6/STAT3 gene sets in Il22−/− mice 

compared to Il17ra−/− and WT mice, with a normalized enrichment score (NES) of 1.4 

(P<0.05) (Fig. 4B). Consistently, Ingenuity Pathway analysis identified STAT3 as a central 

upstream regulator that integrates the IL-22 and IL-17RA transcriptional networks (Fig. 4C). 

Within this network, STAT3 was connected to proliferation and apoptosis genes and to 

transcription factors that regulate inflammation such as NF-κB/IκBξ (Nfkbiz) and MAPK/

AP-1 (Fig. 4C). In line with these bioinformatic predictions, IL-22 induced STAT3 

phosphorylation and IκBξ expression in a human oral epithelial cell line (fig. S4A, B).

In vivo, STAT3 phosphorylation was evident in the BEL after C. albicans infection, but 

markedly reduced in Il22−/− and Il22ra1−/− mice (Fig. 4D, F). Unexpectedly, STAT3 

phosphorylation was increased in Il17ra−/− BEL during OPC, possibly due to elevated Il22 

expression in these mice (Fig 4D, E). These results show that, even though numerous stimuli 

have potential to activate STAT3, the dominant STAT3 response during OPC is mediated by 

IL-22RA1-dependent cytokines. This finding also supports the idea that there may be 

defective IL-22-driven signaling in the pathogenesis of OPC associated with STAT3 

mutations (e.g., Job’s syndrome). K14 staining intensity by IF was reduced in Il22ra1−/− 

mice compared to WT (Fig 4F). This was commensurate with RNASeq data that showed 

reduced Krt14 mRNA in Il22−/− mice (Fig. 4A, data not shown), a phenomenon also 

observed in skin (67). Additionally, we confirmed that mice lacking STAT3 in K14+ but not 

K13+ cells were susceptible to OPC (Fig 4G, H, fig. S4C). Together, these data demonstrate 

a central role of STAT3 in the oral epithelium that sustains antifungal immunity.

GSEA also revealed increased expression of mitotic spindle checkpoint genes and decreased 

expression of cell death-associated genes in WT versus Il22−/− mice (Fig. 5A), NES 1.4 

(P<0.01) and 1.5 (P<0.003), respectively. Specifically, positive cell cycle regulatory genes 

(Stat3, Jun, Sphk1) were reduced and negative regulators of cell cycle (Cdkn1c, Ddit3, Ets1) 
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were elevated (Fig 5B). Concordantly, Il22ra1−/− mice showed decreased IF staining of Ki67 

in K14+ cells following C. albicans infection, indicating that IL-22 is a major driver of BEL 

proliferation (Fig. 5C). Consistently, there was a trend to decreased bromodeoxyuridine 

(BrdU) incorporation in Il22−/− K14+ BEL cells following oral C. albicans infection (fig. 

S5A). We next evaluated cell cycle progression in EpCAM+ epithelial cells from Il22−/− and 

WT tongues by BrdU and 7-aminoactinomycin D (7-AAD) staining. As shown, there were 

comparable proportions of cells in the Gap2/mitotic (G2/M) phase, fewer in the synthesis (S) 

phase and more in the G0/G1 phase (Fig. 5D, fig. S5A, B). GSEA also suggested enrichment 

of cell death-associated and DNA damage response genes (Fig 5A, fig. S5C). Indeed, Il22−/− 

mice had higher frequencies of active caspase 3+ and TUNEL+ epithelial (EpCAM+) cells 

following infection (Fig. 5E, F, G). Hence, IL-22 promotes BEL proliferation during OPC, 

while limiting accumulation of apoptotic cells.

IL-22 restores IL-17R expression and signaling in SEL to sustain antifungal immunity in 

OPC

In stratified epithelia such as the oral mucosa, proliferating BEL regenerate the post-mitotic 

SEL (35, 36). Consistently, genes implicated in tissue repair, keratinization and epithelial 

differentiation were impaired in Il22−/− mice compared to WT (Fig. 6A). Though IL-17RA 

signaling in K13+ SEL cells is critical for immunity to OPC (31), the factors that restore the 

SEL after sloughing have not been well defined. In view of the impaired proliferation of 

BEL in Il22−/− mice, we hypothesized that IL-22 might indirectly impact IL-17 signaling in 

OPC by restoring the IL-17RA-expressing SEL. Indeed, transcriptomic data and qPCR 

revealed that there was decreased Il17ra mRNA expression in Il22−/− tongue (Fig. 6B, C). IF 

staining revealed loss of IL-17RA in the SEL of WT mice after C. albicans infection, which 

was even more pronounced in Il22−/− mice (Fig. 6D). Flow cytometry also demonstrated that 

IL-17RA cell surface expression was reduced in WT and Il22−/− CD45−EpCAM+ oral 

epithelial cells following C. albicans infection, though the difference between WT and 

Il22−/− mice was modest (Fig. 6E). Consistent with reduced IL-17RA in oral epithelium, 

canonical IL-17 target genes associated with immunity to C. albicans were downregulated in 

Il22−/− mice during OPC, including the essential antimicrobial peptide β-defensin-3 (Defb3) 

(Fig 6F). Collectively, these data support a model in which IL-22 signaling promotes BEL-

intrinsic signals that mediate anti-Candida immunity. Accordingly, IL-22 ‘licenses’ IL-17R 

signaling by renewing the SEL and thereby restoring the capacity of the tissue to respond to 

IL-17R, which is vital in controlling OPC (Fig 6G).

DISCUSSION

Although IL-22 and IL-17 are both produced by Type 17 cells, these cytokines are distinct in 

structure, receptors, and downstream signaling pathways (50). Even so, they are usually 

viewed interchangeably in the context of mucosal immunity. The protective function of 

IL-22 in oral candidiasis has been recognized for some time, yet its mechanisms of action 

are incompletely understood. In non-oral manifestations of C. albicans infection or 

colonization (systemic, vaginal, dermal or gastric), IL-22 is not necessarily protective, 

emphasizing that specific cytokine responses even to the same pathogen are influenced by 

tissue milieu (12, 40, 68–71).
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While multiple families of CMC patients have been identified with mutations in IL-17R 

pathway genes (7, 72, 73), thus far no humans with genetic IL-22-deficiencies have been 

reported. Nonetheless, it does not necessarily follow that this cytokine is unimportant in 

humans, only that its contribution to host defense is likely to be more modest than that of 

IL-17, or possibly that IL-22 deficiency is not compatible with life for some other reason. 

The former would be analogous to the role of IL-17F. In mice, loss of IL-17F alone does not 

cause OPC, yet dual blockade of IL-17F and IL-17A significantly increases susceptibility 

(43, 51). In humans, a family with IL-17F mutations has been described with CMC, 

suggesting a role in mucosal candidiasis (73). AIRE-deficient humans have circulating 

neutralizing Abs against IL-17F, IL-22 and IL-17A, thought to help explain the CMC 

manifestations in these patients (9, 16–18). In most mammals, though not mice, Th17 cells 

also express IL-26, a member of the same cytokine family as IL-22, and this cytokine may 

be also a target of biologic therapy (74); however, there is no evidence for autoantibodies 

against IL-26 in AIRE deficiency nor have IL-26-deficient humans been described (16).

The mechanisms by which IL-17 and IL-22 act in OPC are divergent (50). Whereas loss of 

IL-17 impairs neutrophil recruitment (12, 31), IL-22 deficiency led to increased neutrophil 

tissue infiltration, presumably because Il17a is concomitantly elevated. These opposing 

activities on the neutrophil response may help to restrain excessive inflammation. 

Interestingly, the capacity of IL-17 to drive oral neutrophil recruitment in OPC is not 

observed by all who use this OPC model (28, 75), possibly reflecting altered microbiota or 

other distinctions among animal facilities. Hence, the events controlling oral mucosal 

immunity are complex and dynamic.

The immunology of the oral cavity is less well understood than other mucosae (34, 37). In 

part, this is due to technical challenges associated with isolating cells from oral mucosal 

sites and the paucity of tools available to interrogate cell types within this tissue (76). We 

show here that IL-22 and IL-17 are produced by and function in distinct oral cell subtypes in 

the setting of OPC. Unlike humans, mice do not harbor C. albicans as a commensal 

organism, and hence acute oral infection with C. albicans reflects an innate, not adaptive, 

immune response. In prior studies, IL-17 was shown to be produced by several innate 

lymphocyte subsets, including TCRαβ+ ‘natural’ Th17 cells (nTh17), which express CD4, 

have a diverse TCR repertoire, and are activated in a non-antigen-specific manner (29, 44). 

IL-17 is also detected to a lesser extent in γδ-T cells and, in some reports, ILC3 cells (29, 

43, 44). Upon a recall encounter to C. albicans, mice generate conventional, antigen-specific 

Th17 cells that additionally contribute to the IL-17-producing pool, where they augment 

immunity to C. albicans (46, 47, 77). C. albicans-specific Th17 cells are abundant in 

humans, as C. albicans is encountered very early in life. Moreover, C. albicans-specific Th17 

cells recognize and provide cross-reactive protection against other fungal species, which is 

likely why maintaining C. albicans as a commensal is evolutionarily advantageous (78–81).

We observed that γδ-T cells were the predominant oral source of IL-22 during OPC, 

followed by nTh17 cells and TCR-negative cell types. These results parallel observations 

made in skin upon C. albicans infection, where γδ-T cells are the major source of Type 17 

cytokines (52). Since the sources of these cytokines were identified using reporter mice 

which may under-report, defining the relative differences in sources of IL-17 and IL-22 is 
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worth pursuing in more detail (62, 63). Nonetheless, the induction requirements for IL-22 

during OPC are remarkably similar to that of IL-17; namely, IL-23 and the fungal peptide 

candidalysin are crucial, whereas classical fungal PRRs such as Dectin-1, CARD9 or 

activators of conventional Th17 cells such as AhR or SAA1/2 are dispensable (29, 59, 60, 

77). The finding that AhR was not essential to induce IL-22 or clear C. albicans from the 

mouth, although initially unexpected, is consistent with observations that AhR facilitates 

EGFR phosphorylation in OPC, a key step in fungal adhesion, endocytosis and invasion in 

OECs (25, 27, 82, 83).

IL-17 and IL-22 are typically depicted signaling on the same cell types to mediate mucosal 

immunity, which is the case in non-stratified epithelia such as gut or lung (50, 84). Hence, 

we did not anticipate that IL-17 and IL-22 would act upon spatially distinct cell types in the 

oral mucosa. To show this, we made use of a mouse that expresses Cre under control of the 

murine Krt13 proximal promoter, one of the first tools allowing relatively specific deletion 

in the oral mucosa (31). The K13Cre mouse deletes conditionally in the SEL of the tongue, 

buccal mucosa, esophagus and vaginal tract, with no detectable Cre activity in BEL of any 

tissue examined. Using this system, we found that IL-17RA acts predominantly within K13+ 

cells in the setting of OPC, with fungal burdens only slightly reduced compared to a full 

Il17ra−/− animal (31). In contrast, deletion of IL-22RA1 or STAT3 in K13+ SEL did not 

impact fungal clearance during OPC. GSEA of RNASeq data predicted a role for the 

IL-22RA1/STAT3 axis in tissue proliferation and repair during C. albicans infection. Indeed, 

IL-22R signaling, presumably through STAT3, was vital for proliferation and survival of the 

K14+BEL, consequently replenishing the SEL. Thus, IL-22 indirectly permits essential 

IL-17-driven antifungal events to occur by restoring the post-mitotic superficial layer where 

IL-17RA is expressed. This spatial stratification of the IL-22R versus the IL-17R enforces 

the specificity, diversification, and integration of cues that ensure oral epithelial integrity, 

restrain undue inflammation and promote antifungal immunity.

The oral mucosa is among the most resilient epithelial surfaces (85). By virtue of their 

location, superficial K13+ OECs are the first to make contact with C. albicans. In its non-

invasive yeast (commensal) form, C. albicans causes no damage to the SEL, which was 

recently shown to be due the fact that this form of the fungus does not produce the pore-

forming virulence factor candidalysin (61). Accordingly, there is insufficient expression of 

IL-1 or other DAMPs that would activate innate lymphocytes to produce IL-17 or IL-22. 

This creates an environment where benign commensal C. albicans colonization is favored. 

However, in conditions that are conducive to hypha formation and invasion into tissue, a 

different scenario ensues. As part of the response to fungal invasion, the damaged SEL is 

sloughed and swallowed, which helps to clear C. albicans. The resulting epithelial cell 

damage also triggers production of IL-1 and IL-36, which promote IL-17 and IL-23 

expression, respectively (28–30, 86). IL-17R signaling in the SEL upregulates chemokines 

that recruit neutrophils as well as β-defensins that exert direct antifungal activity (12, 31, 33, 

87). Hyphal invasion thus establishes an inflammatory milieu that is initiated by 

candidalysin-induced SEL damage, potentiated by IL-17- and candidalysin-induced 

effectors such as IL-1 and IL-36, and ultimately resolved upon clearance of the pathogen 

(29, 88).
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IL-22 acts in many epithelial surfaces. Events in the oral epithelia are reminiscent of skin, 

where K14+ stem cells resupply superficial epithelial cells to maintain barrier integrity (36, 

89). The skin also possesses ‘memory’ properties that accelerate tissue repair after future 

insults, though whether this occurs in the mouth is unknown (90). IL-22RA1+ epithelial cells 

in colonic epithelium maintain genome integrity and limit apoptotic cell accumulation 

during genotoxic stress (91). Similarly, IL-22 signaling in the BEL during OPC promotes 

replacement of damaged epithelial cells, prevents accumulation of inflammatory apoptotic 

cells, preserves genome integrity and, as shown here, helps maintain IL-17-driven antifungal 

activities.

IL-22 maintains the intestinal epithelial barrier during intestinal colonization of C. albicans 

(40, 92). Unlike the mouth, IL-17 is not protective in gut but rather promotes a tissue-

destructive inflammatory cycle in response to C. albicans colonization (93). In fact, IL-17 

signaling in gut is generally more reparative than inflammatory (94–98), which is thought to 

explain why anti-IL-17 biologic therapies failed in treatment trials of Crohn’s disease (99). 

Anti-IL-17 biologics are associated with low but statistically significant rates of OPC, 

though it is rare for patients to stop therapy for this reason (100). Anti-IL-22 antibodies are 

under evaluation for skin pathologies such as atopic dermatitis (101), but rates of C. albicans 

infections have not been reported. Our data predict that combinations of anti-IL-17 and anti-

IL-22 could result in more severe mucosal candidiasis infections than either therapy alone.

GSEA data show that STAT3 is an integrating hub between the IL-22 and IL-17 signaling 

networks. The pathways inferred from bioinformatics data (proliferation, cell cycle analysis, 

and apoptosis) are commensurate with the known roles of IL-22 and STAT3 in epithelial 

proliferation and repair (64). Surprisingly, IL-22/STAT3 genesets and phosphorylation of 

STAT3 were enriched in the Il17ra−/− mice, even though expression of other STAT3-

activating cytokines (e.g., IL-6 and G-CSF) were impaired in the absence of IL-17 signaling. 

This could be due to elevated Il22 expression in Il17ra−/− mice, but likely reflects overall 

perturbation of immune response networks inferred from GSEA that may involve STAT3. 

Susceptibility to CMC in Job’s syndrome patients with STAT3 mutations is attributed to 

impaired STAT3-dependent Th17 differentiation (9). However, in acute OPC in mice, STAT3 

in CD4+ T cells is not required to control fungal loads (44). Thus, STAT3 likely modulates 

antifungal immunity beyond the hematopoietic compartment. Supporting this, we found that 

HIES patients exhibit impairments in salivary antifungal immunity, with reduced levels of 

salivary AMPs including β-defensins and histatins (102). STAT3 deficiency in lacrimal 

epithelial cells enhances apoptosis, causing a Sjögren’s syndrome-like phenotype (103). 

STAT3 also regulates metabolism in various settings to meet energy needs for cell 

proliferation, and STAT3-regulated functions in mitochondria are becoming increasingly 

appreciated (104–106). Hence, the IL-22/STAT3 axis coordinates antimicrobial immunity in 

a variety of environments.

In summary, these results reveal a deeper understanding of the antimicrobial defense 

functions of oral epithelial cells and a complex interplay between distinct cytokines of the 

Type 17 axis. It is clear that cells within the oral epithelium are not simply physical barriers, 

but are topographically structured sentinels that work in concert to dictate the outcome of 

oral C. albicans colonization, the most common fungal infection of humans (4, 107).
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METHODS

Study design

The objective of this study was to delineate functions of IL-22 in immunity to OPC. We used 

a mouse model of C. albicans infection combined with knockout mouse and fungal strains to 

interrogate sources and activators of IL-22, genes induced in the oral mucosa, and cell-

specific functions of this cytokine in vivo. Sample sizes were determined by power analyses 

from pilot or previously published data. Mice of both sexes were assigned randomly to 

experimental cohorts. Unless noted, experiments were done 2–3 independent times. Data 

from multiple experiments were pooled unless noted. Investigators were not blinded to 

groups. No data were excluded. Endpoints were selected based on prior kinetic studies (1–2 

days for gene expression or IF staining in OPC, 4–5 days for fungal load enumeration).

Mice

IL-22TdTomato, Il22ra1fl/fl, K13Cre, Card9−/−, K14CreERT2, STAT3fl/fl, Saa1/2, and Il23r−/− 

mice were described (31, 62, 66, 108, 109). Il17ra−/− mice were from Amgen and Il22−/− 

mice were from Genentech. All mice are available by MTA. Other mice were from JAX or 

Taconic Farms. Mice were on the C57BL/6 background and housed in SPF conditions. 

Experiments were performed on age-matched mice (6–10 weeks) of both sexes. BM 

chimeras were generated by irradiation (900 rads) followed by i.v. injection of 106 femoral/

tibial BM. Immune reconstitution after 6–9 weeks was verified by CD45.1/2 FACS staining. 

Experiments were performed in accordance with protocols approved by the University of 

Pittsburgh IACUC and NIAID and followed guidelines in the Guide for the Care and Use of 

Laboratory Animals of the NIH.

Oropharyngeal candidiasis (OPC) and fungal strains

OPC was induced by sublingual inoculation with C. albicans (strain CAF2–1 or SC5314)-

saturated cotton balls for 75 min under anesthesia, as described (12, 41). Tongue 

homogenates were prepared on a GentleMACS homogenizer (Miltenyi Biotec) with C-tubes, 

and CFU was determined by serial dilution plating on YPD/Amp agar. Anti-IL-22 Abs 

(Genentech, clone 8E-11) or control IgG1 (Bio X Cell) (150 μg) were injected i.p. on days 

−1, 0, 1, 2, 3 relative to infection. Anti-IL-17A or IgG2a control Abs (200 μg) were from 

Janssen Research & Development LLC (110) and administered i.p. on days −1, 1, and 3. 

Mutant C. albicans lacking the full Ece1 protein(ece1Δ/Δ), the candidalysin peptide 

(ece1Δ/Δ+ECE1Δ184–279, herein called ClysΔ/Δ) or a complemented strain (ece1Δ/Δ+ECE1, 

herein called Rev) were described (61).

Flow cytometry

Flow cytometry of tongue homogenates was performed as described (44). Tongues were 

digested with DNaseI (1 mg/ml, Roche), and collagenase IV (0.7 mg/ml) in HBSS at 37°C. 

Filtered cell suspensions were stained directly or separated by Percoll gradient 

centrifugation. Abs were from eBioscience, BD Biosciences, BioLegend or Abcam. 

Proliferation was assessed using the Foxp3/Transcription factor Buffer kit (eBioscience) 

with Ki67-APC/PerCP (Cell Signaling #9129). To assess apoptosis, CD45−EpCAM+ cells 
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were stained with caspase-3 apoptosis kit (BD Biosciences). For cell cycle analysis, mice 

were injected i.p. with 1 mg bromodeoxyuridine (Abcam, BrdU flow kit, BD Biosciences, # 

552598) on day 1 p.i. and tongues harvested 24 h later. Data were acquired on an LSR 

Fortessa and analyzed with FlowJo (BD Biosciences).

qPCR, RNASeq and GSEA

Total tongue RNA was extracted using RNeasy kits (Qiagen) after homogenization in a 

Gentle MACS Dissociator (Miltenyi Biotec). RNA from TR146 cells was extracted in RLT 

buffer. Real time PCR (qPCR) was performed as described and normalized to Gapdh (29). 

Primers were from QuantiTect Primer Assays (Qiagen). For RNASeq, cDNA libraries were 

prepared from tongue RNA harvested day 1 p.i. (Nextera XT Kit) and RNASeq was 

performed on the Illumina NextSeq 500 platform by the Health Sciences Sequencing Core at 

the University of Pittsburgh. Sequencing reads were annotated and aligned to the UCSC 

mouse reference genome (mm10, GRCm38.75) using HISAT (111). HISAT alignment files 

were used to generate read counts for each gene, and determination of differential gene 

expression was performed using the DE-seq package from Bioconductor (112). Unbiased 

hierarchical clustering of differentially expressed genes with P<0.05 was calculated using 

CLC Genomics Workbench and Partek software. Relative expression values in heat maps are 

TPM (transcripts per kilobase million) values per sample that have been divided by the 

average expression across all samples. Partekflow and GSEA from the Broad Institute were 

used to calculate enrichment of genes in each set. Additional bioinformatics assistance was 

from the University of Pittsburgh Center for Research Computing and Health Sciences 

Library.

Histology, immunofluorescence and immunocytochemistry

Cryosections were stained per the Cell Signaling immunofluorescence protocol (https://

www.cellsignal.com/contents/resources-protocols/immunofluorescence-general-protocol/if). 

Abs: IL-22RA1 (R&D Systems, clone MAB42941), Keratin 13 and Keratin 14 (Abcam, 

EPR3671 and EPR17350; Invitrogen LL002), Ki67 and anti-p-STAT3 (Tyr705) (Cell 

Signaling, #9145), IL-17RA (Amgen, clone M751). TUNEL staining was performed with an 

Apoptosis Detection kit (Millipore). Images were acquired on an EVOS FL microscope 

(Life Technologies). TUNEL+ cells were enumerated from 10 random fields per slide.

Cell culture, cytokine stimulations and immunoblotting

TR146 cells were cultured in DMEM-F12 with 15% FBS and antibiotics as described (31). 

For immunoblotting, 3–5 × 105 cells were seeded in serum-free DMEM-F12 overnight prior 

to cytokine stimulation. Recombinant human IL-22 (Peprotech) was used at 100 ng/ml. Abs 

to STAT3 were from Cell Signaling (#12640) and Abs to actin were from Millipore (clone 

C4-EMD).

Statistics

Data were analyzed on Prism (GraphPad). PCR data was analyzed by one-way ANOVA, 

Student’s t-test and post-hoc tests were used as indicated in figure legends. Fungal load data 

are presented as geometric mean ± SD and analyzed by ANOVA and Mann-Whitney U test. 
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Each symbol represents one mouse unless indicated. *P<0.05, **<0.01, ***<0.001, 

****<0.0001.
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AhR aryl hydrocarbon receptor

AMP antimicrobial peptide

BD β-defensin
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BM bone marrow

BrdU bromodeoxyuridine

CFU colony forming units

Clys candidalysin

CMC chronic mucocutaneous candidiasis

GSEA gene set enrichment analysis

HIES hyper-IgE syndrome (Job’s)

OEC oral epithelial cell

nTh17 natural Th17

NES normalized enrichment score

OPC oropharyngeal candidiasis
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SAA serum amyloid A

SEL superficial epithelial layer

TUNEL terminal deoxynucleotidyl transferase nick-end labeling
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Figure 1. IL-22 protects against OPC non-redundantly with IL-17RA
The indicated mice were sublingually inoculated with cotton ball-saturated PBS (Sham) or 

C. albicans (OPC). Each symbol represents one mouse. A. Total mRNA from tongue 

homogenates of infected WT mice was subjected to qPCR for Il22 and Il17a and normalized 

to Gapdh at each time point. Graphs show mean ± SEM. Data are pooled from 4–9 mice per 

group. B. Fungal burdens were determined by CFU enumeration on YPD/Amp agar at day 5 

p.i. Graphs show geometric mean ± SD. Data were pooled from 3 independent experiments. 

Dashed line indicates limit of detection (~30 CFU/g). C. Tongue homogenates were 

prepared on day 2 p.i. Left: A representative FACS plot showing percent of CD11b+Ly6G+ 

neutrophils (gated on live, CD45+ cells). Right: Data from 3 independent experiments. D-E. 
Il17a and Il17f in total RNA from tongue on day 2 p.i. was assessed by qPCR relative to 
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Gapdh. Graphs show mean ± SEM relative to Sham-infected WT mice. F. Mice were 

injected i.p. with anti-IL-22 or isotype control IgG (150 μg) on days −1, 0, 1, 2, and 3 

relative to infection. CFU was assessed on day 4, pooled from 2 independent experiments. 

G. Mice were treated with anti-IL-17A or isotype control (IgG2a) (200 μg) injected i.p. on 

days −1, 1, and 3 relative to infection. CFU was assessed on day 5, pooled from 3 

independent experiments. H. Weight loss was assessed daily, shown relative to day 0 in mice 

from panel F. Data were analyzed by ANOVA or Student’s t-test, with Mann-Whitney U test 

for fungal load analysis.
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Figure 2. Determinants of IL-22 induction in acute OPC
The indicated mice were subjected to OPC. Each symbol represents one mouse A. Tongues 

were harvested on day 2 p.i. and Il22 mRNA was assessed by qPCR, normalized to Gapdh. 

Graphs show mean ± SEM relative to sham-infected WT mice. B. WT mice were infected 

with the indicated C. albicans strains. Il22 mRNA in tongue on day 2 p.i. was assessed by 

qPCR, normalized to Gapdh. Data were pooled from 2 independent experiments. C. BM 

from indicated donors was transferred into irradiated recipients. After 6–9 weeks, mice were 

subjected to OPC and fungal burdens assessed on day 5 p.i. Data were pooled from 2 

experiments. D. On day 2 p.i., tongue homogenates from IL22TdTomato mice were stained 

for the TCRβ and TCRγδ and gated on the live CD45+TdTomato+ population. Left: 

representative FACS plots. Right: Pooled results from 3 independent experiments. Each 

symbol represents data from 2 pooled tongues. Data were analyzed by ANOVA or Student’s 

t-test, with Mann-Whitney U test for fungal load analysis. E. Comparisons of the relative 

percentages of IL-22+ cells (left) or IL-17+ cells (data from (29)) isolated from tongues of 

mice 2 days p.i. and analyzed by flow cytometry.
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Figure 3. IL-22 signaling in the oral basal epithelial layer is required for protection against OPC
The indicated mice were subjected to OPC. A. Fungal burdens were assessed on day 5 p.i. 

Bars show geometric mean ± SD. Data were pooled from 2 independent experiments. B. BM 

from indicated donors was transferred into irradiated recipients. After 6–9 weeks, mice were 

subjected to OPC and fungal burdens assessed on day 5 p.i. Data were pooled from 2 

experiments. C. Frozen sections from WT tongues were co-stained with DAPI and Abs 

against K13, K14 or IL-22RA1. Suprabasal and basal epithelial layers are indicated. Images 

are representative of a minimum of 3 sections. Size bar = 200 μm. D. Top: Fungal burdens 

were assessed on day 5 p.i. Data are pooled from 3 independent experiments. Bottom: IF 

staining of tongues from the indicated mice were co-stained with DAPI and α-IL-22RA1 

Abs. Size bar = 200 μm. E. Top: All mice except Il22−/− were administered tamoxifen for 5 

days prior to OPC, and fungal burden assessed on day 5 p.i. Bars show geometric mean ± 

SD. Bottom: Frozen sections from tongues from the indicated mice were co-stained with 

Aggor et al. Page 22

Sci Immunol. Author manuscript; available in PMC 2020 December 05.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



DAPI and α-IL-22RA1. Size bar = 200 μm. Data were pooled from 3 independent 

experiments and analyzed by ANOVA with Mann-Whitney U test.
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Figure 4. STAT3 in oral epithelial cells is required for protection against OPC
A. RNASeq was performed on whole tongue mRNA from WT, Il22−/− and Il17ra−/− mice 

subjected to OPC and harvested on day 1 p.i. Venn diagram of differentially regulated or 

overlapping genes in infected Il22−/− and Il17ra−/− compared to WT mice. 215 genes were 

regulated both by IL-22 and IL-17RA, whereas 368 genes are regulated only by IL-22, and 

931 genes were regulated only by IL-17RA. B. GSEA enrichment of predicted IL-6/STAT3 

gene sets in Il17ra−/− and Il22−/− mice from panel A. C. Ingenuity Pathway Analysis of 

RNASeq data from panel A, indicating that STAT3 is an upstream regulator integrating Il22- 

and Il17ra- driven transcriptional networks. D. IF staining of tongue frozen sections with 

DAPI and anti-pSTAT3 (Tyr705) in WT, Il22−/− and Il17ra−/− mice harvested 2 days p.i. Size 

bar = 200 μm. E. qPCR of Il22 in tongue mRNA from WT or Il17ra−/− mice at 2 days p.i. 

normalized to Gapdh F. IF staining of DAPI, pSTAT3 (Tyr705) and K14 in WT or Il22ra1−/− 
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mice at 2 days p.i. Size bar = 200 μm. G. The indicated mice were subjected to OPC and 

fungal burden quantified at day 5 p.i.. Data are pooled from 3 experiments H. All mice 

except Il22−/− were administered tamoxifen for 5 d, subjected to OPC and fungal burden 

assessed on day 5 p.i. Bars show geometric mean ± SD. Data was pooled from 3 

experiments. Data analyzed by ANOVA with Mann-Whitney U test.
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Figure 5. IL-22 promotes cell survival and proliferation during OPC
RNASeq was performed on tongue mRNA from WT, Il22−/− or Il17ra−/− mice, isolated 24 h 

p.i. A. GSEA of mitotic spindle checkpoint pathway and cell death pathway genes. 

Normalized enrichment score is shown on Y-axis. B. Heatmap of cell cycle pathway genes 

in global differential gene expression analysis (Partekflow) in WT or Il22−/− mice. C. IF 

staining of DAPI, Ki67 and K14 in WT and Il22ra1−/− mice at 2 days p.i. Data are 

representative of images from 2 mice per group. Size bar = 100 μm. D. BrdU was 

administered 24 h p.i., and tongues harvested on day 2 p.i. Cell cycle/apoptotic status of 

CD45−EpCAM+ cells was determined by bromodeoxyuridine (BrdU) and 7-

aminoactinomycin (7AAD) staining. Data show mean ± SEM. E. Frequency of 

CD45−EpCAM+ cells staining positive for active (cleaved) caspase-3 in tongue homogenates 

at day 2 pi measured by flow cytometry. Left: Representative FACS plot. Right: Pooled data 

from 4 independent samples showing mean fluorescence intensity (MFI) of cleaved Caspase 
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3 within the CD45−EpCAM+ compartment. Data analyzed by Student’s t-test. F. DAPI and 

TUNEL staining of tongue sections from the indicated mice at day 2 p.i. Images are 

representative of 4 mice per group. Size bar = 200 μm. G. Quantification of TUNEL+ cells 

from panel. F. Data analyzed by ANOVA and post-hoc Tukey’s test.
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Figure 6. IL-22 licenses IL-17 signaling during OPC
A. Heatmap of genes implicated in tissue repair, wound healing, keratinization and epithelial 

differentiation. B. Heatmap of IL-17 signature genes in OPC. C. qPCR of Il17ra expression 

normalized to Gapdh in tongue tissue from the indicated mice subjected to OPC and 

analyzed on day 2 p.i.. Data show mean ± SEM relative to sham-infected mice. Data 

analyzed by ANOVA or Student’s t-test. D. IF staining of IL-17RA and DAPI in the 

indicated mice on day 2 p.i. E. IL-17RA expression in CD45−EpCAM+ oral epithelial cells 

in WT or Il22−/− mice during OPC. Top: representative FACS histogram. Bottom: Pooled 

data from 2 independent experiments. Size bar = 200 μm. F. Expression of BD3 (Defb3) 

mRNA in tongue from WT or Il22−/− mice during OPC, normalized to Gapdh. Data 

analyzed by ANOVA or student’s t-test. G. Diagram of stratified oral epithelium during a 

first encounter with C. albicans. Fungal hyphae induces cellular damage and secrete the 

peptide candidalysin, which facilitates tissue invasion and activates innate IL-17- and IL-22-
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producing lymphocytes (see Refs (29, 61)). IL-17 was shown previously to act dominantly 

on K13+ cells of the suprabasal epithelial layer (SEL) (31). In contrast, IL-22/STAT3 

promotes proliferation of the K14+ basal epithelial layer (BEL) that serves to restore the 

IL-17R-expressing SEL, thus maintaining IL-17-induced antifungal signals such as β-
defensins and neutrophil responses that are required to mediate clearance of C. albicans. 

Diagram created on Biorender.com.
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