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ABSTRACT OF THE DISSERTATION 

Oral Health and its Implications in Late Pleistocene Western Eurasian Humans 

By 

Sarah A Lacy 

Doctor of Philosophy in Anthropology 

Washington University in Saint Louis, 2014 

Professor Erik Trinkaus, Chair 

 

Systematic paleopathology research on the Late Pleistocene can provide a new 

perspective on the health, demographics and lifestyle of Paleolithic peoples; however oral 

pathologies, which can reveal both health and diet, have rarely been discussed beyond individual 

diagnoses. This project sampled Late Pleistocene humans from across Western Eurasia and 

collected data on dental and alveolar health, focusing on caries, periapical lesions, periodontal 

disease, and antemortem tooth loss. This research presents a number of new findings as well as 

reaffirming temporal patterns identified through other research lines (e.g., developmental stress 

and trauma), suggesting Early Upper Paleolithic peoples were healthier than the preceding 

Neandertals, but health declined around the Last Glacial Maximum in response to environmental 

degradation. 

Caries prevalences are higher than any previous publication had estimated and reached an 

individual prevalence of over a quarter of the sample by the Late Upper Paleolithic; however, 

severe carious lesions and multiple affected teeth in one individual remain rare. Caries also 

pattern latitudinally with more caries along the Mediterranean, though this cline eases over time. 

This suggests that subsistence patterns varied regionally, but also shifted over time with the 

introduction of increased dietary carbohydrates well in advance of agriculture. Periapical lesions 

increased with age, but did not pattern over time or geography. 



 xvii 

Periodontal disease was extensive in the Late Pleistocene. Early Upper Paleolithic 

modern humans have a slight decrease in disease severity relative to Neandertals, but the overall 

pattern of the Late Pleistocene is one of high morbidity. Periodontal disease also increases 

through the aging process, with all elderly individuals exhibiting at least mild alveolar 

resorption. 

Neandertals have more tooth loss than Early Upper Paleolithic humans, suggesting 

comparisons between Neandertals and recent humans for this trait have produced dichotomies 

unrepresentative of the Upper Paleolithic transition. Tooth loss then increased again in the Late 

Upper Paleolithic, though this may represent a relaxing of tooth-loss related mortality. 

All the pathologies except caries are correlated with one another suggesting age as 

approximated by dental wear and periodontal disease produce more tooth loss than caries. 

Subsistence shifts that occurred in response to cultural and environmental change produced 

differential health for Late Pleistocene groups, and oral disease was more common than 

previously thought. 
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Chapter 1: Introduction 

The transition from the Middle to the Upper Paleolithic in Western Eurasia has been a 

major focus of recent paleobiological research for a number of reasons (See Table 1.1 for 

definitions of archaeological/ geological temporal terminology). First there is a relative 

abundance of human fossils and archaeological sites in Western Eurasia, so material is readily 

available, whereas preservation and access may limit research in other regions. Archaeological 

research also has a long antiquity in this part of the world, so there is a large canon of literature 

from which to draw. Finally the domination of modern humans over various other hominin 

groups has an anthropocentric appeal to anthropologists and the general public.  

Previous researchers have principally approached the establishment of modern humans in 

the Upper Paleolithic from the perspectives of differential lithic technology (e.g., Bar-Yosef and 

Kuhn, 1999; Ambrose, 2001), subsistence (e.g., Grayson and Delpech, 2003; Richards and 

Trinkaus, 2009), symbolism (e.g., Lindly, 1990; McBrearty and Brooks, 2000; Henshilwood and 

Marean, 2003), or functional anatomy (e.g., Niewohner, 2001; Ruff et al., 2006; Maki, 2013) to 

explain the evolutionary success of one population—Early Modern Humans—over all other 

archaic hominin groups (White et al., 1982; Bar-Yosef, 2002), especially Neandertals in Europe 

because of the reasons detailed above. However, the key to modern humans’ demographic 

ascendancy is fundamentally one of both differential mortality and morbidity, and this is often 

attributed to their “superior” behaviors in a variety of fields and their implications. Different 

subsistence patterns, technology, and social structure can result in improved health outcomes for 

the members of these groups, so inquiries into the differential health/morbidity of Neandertals 

and early modern humans could add to this Upper Paleolithic transition debate. Although topics 
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such as differential mortality (and its inherent paleontological biases), assessments of 

developmental non-specific stress indicators, and traumatic lesions and survival have been 

addressed in the literature, the richest potential source of data on Late Pleistocene morbidity—

oral pathology—has never previously been systematically studied. Teeth preserve well 

taphonomically and interact directly with the environment, so their health can reflect the overall 

health of an individual, providing a unique opportunity to explore differential health in the past. 

 

 

Date 
Range Comments 

Middle 
Paleolithic 

300,000-
27,000 bp 

Prepared core stone tool technology, e.g., Mousterian tool 
industries in Europe and Southwest Asia, used by multiple 
hominin taxa 

Upper 
Paleolithic 

50,000-
10,000 bp 

Fully modern tool technologies associated with modern 
humans (with some exceptions, i.e., Initial Upper Paleolithic 
industries in Europe associated with Neandertals) 

Early Upper 
Paleolithic 

50,000-
22,000 bp 

Upper Paleolithic tool industries, often dominated by stone 
blades, before the Last Glacial Maximum (e.g., Aurignacian, 
Gravettian) associated with the Earliest modern humans in 
Europe 

Late Upper 
Paleolithic 

22,000-
10,000 bp 

Tool industries after Last Glacial Maximum (e.g., Solutrean, 
Magdalenian); especially known for polychromatic parietal 
cave art, microliths 

Epi-
Paleolithic 

18,000-
10,500 bp 

Regional term, usually applied to Southwest Asia and North 
Africa. Transitional period in Latest Upper Paleolithic before 
agriculture. Natufians are Late Epi-Paleolithic 

Late 
Pleistocene 

120,000-
10,000 bp Geological period 

Holocene 
10,000 
bp-today Geological period, also known as Anthropocene 

 
Table 1.1: Definition of Temporal Terms (Hovers et al., 1998; Gorin-Morris, 2002; Mai 

et al., 2005) 
 

Historically, pathology was the domain of physicians who considered little of the 

osteological effects of disease (Angel, 1981). Studies of skeletal pathology became more 

common post-World War II, and the methods refined on recent historical skeletal samples 
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became broadly available to bioarchaeologists and paleoanthropologists beginning in the 1970’s 

(Buikstra and Cook, 1980; Angel, 1981; Ortner and Putschar, 1985). In large cemetery samples, 

questions of morbidity and pathology prevalence could be asked with sufficient sample size and 

largely complete individuals. Life history patterns were thought to be easily discernable and were 

initially considered analogous to public health studies on living populations.  

However these methods are not always considered appropriate for use in fossil samples 

due to issues related to the Osteological Paradox (Wood et al., 1992). Unless one is looking at a 

catastrophic culling of a population (e.g., a volcano, flood, slaughter), the individuals who are 

dead are not necessarily an accurate portrayal of the age distribution and stress levels of a 

population in any point in time. Are individuals that die with evidence of stress (e.g., Harris 

lines, dental enamel hypoplasias) less healthy than their contemporaries because they are dead, 

or are they potentially healthier because they survived environmental insults that others died 

from—or rather they lived long enough to leave the signature of the survival of that assault on 

their bones? Unfortunately these questions pervade all studies of the dead and become 

exaggerated when one attempts to define samples that represent “real” populations in the 

Pleistocene (Wood et al., 1992). With the widespread availability of radiographs, CT scanning, 

isotope analysis, and DNA testing today, paleopathology research is increasing and broadening 

its scope within and outside bioarchaeology.  

Much paleopathology research has focused on the Agricultural Revolution (e.g., Cohen 

and Armelagos, 1984; Oxenham et al., 2006; Starling and Stock, 2007; Tayles et al., 2009; Eshed 

et al., 2010). There was a primary dietary shift from wild gathered products to domesticated 

cereals and vegetables and secondary health and bodily stress shifts that occurred with this new 

subsistence pattern. Caries increased (Larsen, 1995) as did musculoskeletal indicators of stress 
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(Eshed et al., 2004), but the timing of this so-called revolution was different across the Old and 

New World. Other dental paleopathology research has tried to identify differences in oral health 

by sex (Peterson, 2002; Lukacs, 2008; 2011; Watson et al., 2010) or socioeconomic status 

(Pechenkina et al., 2002; Cucina and Tiesler, 2003; DeWitte and Bekvalac, 2010). However 

these studies of oral pathology have not been taken much further back than the 

Pleistocene/Holocene boundary. Despite some of the problems identified above, these methods 

can and should be applied to the deeper human fossil record. 

 Certain pathologies have been well studied in Neandertals and early modern humans. 

Dental enamel hypoplasias reflect bouts of severe stress during development (e.g., starvation, 

fever), and therefore have been popular for reconstructions of seasonal food stress in Pleistocene 

populations as well as by extension “overall health” in young individuals (Ogilvie et al., 1989; 

Brennan, 1991; Skinner, 1996; Hillson and Bond, 1997; Guatelli-Steinberg, 2004; Guatelli-

Steinberg et al., 2004). Idiosyncratic examples of developmental pathology and trauma are 

published as individual descriptions or included in monographs (Wu et al., 2011; 2013 and 

references within). Only recently have broader, comparative analyses of pathology begun to be 

conducted (Berger and Trinkaus, 1995; Guatelli-Steinberg, 2004; Holt and Formicola, 2008). 

However oral pathologies are often only side notes in paleontological descriptions—if mentioned 

at all—lacking standardized categorization (with the partial exception of dental enamel 

hypoplasias) and rarely systemically comparing discrete groups. Considering the myriad of 

detailed oral pathology surveys in historic and pre-historic Holocene samples, this is surprising. 

Also, the little attention paid has been principally on the Neandertal specimens and their relative 

lack of oral pathology, and even less attention is given to the more abundant Upper Paleolithic 

modern humans who make a more logical contrast to Neandertals than Holocene samples. The 
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few studies that have looked at multiple individuals tend to use either narrow geographical 

(Brennan, 1991) or age sampling methods (Skinner, 1996; 1997) and/or examine a single 

pathology (Ogilvie et al., 1989; Guatelli-Steinberg et al., 2004).  

In the context of previous Late Pleistocene pathology research, I have designed a 

comprehensive survey of oral pathologies from the available fossil material (i.e., mandibles, 

maxillae, and both in situ and loose teeth) of Late Pleistocene Eurasian humans across Europe 

and Southwest Asia using standardized radiographic and visual measurements and scoring 

methods from the dentistry and bioarchaeology literature. This work was designed to assess 

relative levels of oral health, and by extension, morbidity. The focus pathologies of this study are 

caries, periapical lesions, periodontal disease, and antemortem tooth loss, though rarer anomalies 

and other pathologies were also recorded. Distributions in age-adjusted oral lesion prevalence 

across these samples are used to test hypotheses on disease level changes between the Middle 

Paleolithic (Neandertals and early modern humans), Early Upper Paleolithic, Late Upper 

Paleolithic, and Epi-Paleolithic/Holocene temporally and taxonomically defined samples. The 

comparative Holocene samples were chosen because there is the possibility that “taxonomy” 

(i.e., Neandertals versus modern humans) has no role in differentiating pathology prevalence for 

hominin groups, and the difference is ultimately one of the Pleistocene versus the Holocene.  

The Holocene, or last ~10,000 years (11,700 Cal BP (Walker et al., 2009)), was initiated 

with fluctuating global temperatures and saw increasing human population densities, and the 

establishment of agriculture and sedentary living (Gilead, 1988; Larsen, 2006). It has already 

been firmly demonstrated that agriculture precipitated a major shift in health for humans (Cohen 

and Armelagos, 1984; Larsen, 2006; Lukacs, 2008; Fields et al., 2009; Pinhasi and Stock, 2011). 

Detailing how oral health has changed over the last 120 ky provides an additional perspective on 
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Late Pleistocene modern human emergence and the health of those populations, especially when 

considered with the latest paleosubsistence and other paleobiology research. Culture does not 

equal biology, but studying oral pathology gives a biological context to the body’s response to 

behavioral strain (e.g., diet, use of teeth-as-tools), and ultimately inferences can be made about 

the effects of these interactions on overall population health. 

The oral health and overall health connection 

 Studies in modern populations show oral health is a good proxy for overall health status 

(Dolan et al., 1991; Gift and Atchison, 1995; Hujoel, 2009). Oral health shows a positive 

association with socio-economic status and general health (Samuelson et al., 1971; Dye and 

Thornton-Evans, 2010; Mashoto et al., 2010; Jamieson et al., 2011) and psychological well-

being (Kiyak and Mulligan, 1987) and negative associations with mental stress (Marcenes and 

Sheiham, 1992) and cardiac disease (Slavkin and Baum, 2000; Meurman et al., 2004). Dental 

health research has an advantage over other skeletal indicators when dealing with fossils, 

because the preservation bias of teeth allows a greater possible sample size, and there is a 

medical literature supporting an oral pathology and overall morbidity association at the 

individual and population level (Dolan et al., 1991; Meurman and Hämäläinen, 2006; Hujoel, 

2009).  

Teeth are also the only mineralized portion of the body that interacts directly with the 

environment. This contact means that the oral cavity is often the first signal of poor diet and 

resultant poor overall health. In a meta-analysis of previous publications on oral health and 

systemic health, the oral cavity was identified as a “warning bell” for systemic diseases that hit 

later in life, namely cardiac disease, diabetes and cancer (Hujoel, 2009). The directionality of the 

association seems to indicate that a high carbohydrate diet causes oral pathology—specifically 
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caries and periodontal disease—in the short term (even in a matter of weeks) and systemic 

disease in the long term (Hujoel, 2009). This has broader implications for the interpretation of 

the results of this study when considered with Pleistocene dietary reconstructions. Various oral 

pathologies can confidently be used collectively to infer Late Pleistocene health as has been done 

with other bodily pathologies (Brennan, 1991; Steckel, 2003; Holt and Formicola, 2008) and 

may even be a superior data source in that the connection between the oral cavity and overall 

health is so well documented. The larger subfield of dental paleopathology is contextualized in 

the background chapter.  

Research Questions and Hypotheses 

Four hypotheses were devised to look at changes over time and region in oral pathology 

prevalence, nested within three broader research questions, namely: 1) Did oral pathology 

prevalence change significantly between the Holocene and Pleistocene when I remove 

agriculture as a variable (Hypothesis 1); 2) How did oral pathology prevalence change over time 

in the Late Pleistocene (Hypotheses 2 & 3); and 3) Did oral pathology prevalence vary 

geographically in the Late Pleistocene (Hypothesis 4)? The assumptions based on previous 

research specific to each hypothesis are discussed below.  

     H10. There are no significant differences between Late Pleistocene groups and Holocene pre-

agricultural comparative samples- The documented changes between Pleistocene and Holocene 

groups, i.e., increased population density, decreased mobility from sedentism, more intense 

resource exploitation, etc., suggest that health and morbidity could have been evolving in 

response as well before the introduction of agriculture (Eshed et al., 2010). I expect to see greater 

prevalences of oral pathology in the Holocene groups because of changing subsistence patterns 

and the results of other paleopathology research (e.g., Frayer, 1989; Holt, 2003). Alternatively 
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there could be no significant differences between the Holocene and Pleistocene samples due to 

changing sources of morbidity, but not changing prevalence, and ultimately agriculture would be 

the major driver of morbidity changes for past humans in the early and mid-Holocene.  In this 

scenario the null hypothesis would not be rejected. 

     H20. There are no significant differences between the Middle Paleolithic (Neandertals and 

modern humans) and Early Upper Paleolithic - Previous research suggests health improved in 

Early Upper Paleolithic modern humans relative to Middle Paleolithic Neandertals (Brennan, 

1991; see review in Holt and Formicola, 2008), and this is what is predicted here. But if oral 

pathology prevalence increases in the Early Upper Paleolithic relative to the Middle Paleolithic 

Neandertals, it would suggest that morbidity levels increased in the Early Upper Paleolithic yet 

did not affect the success of Early Upper Paleolithic modern humans in Western Eurasia. Their 

colonization of the Old World would be in spite of their poor health, and other stress indicator 

research (stature: Formicola and Giannecchini, 1999; Formicola and Holt, 2007; Meiklejohn and 

Babb, 2011; dental enamel hypoplasias: Brennan, 1991; Skinner, 1996; iron deficiency: Brennan, 

1991) does not support this hypothesis. If there are no differences, it suggests morbidity 

differences cannot explain the replacement of Neandertals by Early Upper Paleolithic modern 

humans. Middle Paleolithic modern humans are also sampled and compared against Early Upper 

Paleolithic modern humans to look at changes over time within one taxonomic group.  

     H30. There will are significant differences between the Early Upper Paleolithic and the Late 

Upper Paleolithic - Past studies indicate that health declined slightly in the Late Upper 

Paleolithic relative to the Early Upper Paleolithic (Frayer, 1989; Brennan, 1991; Formicola and 

Holt, 2007; 2008). I would therefore expect to see increased pathology prevalence over all age 

groups, i.e., pathologies affect individuals at a younger age or more intensely over the aging 
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process. The cultural/technological changes associated with the transition from the Early to Late 

Upper Paleolithic coincide with increased population density and environmental degradation 

around the time of the Last Glacial Maximum (Drucker et al., 2003; Bocquet-Appel et al., 2005). 

As there is already a well-documented increase in non-dental stress indicators in the Late Upper 

Paleolithic, if there is no increase in oral pathology prevalence, this would indicate that either 

oral health indicators do not reflect the appropriate type of population stress, or the increase in 

stress around the Last Glacial Maximum was mild enough to be non-significant statistically in 

increasing oral pathologies.  

     H40. There are no significant differences between the three identified regions of western 

Eurasia- Subsistence research that took regionality into account has found regional heterogeneity 

in the dietary resources utilized by Late Pleistocene humans (Aranguren et al., 2007; Henry and 

Piperno, 2008; Hardy, 2010; Revedin et al., 2010; Hardy and Moncel, 2011), which should 

predict differences in dental pathologies. Other research found decreased cultural heterogeneity 

across Europe in the Early Upper Paleolithic relative to the Middle Paleolithic that then increased 

again in the Late Upper Paleolithic (cf., Holt and Formicola, 2008).  The higher Late Upper 

Paleolithic regional cultural heterogeneity is attributed to contracting preferred environments and 

a need to culturally differentiate one’s group as population densities rose and group territory 

contracted in degraded environments. I would therefore expect morbidity differences across 

regions to also increase in response to varying subsistence and behavior.  

Structure of the Thesis 

 I begin in chapter 2 with a background on research in the intersecting fields relevant for 

this study: dental anthropology, dentistry, bioarchaeology/paleopathology, and 

paleoanthropology. In chapter 3, the field, laboratory, and statistical methods of the research will 
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be described. Caries and periapical lesions (Chapter 4), periodontal disease (Chapter 5), and 

antemortem tooth loss and agenesis (Chapter 6) each have their own results and pathology 

specific discussion chapters. Each pathology has separate etiology and environmental and bodily 

correlates, so they each warrant their own results and discussion. Chapter 7 is a summary results 

and discussion chapter for all the pathologies, where covariance amongst the explored 

pathologies is tested and discussed, and the research results are used to test the four project 

hypotheses. The overall implications for overall health, subsistence and quality of life will also 

be discussed. Finally in chapter 8, the major findings are summarized and the project concluded 

with suggestions for broader implications and future directions.  
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Chapter 2: Background 

Introduction: 

 This research project lays at the intersection of many different academic fields.  This 

chapter begins with a history of the study of teeth within an anthropological framework. It is 

followed by descriptions of the focus pathologies, the history and methods of their study within 

dentistry and anthropology, and discuss their relationship to overall health. Much of this methods 

work for skeletal remains has been done within the subfields of osteo- and bioarchaeology. The 

scope can then be narrowed onto paleopathology research of Late Pleistocene specimens, which 

provides the specific precedent for the formulation of the four research hypotheses. Most of this 

literature resides within paleoanthropology. To provide context for some of the broader 

implications, other paleoanthropology research on Late Pleistocene diet, isotope analysis, oral 

bacteria, and non-pathological stress indicators will be reviewed. Once all these disparate fields 

are explored within the context of this project, I can focus on the specific holes present in the 

academic literature that this project investigates. By sourcing methods from and building on the 

results of dentistry, medical pathology, bioarchaeology, demography, global health, evolutionary 

medicine, and biological anthropology research, this paleoanthropology project can develop 

broad and interesting implications for its results and conclusions. 

The Study of Teeth and their Pathology: 

 The human dentition and oral bone have always been a popular subject of study in 

paleoanthropology: they preserve well, they are relatively abundant, and they are the only hard 

tissue that interacts directly with the environment. Because of the plethora of anthropology 

research on teeth, dental anthropology is recognized as a distinct subfield, with its own society, 
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jargon and the other accouterments that comes along with having a named subfield. Teeth have 

intricate and diverse morphologies that are not particularly susceptible to environmental 

influences during development and tend to pattern across human geography (Scott and Turner, 

1997). This allows a number of types of questions to be asked of teeth: namely questions of the 

relatedness of groups (from the presence of discrete traits and metric characters), diet (from 

dental wear intraspecies or cusp morphology interspecies), and health (from oral pathology). The 

latter two have principally been of interest to bioarchaeologists and the former of physical 

anthropologists. This may explain why paleoanthropologists, within physical anthropology, have 

spent little effort to document oral pathology in Pleistocene humans. 

 Historically the study of pathology was the domain of physicians, who viewed teeth-

pulling barber surgeons as beneath them, and therefore thought little of the pathology of teeth 

until the last 200 years. Luckily certain physicians eventually took an amateur interest in 

archaeology and the field of paleopathology was born (see Hillson and Rose (2012)). 

Archaeological skeletal assemblages are dominanted by teeth and make a logical study subject. 

Now within the fields of bioarchaeology and paleopathology, dental pathology research is quite 

common. Methodology similar to the ones used in this study have been utilized in recent, large 

archaeological samples (e.g., Corruccini et al., 1987; Kerr, 1991; Marin et al., 2005; Caglar et al., 

2007; Cucina et al., 2011). Radiographs are still integrated sporadically, but standardized scoring 

is typical with a number of the techniques now commonly used in dry skeletal samples being 

developed from these analyses (e.g., Costa 1982; Maat and van der Velde, 1987; Kerr, 1990; 

Lavigne and Molto, 1995; Lanfranco and Eggers, 2010). Multiple pathologies are scored when 

considered inter-related, such as caries and antemortem tooth loss (e.g., Costa, 1980a; 1980b; 

Lukacs, 1995; Molnar, 2008; Oxenham and Matsumura, 2008). Paleoanthropologists 
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unfortunately have not adopted many of these scoring methods, often developed by 

archaeologists in conjunction with members of dentistry departments. This hinders specimen 

comparisons across the literature.  

Dentistry: 

     Pathologies: 

Dental wear: Teeth are normally subject to wear from a variety of sources including food 

and foreign objects (abrasion), occlusal and interproximal tooth-on-tooth contact (attrition), and 

chemical etching and dissolution (erosion) (Begg, 1954). Because enamel and primary dentin are 

not remodeled, wear is progressive and irreversible. Additional dentin can fill in the pulp 

chamber as a mechanism to protect the tooth from pulpal exposure when wear rates are high, and 

this secondary dentin is visible on the occlusal surface and in radiographs (Hillson, 2000). 

Interproximal wear narrows the teeth and promotes mesial drift, shortening the dental arcade 

over time (Begg, 1954). If a tooth is lost, the now unopposed matching occlusal tooth may 

supererupt because occlusal forces alleviate (Hillson, 2000). All three kinds of wear and 

continuous eruption—i.e., slow, occlusal migration of a tooth over its lifetime—are normal 

changes in the life of a tooth, even though severe wear and continuous eruption may implicate or 

encourage other oral pathologies (e.g., root caries from root exposure, antemortem tooth loss 

from excessive eruption) (Kerr, 1990; Hillson, 2008).  

Occlusal wear can be used to estimate age-at-death by comparing each tooth’s degree of 

wear to a population appropriate attrition model calibrated by eruption sequence (see Chapter 3: 

Methods) (Miles, 1963; Brothwell, 1972; Smith, 1984). Error in all aging techniques increases 

with age, and correction is needed since more distal molars wear more slowly in addition to 

erupting later in development (Walker et al., 1991). Dental wear is correlated with a number of 
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the focus pathologies of the project—negatively with caries (Maat and van der Velde, 1987; but 

see Meiklejohn et al., 1992), causing (Brothwell, 1963) and accelerated by (Lovejoy, 1985) tooth 

loss—in addition to contributing to the calculation of the wear categories; therefore it is an 

important variable to record and consider when producing a pathology diagnosis. 

 Patterns of dental wear have been well documented in bioarchaeological studies as well 

as in fossil hominids (e.g., Molnar, 1971; Whittaker et al., 1985; Skinner, 1997; El Zaatari et al., 

2011; Dawson and Brown, 2013). Pleistocene individuals show elevated levels of wear with age 

(across all age categories), similar to many non-industrial recent populations (Smith, 1984; 

Skinner, 1997; Rose and Ungar, 1998; Fiorenza et al., 2011). The “Attritional Occlusion model” 

assumes human teeth have evolved for high levels of wear, and mesial drift of posterior teeth, 

lingual tipping of anterior teeth, and continuous eruption of all the teeth are considered 

compensatory mechanisms for maintaining good oral health over an individual’s lifespan in a 

high dental wear environment (Begg, 1954; Kaifu et al., 2003). This may explain higher rates of 

malocclusion in contemporary populations with very low levels of dental wear and partially 

explain our higher rates of dental disease—but this has yet to be tested (Kaifu et al., 2003). 

Reduction in dental wear in the same Holocene populations is assumed to correspond to 

reductions in overall tooth size, but other selective forces (e.g., oral infection avoidance) have 

also been presented as driving dental reduction (Calcagno and Gibson, 1991). In skeletal 

samples, numerous wear categorization schemes are available (e.g., Molnar, 1971; Scott, 1979; 

Smith, 1984; Bardsley, 2008) and wear is a generic change that all teeth, especially Pleistocene 

ones, are assumedly subjected. 

Hypoplasia: Systemic disturbances, as well as oral trauma, that occur during 

odontogenesis can interrupt the activity of ameloblasts, cells that secrete enamel matrix and are 
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extremely sensitive to changes in metabolism (Commission on Oral Health, 1982; Hillson, 1996; 

Hillson and Bond, 1997). When their activity is depressed, ameloblasts excrete thin, poorly 

calcified enamel, or they may quit production permanently from prolonged stress (Hillson, 1996; 

Hillson and Rose, 2012). This produces visible defects on the enamel surface known as dental 

enamel hypoplasias. Perikymata are the small grooves in the external enamel produced by a 

normal pause in enamel production every seven to ten days of life (Commission on Oral Health, 

1982). Analysis of the external perikymata—or internal Striae of Retzius (also known as Wilson 

bands) which are brown-colored planes within the structure of the crown—relative to a 

hypoplasia may be used to “date” within an approximately six month window of accuracy when 

a disturbance occurred in an individual’s development, depending on the position of the arrest on 

the tooth and the tooth’s formation timing (Rose et al., 1978; Hillson and Bond, 1997; Hillson 

and Rose, 2012). Dental enamel hypoplasias can range from random dots or dotted lines (pit 

enamel hypoplasia), to solid lines (linear or furrow enamel hypoplasias) or whole enamel cusps 

missing (planar or cuspal hypoplasias) depending on the timing, severity, and length at which the 

individual’s health was compromised (Hillson, 1996; Ogden, 2008). Hypoplasias are generally 

recorded at a macroscopic level by type and distance of the disturbance from the cemento-

enamal junction (CEJ) (Goodman and Armelagos, 1988; Brennan, 1991). At higher levels of 

magnification, the individual perikymata can be counted. 

Dental enamel hypoplasias represent stress during development, and therefore not 

necessarily health (Hillson and Rose, 2012). There has been a recent push to clearly define and 

differentiate the terms “stress” and “health” in the anthropology literature (i.e., the issue had its 

own session at the 2013 American Association of Physical Anthropologists meetings (McIlvaine 

and Reitsema, 2013)), and the confounding of the two terms relates back to problems identified 
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within the Osteological Paradox (Wood et al., 1992). Are the individuals with dental enamel 

hypoplasias the healthiest individuals because they survived the insults on their bodies?  The 

literature suggests otherwise. An increasing number of hypoplasias can have an increasingly 

negative effect on lifespan, i.e. increased mortality (Goodman and Armelagos, 1988). Also 

individuals often exhibit more than one hypoplasia, suggesting cyclically recurring stress such as 

seasonal food shortages (73.9% of affected southwestern French Pleistocene individuals had 

multiple hypoplasias (Brennan, 1991)) as well as multiple hypoplasias have a multiplying effect 

on increased mortality (Palubeckaitė et al., 2002).  

As a result, dental enamel hypoplasias have been a popular research variable for those 

asking morbidity and “health” questions of fossil samples. These data have been collected 

globally on recent populations—skeletally (e.g., Duray, 1992; Keenleyside, 1998; Palubeckaitė 

et al., 2002; Cucina et al., 2006; Lieverse and Link, 2007; Starling and Stock, 2007) and through 

dental practices (e.g., Pascoe and Seow, 1994; Lai et al., 1997) —and back though the Pliocene 

and Pleistocene (e.g., Sognnaes, 1956; Johanson et al., 1982; Molnar and Molnar, 1985; White, 

1988; Ogilvie et al., 1989; Brennan, 1991; Skinner, 1996; Hillson and Bond, 1997; Brunet et al., 

2002; Guatelli-Steinberg, 2004; Guatelli-Steinberg et al., 2004, 2011; Lacruz et al., 2005). 

Dental enamel hypoplasias have been shown to be associated with low social status, poor 

childhood health (high infant morbidity), and poor nutrition.   

Hypoplasias also predispose teeth to other further dental pathology. In a sample of 

Australian Aborigine children, where 99% of them had at least one tooth with hypoplasias due to 

high infant morbidity, dental caries were present predominately on teeth, which also had dental 

enamel hypoplasias (Pascoe and Seow, 1994). These affected teeth have additional furrows and 

pits for bacteria to thrive in, as well as thinner, compromised enamel that can be destroyed at a 
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more rapid rate when pH levels drop in the mouth. Hypoplasias represent physiological stress 

during dental development (in utero through approximately the age of sixteen when the third 

molar crown finishes forming (AlQahtani et al., 2010)) whereas the following pathologies can 

occur at any point during life, providing a broader perspective on individual morbidity.  

Caries: Caries is a serious, pervasive issue in modern dentistry; however, before the 

advent of agriculture, caries is considered a relatively rare condition (though not unknown). 

Carious lesions are areas of demineralization caused by the secretions of acidogenic 

microorganisms (Scott and Turner, 1988; Hillson, 2008). Demineralized areas progress in 

alternating periods of rapid development and quiescence until they invade the dentine and pulp 

cavity and result in pulpal necrosis (Pine and Ten Bosch, 1996; Hillson, 2001). The formation of 

carious lesions is a complex process determined by the species of cariogenic bacteria, plus the 

interplay of host resistance (Wang et al., 2010) and dietary factors including the mineral content 

of local water supplies (Adatia, 1975; Scott and Turner, 1988; Hildebolt, 1987). Recent research 

on dental calculus suggests that the biodiversity of oral flora has actually decreased over time, 

resulting in a predominance of the caries-causing species in modern post-Industrial Revolution 

populations (Adler et al., 2013). Caries is often associated with agricultural practices (Larsen et 

al., 1991), but it is documented in nonhuman primates (Schultz, 1956), Middle Paleolithic 

humans (Sognnaes, 1956; Lalueza et al., 1993; Tillier et al., 1995; Lebel et al., 2001; Trinkaus 

and Pinilla, 2009; Walker et al., 2011; Lacy et al., 2012) and earlier hominin taxa (Carter, 1928; 

Brodrick, 1948; Robinson, 1952; Clement, 1956; Grine et al., 1990; Lacy, n.d.), though at 

significantly lower rates than modern populations. 

Carious lesions are associated with increased risk for systemic disease (e.g., diabetes, 

heart disease) as well as general medical morbidity (Pascoe and Seow, 1994; Hujoel, 2009); 
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however, it appears that both caries and systemic diseases can be symptoms of excessive 

carbohydrate consumption over short (a matter of weeks and months) and long (decades) time 

scales, respectively (Hujoel, 2009). Without a lifestyle intervention, caries may be an early 

warning sign of systemic diseases to come later in life (Hujoel, 2009). Caries is also the most 

common chronic childhood disease in the United States with poor children suffering from twice 

as much dental disease as affluent ones (Bagramian et al., 2009). Poor children are less likely to 

seek or have access to treatment. Therefore in modern populations, caries is strongly negatively 

associated with overall health, but the causality is indirect at best and is likely a symptom of 

other related causes (e.g., diet, socioeconomic status). 

Much caries research has been done on cemetery samples, but less on older 

archaeologically-derived samples (e.g., Nelson et al., 1999; Cucina and Tiesler, 2003; Delgado-

Darias et al., 2006; Lieverse and Link, 2007; Liebe-Harkort, 2012; Halcrow et al., 2013). 

Because caries prevalence is closely related to diet (an observation first made by Mummery in 

1870), caries prevalence has been used as data to test questions related to sex, socio-economic, 

and age differences in dietary patterns. Individuals who consume food at more frequent intervals 

(e.g., women and children), consume less high quality or diverse foods (e.g., low socio-economic 

individuals) or consume pre-processed foods (e.g., the very young and old) show higher rates of 

caries (Lukacs, 2008; 2011; Mashoto et al., 2010; Halcrow et al., 2013). Broken Hill, a Middle 

Pleistocene hominid from Kabwe, Zambia, has the most numerous and severe carious lesions 

known from the Pleistocene (Koritzer and St. Hoyme, 1979; Puech et al., 1980; Bartsiokas and 

Day, 1993; Lacy, n.d.). The specimen also has other pathology including multiple temporal 

lesions, and his poor oral health can easily be assumed to represent severe morbidity if not the 

ultimate cause of mortality in the individual (Montgomery and Williams, 1994). 
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There are only six currently recognized incidents of caries in Neandertals, <0.5% of 

known teeth (Walker et al., 2011).  The reason for this has been debated: is it a diet low in 

carbohydrates with high wear; or the absense of severely cariogenic oral flora (Soltysiak, 2012; 

Tomczyk, 2012)? Research on oral flora preserved in the calculus of two Neandertals, from SW 

Asia and Central Europe, indicate climatically differing cariogenic bacteria species 

(Vandermeersch et al., 1994; Pap et al., 1995; Arensburg, 1996). This matches work on 

phytoliths in fossil calculus showing regional differences in plant foods consumed (Henry, 

2011). Calculus, a mineralized deposit, has an inverse relationship with caries (demineralization) 

(Hillson, 2001). Calculus is common on fossil specimens (personal observation), and this, plus 

high levels of wear, may partially explain low caries incidence in these samples (Maat and van 

der Velde, 1987; Hillson et al., 2010). 

Periapical lesions: Periapical lesions are cavities formed in the alveolar bone around the 

tooth root (usually the apex or periapical region), usually caused by a topical bacterial infection 

or pulpal death from infection, attrition, caries, or trauma (Scott and Turner, 1988; Dias and 

Tayles, 1997; Hillson, 2000). An inflammatory response in the periapical region may cause bone 

resorption around the tooth root, or pus can burst through the buccal or lingual alveolar plate 

through a fistulous tract (Dias and Tayles, 1997). This disease process can also cut off blood and 

nerve supply to the pulp cavity causing necrosis, if it was not the causal condition (Scott and 

Turner, 1988). As most periapical lesions identified in fossils by radiograph were not likely 

painful or causing systemic infection, the blanket term “periapical lesion” is more appropriate 

than “abscess” if a more specific diagnosis is unavailable (e.g., chronic or acute granulomata, 

cysts, osteomylitis, etc.) (Dias and Tayles, 1997). 
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Skeletal studies of periapical lesions are usually done in conjunction with caries research 

as they are often associated, at least in populations that have high caries rates (Keenleyside, 

1998; Liebe-Harkort, 2012) or with wear (e.g., Kieser et al., 2001). Oral infections allow direct 

access for oral bacteria to enter the blood stream. Specific oral species have been found in 

arterial plaques associated with coronary artery disease, and bactermia and septicemia have 

direct mortality consequences (Williams et al., 2008). The oral cavity can, therefore, become 

both a source of infection from lesions and periodontal disease, and also a source of pro-

inflammatory cytokines from the body’s response to these pathologies (Gendron et al., 2000). 

Circulating inflammation products/mediators (e.g., cytokines) from both localized and general 

inflammation are associated with mortality and systemic disease (e.g., kidney disease) 

(Ioannidou et al., 2011). The increased rate of these associated systemic diseases and septicemia 

from vividans group Streptococci in Western societies has been suggested to be a result of 

increased dentalism, i.e., the retention of more teeth into old age (Rautemaa et al., 2007). Dental 

extraction is one of the oldest medical intervention utilized in cases of localized oral infection 

(Zias and Numeroff, 1986; Forshaw, 2009), as infections tend to clear up when the tooth is 

removed (O’Reilly and Claffey, 2000), but this is becoming less common with the availability of 

antibiotics in recent clinical settings. Excessive occlusal wear is also correlated with periapical 

lesions because of the potential for pulpal exposure and general trauma to the alveolus (Clarke 

and Hirsch, 1991; Kieser et al., 2001; Molnar, 2008). Individuals with evidence of infection in 

archaeological contexts unsurprisingly show decreased life expectancy (Goodman and 

Armelagos, 1989). 

Some population studies have been done of periapical lesions in modern humans (e.g., 

Abbott, 2004), but there is little systematic research in fossils, just individual diagnoses 
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(Dastugue, 1967; Heim, 1976; Trinkaus, 1985; Trinkaus et al., 2006; 2014; Mann et al., 2007; 

Shang and Trinkaus, 2010; Liu et al., 2011; Condemi et al., 2012; Lacy et al., 2012). This is 

likely because caries rates are low in fossil Pleistocene populations, and periapical lesions are 

often assumed to be the product of extreme carious lesions—i.e. periapical lesions were assumed 

to be not present if not visible in the absence of caries. Today, with the widespread availability of 

radiography and computed tomography imaging, it would be easy to test this assumption. Data 

on general “abscesses” in Late Pleistocene fossils has been collected, but since no significant 

patterns was found, only the per-individual prevalences were published (Frayer, 1989) 

Antemortem tooth loss: Tooth loss can be caused by severe attrition, trauma, or any other 

oral pathology that either kills the dental pulp or destroys the bone or periodontal ligaments 

holding the tooth in the alveolus (Scott and Turner, 1988; Hillson, 2000; Bahrami et al., 2008). 

Some researchers question the assumed relationship between periodontal disease and 

antemortem tooth loss because supporting data are sparse especially among skeletal studies 

(Costa, 1980a; Clarke et al., 1986; Kerr, 1991). However, in a recent human dentistry study, 

periodontal disease was responsible for tooth loss in fewer patients than other causes, but it was 

responsible for the loss of more individual teeth overall than any other cause (Al-Shammari et 

al., 2005). In other words, if periodontal disease is severe enough to cause tooth loss, it will 

cause a higher number of teeth to be lost in that individual than other causes (e.g., caries, 

fractures) (Al-Shammari et al., 2005). There is also an inverse relationship between the number 

of teeth present and chronic heart disease suggesting that tooth loss, or rather its causes, have a 

negative impact on overall health/morbidity. Periodontal disease and less than ten teeth present 

was associated with a 25-30% increased risk of chronic heart disease (Cullinan et al., 2009).  
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Antemortem tooth loss has been recorded in skeletal studies, though often in tandem with 

other pathologies, namely caries (e.g., Costa, 1980a; Keenleyside, 1998; Nelson et al., 1999; 

Cucina and Tiesler, 2003; Lieverse and Link, 2007; Liebe-Harkort, 2012). Since it is assumed, at 

least in agricultural populations, that much tooth loss is caries related, a caries correction factor 

can be derived to estimate how many teeth lost were due to caries (Lukacs, 1995; Márquez-

Grant, 2009). The relationship between other pathologies and tooth loss in skeletal samples has 

not been thoroughly explored though (e.g., periodontal disease, trauma (cf. Lukacs, 2007)).  

It must be noted that not every individual has 32 teeth to begin with when scoring 

antemortem tooth loss (Hillson, 2001), including some Late Pleistocene specimens (Heim and 

Granat, 1995; Hillson, 2006). However these are pathological developmental or genetic 

examples of agenesis, and therefore are not related to antemortem tooth loss, as a tooth was 

never present (Agenesis is reported here with antemortem tooth loss in chapter six). Antemortem 

tooth loss is known from the Late Pleistocene (Sergi, 1974; Trinkaus, 1983; 1985; Tappen, 1985; 

Shang and Trinkaus, 2010), but rarely scored systematically or compared between groups or 

individuals (cf. Gilmore, 2011; n.d.).  

Periodontal disease: Periodontal disease is a complex process that often occurs with 

other pathologies and is the most prevalent chronic infection in modern humans (Rautemaa et al., 

2007). It has two levels: gingivitis, which affects only the gum margins and 95% of recent 

people; and periodontitis, which results in destruction of the alveolar bony crests and periodontal 

ligaments and is present in between 10%-56% of recent human samples (Clarke et al., 1986; 

Jenkins and Kinane, 1989; Kerr, 1991; Oliver et al., 1998; Hugoson et al, 2008; Eke et al., 2012). 

Only periodontitis leaves a signature skeletally through degeneration of the alveolar bone (Clarke 

et al., 1986; Jenkins and Kinane, 1989; Kerr, 1991; Oliver et al., 1998; Hugoson et al, 2008; Eke 
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et al., 2012). Plaque deposits predispose one to periodontal disease by inflaming the gingiva and 

giving a home to bacterial biofilm (Hillson, 2001).  

The modern dentistry definition of periodontal disease is a distance of >2 mm between 

the cervico-enamel junction and the alveolar crest (CEJ-AC) (Clarke et al., 1986; Kerr, 1991; 

Hillson, 2000; Ogden, 2008). This definition is problematic in fossils because 1) alveolar crests 

preserve poorly, and 2) it assumes little dental wear or continuous eruption. Therefore levels of 

wear, crest morphology, and porosity should also be scored in dry bone to avoid confusion 

(Costa, 1982; Kerr, 1988; Clarke et al., 1986). However, it has been argued that generalized 

horizontal bone loss from periodontal disease is rare in archaeological assemblages (i.e., it is 

often localized) and therefore unlikely to be confused with arch-wide continuous eruption from 

general dental wear (Clarke et al., 1986; Clarke, 1990; Kaifu et al., 2003). Localized 

supraeruption is possible though, so antemortem tooth loss and unusual wear patterns should also 

be taken into account. 

Periodontal disease is correlated with many other diseases in recent modern humans, such 

as cardiac disease (Slavkin and Baum, 2000; Meurman et al., 2004; Williams et al., 2008), 

diabetes (Garcia et al., 2001; Hujoel, 2009), low birth weight of offspring, osteoporosis, arthritis 

(Ogden, 2008 and citations within), preeclampsia (Shetty et al. 2010), and others. The 

directionality of these relationships is complicated though, and periodontal and other systemic 

diseases may both be symptoms of another larger cause (carbohydrate consumption: Hujoel, 

2009, genetics: see Cullinan et al., 2009 for full discussion). There are a number of potential 

mechanisms for these inter-disease correlations including: common genetic predispostions, 

periodontopathic bacteria entering the blood stream, cross-reactivity of bacterial and human heat-

shock proteins (antibodies), inflammation and its mediators, and obesity and its associations 
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(Cullinan et al., 2009). Eating a high amount of carbohydrates can directly cause periodontal 

disease by feeding periodontogenic oral bacteria, but it can also cause obesity, which leads to 

systemic inflammation, diabetes, and coronary heart disease, all of which are also associated 

with periodontal disease (Cullinan et al., 2009; Hujoel, 2009). Because of the complexity of 

these relationships, the causalities have not been fully identified, and the call for more research 

continues to be made under the new cross-disciplinary term “periodontal medicine” (Garcia et 

al., 2001). The exact connections between periodontal disease and other systemic health issues 

are only beginning to be more fully explored. 

Ultimately periodontal disease and poor oral health directly affect mortality. Periodontitis 

is associated with a 46% increase in mortality risk for 25-74 year olds (DeStefano et al., 1993), 

and mortality increases with poor oral health even when deaths from cardiovascular disease are 

removed (Jansson et al., 2002). Life history profiles are also affected by fertility, and periodontal 

disease has a number of effects on reproductive women including intensified periodontal disease 

during pregnancy, preeclampsia, decreased birth weight of infants born to those women, as well 

as spontaneous abortion and pre-term birth (Cohen et al., 1969; Garcia et al., 2001; Lieff et al., 

2004; Shetty et al., 2010). Dental plaque, as well as horizontal tooth mobility, increases 

throughout pregnancy with tooth mobility decreasing post-birth, but not to pre-pregnancy levels 

(Cohen et al., 1969). This is likely where the old adage “a tooth per child” comes from, referring 

to tooth loss of periodontal disease origin during and immediately after pregnancy (Lanfranco 

and Eggers, 2012). Whether relaxin or other pregnancy-related hormones are directly involved is 

untested. Lower fetal birth weight is also associated with developing hypertension, diabetes and 

high cholesterol in these infants as adults (Trevathan, 2007; Baker et al., 2008), suggesting 

multigenerational effects of periodontal disease. 



 25 

These pregnancy-related periodontal changes also tend to be most severe in black 

women, women who smoked during pregnancy, and those on public assistance, all three 

variables associated with lower socio-economic status in the United States (Lieff et al., 2004). 

This suggests that the subset of women who are most susceptible to pregnancy-aggrevated 

periodontal disease are also those with the least access to professional oral care. The implications 

of this for the deeper fossil record are unclear though. It can at least be said that populations 

suffering from high levels of periodontal disease are also likely to be experiencing higher 

mortality and possibly some negative effect on fertility compared with those populations with 

lower rates of periodontal disease. 

Assessments of periodontal disease have been done in many historic and recent pre-

historic samples (Costa, 1982; Ronderos et al., 2001; Delgado-Darias et al., 2006; Wasterlain et 

al., 2011; Marin et al., 2012). Periodontal disease is associated with both mortality and low social 

status (Keenleyside, 1998; DeWitte and Bekvalac, 2010; 2011). However with a skeletal sample, 

the cumulative effect of periodontal disease over one’s life is assessed and not current disease 

activity at the time of death, making comparisons with modern living human studies problematic 

(Garcia et al., 2001). Methods for diagnosing periodontal disease in skeletal material are well 

accepted in bioarchaeology now, but have yet to be widely applied to the fossil record. 

As an exception, Brennan (1991) noted periodontal disease without scores in 

Southwestern French Late Pleistocene humans and found that the prevalence decreased in the 

Late Upper Paleolithic from the Early Upper Paleolithic. The Krapina Neandertal sample shows 

more labial/buccal side alveolar resorption than historic and modern populations that show more 

interdental resorption (Topić et al., 2012). A few monographs or articles have also mentioned the 

periodontal status of their subjects, but without populational context (Neandertals: Banyoles 
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(Lalueza et al., 1993); El Sidron 2 (Prieto, 2005); Guattari 2 and 3 (Mallegni, 1995); Zafarraya 

(Torrent, 1997); Modern humans: Caldeirao 1 (Trinkaus et al., 2001); Cova Foradá (Lozano et 

al., 2013); Dolní Věstonice 16 (Trinkaus et al., 2006); Mladeč 2 and 8 (Teschler-Nicola et al., 

2006); Skhul 5 (Smith, 1977)). Some authors have acknowledged that periodontal disease rates 

may be high in the Pleistocene based on anecdotal evidence, but have had no studies or data to 

reference (Calcagno and Gibson, 1991; Lanfranco and Eggers, 2010). On a population level, 

high rates of periodontal disease may indicate high general morbidity. Modern studies of the 

ways that periodontal disease differentially affects individuals across populations along various 

variables can be used to seek more specific implications for individual fossil diagnoses and 

sample wide patterns. 

     Oral Health and Overall Health:  

The above pathologies should not be viewed independently from one another. All can be 

co-morbidities and the cause or product of a number of other disease processes. For example 

dental wear may inhibit caries, but result in pulpal pathology (Maat and van der Velde, 1987; 

Molnar, 2008). When providing a diagnosis for an individual, all of the available information on 

their oral health can and should be weighted together. Surveying multiple orodental disease 

processes and their frequencies at a population level will elucidate more distinguishable and 

informative patterns than individual diagnoses. Some of this has been done with modern samples 

through dentistry and public health research using an oral health score. Jansson et al. (2002) 

made an overall health score for their study on the relationship between oral health and mortality 

in a modern Swedish sample with detailed dental records and death certificates. Their score 

included four variables divided by the maximum value: total lost number of teeth, marginal bone 

loss, number of teeth with caries and number of teeth with periapical lesions/abscesses. The 
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scores therefore ranged from 0-4 with the oldest age category who had died during the sample 

period having an average score of 1.1. With a skeletal sample that contains many incomplete 

individuals, this score could still be utilized as it is a proportion. Brennan (1991) made a score to 

indicate change in health indicators over time by dividing the N of total body stress indicators 

showing the same trend (increase or decrease) divided by the total number of variables examined 

minus one. This was used with Late Pleistocene human samples, and was adapted for this study. 

There is an assumption that oral health—as a whole through the aggregate of multiple 

pathology indicators—represents the overall health of an individual to a certain degree. The 

assumption is well founded in the public health literature, and a number of these studies are 

referenced above per pathology (e.g., Garcia et al., 2001; Migliorati and Madrid, 2007; 

Rautemaa et al., 2007; Williams et al., 2008; Cullinan et al., 2009; Hujoel, 2009). Because most 

recent human tooth loss is the result of caries and periodontal disease and their resultant 

infectious lesions, these four pathologies are closely related and have warranted general oral 

health assessments. Poor pooled oral health is associated with increased mortality (Jansson et al., 

2002), heart disease (Meurman et al., 2004), and decreased quality of life measures (Gift and 

Atchison, 1995). If one views the oral cavity as a constant potential source of infection and 

inflammation because of its flora and direct environmental interaction, any oral pathology can 

potentially have systemic affects on the individual resulting in morbidity and even mortality 

(Gendron et al., 2000). At a population level, high oral pathology rates have already been shown 

to produce negative affects on life span and quality of life in recent modern human (e.g., Gift and 

Atchison, 1995; Jansson et al., 2002) and skeletal studies (e.g., Palubeckaitė et al., 2002; 

DeWitte and Bekvalac, 2010). For fossil samples, one can not have access to life-long medical 

histories, and therefore it is the cumulative affects of stress on the individual that is being 



 28 

observed. However one can infer health at the time of death for the individual from oral 

pathology, and at a population level, these values will inform morbidity prevalence. 

Background of Samples: 

     Comparative Samples:  

 The Natufians lived during the Final Late Pleistocene (13,100 - 9650 calibrated BC) in 

Southwest Asia (Eshed et al., 2010), and were the culture from which agriculture in the region 

would arise. They were mostly sedentary unlike other Late Pleistocene peoples, but still 

practicing hunter-gatherer subsistence, gathering wild cereals and hunting wild ungulates like 

gazelle (McCorriston and Hole, 1991; Nadel and Hershkovitz, 1991; Eshed et al., 2010). Though 

they were consuming a diet similar to later agricultural peoples, i.e., large amounts of processed 

grains, they were still generally living a Pleistocene lifestyle, but with decreased mobility (Eshed 

et al., 2004). Because the shifts in diet and health are so marked with the origins of agriculture 

(Cohen and Armelagos, 1984), the Natufians have been a popular study sample in that they can 

be used to test hypothesis about whether diet or lifestyle were driving changes seen in the 

Neolithic (Smith and Peretz, 1986; Nadel and Hershkovitz, 1991; Eshed et al., 2004; 2010).  

 The North American samples from Indian Knoll and Point Hope (Ipiutak) have also been 

the subject of multiple studies, and they vary considerably in diet and lifestyle. The Indian Knoll 

peoples were Archaic period (4,500-6,100 BP (Winters, 1974)), pre-agriculturalists in the 

American Midwest woodlands (Leigh, 1925; Webb, 1974). Though they are considered pre-

agricultural, there is evidence for some small-scale garden agriculture and intense processing of 

gathered food items (Leigh, 1925; Cassidy, 1972; Webb, 1974). The lifespan of the people from 

Indian Knoll was similar to that of other hunter-gatherers (Johnston and Snow, 1961), and this 

population was physically stressed (Cassidy, 1972; Perzigian, 1977). The Point Hope peoples 
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include the Ipiutak and Tigara, though only the Ipiutak were included in this study. The Point 

Hope Ipiutak hunted caribou and utilized marine resources in what is now Alaska from 100 BC 

to 500 AD, but were not reliant on whale hunting like the later Tigara (Rainey, 1941; 1971; 

Larsen and Rainey, 1948). Their use of large terrestrial mammals and high protein consumption 

suggest a diet roughly similar to Late Pleistocene Europeans, justifying their selection as a 

comparative sample (e.g., Guatelli-Steinberg et al., 2004; Krueger and Ungar, 2012). 

Considering their large sample sizes and accessibility, the three chosen comparative 

samples have all been used previously for paleopathology research within bioarchaeology and 

physical anthropology. The majority of the dental research on the Indian Knoll material has 

focused on dental wear and crown morphology (Rabkin, 1943; Perzigian, 1976). The Point Hope 

material was previously analyzed for wear, antemortem tooth loss, caries and periodontal 

disease, but since this research was conducted, newer scoring methods have been developed 

(Costa, 1977; 1980a; 1980b; 1982). Also radiographs were not taken, and therefore bone 

remodeling from periapical lesions and hypercementosis could not be fully assessed. A recent 

study of dental and overall health indicators (including caries, antemortem tooth loss, and 

“alveolar defects”) in Hokkaido Jomon and Okhotsk used Costa’s published data as their 

comparative group (Oxenham and Matsumura, 2008).  

The Natufian dentition has been extensively surveyed in the past (Smith 1970; 1972). A 

more recent study focused on wear and pathology in Natufian and Neolithic peoples from the 

Levant, but did not use radiographs (Eshed et al., 2006). Scoring of pathologies was less detailed 

than was used here. Eshed and colleagues (2006) cite that their lack of radiography limits their 

assessment of “abscesses”, and therefore they could not use the preferred methods of Dias and 

Tayles (1997). In this study periodontal disease was not scored beyond present/absent, and wear 
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was only recorded for the first molar. The Holocene human data desired for this project were 

therefore not available in the published literature and needed to be collected; however, where 

methods are similar, some publications can be used to provide more comparisons per pathology 

(see specific results chapters). These collections were chosen because they are all Holocene or 

Epi-Paleolithic collections of individuals not practicing true agriculture, but diverse hunter-

gatherer subsistence patterns. They are also collections with a large number of relatively 

complete individuals available for study. 

     Late Pleistocene Sample: 

 The Neandertals were a taxonomic group of humans in Europe and Southwest and 

Central Asia from 250-27 kya known for possessing a distinctive suite of morphological 

characteristics that differentiate them from other contemporaneous human groups (Stringer and 

Gamble, 1993; Trinkaus and Shipman, 1993; Tattersall, 1995; Mellars, 1996). They were 

physically well adapted for cold environments (Ruff, 1994; Holliday, 1997; Churchill, 1998; 

Steegmann et al., 2002; Weaver, 2003) and utilized the large terrestrial mammal resources 

available (e.g., Bar-Yosef, 2004; Bocherens, 2009; Rivals et al., 2009). Because Neandertals 

were the earliest identified fossil human that was not “modern”, there is a long history of their 

study (King, 1864; Trinkaus and Shipman, 1993). Much of this research has focused on 

differentiating Neandertals from modern humans, especially from the perspective that they are 

less “evolved” than Homo sapiens sapiens (cf. Trinkaus, 2013). 

Modern humans arose ~200 kya in East Africa (White et al., 2003; McDougall et al., 

2005), spread into Southwest Asia (Bar-Yosef, 1994) and South China (Liu et al., 2010; Shen et 

al., 2013) after 100 kya, and by 30 kya were the only hominin group on Earth (Trinkaus, 2005; 

Stringer, 2012), barring the late survival of Homo floresiensis in Indonesia (Brown et al., 2004). 
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Though these fossil modern humans are within the range of variation of recent humans, there 

were still changes over time in body size and shape as they adapted to their newly colonized 

regions (cf. Holt and Formicola, 2008). And to do this massive expansion across the Old World, 

other hominin groups had to be displaced or absorbed (Stringer, 2002; Templeton, 2002; Conard, 

2006; O’Connell, 2006). This shift from modern human to Neandertal anatomy and associated 

cultural traditions in Western Eurasia is described as the Upper Paleolithic transition, even 

though there is evidence that late Neandertals were using Upper Paleolithic cultural industries 

(i.e., culture change does not equal biological change) (Hublin et al., 1996; Gravina et al., 2005; 

Peresani, 2008). This project aims to contribute to the research around the causal factors in this 

shift. The previous health and subsistence research conducted on these Late Pleistocene humans, 

including that designed specifically around the Upper Paleolithic transition, are discussed below. 

Current Late Pleistocene Research:  

     Paleopathology Studies:  

Past studies which sought to answer questions of Late Pleistocene stress and morbidity 

have generally focused on developmental stress indicators, traumatic lesions, and developmental 

disorders. The few that included any dental components are addressed in the next section. The 

latter two types of research studies (lesions and developmental disorders) have been concerned 

principally with culturally mediated differential risk, survival and mortuary treatment in 

additional to differential diagnoses of lesions (Trinkaus 2005b; Formicola, 2007; Trinkaus and 

Buzhilova, 2012; Wu et al., 2011).  The first (e.g., Harris/Transverse lines and dental enamel 

hypoplasias) represent stress during development and have been studied, sometimes in tandem, 

to identify general populational stress levels, though they actually only reveal stress that occurred 

while the individual was young (Ogilvie et al., 1989; Brennan, 1991; Skinner, 1996; Guatelli-
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Steinberg et al., 2004). Other more general indicators have also been studied including stature 

(Formicola and Giannecchini, 1999; Formicola and Holt, 2007; Meiklejohn and Babb, 2011), 

robusticity (Frayer, 1981; Ruff et al., 1993; 1994; Trinkaus et al., 1994; Churchill, 1998; 

Shackelford, 2005) and body proportions (Holliday, 1997; 1999). These do not represent any 

specific periods of hardship, but general trends of health, activity, and nutrition over time (see 

Holt and Formicola (2008) and Trinkaus (2013) for summaries). Only a few of the more 

systematic Late Pleistocene paleopathology studies have incorporated oral pathology.  

     Dental Fossil Pathology Studies:  

Any Pleistocene dental paleopathology research has generally focused on individuals. 

Monographs on specific fossils have addressed the issue for their subject sample and typically at 

a macroscopic level without scoring or detailed descriptions of the lesion (e.g., Carter, 1928; 

Borgognini et al., 1980; Molnar and Molnar 1985; Tillier et al., 1989; Tillier et al., 1995; 

Buzhilova 2000; Lebel et al., 2001; Trinkaus et al., 2006; 2014; Liu et al., 2010; Shang and 

Trinkaus, 2010; Walker et al. 2011; Condemi et al., 2012). If they summarize other known cases 

of the pathology, it is not done systematically. Interproximal caries and periapical lesions are 

likely underestimated in more complete specimens as radiographs are rarely taken. A few wider 

fossil surveys have been conducted (e.g., Frayer, 1989; Ogilvie et al., 1989; Brennan, 1991; 

Skinner, 1996, 1997; Guatelli-Steinberg et al., 2004; Gilmore, 2011; n.d.), but all focused on a 

single pathology or did not use current methodologies and recently discovered specimens—as 

well as some older specimens. Their work, however, lays the groundwork for my research aims. 

 The broader studies have focused primarily on dental enamel hypoplasia. Skinner’s 

(1996; 1997) work on wear and hypoplasias in immature Late Pleistocene individuals from 

Europe was thorough, but his sample was biased towards Late Upper Paleolithic adolescent 
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specimens. Only hypoplasias were scored, and only from juveniles, i.e., those who did not 

survive into adulthood, which may distort the interpretation of the overall stress levels of the 

population (Wood et al., 1992). Others have looked at dental enamel hypoplasias from 

Neandertal samples (Ogilvie et al., 1989; Guatelli-Steinberg et al., 2004), but not a broad sample 

of early modern humans. 

 Brennan (1991) surveyed Middle and Upper Paleolithic individuals in southwestern 

France for dental enamel hypoplasias, caries, periodontal disease, and a variety of non-dental 

stress indicators. Caries increased over time, but radiographs were taken only if a lesion was 

unclear. Periodontal disease increased in the Late Upper Paleolithic. Stress indicators were 

pooled to compute a Health Stress Index (positive change from Middle Paleolithic to Early 

Upper Paleolithic, negative from Early Upper Paleolithic to Late Upper Paleolithic). Brennan’s 

samples were constricted in geography, and therefore, her interpretations may not be applicable 

to other regions.  

 Frayer (1989) examined caries, alveolar disease, and antemortem tooth loss in Early 

Upper Paleolithic, Late Upper Paleolithic, and Mesolithic modern humans in Europe. Caries 

increased continuously over his chronological sample with none being found in the Early Upper 

Paleolithic.  More recent research that used more detailed temporal variables suggests caries may 

have decreased at the end of the Paleolithic and inflected upwards again in the Mesolithic 

(Caselitz, 1998). Frayer (1989) also showed that caries prevalence correlated negatively with 

latitude in the Mesolithic and emphasized a possible transition from a high protein to a high 

carbohydrate diet beginning in the Late Upper Paleolithic (also Cachel, 1997). This suggests a 

null hypothesis to be tested with the data from this study. Alveolar disease increased (no scores 

used), and Frayer felt this could not be attributed to carbohydrates, but did not speculate further 
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into the implications of this pattern. Antemortem tooth loss did not correlate with time or any 

other variables. Radiographs and severity scores were not utilized, and some casts and 

photographs were used instead of original specimens.  

Gilmore (2011) has noted less antemortem tooth loss in Neandertals than recent humans, 

which she attributed to less “modern” behavior in her sample of 26 Neandertals compared with 

Holocene recent humans (The sample is reported as containing 27 Neandertals, but Guattari 1 

and 2 are most likely the same individual (Mallegni, 1991)).  Specimen age was not accounted 

for, and radiographs were not used. The continuation of this research has included non-human 

primates (Gilmore, 2013), and a more detailed study is forthcoming (Gilmore, n.d.). 

There are serious gaps in research on dental pathology and oral health in Late Pleistocene 

Western Eurasia, even though non-dental paleopathology research results supply predictions for 

this project. First, previous samples have all had spatial, geochronological, and/or age 

constraints. Second, the focus has generally been on dental enamel hypoplasias; this is a 

developmental defect and may only predispose individuals to degenerative processes later in life. 

Third, there is a dearth of radiographic imaging and standardized scoring methods in fossil dental 

pathology research. The research in the following chapters is designed to remedy these omissions 

and expand our understanding of human differential stress through the Late Pleistocene. 

     Demography Issues:  

Mortality patterns have been assessed for Pleistocene Homo, and especially for 

Neandertals and modern humans, to explain the Upper Paleolithic transition (Caspari and Lee, 

2004; Trinkaus, 2011). No Late Pleistocene differences in mortality profiles were identified 

(Trinkaus, 2011), but multiple factors affect such profiles (Trinkaus, 1995). Morbidity is likely to 

be a better signal of past populational stress, because it represents long-term stressors. Mean-age-
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at-death is also not a reliable statistic of life expectancy because differential fertility rates drives 

mortality profiles as much as differential mortality (Sattenspiel and Harpending, 1983), and 

populations were likely unstable throughout the Middle and Upper Paleolithic (Trinkaus, 1995; 

Hovers and Belfer-Cohen, 2006; Powell et al., 2009; Wu et al., 2013). Otherwise healthy 

individuals can die from accidents and swiftly progressing disease.  

The effects of mortality and life history profiles on pathology prevalence need to be taken 

into account with the interpretation of this study’s results as all these dental pathologies increase 

with age, i.e., overall prevalences are directly a result of the age distribution of the sample. It has 

been argued that Neandertals and modern humans have different developmental timing (Dean et 

al., 1986; Rozzi and deCastro, 2004; Smith et al., 2007; 2010), but this is difficult to account for 

(Dental wear is used to age individuals in this study). Interestingly enough periodontal disease is 

reported to have multiple negative reproductive consequences (e.g., pre-term birth, spontaneous 

abortions, low birth weight, etc.), and its effect on fertility is something that can be explored 

further with the discussion of the results of this research. Since differential mortality has been 

unable to distinguish Middle Paleolithic and Upper Paleolithic humans, differential morbidity 

may be able to do so.  

     Subsistence Issues:  

Recent work has focused on the degree of change in Late Pleistocene diets using faunal 

collections (e.g., Marean and Kim, 1998; Grayson and Delpech 2003; Bar-Yosef, 2004; Adler et 

al., 2006) and stable isotopes to assess dietary protein sources (e.g., Bocherens et al., 2001; 

Richards et al., 2008; Richards and Trinkaus, 2009); and organic residues on lithics plus 

phytoliths and starch grains in dental calculus and grindstones to identify possible food plants 

(Hardy et al., 2001; Lev et al., 2005; Revedin et al., 2010; Hardy and Moncel, 2011; Henry, 
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2011; Henry et al., 2011; Adler et al., 2013). The elucidation of Paleolithic diets provides a 

framework for assessments of oral pathology in that periodontal disease has correlations with 

protein deficiency (Kerr, 1962) and both caries and periodontal disease are associated 

carbohydrate consumption (Larsen et al., 1991; Hujoel, 2009), and species of oral flora (Loesche, 

1996; Adler et al., 2013; Warinner, 2013). Yet, as procurement technology evolved through the 

Late Pleistocene, there appears to have been little change in the dietary resources exploited, 

suggesting that ecozonal variation in available foods best explains dietary shifts that may relate 

to aspects of oral health (Stiner, 1994; Hardy, 2010; Fiorenza et al., 2011; Henry, 2011; 

Trinkaus, 2013). Therefore I would not expect subsistence differences to explain Neandertal and 

early modern humans’ differential oral health and hence morbidity, although oral health patterns 

may be variable across regions reflecting regional subsistence differences (Fiorenza et al., 2011; 

Henry, 2011) (see project hypothesis four). Reduced environmental productivity, changing 

foraging costs, decreased mobility, resource use intensification, and increasing cultural 

heterogeneity around 20 kya may also have exaggerated these regional issues (cf., Holt and 

Formicola, 2008). 

     Evolutionary Medicine:  

Modern human populational health is a partially a result of the specific population’s 

adaptations—though recent human mirgration, colonial history, etc. are confounding factors 

today (see debate in Farmer et al., 2013). But how does our current environment reflect the 

environment within which the majority of the human evolution has taken place? Evolutionary 

medicine is a paradigm through which modern biological responses to pathology and infection 

can be interpreted by asking questions about how adaptive are these responses if one assumes a 

“Stone Age” environment (Williams and Nesse, 1991; Nesse and Williams, 2008; Trevathan, 
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2007; Gluckman et al., 2009). As far as oral health, there has been a “host-parasite arms race” 

between cariogenic and periodontopathic oral flora and the human host (Williams and Nesse, 

1991; Warinner et al., 2014). What about the presentation of periodontal disease and caries are 

actually an adaptive response on the part of the host to dealing with these bacteria? The swelling, 

inflammation and fever associated with periapical lesions, periodontitis, and other oral infections 

have been explored as far their adaptive role. Besides being side effects of the immune systems 

response to infection, fever may make the host less aminable to the bacteria as well as 

encouraging the liver to store iron and therefore robbing the bacteria of a necessary element 

(Bullen, 1981; Kluger, 1991).  

Only a few previous studies have used this paradigm to ask questions about Pleistocene 

dentition. The decrease in dental wear in (relatively) recent times could be driving an increase in 

oral disease as our dentition evolved in a high wear environment (Kaifu et al., 2003). Scissor 

occlusion of the anterior teeth (with overjet and underbite) and the interlocking on the cusps of 

the posterior teeth—which in modern dentistry is considered a normal condition—may actually 

be a retention of the juvenile condition due to minimal amounts of wear even in adults (Kaifu et 

al., 2003). This is encouraging malocclusion, impacted teeth, and larger interdental spaces for 

plaque to accumulate and promote periodontal disease, caries, and periapical lesions, as well as 

temporomandibular joint dysfunction and arthritis.  

Dental reduction may also be an adaptation in minimizing oral pathology. The rate of 

tooth reduction in the Holocene is twice that of the Upper Paleolithic (Brace et al., 1987), and 

there is a 45% reduction in occlusal area of the posterior teeth in early Homo through the 

Neolithic (Calcagno and Gibson, 1991). Some have argued this is merely the result of decreased 

selection for large teeth through reduced wear causing either genetic drift or a metabolic savings 
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known as the “probable mutation effect” (Brace, 1964; McKee, 1984). But even a minor 

reduction of oral pathology through smaller teeth could be enough to drive that selection. 

Calcagno and Gibson (1991) suggest that smaller, less complex teeth confer resistance to caries 

and periodontal disease in a low wear environment (i.e., soft, less abrasive diet) by minimizing 

crowding/malocclusion and interdental spaces as well as producing teeth with less crenulous 

surfaces for cariogenic bacteria to thrive (this latter assertion is not convincing as there is no 

reference for smaller teeth being less morphologically complex). They acknowledge that they do 

not have the data to test this hypothesis in the Pleistocene, though they assume high periodontal 

disease in the Upper Paleolithic based on the available radiographs (Skinner and Sperber, 1982).  

 Genes that predispose individuals to caries have already been identified (Nariyama et al., 

2004; Wang et al., 2010). However the morbidity effect of rampant caries may minimally affect 

fitness if it hits later in life. Any gene that has fatal or impairing consequences towards the end of 

the expected life span may still be selected for if it confers even minor benefits earlier in life; this 

is known as “deferred costs” (Williams and Nesse, 1991; Worthman and Kohrt, 2005; Trevathan, 

2007). To understand the genetic predispositions to oral pathology, such as lower oral pH that 

encourages caries, it should be ask whether or not these states confer any advantages, especially 

early in life. Evolutionary medicine has been used as a paradigm through which to ask questions 

of the fossil record mostly; however, it could inform larger questions about differential health 

over human evolution, and this is explored in the interpretation of the results of this study. 

What the Field of Pleistocene Paleopathology is Missing: 

 No one has previously conducted a thorough survey of oral pathologies: namely, caries, 

periodontal disease, periapical lesions, and antemortem tooth loss. Dental enamel hypoplasias 

have been well studied in the Pleistocene, but as it has already been pointed out, they only 
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represent systemic stress on an individual during growth and development. Much selection 

occurs on individuals during this period, but it is not the sum of stress on an individual during 

their lifetime. Adult morbidity has a major contribution to the overall health of a population and 

also indirectly affects the health and survival of those individuals’ offspring and the next 

generation. The connection between oral health and systemic health is unquestioned at this point, 

making a study of Pleistocene oral health a logical pursuit if one wants to answer questions about 

differential morbidity and health in these fossil samples. Multiple publications have concluded 

their studies with a call for a more detailed study of oral health in the Pleistocene, and yet the 

calls went unheeded for over twenty years (Brennan, 1991; Calcagno and Gibson, 1991; Kaifu et 

al., 2003; Holt and Formicola, 2008) 

 The few smaller assessments of oral health from Pleistocene individuals often suffer from 

one of two problems: narrow sample selection making conclusions potentially unapplicable to a 

larger population; or the failure to utilize better methods developed outside paleoanthropology. 

To ask questions of Neandertals more broadly and their extinction more specifically, why use 

contemporary modern humans as a comparison when Upper Paleolithic modern humans 

specimens are available? Specifically with oral pathology, there is such an extensive 

bioarchaeology literature of the study of caries, periodontal disease and their resultant 

pathologies in skeletal collections, one cannot claim there is no tested method to reference.  

It is within this current dearth of research that this study orients itself. The methods 

necessary are widely available, the questions have not been answered, and the implications of the 

results are expansive. How did oral pathology—and therefore morbidity and health more 

broadly—vary across populations of Late Pleistocene Western Eurasia? Did health differ over 

time, and if there are differences, can they be attributed to changing environmental conditions or 
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evolving technology and culture? Did health differ between Neandertals and early modern 

humans to an extent that one can make inferences about the Upper Paleolithic transition and the 

extinction of Neandertals? The larger global health, dentistry, and evolutionary medicine 

implications of this research could provide a counterpoint for those fields. Many studies have 

been based on the premise that oral health was good in the Pleistocene, and that the advent of 

agriculture was the inflection point for the decline of oral health and the rampant oral disease we 

see today. However that premise has never been fully tested, and where there is have evidence to 

the contrary, there are some interesting implications for the current narrative of the history of 

human health.  
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Chapter 3: Materials & Methods 

Materials: 

     Fossils Materials: 

 Materials were available for research in twelve countries: Spain, France, Italy, Romania, 

Croatia, Austria, Czech Republic, Germany, Belgium, England, Israel, and the United States. 

Universities and museums were visited from March 2012 through January 2013; pilot work was 

completed in June and July 2010. Fossil materials were selected for inclusion through reviews of 

regional fossil catalogs and publications. Preservation level was not taken into account as this 

could underestimate pathology, which weakens alveolar bone, if only nearly complete specimens 

were selected (Marin et al., 2005). The list was narrowed based upon which specimens were 

actually available for study. I visited in total 35 museums, universities, and laboratories in 32 

cities (Table 3.1). 

 

Country: City: Institute: 

Spain: Malaga Delegado Provincial de la Consejerría de Cultura de la Junta de 
Andalucía 

 Nerja Museo Historia de Nerja 
 Murcia Zoología y Antropología Física, Universidad de Murcia 
 San Sebastian Centro de Depósito de Materiales Arqueológicos y 

Paleontológicos de Guipúzcoa 
 Madrid Consejo Superior de Investigaciones Científicas 
France:  Paris Muséum national d'Histoire Naturelle 
 Paris Institut de Paléontologie Humaine  
 Les-Eyzies-

de-Tayac 
Musée National de Prehistoire 

 Bordeaux Laboratoire d'Anthropologie, Université Bordeaux 1 
 Perigueux Musée d'art et d'archéologie du Périgord 
 Lussac-les-

Châteaux 
Musée de Préhistoire de Lussac-les-Châteaux 

 Saint Marcel Musée de Argentomagus 
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Country: City: Institute: 
Italy:  Torino Dipartimento di Anatomia, Farmacologia e Medicina Legale, 

Università di Torino 
 Ventimiglia Museo Nazionale Preistorico dei Balzi Rossi 
 Roma Museo Nazionale, Preistorico Etnografico, Luigi Pigorini 
 Roma Dipartimento di Biologia Ambientale, Sapienza-Università di 

Roma 
 Anagni  Istituto di Paleontologia Umana (formerly in Roma) 
 Pisa Dipartimento di Biologia, Universita di Pisa 
 Ferrara Dipartimento di Biologia ed Evoluzione, Sezione di 

Paleobiologia, Preistoria e Antropologia, Università di Ferrara 
Romania:  Craiova Muzeul Olteniei 
 Buchureşti Institutul de Speologie "Emil Racoviţă" 
Croatia:  Zagreb Institute for Quaternary paleontology and geology 
Austria:  Vienna Naturhistorisches Museum Wien 
Czech 

Republic:  

Dolní 
Vĕstonice 

Centrum pro Paleolit a Paleoetnologii Dolní Vĕstonice  

 Brno Moravian Museum 
Germany:  Bonn Rheinisches Landesmuseum 
 Mettman Neanderthal Museum 
 Tübingen Senckenberg Center for Human Evolution and Paleoecology, 

Paläoanthropologie, Eberhard-Karls-Universität  
Belgium:  Brussels Laboratory of Anthropology and Prehistory, Royal Belgian 

Institute of Natural Sciences 
 Liège Geology Department, Université de Liège 
England:  London Natural History Museum 
Israel:  Tel Aviv Department of Anatomy and Anthropology, University of Tel 

Aviv 
United 

States:  

Lexington Webb Museum, University of Kentucky 

 New York 
City 

American Museum of Natural History 

 Cambridge Peabody Museum, Harvard University 
 

Table 3.1: Institutes visited for data collection 

 

 Details of specimens included in the study and their sites of origin are provided in 

Appendix 1 and are organized first by temporal/ taxonomic group, then by country, then 

alphabetically by site. The minimum number of Late Pleistocene individuals is 253, some of 

which are represented by only one tooth. The comparative samples are represented by 
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comparatively more complete burials and are represented by at least one arcade (maxilla or 

mandible). Their samples sizes (minimum number of individuals, MNI) are as follows: 23 

Natufians from Tel Aviv University, 29 Natufians from the Harvard Peabody Museum (52 

Natufians total), 23 from Point Hope, and 75 from Indian Knoll. 

     Research materials:  

 Measurements were taken with a pair of Mitutoyo metal calipers. Photographs were taken 

with a Nikon D90 digital camera and a Tamron macro lens and Sigma 18-200mm lens. Light 

sources varied. All digital radiographs were taken with a Nomad eXaminer x-ray generator gun 

and a Digirex digital dental radiography system with size #1 digital sensor and software 

(Dentamerica Inc, Industry, CA), except for the Indian Knoll material where a larger Bowie 

veterinary x-ray generator was used. 

Methods: 

     Laboratory Methods: 

Each specimen was scored for presence and severity of caries, periapical lesions, 

periodontal disease, hypercementosis, and antemortem tooth loss (details below). Considering 

the strong interconnectivity among these disease processes and other changes in the oral cavity, 

dental wear, hypoplasia, and crown morphology were recorded to test for covariance between 

morphology and oral disease in future analyses. Dental and bony size and shape metrics were 

also recorded (e.g., buccolingual and mesiodistal dental measurements, mandible width and 

length). All available Neandertal oral specimens with reasonable dental preservation (MNI=121), 

Middle and Upper Paleolithic and selected Epi-Paleolithic adult SW Asian and European modern 

human oral specimens (Middle and Upper Paleolithic moderns MNI=132, Epi-
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Paleolithic/Holocene N=52), and selected North American archaic and historic era specimens 

(N=98) were subjected to examination both macroscopically and radiographically following a 

standardized data collection protocol detailed below. 

To be included in the sample, the mandible, maxilla, and/or tooth had to date to the 

appropriate time period. The pathologies of periodontal disease, periapical lesions, and ante-

mortem tooth loss require alveolar bone for diagnosis; caries only requires a tooth. Therefore 

sample size varies per pathology measurement and those values are provided in the introduction 

of each results chapter. Oral pathologies, such as alveolar infections, can weaken alveolar bone, 

and therefore, choosing only well-preserved specimens would greatly underestimate pathology 

incidence (Marin et al., 2005). To avoid at least some sampling bias, preservation level was not 

taken into account with the selection of fossils for inclusion in the study. 

Each specimen was placed within one of four age categories based on dental 

development (AlQahtani et al., 2010) and/or occlusal scores (the ratio and shape of dentin to 

enamel on the occlusal surface) (Smith, 1984): juvenile/subadult (under 18 years of age); young 

adult (approximately third decade of life); mid-aged adult (approximately fourth decade of life); 

and elderly (over ~40 years of age) (Frayer, 1989; Watt et al., 1997). Wear is population specific, 

so Smith’s (1984) scale for hunter-gatherers is the best scale available (Walker et al., 1991). 

Dental wear is considerably less in extant groups practicing a Westernized diet. It is critical to 

assess age, because average life span affects oral pathology incidence and severity in a 

population, as well as allowing for the identification of age-specific trends (Caspari and Lee, 

2004; Caglar et al., 2007). These wear categories are theoretically broad enough to avoid 

inaccuracy (Nagar and Hershkovitz, 2004) and issues such as the possible aging effects of 
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differences in enamel thickness between Neandertals and early modern humans (Molnar et al., 

1993; Olejniczak et al., 2008).  

Faunal lists from each site and layer plus published climatic reconstructions are used to 

infer climatic assignment (Temperate vs. Cold) to test correlation with caries incidence (see 

Appendix 1 and Table 4.7). Every specimen is also assigned to one of three geographic 

categories (i.e., Mediterranean, Atlantic, and Continental), but because these samples span a 

broad time range, these regions can represent different environments over time. Therefore where 

possible, an additional variable of “climate” (temperate versus cold) is introduced because it may 

explain pathology patterning better than “region”. Climate dictates the available food resources 

in an environment, and dietary sugars can produce both caries and periodontal disease in recent 

humans samples (Hujoel, 2009). 

Macroscopic Methods:  

Photographs and caliper measurements were used to augment visual assessment of 

specimens. Pathologies acquired during life were differentiated from post-mortem changes (such 

as fossilization discoloration, pseudocaries, and tunneling mycelium damage) and were recorded 

(Poole and Tratman, 1978; Kerr, 1990; Whittaker et al, 1990; Hillson, 2001). A Nikon D90 

camera with macro lens was used to take detailed photos of each instance of pathology and an 

18-200mm lens was used for whole specimen shots. The photos were used for record keeping 

and re-examination during data analysis when questions arose.  

Radiographic Methods: 

 For radiographic images, a Nomad eXaminer portable x-ray generator was used along 

with a Digirex digital dental radiography complete system with size #1 digital sensor connected 

to a PC laptop computer for immediate imaging results using the associated Digirex software 
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(Dentamerica Inc, Industry, CA). Exposure of 15 mA and 40 kV were used with adjusted 

exposure time depending on the specimen’s preservation and mineral content starting with 0.1 

seconds up to 0.4 seconds. The x-ray sensor was placed against the specimen one foot from the 

source. A longer distance of one meter is preferred with traditional portable x-ray machines, but 

with a Nomad eXaminer, this is not necessary. All specimens were radiographed by SL with the 

exception of the samples from Bordeaux, where exisiting radiographs were available (Bois-

Ragot, Les Battut, and Baousso de Torre), and the Sima de las Palomas material, where 2-D x-

ray images from micro-CTs were available.  

Per pathology methods: 

Caries: Caries were scored visually with the aid of 10x hand magnification following an 

ordinal 8-level protocol for location, surface, and severity (Hillson, 2001). The scoring takes the 

size of the lesion and which dental tissues are affected into account, i.e. how deep is the lesion, 

and does it affect the pulp, etc? Score 1 is staining, and score 2 is staining with an etched texture. 

Because of the confounding effects of taphonomic preservation and post-mortem damage, score 

1 and 2 caries are difficult to diagnosis definitively in fossils and were therefore not included 

here. Score 3 is a confirmed lesion that only affects the enamel, and score 5 is a lesion that 

affects the enamel and dentin, or cementum and dentin in root caries (score 4 is dentin exposure 

that is not definitely carious and therefore also not included in this study). Therefore the vast 

majority of caries in this sample are scores 3 and 5. Score 6 is caries that affects one surface and 

the pulp chamber; score 7 is a lesion that affects multiple surfaces, but not the pulp chamber; and 

score 8 involves multiple surfaces and the pulp chamber (Hillson, 2001).  There is an additional 

9-15 scoring regime for grossly severe caries with associated alveolar lesions; its use was rarely 

necessary. Most lesions were either a level 3 (clear cavitation, but enamel only) or level 5 (dentin 
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exposed in the cavity). To avoid misdiagnosis confused by diagenetic change, discolorations 

were recorded separately (Poole and Tratman, 1978; Hillson, 2001). Prevalence per tooth type, 

tooth surface, location (occlusal, approximal, root, etc.), and severity are tabulated in the caries 

chapter. Some carious lesions are better diagnosed with radiographs for in situ teeth. The same 8-

level scoring technique was used for caries radiographic diagnoses and checked against what 

could be seen visually since radiographs were available instantaneously in the field (Hillson, 

2001).  

Periapical Lesions: Periapical lesions were diagnosed visually when the cortical bone was 

affected and further classified by defect size with digital calipers (height and width). Associated 

teeth, side of alveolar process affected (lingual, labial/buccal), and descriptive traits were also 

recorded (Dias and Tayles, 1997). Radiographs were used for periapical lesions that could not be 

well assessed visually or to diagnose ones that were not visible externally, i.e., were confined to 

the trabecular bone. A number of previously unpublished lesions were identified through 

radiographs. Values are presented as the number of alveoli present in a sample affected by 

lesions. 

Periodontal Disease: Periodontal disease manifests as deterioration of the alveolar bone, 

interdental septa, and lamina dura and the formation of bony pockets (Costa, 1982). To assess 

periodontal disease here, I measured the distance from the cemento-enamel junction (CEJ) to 

both the occlusal surface (crown height) and the alveolar crest (visible root height, or CEJ-AC 

distance) at buccal and lingual midpoints using digital calipers (Armitage, 2004; Wiebe and 

Putnins, 2000). CEJ-AC measurements are used to diagnosis periodontal disease in modern 

clinical settings, as well as to record attachment loss over time. In living humans, a distance of 

more than 1-2 mm is considered slight disease though in dried bone or fossils, the alveolar bone 
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may also recede for taphonomic reasons. Up to 3mm may be healthy and needs to be considered 

with the condition of the bone (Goldman et al., 1976; Lavigne and Molto, 1995). Recording six 

CEJ-AC measurements per tooth is advocated for (Lavigne and Molt, 1995; Eke et al., 2012), but 

that was not feasible here because of the delicate nature of fossil alveolar bone, especially 

interproximally. More than the standard two measurements (mid-point buccal and lingual) were 

taken when CEJ-AC distances varied greatly around the tooth, a condition more common in 

multi-rooted teeth. CEJ-AC distances were averaged per tooth, tooth type, and individual with 

locations of severe angular defects noted (Hildebolt and Molnar, 1991).  

Costa (1982), however, considered CEJ-AC distances to be somewhat untrustworthy for 

periodontal disease diagnosis because of the other processes that enlarge CEJ-AC distances 

besides periodontal disease (e.g., continuous eruption, lesions of pulpal origin (Clarke, 1990)), 

and presented his own method. Following Costa’s (1982) method of two scores for each present 

interdental crest (porosity and shape), an ordinal/binary score for alveolar condition was also 

assigned (Table 3.2). The first ordinal category refers to the shape of the alveolar septa between 

teeth (convex, flat, or concave) and the second binary score refers to the presence or absence of 

porosity. Other authors have considered Costa’s method to be too subjective (Lavigne and 

Molto, 1995); therefore, both kinds of data were collected. Also the extent of continuous 

eruption can be a confounding factor in periodontal disease diagnosis (Costa, 1982; Whittaker et 

al, 1990; Clarke and Hirsch, 1991; Danenberg et al., 1991; Newman, 1998; Dewitte and 

Bekvalac, 2010). Therefore periodontal disease diagnosis is presented using two different 

diagnostic protocols. Porosity can manifest before increasing CEJ-AC distance, so septa 

condition can hypothetically catch early disease (Costa, 1982). Alveolar topography and/or 
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deformities were also recorded (Karn et al., 1984). These can be related to periodontal disease, 

infections/lesions, and trauma. 

Using a dental probe to test the depth of infrabony periodontal pockets was not done to 

protect the delicate fossil materials, though it is advocated in periodontal studies of other skeletal 

materials (Costa, 1982; Lavigne and Molto, 1995). In addition to delicate preservation, many of 

the specimens examined here did not preserve full dentition. The CEJ-AC distances of a small 

subsection of an individual’s teeth predict the overall average CEJ-AC distance for an individual 

with a small amount of error though (Shrout et al., 1990); suggesting that where a subsection of 

alveoli in an individual are preserved, I can reasonably assume they reflect the CEJ-AC distance 

average of the whole individual. CEJ-AC distances were then surveyed as averages per tooth 

type and individual. 

 

Ordinal Score 0 1 2 3 
CEJ-AC measurement1 0-1mm 2-3mm 4-5mm >6mm 
Septa Condition 
Scores2 

No Porosity; 
Convex or 
Flat 

Porosity; 
Convex 
shape 

Porosity; 
Flat shape 

Porosity; 
Concave 
shape 

Diagnosis No disease Mild disease Moderate 
disease 

Advanced 
disease 

 
Table 3.2: Diagnosis for periodontal disease in specimens using both CEJ-AC distances and 

interdental septa scores: 1Modified from Lavigne and Molto (1995) who modified it from 
Ramfjord (1967). Clarke et al. (1986) used a similar method with three levels (0-2mm, 2-4mm, 

>4mm); 2Costa, 1982 

 

Because two types of periodontal diagnosis were used, differences between the protocols 

was assessed to test whether high CEJ-AC distances can occur without degraded inter-dental 

septa condition (i.e., continuous eruption). These results are included in Appendix 3 and found 

generally that the two methods are highly correlated with one another (except for the upper left 
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central incisor). High levels of wear are common in Pleistocene individuals, especially in the 

oldest age category (Krueger, 2011). Teeth can super-erupt without matching occlusal forces and 

mesially drift in response to interproximal wear while still maintaining good alveolar bone health 

(Begg, 1954; Hillson, 2001; Kaifu et al., 2003). The use of two methods of periodontal disease 

diagnosis should minimize false positives in these populations given their high levels of dental 

wear, though the strong relationship between the two diagnostic methods suggests this is not a 

problem (Appendix 3). 

 Antemortem Tooth Loss (AMTL): Teeth present and alveoli (tooth sockets) present were 

recorded. Any visual evidence of alveolar resorption or missing teeth were noted, and 

antemortem tooth loss was recorded as “number of sockets missing a tooth with evidence of 

resorption per all identifiable sockets” (Buikstra and Ubelaker, 1994). Due to high preservation 

variance in these samples, number of lost antemortem teeth per individual is inappropriate, so 

percentages per individual are used. Some alveoli were difficult to definitively state whether a 

tooth was lost ante- or postmortem, so there are separate categories for definitive loss and 

definitive plus probable loss (Gilmore, 2013). Unerupted teeth seen in radiographs or in partly 

open crypts were also recorded, as were deciduous teeth. Considering eruption timings, some 

present deciduous teeth appeared to be pathologically persistent. Agenesis of teeth, especially 

third molars, can be difficult to differentiate from tooth loss in older individuals, therefore 

agenesis results were also reported in the antemortem tooth loss results chapter. Considering that 

dental agenesis has not been analyzed previously for the Pleistocene, the reporting of the results 

is warranted. 

Occlusal Wear: Dental wear was scored using an ordinal 8-level scoring method per tooth 

type with some sub-categories for the posterior teeth (Smith, 1984). Wear is used to assign an 
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age category along with dental development (AlQahtani et al., 2010). When the pulp chamber is 

exposed, any indications of demineralization or carious activity, as well as secondary dentin 

were noted to differentiate caries-induced versus wear-induced pulp chamber exposure (Hillson, 

2001). Secondary dentin can also be seen radiographically, though it is difficult to quantify. 

Exposed pulp chambers were cross-referenced with evidence of infection or periapical lesions. 

     Statistical Methods:  

From this raw data, oral pathology prevalences were computed. Rate (occurrence of new 

cases of disease with a specified time period) and incidence (risk of developing disease within a 

specified time period) for pathology can be calculated for living humans, but considering the 

biased structure presented in an cementary or archaeological sample, only prevalence can 

accurately be assessed (total number of cases in sample) (Hillson, 2008)—though the term “rate” 

is commonly but inaccurately used in anthropological research (e.g., Frayer, 1989). The majority 

of the data derived from this study are ordinal, but a few forms of data are nominal or 

continuous. I did not anticipate normal distributions for any continuous data—with the exception 

of size metrics—as most of these pathologies intensify over the aging process, and many 

individuals will show no pathology. Because of this, Kruskal-Wallis tests (non-parametric, 

multiple sample groups) were usually used for determining significant difference between 

samples and Chi-square goodness-of-fit to test whether distribution patterns differed from 

predicted. The alpha value for significance is set at 0.05.  

Percentage of carious teeth over all teeth present per group, tooth type, severity, etc. are 

compared as well as proportion of individuals with various levels of periodontal disease severity 

within variously defined groups. Antemortem tooth loss is a more simple mathematical 

diagnosis: presence/absence per alveolus. The number of alveoli missing their tooth and showing 
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some form of alveolar resorption over all the alveoli present was calculated per specimen. These 

ratios were compared between individuals and groups. Periapical lesions were also calculated per 

alveoli present in a sample group. By using “number of alveoli affected” for lesions, it is 

somewhat more confounding than using the number of lesions as large lesions can affect more 

than one tooth. Using number of alveoli affected may overestimate the number of contained 

lesions (periapical lesion prevalence), but it gives an idea of the severity of affliction for an 

individual. Also it is alveoli affected, not teeth affected, as no loose tooth was diagnosed as 

having a periapical lesion (though Eshed et al., (2006) reports their lesion percentages as per 

tooth). An alveolus with a tooth missing postmortem could still be diagnosed as “lesioned”—and 

lesions can cause antemortem loss. A lesion that caused antemortem loss well in advance of 

death may go undiagnosed though, if healing is extensive. 

All of these pathologies are assumed to increase in frequency with age, and therefore age 

needs to be accounted for in the data distribution. The age distributions per group were tested for 

statistical difference (Kruskal-Wallis), which as a technique has a precedent, but is not perfect 

(e.g., Bridges, 1991). Two other techniques were experimented with: comparisons per age 

categories (e.g., Keenleyside, 1998; Dewitte and Bekvalac, 2011) and regression holding age 

constant. The first two methods are done in each pathology results chapter and regression is 

attempted in the overall health discussion chapter. This has to be done per pathology since the 

sample numbers vary considering what was preserved in each individual. Certain pathologies are 

also assumed to differently affect men and women. Unfortunately with fossils, sex is rarely a 

known variable and therefore corrections for sex could not be made. 

Drawing from Brennan’s (1991) “Overall health statistic” used to identify direction and 

magnitude of changing health indicators between consecutive time periods—a positive value 
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indicates increasing health, a negative value decreasing health—a total dental health statistic is 

used to help describe the rejected null hypotheses about changing oral health in the discussion 

chapter (see Equation 3.1). There are 4 indicators (caries, periodontal disease, antemortem tooth 

loss, periapical lesions) meaning that the highest possible value is +/- 5.33. This is a crude 

measure, but it is comparative within the same study and gives us a holistic indication of changes 

over time. The overall null hypotheses are tested per pathology and where the pathologies show 

conflictory signals, the total dental health statistic could help to explain which signal is stronger. 

 

±  #  𝑜𝑓  𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠  𝑠ℎ𝑜𝑤𝑖𝑛𝑔  𝑠𝑎𝑚𝑒  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙  𝑡𝑟𝑒𝑛𝑑

𝑇𝑜𝑡𝑎𝑙  #  𝑜𝑓  𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 − 1
  𝑥  𝑇𝑜𝑡𝑎𝑙  #  𝑜𝑓  𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠

= 𝐵𝑟𝑒𝑛𝑛𝑎𝑛
!
𝑠  𝑂𝑣𝑒𝑟𝑎𝑙𝑙  𝐻𝑒𝑎𝑙𝑡ℎ  𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

Equation 3.1: Overall morbidity score between each temporal group (from Brennan, 1991) 

 

The null hypotheses were drafted to reflect no change, and therefore would be rejected 

under the current understanding in the literature of health and stress in the Late Pleistocene. Tests 

of statistical differences between groups for distribution of pathologies are used individually and 

in aggregate to test the hypotheses (see Chapter 7: Oral Health & Systemic Health). Where null 

hypotheses fail to be rejected, this might be explained by one of three issues: population 

morbidity does not differentiate samples; oral health does not reflect population morbidity; or 

sample size is inadequate. Since oral health correlates well with mortality (Goodman and 

Armelagos, 1989; Lovell, 1991) and overall health (Dolan et al., 1991; Gift and Atchison, 1995), 

the former is the most likely explanation (i.e., the null hypothesis truly fails to be rejected). 

Sample size issues could exaggerate type II error in the study; however, testing was done by 

tooth type in addition to specimen/individual to increase sample sizes (but introduces 
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interrelatedness amongst data points). Sample size is always a problem in paleoanthropological 

research. This is addressed per pathology in the results chapters as each pathology analysis has a 

different sample size. 
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Chapter 4: Caries & Periapical Lesions  

Introduction: 

 Caries are not well known—or rather have rarely been identified—before the advent of 

agriculture across most studied regions of the world. In this survey, new instances of caries were 

identified and others were confirmed (47 carious teeth seen in total out of 1869 teeth studied, or 

2.5%). Prevalences remain low overall, but are higher than previously reported (e.g., Frayer, 

1989; Brennan, 1991; Walker et al., 2011 (see Table 4.1 and 4.7)). Though sample sizes for 

various caries-positive sub-groups are small, patterns by time period/taxonomy and region are 

discernable. Caries are often analyzed with periapical lesions in recent samples, as severe carious 

lesions may eventually result in pulpal inflammation, necrosis, alveolar inflammation, or 

periapical lesion formation. Here there are 67 lesioned alveoli in 2131 alveoli examined (3.1%). 

Few periapical lesions are directly associated with carious teeth in these samples, and few 

carious lesions are advanced enough to effect the pulp chamber. The significance of this lack of 

association is discussed, and lesions are also compared in chapter seven to periodontal disease 

prevalence—another potential source for the introduction of bacteria into the alveolus.  

Results: 

 Caries can be analyzed as presence/absence and severity either by individual or by tooth. 

Because fossil individuals rarely preserve all of their teeth—and in the Pleistocene a single tooth 

may represent a named specimen—analysis by tooth is the only reasonable approach for a 

sufficient sample size. This makes cross-comparison with some other Holocene studies 

inappropriate, as per-individual prevalences are commonly reported and are much higher than 

per-tooth prevalences (see Table 4.1). It only takes one lesion to diagnose all 32 teeth in an 
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individual as having the disease “caries” using this method. If the minimum number of 

individuals is used (MNI) (not all catalog numbers correspond to the fossil remains of only one 

individual), the Late Pleistocene caries analysis sample contains at least 253 individuals and 36 

individuals diagnosed with caries, making the pooled caries individual prevalence 14.2%. These 

carious “individuals” range from a single tooth to a full dental arcade.  

 

 

This 
Study 

Frayer, 
1989 Other studies 

Neandertal 
3.50% 
[6.7%] - - 

MPMH 
40% 

[43.8%] - - 
EUP 15.90% 0% 2.9% (Holt & Formicola, 2008) 

LUP 
26.20% 
[27.4%] 11.30% 7.3% (Holt & Formicola, 2008) 

Mesolithic - 19.10% 
14.6%t (Wittwer-Backofen and Tomo, 2008), 

14.9% (Meiklejohn et al., 1988) 
Natufians 15.40% - * (Eshed et al., 2006) 

Point Hope 
(Ipiutak) 8.70% - * (Costa, 1980b) 
Indian 
Knoll 66.70% - 

30% (Leigh, 1925), 
21.3% (Rabkin, 1943) 

 
Table 4.1: Comparison of this study’s results (caries percentage, individuals per group) with 

previous publications; Values in parenthesis include published examples. tCalculated from values 
available in the paper; *None of the previous relevant publications report this value, nor the 

necessary variables to compute it 

 

In this study, the per-individual values are: Neandertal: 3.5% (4 of 116); Middle 

Paleolithic Modern Humans (MPMH): 40% (6 of 15); Early Upper Paleolithic: 15.9% (10 of 63); 

and Late Upper Paleolithic: 26.2% (16 of 61) (Table 4.1). Pre-Columbian Native American 

samples’ per-individual caries prevalences range from 1.9% to 89.6% (Wells, 1975) and the 

comparative samples analyzed in this study range from 8.7% (4 of 23 at Point Hope) to 66.7% 
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(50 of 75 at Indian Knoll) indicating that this value varies wildly for human samples and 

disguises severity and multiple carious lesions in an individual. All further results are presented 

as per-tooth. Considering antemortem and postmortem loss, the per-tooth values likely 

underestimate the caries prevalence to a small degree.  

 

Known from Literature Newly Identified Examples 
Neandertal Neandertal 

Sima de Palomas 25, 59 Amud 1 
Aubesier 5, 12 Tabun 2 
Kebara 1*, 27 Middle Paleolithic EMH 

Banyoles 1* Qafzeh 7, H4, 4, 9, 11 
Middle Paleolithic EMH Early Upper Paleolithic 

Qafzeh 3 Les Rois 28 
Skhul 2 Grotte des Abeilles 

Early Upper Paleolithic Dolní Věstonice 15 
Cro Magnon 4                         Předmostí A17088 (whole mand.) 

                        Les Rois 50-4 (23), 51-15(40) Barma Grande 2 
Pavlov 1 Late Upper Paleolithic 
Dolní Věstonice 13t             Bois Ragot 
Paglicci* Le Morin 

Late Upper Paleolithic 
 

Gough’s Cave 1 
                        Grotte des Enfants 4*  Bruniquel (Abri Lafaye) 
                        Arene Candide 1* Ohalo 1, 2 
                        Lalinde Laugerie-Basse 2 

Romito 1 Vindija 22.2 & 22.7 
Ortucchio 1*                         Romanelli 29 & loose tooth #7 
Roc del Migdia 1*  Continenza 4 
Urtiaga B1*  Saint Germain 1970-7 
Balauziere*  

 
	                          Aurensan* 	                            	  	  

                        Aveline's Hole 174* 	  

	  

	  	  

                        Kent's Cavern EM501* 	  

	  

	  	  

 
Table 4.2: All the specimens with at least one carious lesion; * indicates it is in the literature, but 

is not a part of the sample because the descriptions were inadequate; tpublished as “maybe” 
having caries (Hillson, 2008), but considered as definitive caries here 

 

 Table 4.2 lists the fossil catalog names for all the identified individuals with caries, as 

well as other Pleistocene specimens published as having caries, but I did not study. Specimens 
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were not chosen for initial inclusion in this study based on any previous knowledge of their 

pathology status, so many specimens known to have caries were not included for visual 

inspection for a variety of reasons (See Chapter 3: Methods for a description of sample 

selection). Some of these specimens were initially described as explicitly not having caries or 

maybe having caries (e.g., Dolní Věstonice 13 & 15, respectively) (Trinkaus et al., 2006; 

Hillson, 2008), although that now appears to be inaccurate, i.e., they both have caries. For 

example, the Banyoles specimen was originally described as explicitly not possessing carious 

teeth (Herńandez-Pacheco and Obermaier, 1915; Tillier et al., 1995), but subsequent publications 

corrected that initial assertion (Lalueza et al., 1993). The same conflictory diagnostic situation 

describes Arene Candide 1 (no caries: Formicola, 1988; caries: Frayer, 1989) and Grotte des 

Enfants 4 (no caries: Formicola and Repetto, 1989; caries: Frayer, 1989). Published examples of 

caries that included sufficient descriptions were included in the sample as well, as a 

parenthesized value following the original sample value. This included: Neandertals: Aubesier 5 

(Trinkaus et al., 2000), Aubesier 12 (Lebel and Trinkaus, 2002b), Kebara 27 (Tillier et al., 1995), 

and Banyoles 1 (Lalueza et al., 1993; Trinkaus et al., 2000); Middle Paleolithic modern human: 

Skhul 2 (Sognnaes, 1956; Tillier et al., 1995); and Late Upper Paleolithic modern human: 

Romito 1 (Fabbri and Mallegni, 1988). No additional Early Upper Paleolithic specimens were 

identified from the literature for inclusion. All of these additional examples come from the 

Mediterranean region and raise the overall percentage (2.8% (53 of 1875)) and the per-individual 

values (Neandertal: 6.7% (8 of 120); Middle Paleolithic modern humans: 43.8% (7 of 16); Late 

Upper Paleolithic: 27.4% (17 of 62)) (Table 4.1). 

This list suggests that the relative lack of caries in the literature does not mean that 

carious lesions do not exist (Figure 4.2). Many of the caries examples in the “published” lists 
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were pulled from lists in summary publications (Sognnaes, 1956; Frayer, 1989; Brennan, 1991); 

there are few publications explicitly describing these individual examples of pathology (I 

included all of the sufficiently described ones above). Many anthropologists who were 

unfamiliar with dental pathologies may not have identified the carious lesions in these 

specimens. They were not looking for these pathologies, and therefore they remained 

undescribed.  

 

 

Figure 4.1: Qafzeh 3 lateral incisor caries photograph (left) and radiograph (radiograph) 

 

Table 4.3 gives a summary of the distribution of these carious teeth based on time period 

against region. The relevance of the distribution across time and geography are discussed in sub-

sections below. There is no Middle Paleolithic Modern Human in Western Eurasia outside of 

Southwest Asia (Mediterranean region), hence the dashes, as a value of zero would indicate that 

no caries were present in a sample. 
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Atlantic Continental Mediterranean Sum 

NEAN 0 0 4 [8] 4 [8] 

MPMH - - 16 [17] 16 [17] 

EUP 5 5 1 11 

LUP 8 0 8 [9] 16 [17] 

Sum 13 5 29 [35] 47 [53] 

 
Table 4.3: Number of carious teeth organized by region and time period (NEAN: Neandertals; 
MPMH: Middle Paleolithic modern humans; EUP: Early Upper Paleolithic; LUP: Late Upper 

Paleolithic); Values in parentheses include published examples 

 

     Age distribution:  

 The age distributions of each time period and region were tested for statistically 

significant differences. Because the tooth sample size for the caries analysis is different from the 

alveoli sample size for the periodontal disease analysis, this testing is done again in the next 

chapter. Caries organized by age category is analyzed separately below. Age distribution by MNI 

and number of teeth present was plotted by region and time period (Figs. 4.2, 4.3, 4.4, 4.5). The 

Sima de las Palomas sample with its large number of single loose teeth with their own catalog 

numbers—and therefore counted as separate individuals—warps the Neandertal distribution for 

individuals (MNI). Using Kruskal-Wallis for all tests, age distribution by time period for 

individuals was significantly different when Palomas was included (p-value: 0.048), but not 

significant if Palomas is removed (p-value: 0.116), or if the Middle Paleolithic modern humans, 

who are without elderly individuals, are removed (p-value: 0.354) (Figure 4.2). There are non-

significant differences between regions using MNI (without Palomas: p-value: 0.105; with 

Palomas: p-value: 0.120) (Fig. 4.3). When testing for age distribution differences by number of 

teeth, by region (p-value: 0.276) (Fig. 4.4) and time period (p-value: 0.255) (Fig. 4.5), there is 

also no statistical difference between groups. All the temporal/ taxonomic and regional samples 
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pattern similarly with respect to age distribution, with more young and mid-aged adults than 

adolescents and elderly. Therefore because age differences are not statistically significant, 

comparisons do not require control for age. 

 

 

Figure 4.2: Age distribution of individuals by time period: The Neandertals are plotted both with 
and without the Sima de las Palomas individuals (With Palomas: p-value: 0.048; without 

Palomas: p-value: 0.116) 
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Figure 4.3: Age distribution of individuals by region: The Mediterranean region is plotted both 
with and without the Sima de las Palomas individuals (without Palomas: p-value: 0.105; with 

Palomas: p-value: 0.120) 

 

 

Figure 4.4: Age distribution of caries sample by number of teeth per region: The Mediterranean 
region is plotted both with and without the Sima de las Palomas individuals (p-value: 0.276) 
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Figure 4.5: Age distribution of teeth by time period: The Neandertals are plotted both with and 
without the Sima de las Palomas individuals (p-value: 0.255) 

 

     Tooth type: 

All tooth types are not equally susceptible to caries (Hillson, 2008). In fossils, this 

disparity may be further exaggerated as anterior teeth, which supposedly have fewer caries than 

posterior teeth, also have simpler root shapes that predispose them to postmortem loss (Hillson, 

2008). The ratio of incisors to canines to premolars to molars should be approximately 2:1:2:3 

(25%: 12.5%: 25%: 37.5%) reflecting their proportions in the mouth; however, in some samples 

outside the Late Pleistocene, third molar agenesis can be high as 30% of the population 

(Brothwell et al., 1963; Scott and Turner, 1997). The percentages of each tooth type here reflect 

this preservation bias in that there are significantly fewer incisors and more molars than expected 

(Incisors 20.4%: Canines 12.5%: Premolars 24.3%: Molars 42.7%) (Chi-square, p-value: 0.003). 

 Molars show the highest prevalence of carious lesions in this sample (Table 4.4), and this 

is statistically significantly different from the predicted values based on tooth type percentages 
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(Chi Square, p-value: 0.004). Modern and fossil studies have similar patterns in tooth type 

susceptibility (e.g., Klein and Palmer, 1941; Frayer, 1989; Macek et al., 2003; Hillson, 2008). 

Molars have occlusal surfaces with pits and fissures for bacteria to flourish in, they receive less 

cleaning tongue action than anterior teeth, and they are further from sublingual and 

submandibular salivary gland ducts. Most modern studies focus on the caries of permanent teeth 

in children, and the occlusal fissures and pits of permanent molars are the most susceptible to 

caries by far in children (Hillson, 2008). In adults who do not have access to dental care, caries 

on other teeth become more common, but the molars are still the most susceptible (Manji et al., 

1989; 1991).  

 

 
Incisors Canines 

Anterior 
Teeth Premolars Molars 

Posterior 
Teeth Total 

No. Carious Teeth 4 [6] 3 7 [9] 2 34 [37] 36 [39] 43 [48] 

Total No. Adult 
Teeth 

371 
[380] 226 [231] 

597 
[611] 432 [437] 

757 
[774] 

1189 
[1211] 

1786 

[1822] 

Percentage of tooth 
type w/ caries 

1.1% 
[1.6%] 

1.3% 
[1.3%] 

1.2% 
[1.5%] 

0.5% 
[0.5%] 

4.5% 
[4.8%] 

3.0% 
[3.2%] 

2.4% 

[2.6%] 

 
Table 4.4: Number of carious teeth organized by permanent tooth type. The total sums to 43 [48] 

because 4 [5] carious teeth were deciduous molars; Values in parentheses include published 
examples (Anterior vs. posterior, p-value: 0.295) 

 

A previous study found caries only on molars in the Upper Paleolithic (Frayer, 1989), and 

the posterior caries “rate” was reported as 7 times that of the anterior caries “rate” in the 

Mesolithic. The anterior versus posterior caries prevalence is not nearly as divergent here (and 

non-significant, p-value: 0.295) with 2.1 times higher posterior caries prevalence (anterior: 1.5% 

vs. posterior: 3.2%).  
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Of the six incisors that did show caries, five were likely shoveled shaped, which means 

that they have a more crenulous lingual surface for cariogenic bacteria to thrive upon (Amud 1, 

probably the two Qafzeh 3 carious incisors, Kebara 27 (Tillier et al., 1995), and Skhul 2 

(Sognnaes, 1956)). The Vindija modern human carious central incisor (22.2) does not have 

visible medial or lateral lingual tubercles, but it is heavily asymmetrically worn on the lingual 

side and another lateral incisor from the site (tooth #22.3) is mildly shoveled. This means that it 

is possible that all the carious incisors are shovel-shaped and would therefore support the 

hypothesis that oral pathology avoidance may be driving the selection for smaller teeth with less 

complex dental morphology over the Late Pleistocene and Holocene (Gibson and Calcagno, 

1989; Calcagno and Gibson, 1991). Not all of the carious lesions on these incisors are on the 

lingual side; some are on the worn occlusal edge (Qafzeh 3, Skhul 2, and Amud 1). Shovel 

shaped incisors have much more surface area on their occlusal edges than chisel-shaped incisors 

though, and exposed dentin is more susceptible to demineralization than enamel. And once 

again, these incisors all hail from the Mediterranean region. 

There are five carious deciduous teeth in this sample; however, they should not be 

viewed as inconsequential. In the Qafzeh 4 approx. 7 year old individual, there is a carious lesion 

on a deciduous first molar, which has a matching lesion on the neighboring deciduous canine 

(see Fig. 4.6). Deciduous caries can affect neighboring teeth even in the Pleistocene, suggesting 

that permanent teeth are also susceptible in these carious oral environments (Yi and Wang, 

2002), especially considering the vulnerability of erupting teeth to demineralization. Multiple 

authors have stated that dental disease is an adult only disease before agriculture (Brabant and 

Brabant, 1962; Brabant, 1967; Meiklejohn et al., 1984; Frayer, 1989); however, this is not the 

case.  
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Figure 4.6: Qafzeh 4 left deciduous m1 and deciduous canine caries. Left image is an occlusal 
photograph of the mesial deciduous m1 lesion and the matching distal deciduous canine lesion. 

Right image is a radiograph. Note the radiolucency demonstrating a communication between the 
occlusal lesion and the pulp chamber of the deciduous m1 

 

Caries susceptibility also varies by upper and lower arcade. Saliva has an anti-bacterial 

effect (Dowd, 1999), but teeth in the lower arcade, with more exposure to saliva from proximity 

to salivary glands and gravity, are not less susceptible (Macek et al., 2003). 31 of the carious 

teeth are lower teeth—58.5% of the total lesioned teeth—and 22 are upper teeth. Out of a total of 

997 mandibular teeth, 3.0% are carious, and of 853 maxillary teeth, 2.5% are carious. However 

this is not statistically significant from the predicted (Chi Square, p-value: 0.777). There are 

statistically more mandibular teeth than sampling error would predict, but the large sample size 

may be driving this p-value more than actual preservation bias (Chi-Square, p-value: 0.015). 

Previously studied Upper Paleolithic and Mesolithic samples showed the same pattern with 2.4% 

of Late Upper Paleolithic mandibular teeth having caries and 1.0% of maxillary teeth (Frayer, 

1989) and mandibular caries outnumbering maxillary ones in the Epi-Paleolithic Jomon (Fujita, 

2012). 
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     Tooth Surface: 

Carious lesions can form on any surface of the tooth, but certain locations are more 

favorable for cariogenic bacteria. It has been assumed that root caries would be more common in 

populations with high wear, such as Paleolithic ones, since both occlusal carious lesions would 

be worn away and the compensatory continuous or supra-eruption would expose the roots of the 

teeth (Katz et al., 1982; Kerr, 1990). However, this is not the case. In this sample, the occlusal 

surface was the most common location for lesions; followed by the buccal or lingual side of the 

crown (usually molar buccal or lingual pits); and then with equal percentages for the 

interproximal sides and cemento-enamel junction/ cervical region (see Table 4.5). There was 

only one example each of root caries (Vindija 22.7, see Fig. 4.7) and of a lesion so extensive that 

the initiation site was indeterminate in the original sample, plus the published root caries from 

Aubesier 12 (Lebel and Trinkaus, 2002). This pattern is statistically different from predicted 

values if one assumes any surface is equally likely (Chi-Square, p-value: 0.027). Low life 

expectancy may partially explain the low number of examples of root caries, as they are 

commonly an affliction of the elderly (Warren et al., 2000). This pattern matches Hillson’s 

(2008) tooth type and location caries susceptibility pyramid with upper first molar occlusal 

fissures and lower buccal pits (side) being the most susceptible locations. Deciduous teeth follow 

a similar pattern with fissures of dm1s and buccal pits of dm2s being the most common sites 

(Evans and Lo, 1992; Skeie et al., 2006). 
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Table 4.5: Number of carious teeth organized by site of lesion. Total adds to 48 as one tooth, 

Les Rois no.23, had carious lesions on two different surfaces. Other teeth with multiple lesions 
had them on the same surface—typically occlusal—and were therefore still counted as one. 

Values in parentheses include published examples (p-value: 0.027) 

 

 

Figure 4.7: Root caries from Vindija Modern Human #22.7 

 

     Time Period: 

 Caries are recognized as being quite low in Neandertals, previously published as 0.3% of 

teeth before including the Sima de las Palomas specimens (Walker et al., 2011). The only 

previous attempts to quantify caries in the Late Pleistocene was an analysis geographically 

confined to Southwest France, which found only one example before the Magdalenian (i.e., Cro-

Magnon 4) (Brennan, 1991)), and an analysis of Upper Paleolithic and Mesolithic Europeans 

(Frayer, 1989) (see Table 4.7; Brennan (1991) did not report percentages, just a list of lesions 

 
Occlusal 

Buccal/Lingual 
Side Interproximal Cervical Root 

Initiation Site 
Indeterminate 

No. Carious Teeth 19 [20] 13 [16] 7 [8] 7  1 [2] 1 
Percentage of total 
carious teeth 

40.4% 
[37%] 

27.7% 
[29.6%] 

14.9% 
[14.8%] 

14.9% 
[13%] 

2.1% 
[3.7%] 

2.1%  
[1.9%] 
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and no tooth totals). The results of this study are presented in Table 4.6. The pattern over time in 

this study is the same as the previous studies (Frayer, 1989; Brennan, 1991): caries prevalence 

increases through time in Europe with the highest prevalence being in the Late Upper Paleolithic 

(Fisher’s exact, p-value: 0.005). However the prevalences here are more than twice those for the 

Late Upper Paleolithic reported by Frayer (1989) (EUP: 0% vs. 1.9% (11 of 578); LUP: 1.5% vs. 

3.6% (17 of 442)), and neither previous author included Middle Paleolithic modern humans from 

Southwest Asia in their samples. 

 

 
Neandertal 

MP 
Moderns EUP LUP 

Pooled 
Pleistocene 
Moderns 

No. Carious Teeth 4 [8] 16 [17] 11 16 [17] 43 [45] 

Total No. Teeth 659 [668] 
206 
[222] 578 

426 
[442] 

1136 
[1246] 

Percentage of time period 
w/ caries 

0.6% 
[1.2%] 

7.8% 
[7.7%] 1.9% 

3.8% 
[3.6%] 

3.5% 
[3.6%] 

No. Lesioned Alveoli 17 3 33 14 50 
Percentage of time period 
w/ periapical lesions 2.5% 1.6% 5.0% 2.7% 3.6% 

 
Table 4.6: Number of carious teeth and lesioned alveoli organized by time period and taxonomy; 

Values in parentheses include published examples (Caries: p-value: 0.005; Periapical lesions: 
Chi-Square, p-value: 0.244) 

 

 The modern humans of the Middle Paleolithic have the highest per-tooth prevalence 

(7.7% (17 of 222)) (Table 4.6), more than twice that of any other group (note 43.8% of Middle 

Paleolithic modern human individuals have caries in this study). This sample did not include any 

Middle Paleolithic modern humans from East Asia or Africa, though caries has been previously 

identified from Zhirendong, South China (Lacy et al., 2012) and the Middle Pleistocene archaic 

human from Broken Hill (Kortizer and St. Hoyme, 1979; Peuch et al., 1980; Bartsiokas and Day, 
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1993; Lacy, n.d.). The Middle Paleolithic modern humans in this sample are only from 

Southwest Asia, and therefore their high caries prevalence may be related to regional factors 

rather than temporal/ taxonomic ones. Kebara and Amud are Neandertals also from Southwest 

Asia who have carious teeth. However, it cannot be ruled out that the Middle Paleolithic modern 

humans in general suffered from caries at a rate greater than any previous or following 

populations until the Neolithic. This was a population expanding across Asia out of Africa (Bar-

Yosef, 1992; Templeton, 2002; Liu et al., 2010), and the dietary implications of this are unclear. 

 

 

This 
Study 

Frayer, 
1989 Other studies 

Neandertal 
0.6% 

[1.2%] 0% 
0.5% (Walker et al., 2011), 0.48% 

(Lanfranco and Eggers, 2012) 

MPMH 
7.8% 

[7.7%] - 5.3%t (Caselitz, 1998) 
EUP 1.90% 0% - 

LUP 
3.8% 

[3.6%] 1.50% - 

Mesolithic - 2.60% 
7% (Wells, 1975), 1.85% (Meiklejohn et 

al., 1988), 4%t (Caselitz, 1998) 

Natufians 2.40% - 
6.4% (Eshed et al., 2006), 0.2-3.0% (Smith, 

1972) 
Point Hope 

(Ipiutak) 1.00% - * (Costa, 1980b) 

Indian Knoll 8.10% - 

* (Leigh, 1925; Rabkin, 1943), <7% for 
Archaic foragers in North America (Larsen, 

1997) 
Recent Hunter-

Gatherers - - 
<10% (Lanfranco & Eggers, 2012), 4.18% 

(without Inuits, Caselitz, 1998) 
 

Table 4.7: Comparison of this study’s results (Caries percentage, per teeth present) with 
previous publications; Values in parenthesis include published examples. tThis value includes 

caries and antemortem tooth loss as Caselitz (1998) assumed tooth loss was a product of caries; 
*None of the previous publications report this value, nor the necessary variables to compute it 
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With the Middle Paleolithic modern humans removed, the caries prevalence appears to 

increase slowly over time from Neandertals to Early Upper Paleolithic modern humans to Late 

Upper Paleolithic modern humans. The possible reasons for this are discussed below. This 

trajectory may continue as published Mesolithic caries prevalences generally increase further 

(Table 4.7), but there is also likely a regional component. When all modern humans in the Late 

Pleistocene are pooled, the prevalence of caries per-tooth is 3.6%, considerably higher than the 

Neandertal prevalence of 1.2%. The large difference between the Neandertal and Middle 

Paleolithic modern human caries prevalences (1.2% vs. 7.7%) suggests there is no justified 

reason to pool the Middle Paleolithic samples with respect to caries affliction. The Middle 

Paleolithic was diverse with respect to human diet and oral environment. 

The periapical lesion pattern here is quite different from the caries pattern. Middle 

Paleolithic modern humans have the least prevalence of alveoli affected by periapical lesions 

(1.6%) and Early Upper Paleolithic moderns have the most (5.0%), but this pattern does not 

differ significantly from predicted (Chi-Square, p-value: 0.244). This also suggests that lesions in 

the Late Pleistocene are rarely of carious origin, as they do not pattern with caries; however, the 

Middle Paleolithic modern human sample has no elderly individual (Trinkaus, 2011). This may 

produce an artificially low lesion rate for the Middle Paleolithic modern humans. The elderly 

category has the most lesions, as lesions generally increase with age (see age category subsection 

below). Lesions were found to covary with periodontal disease, but not caries in the Late 

Pleistocene (see Chapter 7: Oral Health & Systemic Health). 

     Results by Region: 

 This sample is divided into three broad geographic regions: Atlantic Europe, Continental 

Europe, and the Northern Circum-Mediterranean. Individuals living in these different regions 
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likely experienced different climates and utilized different foodstuffs, and therefore these 

differing environments and diets likely manifested as differential caries prevalences. Figure 4.8 

maps out individuals—but not number of lesioned teeth—with caries. Regardless of region, it is 

clear that caries are more common at lower latitudes than higher latitudes, especially in the 

Middle Paleolithic. Frayer (1989) points out that most of his Early Upper Paleolithic specimens 

were from above 45° N latitude and most of the Late Upper Paleolithic specimens were from 

below 45° N, and this could explain the higher caries prevalence in the Late Upper Paleolithic 

(45° N latitude is placed on the map). However, the clustering of Late Upper Paleolithic sites in 

southern Europe is a result of glacial expansions around 20,000 bp, and therefore the 

environment was not necessarily warmer. The relationship between caries and climatic period is 

further tested using Marine Isotope Stage (MIS) and faunal assemblage variables (see table 4.9 

and Apprendix 1), showing there are more caries from temperate sites than cold ones (Cold: 

1.9% (10 of 968) vs. Temperate: 3.7% (35 of 942)). The negative latitudinal cline with caries 

continues into the Mesolithic (Meiklejohn et al., 1988; Frayer, 1989; Lukacs and Pal, 1993; 

Fujita, 2012). 

 

 
Atlantic Continental 

Late 
Pleistocene 
Mediterranean 

Pooled 
Mediterranean 
(incl. Natufians) 

No. Carious Teeth 13 5 29 [35] 46 [52] 
Total No. Teeth 731 411 727 [768] 1434  
Percentage of region w/ 
caries 1.8% 1.2% 4.0% [4.6%] 3.2% [3.5%] 
No. Lesioned Alveoli 31 21 15 23 
Percentage of region w/ 
periapical lesions 3.88% 4.94% 1.82% 1.50% 

 
Table 4.8: Number of carious teeth organized by region; Values in parentheses include 

published examples (Caries: p-value: 0.024; Periapical lesions: p-value: 0.078) 
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Figure 4.8: Map of individuals with caries in Western Eurasia: Locations are approximate 
(multiple individuals from the same site are represented by a wide grouping of dots). Dotted line 
indicates regional lines (Mediterranean, Atlantic & Continental); purple lines represent the 40°N 

and 45°N latitude lines 

 

 The numbers of carious teeth are presented by region in Table 4.8 and show a statistically 

significant pattern of many more caries in the Mediterranean region than predicted (Chi-Square, 

p-value: 0.024). One of the comparative samples, the Epi-Paleolithic Natufians, is also from 

Southwest Asia (Mediterranean region). Even when pooled with Paleolithic modern humans also 

from the Mediterranean region, the caries prevalence changes little (with versus without 

Natufians: Chi-Square, p-value: 0.362). The Continental and Atlantic regions caries prevalences 

are very similar, but the prevalence in the Mediterranean region is nearly twice that of the other 

two regions. This suggests the main dichotomy for caries is between the more southerly circum-
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Mediterranean specimens and those specimens from further north in Europe. Many of these 

Mediterranean caries diagnoses cluster in Southwest Asia, but they are present across the whole 

upper Mediterranean region. There are few Early and Late Upper Paleolithic modern humans 

from Iberia available for study, but even the Neandertals—who rarely have caries—have caries 

in Spain along the Mediterranean (two from Sima de las Palomas and Banyoles 1) (Lalueza et 

al., 1993; Walker et al., 2011). All of the deciduous examples of caries are from the 

Mediterranean region as well (Qafzeh 4, Palomas 25, and Aubesier 5). 

 Periapical lesions appear have the opposite pattern, though it is non-significant (Chi-

Square, p-value: 0.078). Once again the Atlantic and Continental regions are similar (3.9% and 

4.9%), but they have twice (non-significantly) the lesions of the Mediterranean sample (1.8%). 

The higher Continental region value is likely related to periodontal disease, as this region also 

has the highest periodontal disease prevalence, though statistically insignificant (see Chapter 5). 

The Early Upper Paleolithic had the highest periapical lesion prevalence (5.0%), and many of the 

Continental specimens date to this period. 

 

 
Cool Temperate 

No of carious 
teeth 18 29 [35] 

Total no. of teeth 968 901 [942] 
% carious 1.9% 3.22% [3.72%] 

 
Table 4.9: Number of carious teeth organized by climate; Values in parentheses include 

published examples (With published examples, p-value: 0.02) 

 

Sites were assigned to either cool or temperate climates based on MIS climatic research 

and/or faunal assemblages. 18 of the 53 (34%) carious lesions date to cool climatic periods and 

35 (66.0%) of carious teeth are from temperate (warmer) climatic periods (see table 4.9). There 
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is no significant difference in caries prevalence by climate (Chi-square, p-value: 0.08) unless the 

published examples are added (p-value: 0.02). The great variance in data available per site made 

any more specific climatic assignment impossible.  

     Age Category: 

 

 
Adolescent 

Young 
Adult 

Mid-aged 
Adult Elderly 

No. Carious Lesion 11 [13] 19 [21] 17 [18] 0 [1] 
Total No. Teeth 322 [324] 714 [731] 636 [652] 168 [174] 

Percentage of age category w/ 
caries 

3.4% 
[4.0%] 

2.7% 
[2.9%] 

2.7% 
[2.8%] 

0% 
[0.57%] 

Percentage of Total Carious 
Teeth 

23.4% 
[24.5%] 

40.4% 
[39.6%] 

36.2% 
[34.0%] 

0% 
[1.89%] 

No. Lesioned Alveoli 2 18 15 21 
Percentage of age category w/ 

periapical lesions 0.85% 2.32% 2.26% 7.87% 
 

Table 4.10: Number of carious teeth and lesioned alveoli organized by age category (calculated 
by dental eruption and wear); Values in parentheses include published examples. (Caries: p-

value: 0.333; Periapical lesions: p-value: 0.018) 

 

Caries increase in severity (size and penetration depth) over one’s lifetime when there is 

no intervention (dentistry, dietary or otherwise), so one should not expect caries to be evenly 

distributed across a population. Table 4.10 details the distribution of carious teeth by age 

category in this sample. There is no pattern to the distribution of caries by age category though 

(Chi-Square, p-value=0.333). The highest percentage of carious teeth is in the adolescents (those 

aged between the eruption of M1 and M3) at 4.0%, followed by the young and mid-aged adults 

with similar prevalences of 2.9% and 2.8%, respectively. No elderly individuals had caries 

except Banyoles 1 (0.6%). The Point Hope sample also had the highest caries prevalence in the 

adolescent sample. Does this reflect the vulnerability of erupting dental enamel; differential diets 
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for the young; or attrition removing caries and the crenulations they flourish in as the individual 

ages?  

Periapical lesions increase with age significantly (Chi-square, p-value: 0.018), which 

approximates the pattern seen in all the comparative samples as well. Periapical lesions are quite 

rare in Late Pleistocene adolescents, plateau between the young adults and mid-aged adults and 

then increase considerably in the elderly. Considering that there is only one example of elderly 

caries, these lesions’ origins are likely periodontal disease, attrition-induced pulpal exposure, or 

trauma/breaks. Some individuals had alveoli, but no teeth, and therefore the aging technique used 

here could not be applied. There were 11 lesions in these un-aged individuals with 105 alveoli 

producing a periapical lesion prevalence of 10.5%. This is higher than any age group suggesting 

that the tooth loss in these individuals, whether ante- or postmortem, was likely related to the 

lesions, and this unaged sample is biased towards more lesions. 

     Caries Severity: 

Caries were scored based on Hillson’s (2001) scheme, which assigns most caries types 

(based on tooth type and location) a score between one and eight. A simple binary assignment of 

non-penetrant (enamel only, score 3) and penetrant (also affects dentin or pulp, scores 5-8) has 

been used elsewhere (Borgognini Tarli and Repetto, 1985; Frayer, 1989). Considering that the 

majority of caries are score 3 and score 5, the data are presented this way (Fig 4.9). Where scores 

6-8 are appropriate (involves multiple surfaces and/or the pulp chamber), a designation of 

“severe” is made (see Table 4.11).  
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Figure 4.9: Images of non-penetrant and penetrant caries: A) Les Rois 23: Some occlusal caries 
are non-penetrant; B) Colorized radiograph of Ohalo 2 non-penetrant caries on M3; C) 

Villabruna penetrant occlusal caries on M3; D) Radiograph of Qafzeh 7 penetrant caries on M2 

 

Most Late Upper Paleolithic European caries in the earlier survey were non-penetrant 

(92.4%), but that dropped to 57.5% of carious lesions in the Mesolithic, meaning caries got more 

severe over time (Frayer, 1989). In this study, 64.2% (34 of 53) of carious teeth had non-

penetrant lesions overall. Neandertals have the lowest prevalence of caries, but 62.5% (5 of 8) of 

their instances are penetrant. And conversely, Middle Paleolithic modern humans have the 

highest prevalence of caries, but the lowest percent of lesions that are penetrant (23.5%, or 4 of 

17). However three of four examples of of penetrant lesions in the Middle Paleolithic modern 

humans were severe (i.e., affecting either the pulp chamber or multiple surfaces of the tooth). 
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The distribution of penetrant carious lesions over time is not significant though (Chi-Square, p-

value: 0.802). Caries are not getting more severe over time in the total sample here. 

 

 
Neandertals MPMHs EUP LUP 

Non-penetrant (score 3) 1 [3] 13 7 10 [11] 
Penetrant (scores 5-8) 3 [5] 3 [4] 4 6 
Severe (6-8) 0 3 0 0 

Percent Penetrant 75% [62.5%] 
18.8% 
[23.5%] 36.4% 

37.5% 
[35.3%] 

     

 
Atlantic Continental Mediterranean 

Non-penetrant (score 3) 8 3 20 [23] 
Penetrant (scores 5-8) 5 2 6 [9] 
Severe (6-8) 0 0 3 
Percent Penetrant 38.5% 40.0% 23.1% [28.1%] 
    

 
Adolescent 

Young 
Adult 

Mid-Aged 
Adult Elderly 

Non-penetrant (score 3) 7 13 [15] 11 0 [1] 
Penetrant (scores 5-8) 4 [6] 6 6 [7] 0 
Severe (6-8) 1 0 2 0 

Percent Penetrant 
36.4% 
[46.2%] 

31.6% 
[28.6%] 

35.4% 
[38.9%] 0% 

 
Table 4.11: Caries severity organized by temporal group, region and age category; Values in 
parentheses include published examples. Chi-square: Temporal p-value: 0.802; Regional p-

value: 0.922; Age p-value: 0.882 

 

Caries severity was also organized by region and age category (Table 4.11). The 

Mediterranean region, which has the most examples of caries, has the lowest percentage of 

penetrant caries (23.1%) as compared to the Atlantic (38.5%) and Continental (40.0%) regions, 

which differ little (Chi-Square for all three regions, p-value: 0.922). Perhaps though caries are 

rarer further north, they are more severe when present. There is no pattern across age categories; 

the penetrant caries are equally spread across adolescents, young adults and mid-aged adults 
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(there is no caries in the elderly group, but Banyoles 1) (Chi-Square, p-value: 0.882). Carious 

lesions expand over a number of years, so one would expect the older age categories to have the 

most severe caries. These age categories are quite broad though (a decade or more). Lesions may 

have time to initiate, progress, and result in pulpal death within 10 years; or perhaps the 

quiescence phases of lesion development can last decades in this sample; or lesions are being 

erased by dental wear (Maat and van der Velde, 1987). 

     Results of Comparative Samples: 

 There are three comparative samples: Epi-Paleolithic Natufians (Nahel Oren, Mallaha, 

Kebara, El-Wad, Erq-el-Ahmar, and Hayonim), Archaic period Native Americans (Indian 

Knoll), and prehistoric Ipiutak Alaskan Natives (Point Hope). Their diets, mobility patterns and 

climates of residence all vary. The pattern of caries and lesions in these samples suggests that 

there is little similar about them. 

Indian Knoll (Kentucky, ~5000 BP) 

 Overall caries and lesions prevalences suggest the Indian Knoll Native Americans have 

the highest caries prevalences (per-tooth or per-individual) and also a high lesion prevalence 

(highest per-individual). An early survey of their oral pathology reported a “low” frequency of 

30% of skulls showing caries (Leigh, 1925). A later study reported that 21.3% of skulls showed 

some caries; however, skulls were chosen by their completeness for inclusion in the survey as 

well as a preference for young individuals with less dental wear (Rabkin, 1943). Therefore it is 

not surprising that the caries prevalence is lower when only younger, more complete specimens 

are surveyed—and methods have had 70 years to evolve. Leigh (1925) reports 150 osseous oral 

lesions in 66 crania but not the number of teeth affected or the distribution of lesions (it is highly 

unlikely that all of the skulls have lesions). 60.9% of the individuals having at least one lesion in 
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this survey is still quite a high prevalence though (16.0% of the teeth affected) (Table 4.12). A 

recent survey of American children reports an individual caries prevalence of 38.2% (Dye et al., 

2012). 

 

 

Caries prevalence 
(per-tooth) 

Caries Prevalence 
(per-individual) Lesions (per-alveoli) 

Lesions (per-
individual) 

Indian Knoll 8.1%  (169 of 2089) 66.7%   (50 of 75) 10.6%  (222 of 2208) 64.0%   (48 of 75) 
Point Hope 1.0%  (4 of 393) 8.7%     (4 of 23) 7.2%    (50 of 697) 60.9%   (14 of 23) 
Natufian 2.4%  (17 of 707) 15.4%   (8 of 52) 0.9%    (8 of 896) 9.6%     (5 of 52) 

 
Table 4.12: Caries and lesion prevalence organized by tooth and by individual for each 

comparative sample 

 

In Table 4.13, Indian Knoll caries prevalences increase with each age category until the 

elderly category where the prevalence drops (Statistically significant: Chi-Square, p-value: 

0.0189). This is likely explained by high antemortem tooth loss in the elderly sample (see 

Chapter 6). Caries progresses until pulpal death or severe bony resorption from infection occurs, 

and the tooth is shed. The number of teeth lost before death from caries can be calculated with 

the “Caries Correction Factor” (Lukacs, 1995), but it assumes that at least some tooth loss is 

caused by caries (see Chapter 7: Oral Health & Systemic Health). Lesions increase consistently 

and significantly through the aging process (Chi-Square, p-value: <<0.001), and this supports the 

above hypothesis that the drop in caries in the elderly is a result of tooth loss from pulpal death 

and infection. 
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Adolescent 

Young 
Adult 

Mid-Aged 
Adult Elderly 

Indian Knoll Caries 5.1% 7.4% 12.4% 5.2% 
Indian Knoll Lesions 0.9% 6.4% 19.3% 24.4% 
Point Hope Caries 2.8% 0.9% 0.7% 0% 
Point Hope Lesions 0% 4.5% 19.2% 27.6% 
Natufian Caries 0% 3.2% 1.1% - 
Natufian Lesions 0% 0.3% 2.4% - 

 
Table 4.13: Caries and lesion prevalence organized by age group for each comparative sample 

 

Point Hope (Alaska, 100 BC-800 AD) 

The Point Hope sample has the smallest sample size. They have the lowest caries 

prevalence of any comparative sample, but the highest lesion prevalence. Therefore it seems 

reasonable to assume these lesions are not of carious origins (unlike the Indian Knoll sample) 

(tested and confirmed in Chapter 7: Oral Health & Systemic Health). These Arctic peoples were 

caribou hunters, supplemented with marine mammals (namely seals) and fish and little 

vegetative matter (Larsen and Rainey, 1948). Because of this subsistence pattern, Arctic peoples 

have often been used as modern climatic and dietary analogies to Neandertals (see discussion). 

Costa (1980b) reports that caries prevalence peaked around the mid-aged adults and declined 

afterwards. This does not match the pattern here; caries prevalence does not change across age 

groups (Chi-Square, p-value: 0.722).  

The lesion values here for Point Hope are also considerably higher than Costa’s (1980b) 

values, which found the highest “abscess” prevalence to be in those aged 26-30 with 1.5% of 

individuals having lesions, compared to 60.9% overall here—a major difference. This is caused 

by a methods discrepancy though. Costa did not use radiographs and only included evidence of 

infection likely related to caries. As the caries prevalence is low, the lesion related to caries 
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prevalence is justifiably low as well. I did not make such a distinction. Costa (1982) also 

surveyed periodontal disease in a subsequent publication, which found high periodontal disease 

rates. As mentioned before, these lesions are indications of infection—but not likely of a carious 

origin—and this causes difficultly in comparing the results here with Costa’s (1980b) survey. In 

Table 4.13, the lesion prevalence intensifies consistently and significantly with age in the Point 

Hope sample (Chi-square, p-value: 0.012).  

Natufians (Israel, 13,100 - 9650 calibrated BC) 

Previous Natufian research suggested an overall caries prevalence of 6.4% per-tooth 

(Eshed et al., 2006), much higher than what was found here, 2.4%. An older study reported a 

range of values per site ranging from 0.2% for Kebara to 3.0% for El Wad (Smith, 1972). 

However the Natufian sample is diverse including multiple sites, a range of several thousand 

years, rapidly changing mobility patterns and diet, and early animal commensalism. The El Wad 

and Kebaran material housed at the Peabody Museum at Harvard had few examples of caries; 

however, there is no published description of the preservation bias that led to which specimens 

were selected for this collection. The more fragmentary remains may not have been selected for 

inclusion, biasing the sample towards individuals with less pathology. El Wad and Kebara were 

not included in Eshed et al.’s (2006) survey. With all the various Natufian specimens pooled 

together, the caries prevalence peaks with young adults, although the differences are non-

significantly (Chi-Square, p-value: 0.279). 

Comparative Natufian values organized by age category were not available for caries or 

lesions, but periapical lesions by tooth were reported to not exceed 1.5% (Eshed et al., 2006). 

This approximates the value here of 0.9% in the Natufians. Periapical lesions also increased 

through the aging process in the Natufians (Eshed et al., 2006), a common pattern seen in this 
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study (though non-significantly here, Chi-Square, p-value: 0.153). There is no elderly individual 

present in the Natufian samples. This could be that the dental wear categories used for the other 

comparative samples and the Paleolithic do not work here (the Natufians had less dental wear), 

or people were not living long. Natufians did have a short life expectancy (24.6 years) (Eshed et 

al., 2004), but the elderly category here encompasses people approximately 40 and older—not 

particularly elderly by modern standards. Alternatively there could be preservation or curation 

biases in the samples with older individuals either not being buried, not preserving well, or 

excavators are not keeping them.. Many of these sites were excavated in the first half of the last 

century and excavator or curator bias cannot be ruled out. 

Discussion: 

 There are some patterns in the prevalence of caries in the Late Pleistocene. Some of these 

have been suggested before, but no previous publication has suspected or demonstrated that 

caries prevalences would be twice that of previous publications (Frayer, 1989)—the only values 

available before now that were not based on literature searches. As a summary of the caries 

results major findings, it was shown that: (1) Late Pleistocene caries are most common on 

molars; (2) Caries are not limited to the adult population, at least in the Mediterranean region; (3) 

Most carious lesions are on occlusal surfaces, followed by the lingual/buccal sides and then 

interproximal and cervical surfaces; (4) Caries prevalence does not change significantly across 

age categories; (5) Caries increase over time from the Neandertals to the Early Upper Paleolithic 

to the Late Upper Paleolithic, with the exception that Middle Paleolithic modern humans have a 

considerably higher caries prevalence than the other groups; (6) Caries prevalence in the 

Mediterranean is twice that of regions further north; (7) Most carious lesions are not severe 

enough to endanger the pulp chamber, and penetrant lesions did not vary significantly over time, 
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region, or age category; and (8) though the comparative samples show a wide range of caries 

prevalences, when caries are rare, they do not change significantly over age categories (Point 

Hope and Natufians); where common, they increase over time until they result in tooth loss and 

caries prevalence decreases in the elderly (Indian Knoll). This patterning has implications for a 

number of variables.  

The summary of periapical lesion major findings are as follows: (1) Periapical lesions are 

somewhat more common than caries in the Late Pleistocene, but they do not co-vary (see 

Chapter 7) and do not significantly pattern over time or region; (2) They increase significantly 

through the aging process in the Late Pleistocene sample and all the comparative samples (but 

not statistically for the Natufians (p-value: 0.153)); and (3) In the Indian Knoll and Point Hope 

samples, the per-individual prevalence of lesions is above 60%. The periapical lesions are rarely 

of carious origin (except at Indian Knoll, see Chapter 7), and therefore one must look elsewhere 

for their etiology. 

     Taxonomy:  

 Pooled modern humans have three times the caries prevalence of Neandertals (1.2% vs. 

3.6%), and this disparity is further exaggerated if you compare Neandertals and modern humans 

in the Middle Paleolithic who have 6.4 times the prevalence (1.2% vs. 7.7%) (Table 4.6). 

However the regional data probably explain the caries patterning better than taxonomy without 

data on Middle Paleolithic moderns from Africa and Central and East Asia. The four Neandertal 

carious teeth in the sample are from Spain and Israel, plus the published examples from Israel 

(Kebara), Spain (Banyoles) and Southern France (Aubesier), and they are all along the 

Mediterranean. Neandertals in Southwest Asia were exploiting similar food resources to the 
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modern humans with the exception of the effects of climatic variation occurring between 

110,000 ya and 50,000 ya in the region (Bar Yosef, 2004).  

Many of the Early Upper Paleolithic and Late Upper Paleolithic modern humans sampled 

are from outside the Mediterranean region, and yet they still have more caries than Neandertals. 

These differences suggest that besides the higher caries prevalence around the Mediterranean for 

all hominin groups, there are still differences in caries prevalence between Neandertals and early 

moderns. Caries are strongly tied to diet in recent humans, and this suggests possible dietary 

differences between Neandertals and early modern humans. But other dietary research has shown 

only regional differences in diet, not necessarily taxonomic ones (Stiner, 1994; Hardy, 2010; 

Fiorenze et al., 2011; Henry, 2011; Trinkaus, 2013).  

 Neandertals also have fewer lesions than pooled modern humans (2.5% vs. 3.6%). Other 

examples of Neandertal oral lesions have been reported (e.g., the osteolytic lesion from Riparo 

Mezzena (Condemi et al., 2012)), but generally oral lesions are uncommon in the Late 

Pleistocene (relative to 9.0% of alveoli at Indian Knoll or 10.6% of alveoli at Point Hope). This 

may be related to short life expectancies or increased mortality risk from infection in the Late 

Pleistocene. 

     Time Period: 

 It is difficult to parse out taxonomy from time in this analysis as the only significant 

temporal overlap in Neandertals and early modern humans sampled is in the Middle Paleolithic. 

Caries increase over time in Europe, but Southwest Asia does not follow the pattern. There is 

evidence of increasing cultural heterogeneity (Bosinsky, 1990) and resource exploitation 

intensity and specialization (Grayson and Delpech, 2002; 2006; Drucker and Bocherens, 2004; 

Stiner and Kuhn, 2006) and decreasing mobility (Holt, 2003) from the Early Upper Paleolithic to 
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the Late Upper Paleolithic all over Western Eurasia. These were likely the result of increasing 

group-level foraging costs from population density increases coupled with decreasing 

environmental productivity and available home ranges. In this scenario, dietary shifts and 

increasing regional variability in diet are not surprising (Richards et al., 2001), and this could 

manifest as increased caries in groups intensifying their sugar consumption (e.g., honey, fruits). 

But this would also mean that changes over time in caries prevalence ultimately represent 

changes in diet. 

And though caries is increasing by time period when Middle Paleolithic modern humans 

are removed, they do not increase directly and consistently over time. Rather there is a lot of 

variation within time periods, but the average per time period increases (Frayer, 1989). Frayer 

(1989) reported no significant correlation between 14C dates and caries “rates”, i.e., no gradual 

change. Rather there was a sudden shift around the Last Glacial Maximum. This pattern was also 

seen in stature studies. Stature did not decrease consistently over time between the Early Upper 

Paleolithic and Late Upper Paleolithic, but rather it was a step-wise change (Holt and Formicola, 

2008; Meiklejohn and Babb, 2011). A doubling of the caries prevalence from the Early Upper 

Paleolithic to the Late Upper Paleolithic in this study (caries prevalence of 1.9% to 3.9%) may 

not be huge (and non-significant when only the two are compared; Chi-square, p-value: 0.298), 

but it is still substantial in the larger context of the Late Pleistocene (Chi-square, p-value: 0.005).  

     Region: 

 The Mediterranean region has 2 to 3.8 times the prevalence of caries of the Continental 

and Atlantic regions (Mediterranean: 4.6% vs. Atlantic: 1.8% and Continental: 1.2%). This 

suggests a negative latitudinal pattern to caries prevalence. As latitude decreases, plant sugars 

increase (Kirschbaum, 2004; Zheng et al., 2009)—and by extension human dietary sugars. Plant 
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sugar levels are directly related to photosynthesis and the cumulative amount of daylight. A 

meta-analysis of hunter-gatherer diets found relatively consistent carbohydrate consumption 

between 40° North and South latitude, but significant decreases in hunter-gatherer carbohydrate 

consumption beyond 40° latitude (Ströhle and Hahn, 2011). The 40°N Latitude line was placed 

on Figure 4.7 for comparison, and all Middle Paleolithic examples of caries (Neandertal and 

modern human) are below 43°N (Aubesier and Banyoles are between 40°N and 43°N, but the 

faunal assemblages suggest they were always climatically temperate) (Lalueza et al., 1993; Lebel 

and Trinkaus, 2002a). The negative correlation between carbohydrate consumption and latitude 

mirrors Frayer’s (1989) data, which found that latitude was negatively correlated with caries 

“rate”, as well as other Mesolithic analyses in Europe (Meiklejohn et al., 1988), India (Lukacs 

and Pal, 1993), and Japan (Fujita, 2012). Surveys of extant humans often find more caries at 

northerly latitudes because dietary sugar supplementation—and the socioeconomics required for 

that access—tends to correlate directly with latitude (Dunning, 1953; Powell, 1983).  

No survey of modern caries incidence makes an explicit connection between the 

Mediterranean region and increased caries, with the exception of some dietary components such 

as dates, figs, and carob consumption (the diet of the Mediterranean region is explored below) 

(Nelson et al., 1999). Bronze age Greeks and Cretans have more caries than contemporaneous 

Western Europeans, and this has been attributed to honey and dried fruit consumption (Angel, 

1944; Carr, 1960; Wells, 1975). The Epi-Paleolithic site of Taforalt in Morocco has a caries 

prevalence of 5.9% according to Wells (1975), but that has since been changed to 51.2% of teeth 

in the Grotte des Pigeons cave at Taforalt (Humphrey et al., 2014), and further exploration of 

Late Pleistocene sites and their oral pathology along the Mediterranean is highly warranted. 
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However it is possible that this regional (Mediterranean-specific) pattern is actually a general 

latitudinal or climatic pattern.  

 The mineral content of local water sources also affects caries prevalence with certain 

minerals, namely fluoride, having an inhibitory effect on the development of caries. Much of the 

local fluoride content is randomly variable with local geology, but there are some overall 

geographic patterns, one of which is proximity to the ocean. Water sources closer to the ocean 

tend to have lower fluoride, and therefore some modern coastal communities have higher caries 

incidence (Dunning, 1953; Bang, 1964). The pattern did not bear out in a Mesolithic survey of 

Europe (Frayer, 1989), but fewer Neandertals fossils were found in close proximity to the 

ocean—however there are also plenty of Neandertal Middle Paleolithic archaeological sites 

along the coast (Finlayson, 2008; Stringer et al., 2008; Richards and Trinkaus, 2009). The 

circum-Mediterranean caries pattern here is therefore provocative in reference to dietary fluoride. 

Though temperate climate sites do show statistically more caries than cool climate sites, perhaps 

the Mediterranean pattern is further exaggerated by lower dietary fluoride dictating the relatively 

higher caries rate. An attempt to estimate distance from sites with carious teeth to contemporary 

coastlines would require additional study variables, as sea levels are not consistent over time. 

However the high mobility of Paleolithic peoples would be a confounding factor in this 

hypothesis.   

     Age: 

 Caries were present in all age categories here, but did not change with age. This could 

suggest younger individuals were eating more sweet foods, and as they are living in a high dental 

attrition environment, their carious lesions were removed as they aged. Newly erupted teeth are 

more vulnerable to caries formation as well (Hillson, 2008). This pattern was seen in a 
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longitudinal study of Nigerian children who did not have access to oral hygiene products, but 

their caries disappeared over time through attrition (Maat and van der Velde, 1987; Kubota et al., 

1993). However the opposite pattern was observed in the Mesolithic; there was no caries in any 

individual who still had deciduous teeth (Meiklejohn et al., 1988). These authors argued that 

there was social differentiation where children were being denied access to these sweeter foods 

for any number of reasons. Perhaps the pattern here suggests that social differentiation had yet to 

arise in the Pleistocene, or children in the Mediterranean were given preferential access to foods 

like dates (there is evidence of their consumption at Shanidar (Henry et al., 2011))? 

 The Osteological Paradox may predict more caries in those who die younger though 

(Wood et al., 1992). Root caries, more common in the elderly in recent populations, were 

uncommon in the Late Pleistocene sample; most caries observed were occlusal and on relatively 

unworn teeth. This pattern may reflect poorer health in those who died young, or some 

differential diet along age lines. Weaning foods are often high in carbohydrates (Nout, 1993), 

and it is possible the older adults have less caries because their lesions were worn away, not 

because they were never present. 

     Diet: 

Protein:  

There has been a recent flourishing of dietary research focusing on the Late Pleistocene. 

Dietary nitrogen isotope analyses report the relative source of dietary proteins from the local 

tropic pyramid, and suggests early modern humans had greater diversity in their dietary protein 

sources than Neandertals (Richards and Trinkaus, 2009). The early modern human samples were 

variably utilizing fresh water fish, marine resources, and terrestrial herbivores, but the 

Neandertal samples are all consistently eating large amounts of terrestrial mammals (Richards et 
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al., 2000; 2001; Richards and Trinkaus, 2009). The archaeological data suggest though that 

modern humans were not utilizing totally novel sources of nutrition compared with Neandertals, 

but they were intensifying and specializing their use of food sources outside of large herbivores 

(Grayson and Delpech, 2002; 2006; Drucker and Bocherens, 2004; Stiner and Kuhn, 2006). 

Proteins and fats do not generally affect oral flora, but they raise the oral pH, which encourages 

calculus mineralization (Hillson, 1979). Sugars, especially sucrose, and processed (ground) 

starches do affect the oral flora because their digestion begins in the mouth (Hillson, 2008). 

Therefore this variance in protein sources should not directly affect caries prevalences, but it 

suggests larger patterns of increasing regional dietary differentiation in the Upper Paleolithic.  

Dietary isotope analyses suggest Middle and Upper Paleolithic peoples are closer to top 

carnivores than omnivores in their isotopic signatures, and this may explain the low caries 

prevalences overall, at least in Neandertals relative to recent populations (Hillson, 2008; 

Richards and Trinkaus, 2009). High protein/low carbohydrate diets are associated with less 

caries and conversely low protein/high carbohydrate diets are associated with increased caries in 

recent humans (Hillson, 2008). Therefore osteological samples with low caries and high calculus 

are often reconstructed as eating diets high in protein and low in carbohydrates (e.g., Costa, 

1980b; Bonsall et al., 1997). Late Pleistocene peoples were getting a large proportion of their 

calories from protein; however, the human body cannot live off protein alone. Protein 

metabolism costs the body water and calcium and produces high amounts of urea, putting costs 

on the liver, kidneys and bones. The diet must be subsidized with fats and/or carbohydrates to 

ensure protein poisoning does not occur (Cachel, 1997, but also see Speth et al., 1991).  

Perhaps the pattern here of higher caries in the southern portion of the sample area 

reflects differential dietary solutions to avoiding protein poisoning while consuming a high 
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protein diet. Humans further north were focusing on fat consumption whereas people further 

south were using carbohydrates to the same end: maintaining a critical ratio of protein to fats or 

carbohydrates. This differential diet supplementation would therefore be reflected in higher 

caries prevalences for Mediterranean peoples (4.6% in the Mediterranean versus 1.6% for the 

pooled Continental and Atlantic regions). This caries cline continues into the Mesolithic with the 

circum-Baltic region having almost no caries (0.3%) to Mid-latitude Europe (2.3%) to 

Mediterranean Europe (9.2%) (Meiklejohn et al., 1988). The dietary isotope analyses assure us 

that protein consumption was incredibly high in Neandertals and Early Upper Paleolithic people, 

but to maintain the skeletal robusticity seen in these groups, calcium could not be endlessly 

sacrificed for protein metabolism. Shattered herbivore long bones from many sites across the 

Pleistocene suggest marrow extraction, a highly fatty food (Oatram, 2001). Cachel (1997) points 

to oil lamps from the Mid- to Late Upper Paleolithic as evidence of a decreasing reliance on 

dietary fat (i.e., fat could be spared from the diet for other uses). As individual-level foraging 

costs decreased from population expansion in the Late Upper Paleolithic, carbohydrate 

consumption likely increased across many regions leading to an increase in caries. 

Carbohydrates:  

Carbohydrate consumption in the Upper Paleolithic is suggested by a number of data 

types. Grindstones for processing wild grains have been found from Italy (Bilancino) to Russia 

(Kostenki) by 30,000 ya and are present at the site of Pavlov in the Czech Republic (Revedin et 

al., 2010), which also has an example of caries in Pavlov 1. Cook-stone technology ovens from 

Abri Pataud (France) to Tanegashima (Japan), also around 30,000 ya, suggest the consumption 

of carbohydrates including pre-biotic carbohydrates (Leach et al., 2006). The analysis of starch 

molecules preserved in dental calculus suggests Neandertals were eating nuts, grasses, and green 
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vegetables (Henry et al., 2011; Hardy et al., 2012), and that their diets varied regionally (Lev et 

al., 2005; Hardy and Moncel, 2011). There is also direct paleobotany evidence in the Middle 

Paleolithic of charred legumes and nuts from Kebara and Gibraltar (Barton, 2000; Lev et al., 

2005); edible grass seeds from Amud (Madella et al., 2002); edible pulses from Abric Agut; 

hackberries from Mas des Caves (Rolland, 2004); and perhaps even tools for extracting edible 

inner bark of plants (Sandgathe and Hayden, 2003). 

Not all carbohydrates are the same though. Various glucose polymers form starch 

molecules and their digestion begins in the mouth with amylase in the saliva (Lebenthal, 1987). 

Sucrose is the most carious of all sugar molecules, but there is no evidence of pure sucrose 

consumption until 500 BC (Galloway, 2000; Cordain et al., 2005). Fructose and glucose from 

fruits and honey were available with sucrose and are also especially carious. At the Late Upper 

Paleolithic Spanish cave art site of Altamira, honeycomb is depicted as well as possibly bees and 

honey collection ladders from 14,000 ya BP (Pager, 1976; Valladas et al., 1992). There are 

detailed honey depictions in Mesolithic cave art sites such as Bicorp (e.g., bees and hives, honey 

collecting) (Herńandez-Pacheco, 1924; Dams and Dams, 1977; Dams, 1978). Other sugary foods 

are grown in the Mediterranean today and whose consumption is associated with caries, such as 

dates (Nelson et al., 1999) and figs (Wells, 1975). Figs and carob were being consumed at the 

Mesolithic Italian site of Uzzo (Borgognini-Tarli and Repetto, 1985). Cooked starches can also 

be just as carious as a 10% sucrose solution (König, 2000), and Pleistocene peoples were almost 

certainly processing their starchy foods (see grindstones at 30 kya (Revedin et al., 2010)). There 

is little direct evidence of the consumption of any of these other highly sugary foods (fruits and 

tree gums) besides honey in the Pleistocene—other than the presence of caries.  
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Cariogenic bacteria in dental plaques must be present in the mouth for sugars to cause a 

major drop in oral pH (Stephan and Miller, 1943). Calculus (mineralized plaque) was quite 

common in Pleistocene peoples (Arensburg, 1996; personal observation). They were not 

practicing much oral hygiene to remove plaque and calculus, meaning if they did consume 

carbohydrates, the environment in the mouth was primed for a pH decrease (cariogenic bacteria 

were present in the mouths of Late Pleistocene peoples (Pap et al., 1995; Humphrey et al., 

2014)). The patterning seen here where caries increase around the Mediterranean and in later 

time periods is certainly related in part to differential diets, likely including more carbohydrates. 

Meiklejohn et al. (1988) and Frayer’s (1989) work also came to the conclusion that the increase 

in caries in the Late Upper Paleolithic and Mesolithic was related to increasing regional dietary 

variability. 

     Pleistocene versus Holocene: 

 The few previous analyses that examined caries prevalence in samples from Europe on 

both sides of the Holocene/Pleistocene divide have had mixed results: no difference between the 

Late Upper Paleolithic and Mesolithic (Frayer, 1989), or a quick decrease at the end of the Late 

Upper Paleolithic and recovering increase in the Mesolithic (Caselitz, 1998). By broadening the 

geographic and temporal view, it appears the story is much more complex. The Point Hope diet 

was likely the closest to European Middle Paleolithic and Early Upper Paleolithic peoples with a 

focus on large terrestrial herbivores, namely reindeer, and some supplementation with other 

animals and fish. The Neandertal caries prevalence of 0.6% (1.2%) and the Point Hope 

prevalence of 1.0% reaffirm this analogy. However the Point Hope sample has a higher lesion 

prevalence (9.0% vs. 2.5% in Neandertals). Neandertals and Point Hope peoples both 

experienced a high degree of dental wear and periodontal disease, so this is difficult to explain. 
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Perhaps the mortality risk associated with oral infection was ameliorated in the Point Hope 

sample through some behavioral aspect. 

 The Middle Paleolithic peoples have more caries (7.8%) than the Epi-Paleolithic ones 

(2.4%) in Southwest Asia. The Natufians were certainly consuming wild grains. A previously 

reported Natufian caries prevalence (6.4%) is closer to the Middle Paleolithic value here though 

(Eshed et al., 2006). Both the Natufians and Middle Paleolithic modern human samples are 

missing elderly individuals. The lesion per-alveoli prevalences are similar (Natufian: 0.9% vs. 

Middle Paleolithic moderns: 1.6%) and likely low due to low age profiles. 

 Indian Knoll peoples are described as pre-agricultural; however, they are also 

acknowledged as likely practicing some form of garden agriculture (Webb, 1946). This is a 

dietary pattern wholly unlike the Late Pleistocene, and that is reflected by both their caries and 

lesion prevalences, which differ markedly from the Pleistocene values (caries 8.1%; lesions 

10.6%). They lived within the latitude range of the Mediterranean peoples, which perhaps 

explains the similar Middle Paleolithic modern humans caries value of 7.8%. The Middle 

Paleolithic modern humans had a lower lesion prevalence (1.6%) than Indian Knoll, likely 

related to their younger skewed age profiles; however it has been suggested that Middle 

Paleolithic modern humans had lower dental wear than European Neandertals and modern 

humans (Smith, 1977). The only consistent pattern over the Paleolithic and Holocene samples is 

that periapical lesions increase with increasing age (in all samples, but non-significantly in the 

Natufians). This is not surprising as lesions progress over time, and as one ages, there are 

continually more opportunities for bacteria to penetrate the periapical region (e.g., from caries, 

periodontal disease, pulpal exposure from severe attrition, tooth breaks, trauma).  
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     Conclusion: 

 Though caries were not a major problem for Late Pleistocene peoples, they were more 

common than previously thought, especially for Middle Paleolithic modern humans. The 

increase in caries prevalence over time in Europe and the higher prevalence overall in the 

Mediterranean region suggest both regional and temporal variance in diet. Mediterranean peoples 

were likely eating foods with more sugars, especially sticky ones like fruit and honey, and by the 

Late Upper Paleolithic, similar diets were being adopted across Europe. Periapical lesions in the 

Late Pleistocene are rarely of carious origins and therefore should be assumed to be of another 

etiology. Also periapical lesions did not pattern over time or region, but did increase across age 

categories. 
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Chapter 5: Periodontal Disease 

Introduction: 

 Periodontal disease is correlated with systemic health and diet (Garcia et al., 2001; 

Hujoel, 2009); however, it has never been thoroughly examined in populations outside the 

Holocene. Even when dental anthropologists refer to “ancient” periodontal disease analyses, they 

cite studies of the European Medieval period or the Pre-Colombian period of the Americas (e.g., 

Clarke, 1990; Fujita, 2012). Periodontal disease is known from Australopithecus (Ward et al., 

1982; Ripamonti, 1988) including AL288-1 or “Lucy” (Shields, 2000), and therefore must have 

great antiquity in hominins. Occasionally periodontal disease examples have been presented for a 

Pleistocene region (Southwest France: Brennan, 1991) or analyzed with questionable methods 

(lesions and antemortem tooth loss used as a proxy for periodontal disease: Frayer, 1989), but 

never with tested methods from bioarchaeology on a large scale across prehistoric samples, 

though the need for such has been acknowledged (e.g., Fujita, 2012). Considering all the 

potential implications of periodontal disease (e.g., systemic inflammation, morbidity, 

carbohydrate consumption), it is surprising it has not been thoroughly researched for Pleistocene 

humans—despite alveolar bone not preserving as well as teeth. The sample here has been 

organized in the same way as the caries data: by time period/taxonomy, region, age category, and 

comparative samples. However the Pleistocene sample is smaller than the caries sample because 

alveolar bone needs to be present (a minimum of two alveoli). Therefore the Pleistocene sample 

contains 123 individuals—79 modern humans, 44 Neandertals (see Table 5.1 for temporal versus 

regional distribution). This does somewhat bias the sample towards specimens and sites with 

better preservation. 
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Atlantic Continental Mediterranean Sum 

Neandertals 21 2 21 44 

MPMH - - 10 10 

EUP 11 21 3 35 

LUP 17 2 15 34 

Sum 49 25 49 123 

 
Table 5.1: Temporal and regional distribution of periodontal disease sample: MPMH: Middle 

Paleolithic modern human; EUP: Early Upper Paleolithic; LUP: Late Upper Paleolithic 

 

For data presented by individual, there are two diagnostic protocols. The first is scored 

for the most severe section of the mouth according to septa condition as long as at least two 

alveoli are affected. Lavigne and Molto (1995) also used the greatest CEJ-AC measurement per 

tooth in their analysis of complete specimens, giving a bioarchaeological precedent for focusing 

on the most severe diagnosis. The second method uses average CEJ-AC distance per individual 

(see Chapter 3: Materials and Methods). Despite the non-uniformity of periodontal resorption, a 

previous study found the average of a small selection of alveoli from an individual predicted 

overall average CEJ-AC distance (Shrout et al. 1990). This protocol is more applicable to 

dentistry methods. Other data are presented as raw values by tooth type, specific tooth, etc., and 

therefore no diagnostic protocol is required.  

Results: 

     Age distribution: 

 Because periodontal disease is known to increase in presence and severity with age (Löe 

et al., 1992) as well as CEJ-AC distances potentially increasing with age for non-pathological 

reasons like continuous eruption (Varrela et al., 1995), it is important to make sure the variously 

defined groups do not have significantly different age distributions. Having a subsample skew 
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towards older individuals can make it artificially appear to have more periodontal disease. 

Because some fossils have no teeth preserved but the alveoli are in good enough condition to 

diagnoses periodontal disease, they are included in this study. However, they could not be 

assigned to an age category or given CEJ-AC measurements following the protocol here based 

on dental wear (this applied to five Late Pleistocene individuals). Therefore there are 118 

individuals for which age could be assessed included in the analysis: 23 adolescents, 41 young 

adults, 40 mid-aged adults, 14 elderly. The age distributions of each region and time period are 

included in Figure 5.1.  

Each time period and region has statistically indistinguishable age distributions (non-

significant), with most individuals being either young or mid-aged adults with fewer adolescents 

and elderly individuals. The lack of elderly individuals in the Middle Paleolithic Modern 

Humans has not gone unnoticed by other researchers (Trinkaus, 2011); but since there are few 

individuals overall in this sample, it does not skew the pattern dramatically. The regions do not 

differ significantly by age distribution (Kruskal-Wallis, p-value: 0.23) nor do the temporal 

groups (p-value: 0.06; with MPMHs removed, p-value: 0.66). The Neandertals and EUP modern 

humans who straddle the Upper Paleolithic transition do not differ in age distribution (p-value: 

0.77). 
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Figure 5.1: A) Age distribution of periodontal disease samples: A) by region (Kruskal-Wallis, p-
value: 0.23); B) by time period (p-value: 0.66) 
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Maxillary vs. Mandibular: 

 The alveolar bone of the mandible and maxilla are not the same. The maxilla is more 

fragile in that the cortical bone is thinner because of the maxillary sinuses, and posterior 

maxillary teeth have more roots than mandibular ones (three-rooted molars are typical and 

double-rooted premolars are relatively common) (Scott and Turner, 1997). The mandible has 

thicker cortical bone, coupled with less complex dental roots. Other research has found 

periodontal disease to affect the upper and lower molars and lower incisors more than other teeth 

(Clarke et al., 1986); however continuous eruption also tends to be greater in the mandible 

(Glass, 1991; Appendix 3). So though the maxillary alveolar bone is more fragile, it appears to 

be less susceptible to increasing CEJ-AC distances from both alveolar bone loss from 

periodontal inflammation and continuous eruption. The mandible is more susceptible to 

periodontal disease, but also to continuous eruption, suggesting the researcher must be careful to 

differentiate the two in the mandible. 

 

 

Figure 5.2: CEJ-AC average distances per tooth type organized by upper and lower teeth, with 
standard deviations (Using two sample mean comparison, p-values are as follows: incisors: 

<0.001; canines: 0.003; premolars: 0.701; molars: 0.470) 
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 In this sample, CEJ-AC distances are greater in the mandible than the maxilla for anterior 

teeth, but not for posterior teeth (Fig. 5.2). This replicates Clarke and colleagues (1986) data for 

the incisors (i.e., more alveolar bone loss in the lower incisors than the upper ones), but not for 

the posterior teeth. There is no difference in CEJ-AC distance averages between the maxilla and 

mandible for the molars and premolars (but this was not tested as matched arcade pairs within 

individuals). 

     Time Period: 

 Because other research has found changes in health indicators over time in the Late 

Pleistocene of Europe, the null hypothesis here is that periodontal disease would follow the same 

pattern, i.e., the Early Upper Paleolithic is “healthier” than preceding and following groups. 

Based on both average most severe periodontal diagnosis score and average CEJ-AC distance 

per individual though, the score decreases consistently over time (Table 5.2). This pattern is not 

wholly consistent depending on how the data are further analyzed.  

 

 
Neandertal MPMHs EUP LUP 

Average Most Severe 
Periodontal Score 1.86 1.8 1.69 1.65 
Average CEJ-AC 
Distance, mm 4.07 3.81 3.28 3.14 

 
Table 5.2: Average most severe periodontal score per group (0=None, 1=Mild, 2=Moderate, 

3=Advanced) and average CEJ-AC distance per individual per group 

 

 Using most severe diagnosis, the temporal/ taxonomic groups do differ statistically 

significantly (Kruskal Wallis, p-value: 0.033) (Fig. 5.3). Neandertals have more advanced 

periodontal disease than any of the modern human groups, and also fewer cases without disease 

than any of the modern human groups. The Late Upper Paleolithic group has less moderate and 
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advanced cases of periodontal disease than the Early Upper Paleolithic, suggesting improvement 

over time. There is a slightly higher percentage of Early Upper Paleolithic specimens with no 

periodontal disease than the Late Upper Paleolithic sample, but the Early Upper Paleolithic has 

more moderate and advanced diagnoses (Fig. 5.3). The percentage of “advanced” cases are those 

individuals whom had at least two alveoli with advanced disease or a localized infection, and this 

protocol automatically shifts the distribution towards more severe disease diagnoses. 

 

 

Figure 5.3: Percentage distribution of 4 ordinal periodontal disease severity diagnoses within 
each time period (Most severe score per individual) (p-value: 0.033) 
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Fig. 5.4: Percent distribution of 4 ordinal periodontal disease severity scores based on average 
CEJ-AC distance per individual (p-value: 0.104) 
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cases as well as more advanced cases than the pooled modern humans. This suggests greater 

Neandertal morbidity using either presence/absence of disease or severity of disease.  

Based on average CEJ-AC distance, as opposed to most severe diagnosis, the pattern 

changes slightly and is no longer statistically significant (Kruskal-Wallis, p-value: 0.104) (Fig 

5.4). Neandertals still have the most severe periodontal disease, but Early Upper Paleolithic 

modern humans have less periodontal disease diagnosis than with the other method, making 

them appear slightly healthier than Late Upper Paleolithic people. This may be biologically 

meaningful, in that it mirrors other stress indicator research. 

Because there is no elderly individual in the Middle Paleolithic modern human sample, a 

further comparison is done with the elderly removed from all other groups (More severe septa 

diagnosis, Fig. 5.5; Average CEJ-AC diagnsos, Fig 6.6). This allows the Middle Paleolithic 

modern human groups to be more accurately compared to the rest. The pattern is still generally 

the same as with the elderly included: periodontal disease decreasing in severity over time for 

most severe septa diagnosis and statistically significant (Kruskal-Wallis, p-value: 0.0313); or an 

inflection in the Late Upper Paleolithic using average CEJ-AC distance diagnosis, but non-

significant (p-value: 0. 0.169). 
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Fig 5.5: Percentage distribution of 4 ordinal periodontal disease severity diagnoses within each 
time period with the elderly individuals removed (Most severe score per individual) (p-value: 

0.031) 

 

Fig. 5.6: Percent distribution of 4 ordinal periodontal disease severity scores based on average 
CEJ-AC distance per individual with the elderly individuals removed (p-value: 0. 0.169) 
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Regardless of method, all of the groups show high prevalences of periodontal disease; 

completely periodontal disease free individuals range from 16.3% of the Neandertal sample to 

22.2% of Early Upper Paleolithic samples (Fig. 5.3). So though Neandertals show greater 

morbidity, it is relative to other high morbidity samples. The Natufians (27.7%) and Indian Knoll 

(31.1%) have more periodontal disease free individuals, but Point Hope has none (i.e., everyone 

had at least some mild periodontal disease). Point Hope’s age distribution is skewed older though 

(Table 5.3) 

 

 

 
Figure 5.7: CEJ-AC distances per tooth organized by temporal/taxonomic group (standard 

deviations included) 
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anterior teeth (Fig. 5.7). The Neandertal CEJ-AC mean is more than a standard deviation above 

the CEJ-AC mean for the Early Upper Paleolithic and Late Upper Paleolithic for the anterior 

teeth. Using two-sample mean comparison, the Neandertal distribution and mean does not 

describe the modern human pooled samples distribution and mean for all tooth types (p-value 

range: 0.003 to <0.001) except the third molar (p-value: 0.074). This supports the most severe 

diagnosis protocol used above, which also found Neandertals have more periodontal disease, and 

modern humans cluster closer to one another (Fig. 5.3). The modern human pattern here also 

reflects the average periodontal score pattern (Table 5.2), with the mean alveolar bone loss per 

tooth decreasing over time for all teeth but the third premolars. 

     Region: 

 The temporal pattern in periodontal disease presence and severity is not strong within 

modern human and neither is the regional pattern. Continental Europe has more severe 

periodontal disease than Atlantic Europe, but not significantly (Kruskal Wallis, p-value: 0.081 

between the two; p-value: 0.123 for all three regions together). 44.0% of the Continental sample 

has advanced periodontal disease, compared to 32.7% in the Mediterranean and 24.5% in the 

Atlantic (Fig. 5.8). 
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Figure 5.8: Percentage distribution of 4 ordinal periodontal disease severity scores per region 
based on most severe diagnosis (p-value: 0.123) 

 

 The Mediterranean pattern differs less from the Atlantic region than the Continental 

regional pattern does. But despite having more advanced periodontal disease than the Atlantic, 

the Mediterranean also has more individuals without any periodontal disease. The Mediterranean 

pattern is therefore somewhat bimodal, whereas the Atlantic region has its periodontal disease 

severity more evenly distributed. The regional pattern remains non-significant when using 

average CEJ-AC distance (Kruskal-Wallis, p-value: 0.198) (Fig. 5.9). 

The CEJ-AC distances per tooth also show little difference between regions (Fig. 5.10). 

The CEJ-AC distance pattern across the dental arcade follows the temporal pattern (greater CEJ-

AC distances in the anterior teeth and first molar), but does not separate out regional groups. 
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Figure 5.9: Percentage distribution of 4 ordinal periodontal disease severity scores per region 
based on average CEJ-AC distances per individual (p-value: 0.198) 

 

 

Figure 5.10: CEJ-AC distances per tooth organized by region (standard deviations included) 
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     Age Category: 

 The distribution of periodontal disease severity across age categories is significant for 

both diagnostic protocols (Chi-square, p-value: 0.001), demonstrating a consistent increase in 

severity of disease prevalence and severity though age categories (Table 5.11 & 5.12). The 

percentage of individuals without periodontal disease decreases in each successive age category 

and the percentage of individuals with advanced periodontal disease increases. Few adolescents 

had advanced periodontal disease, though it was present in one individual, Laugerie-Basse 2. All 

elderly individuals—but Sunghir 1 with mild disease—had moderate or advanced periodontal 

disease. There are plenty of moderate cases in the adolescent group though. Localized aggressive 

periodontitis is not unknown from the fossil record; one of the Sterkfontein Australopithecus 

africanus juveniles (STS 24 & 24a) has it (reported as prepubertal periodontitis, Ripamonti, 

1988). It is a rare condition, but when present, it progresses rapidly and severely and can produce 

early tooth loss (Page et al., 1983; Nibali et al., 2013).  

Using average CEJ-AC distance per individual (Fig. 5.12), the pattern is the same with 

periodontal disease increasing in prevalence and severity through the aging process (Chi-square, 

p-value: <<0.001). Laugerie-Basse 2 is no longer diagnosed as having severe periodontal disease 

with this protocol. 
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Figure 5.11: Percentage distribution of 4 ordinal periodontal disease severity diagnoses within 
each age category using most severe diagnosis (p-value: 0.001) 

 

Figure 5.12: Percentage distribution of 4 ordinal periodontal disease severity diagnoses within 
each age category using average CEJ-AC distance (p-value: <<0.001)  
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CEJ-AC distances increase through the aging process at all teeth (Fig. 5.13). Since the 

definition of the adolescent group includes that their third molar not be in full occlusion, the 

mean CEJ-AC distances for adolescent third molars is barely above zero. The elderly group 

shows a deviation from the general pattern across the dental arcade in that their first molars show 

more alveolar bone loss than any other tooth including the incisors. Other studies have found the 

first molar to be a common site for localized periodontal disease in adults (Clarke et al., 1986; 

Glass, 1991; Brown and Löe, 1993), which likely reflects the first molar’s long time in the oral 

cavity (from age 6). It experiences more wear and therefore is at greater risk for pulpal exposure 

as well as potentially accumulating more dental calculus. 

 

 

 
Figure 5.13: CEJ-AC distances by tooth organized by age category (standard deviations 

included) 
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     Comparative Samples: 

The small size of the Point Hope sample may affect the age distribution skewing older 

than the other two samples (Natufian: N=47; Point Hope: N=23; Indian Knoll: N=74), and 

therefore it is not surprising that it has much more severe periodontal disease than the other two 

samples (Table 5.4). However Costa’s (1982) analysis of the periodontal status of the Point Hope 

sample had many more individuals, and also found a high rate of periodontal disease, especially 

severe in those over the age of 35. Every individual over 35 he examined had some level of 

periodontal disease, suggesting the Point Hope pattern here is not solely an artifact of sample 

size. The age distributions of the three samples do not differ significantly (Kruskal Wallis, p-

value: 0.186), but the periodontal disease severity does between the comparative samples (p-

value: 0.023). 

The Natufian sample shows few individuals with advanced periodontal disease, and there 

is no moderate or advanced periodontal disease in the adolescent sample. But the life expectancy 

of Natufians peoples is low (Eshed et al., 2004), and there is no elderly individual in the sample. 

The Indian Knoll sample is intermediate in periodontal disease distribution between the other 

two samples, but part of this is related to the young skew of the Natufians and the older skew of 

the Point Hope sample (though insignificantly different). This is also a pattern in average 

periodontal disease value (using most severe diagnosis) with Point Hope > Indian Knoll > 

Natufians (Table 5.4). All three samples show increased periodontal disease prevalence and 

severity over the aging process (Fig. 5.14). 
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None Mild Moderate Advanced Sum 

Natufian Adolescent 3 1 0 0 4 

 
Young Adult 7 11 10 2 30 

 
Mid-Aged Adult 3 4 4 2 13 

 
Elderly 0 0 0 0 0 

 Sum 13 16 14 4 47 

Point Hope Adolescent 0 1 2 0 3 

 
Young Adult 0 1 4 0 5 

 
Mid-Aged Adult 0 0 4 7 11 

 
Elderly 0 0 1 3 4 

 Sum 0 2 11 10 23 

Indian Knoll Adolescent 12 2 1 0 15 

 
Young Adult 8 7 11 2 28 

 
Mid-Aged Adult 3 3 8 9 23 

 
Elderly 0 2 1 5 8 

 Sum 23 14 21 16 74 
 

Table 5.3: Comparative sample periodontal severity totals (most severe septa diagnosis) 
organized by group and age category (Kruskal-Wallis p-values for each age series, Natufians: 

0.047; Point Hope: 0.004; Indian Knoll: <<0.001) 

 

 Natufians Point Hope Indian Knoll 
Average Most Severe 

Periodontal Score 1.19 2.35 1.33 
 

Table 5.4: Average most severe periodontal score per comparative sample (0=None, 1=Mild, 
2=Moderate, 3=Advanced). Compare to Table 5.2 for the Late Pleistocene 
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Figure 5.14: Comparative sample periodontal disease severity percentages (using most severe 

septa diagnosis) by age category 

 

Discussion: 

 The summary of the major findings are as follows: 1) CEJ-AC distances and alveolar 
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distance per individual and average CEJ-AC distance per tooth all demonstrate that Neandertals 
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modern humans; 4) within modern humans without Neandertals, the periodontal disease 
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significant that the Continental sample is more severely affected by periodontal disease; 6) 

periodontal disease increases in prevalence and severity across age categories by most severe 

septa diagnosis, average CEJ-AC distance per individual, and average CEJ-AC distance per tooth 

for Late Pleistocene and Holocene samples; 7) Point Hope has the most severe periodontal 

disease, but also the oldest age distribution; 9) the Natufians have the least severe periodontal 

disease, but also the youngest age distribution; 10) Indian Knoll is intermediate in age 

distribution and periodontal disease prevalence and severity between the three comparative 

sample. Overall periodontal disease was quite common in the Pleistocene, and most of the 

differences between groups relate to severity and not presence/ absence of the disease. 

     Previous research: 

Clarke and co-authors claimed that periodontal disease in “ancient” skeletal samples is 

over-assessed (Clarke et al., 1986; Clarke, 1990), but their values for hunter-gatherers are likely 

extreme underestimations. They report that 76 - 99.9% of pre-modern humans have no 

periodontal disease (Clarke et al., 1986); however, as Lavigne and Molto (1995) pointed out, 

they also reported that their samples have large amounts of dental calculus, which means they 

were unlikely to be periodontal disease free (others also question Clarke et al’s (1986) 

conclusions (e.g., Oztunc et al., 2006)). Overall, only 18.7% of the sample here shows no 

evidence of periodontal disease (23.6% when using average CEJ-AC distance). Table 5.5 

compares the values found here with other published examples. 
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This Study Other Studies* 

Neandertal 83.7% / 86.0% - 
MPMH 80.0% / 70.0% - 

EUP 77.8% / 69.4% 42.9% (Holt & Formicola, 2008) 
LUP 82.3% / 73.5% 12% (Holt & Formicola, 2008) 

Mesolithic - 81.5% (Wittwer-Backofen & Tomo, 2008) 
Natufians 72.30% 36.4% (Eshed et al., 2006) 

Point Hope 
(Ipiutak) 100% 96.9%1 (Costa, 1982) 

Indian Knoll 68.9% 2(Leigh, 1925) 
 

Table 5.5: Comparison between the periodontal disease presence values presented here (most 
severe septa diagnosis/ average CEJ-AC) and previous publications. 1Methods for diagnosis vary 

considerably. t Calculated from values available in the publication. 2Periodontal disease is 
described, but no values are given 

 

Clarke’s main point that many diagnoses of periodontal disease in skeletal remains are 

actually large CEJ-AC distances caused by pulpal infections is a valid one. Lesions of a pulpal 

origin do not have to be periapical, but can be anywhere along the alveolus or alveolar crest 

(Goldman and Schilder, 1988). Septa conditions were recorded here to correct for continuous 

eruption, but they cannot correct for infections. The inflammatory response from a pulpal lesion 

can also occur in conjunction with periodontal disease (Seltzer et al., 1963; Bender and Seltzer, 

1972). Clarke’s (1990: et al., 1986) supposition that periodontal disease is not an ancient disease 

seems unreasonable given the results presented here, and the fact that his periodontal disease 

prevalences for modern populations are also considerably lower than those presented in dentistry 

texts (i.e., between 30-60% of people in many extant, Westernized groups (Löe et al., 1992; 

Oliver et al., 1998; Hugoson et al., 2008)) Clarke (1990) also interpreted Costa’s (1982) data as 

proving his point that periodontal disease was less severe in the past than it is today, but Costa’s 

data show everyone over age 35 having periodontal disease. 
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Other studies have found similarly high periodontal disease prevalences, such as at 

Assos, Turkey (4th century BC) where 62% of individuals over 15 and 85% of individuals over 

30 had periodontal disease (Oztunc et al., 2006). Unfortunately few anthropological assessments 

study periodontal disease directly, and fewer report actual disease prevalence because they use 

an idiosyncratic metric [e.g., Topić et al. (2012) reports a ratio of the averaged buccal CEJ-AC 

distances per individual to the averaged interdental CEJ-AC distance; Fujita (2012) reports caries 

and antemortem tooth loss suggesting that where caries are low, tooth loss is caused by 

periodontal disease; Frayer (1989) reports antemortem tooth loss and abscesses as periodontal 

disease]; or the sample size is too small (e.g., Lavigne and Molto, 1995).  

     Time Period: 

 It has been assumed that periodontal disease has generally gotten worse over time until 

the introduction of oral hygiene techniques (Gold, 1985); however, this survey rejects this 

hypothesis. Periodontal disease is not only ancient (Fujita, 2012), but it appears to have actually 

improved over time in the Late Pleistocene and into the Holocene (Wittwer-Backofen and Tomo, 

2009). Periodontal disease has a complex etiology beyond diet, and it does not likely pattern with 

agricultural intensification in the Holocene as caries does (Larsen, 1995). The more advanced 

cases of periodontal disease in Neandertals versus early modern humans does have some 

implications for differential morbidity, especially around the Upper Paleolithic transition. What 

was going on in Neandertal populations—diet, health, or stress-wise—that was producing more 

advanced cases of periodontal disease as compared with the early modern humans that came 

after? Even though a definitive answer cannot be found, there are some serious health and 

demographic consequences of these periodontal disease severity differences. The Neandertals 

appear to be less “healthy” than the modern humans who followed them. Other research has 
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supported this with dental enamel hypoplasias (Ogilvie et al., 1989; Brennan, 1991; Skinner, 

1996; Guatelli-Steinberg et al., 2004), Harris lines (Brennan, 1991), fluctuating dental 

asymmetry (Barrett et al., 2012; Willman, 2014) and other aggregated stress/health indicators 

(Brennan, 1991; Holt and Formicola, 2008; Trinkaus, 2013). Therefore this result is not be 

surprising. 

 The Early Upper Paleolithic sample not being healthier than the Late Upper Paleolithic 

sample is contrary to some existing stress research. The above studies looking at health changes 

over time found the Late Upper Paleolithic showed a small inflection where health generally 

declined relative to the Early Upper Paleolithic (Brennan, 1991; Holt and Formicola, 2008). 

Though Holt and Formicola (2008) reported periodontal disease decreasing from 42.9% of the 

EUP to 12% of the LUP based on published descriptions (Table 5.5), this runs counter to their 

other examples. The climate became colder and preferable environments contracted around the 

Last Glacial Maximum (Dennel, 1983; Gamble, 1986; Straus, 1995); this likely resulted in 

increasing stress on the Late Upper Paleolithic population. However, this is not found here, 

reflected in periodontal disease based on most severe diagnosis, but perhaps with average CEJ-

AC distance (it is statistically non-significant). Were individuals practicing better oral hygiene in 

the Late Upper Paleolithic? There is plenty of evidence of tooth pick grooves from the whole of 

the Pleistocene (Formicola, 1988), but do they increase in the Late Upper Paleolithic relative to 

the Early Upper Paleolithic? No data is currently available. It is certainly an old habit (Hlusko, 

2003; Lozano et al., 2013), but it may not represent the use of effective oral hygiene. Increased 

dietary breadth is also associated with improved oral health in modern humans (Lopez et al., 

2011), but Late Upper Paleolithic people were not necessarily exploiting a larger breadth of food 

items, just intensifying that exploitation (Grayson and Delpech, 2002; 2006; Drucker and 
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Bocherens, 2004; Stiner and Kuhn, 2006). Oral biodiversity changed over time with cariogenic 

species dominating in the last few centuries (Adler et al., 2013), but this has not been explored 

systematically at the time depth of the Late Pleistocene. 

 The Osteological Paradox should also be weighed in the interpretation of these results 

(Wood et al., 1992). Perhaps the slight decrease in periodontal disease in the Late Upper 

Paleolithic coupled with increasing demographic stress represents an increase in periodontal 

disease-related, infection-related, or systemic disease-related mortality. There is not a statistical 

age profile difference between the Early Upper Paleolithic and Late Upper Paleolithic (see 

Figure 5.1 (Kruskal-Wallis, p-value: 0.564)), but perhaps those with moderate periodontal 

disease are dying before it can advance in severity in the Late Upper Paleolithic?  

     Region: 

 Though it is not statistically significant, there appears to be a mild regional pattern with 

more severe cases of periodontal disease in Continental Europe relative to the Atlantic and 

Mediterranean regions. This could reflect dietary differences (discussed below), a latitudinal 

effect, or some other health or climate-related difference. A latitudinal effect is likely to also be 

related to diet as it may be with caries. The Continental individuals all lived in cold 

environments without Maritime climatic amelioration, which would likely place stress on the 

population; the Point Hope sample from Alaska (cold, but Maritime) also shows high periodontal 

disease prevalence and severity. Is the increased periodontal disease the result of cold stress or 

other climate-related variables? From Figure 5.15, there does not appear to be a clear pattern 

with latitude. If anything, there is an east-west cline with the more advanced cases in the east. 

The cluster of moderate and severe periodontal disease in the Czech Republic sites is driving this 
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difference, so perhaps there is a localized source of health problems that does not reflect latitude 

per se or the wider Continental region.  

 

 

 

Figure 5.15: Distribution of mild, moderate, and severe periodontal disease with respect to 
latitude (locations are approximate, especially where there are a number of individuals from one 

site) 

 

 The Mediterranean region has a higher percentage of individuals without periodontal 

disease than the other two groups, but also more advanced cases than the Atlantic region. This 

bimodal pattern is difficult to explain. Perhaps if individuals do develop periodontal disease, it 

progresses to an advanced case more rapidly than in the Atlantic region? In chapter seven, the 

covariance of pathologies will be tested, as caries are also most common in the Mediterranean. 
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The Middle Paleolithic modern humans of Southwest Asia do not have any elderly individuals, 

and yet 80% of the individuals have at least mild periodontal disease somewhere in their dental 

arcade (Fig 5.3). Since periodontal disease prevalence and severity increases with age, this is a 

high rate of periodontal disease for a sample without elderly individuals. Since there is also 

plenty of caries (by Pleistocene standards) in the Middle Paleolithic modern human samples, this 

may suggest a larger poor oral health trend. Other authors have also noted periodontal disease 

from other Southwest Asian fossil sites (Kebara (Tillier et al., 1989; 1995; Vandermeersch et al., 

1994); Qafzeh (Tillier et al., 2004)). 

     Age: 

 Periodontal disease increasing in prevalence and severity through the aging process 

appears to be a common trend in other archaeological studies (e.g., Loë et al., 1986; Neely et al., 

2001; Ronderos et al., 2001; Oztunc et al., 2006); however modern studies only confirm this in 

samples of populations that do not have access to oral hygiene (Ånerud et al., 1979; Eke et al., 

2012). In samples from developed countries, disease prevalence and severity percentages appears 

to be consistent through age classes (Ånerud et al., 1979). Costa (1982) found an increase in 

those over the age of 35 relative to those below 35, but with his more precise aging of specimens, 

he did not find a consistent increase with age. 

 Life expectancy certainly plays some role here, but in which direction? The poor oral 

health of Jomon peoples has been attributed to the overall rapid physiological aging relative to 

modern populations that the Jomon experienced because of bodily stresses (Fujita, 2012). But if 

oral pathologies such as periodontal disease increase with age and people are dying young, 

should one not expect them to have less oral pathology (Osteological paradox: Wood et al., 

1992)? Low antemortem tooth loss in the Assos sample despite high periodontal disease 
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prevalence was attributed to short life expectancy, i.e., periodontal disease did not have time to 

progress to tooth loss (Oztunc et al., 2006). Life expectancy was certainly low in the Late 

Pleistocene, related to population instability and the demands of their mobile lifestyle (Trinkaus, 

2011). Low life expectancy coupled with high periodontal disease suggests rather high morbidity 

then. Life expectancy did not improve in the Early Upper Paleolithic relative to the Middle 

Paleolithic, so the mild alleviation in periodontal disease severity may reflect a small decrease in 

population stress and morbidity, but not enough to lengthen life expectancy. Trinkaus (2011) 

used a young versus old (over ~40 years old) dichotomy for his mortality analysis and doing 

something similar here, the young groups over time differ little from one another (Fisher (small 

sample sizes), A) p-value: 0.7997; B) p-value: 0.116) (Fig. 5.16). But the older groups (pooled 

Mid-Aged and Elderly) insignificantly appear to show less periodontal disease presence and 

severity through time (A) p-value: 0.370; B) 0.209). Though it is statistically insignificant (there 

are a number of zero cells), it may be biologically meaningful. This suggests that perhaps the 

improvement in health in the Upper Paleolithic is focused on older individuals. The morbidity of 

Late Upper Paleolithic peoples at older ages may be less than comparably aged Neandertals, 

even if mortality risk is the same. This is an avenue that should be explored further for other 

stress indicators. 
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Figure 5.16: Young vs. Old periodontal disease severity (A.) Most severe; B.) Average CEJ-
AC) for the Late Pleistocene 

 

 This also brings up the question: Do humans become more susceptible to periodontal 

disease with age, or does the increase with age reflect increasing exposure to sources of 

inflammation (Oztunc et al., 2006)? Ånerud et al. (1979) found Sri Lankan laborers with no oral 

hygiene showed a small increase in periodontal disease with age, but even the youngest group 

(around 17 years old) had extensive dental calculus. Does this suggest that the sources of 

inflammation were always there, and the individuals were becoming more susceptible to their 

effects over time? Unfortunately dental calculus is rather fragile and is likely missing from many 

specimens, so this hypothesis cannot be tested with this sample. The problem of calculus 

underestimation has affected other studies as well (e.g., Costa, 1982; Oztunc et al., 2006). 

Chronic periodontal disease can progress slowly or in bursts of activity (Molnar and Hildebolt, 

1991), and the increase with age may be a general characteristic of the disease. 
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     Pleistocene vs. Holocene: 

 The Natufians maintain the Pleistocene trajectory and have a lower mean periodontal 

disease value than the Late Upper Paleolithic (Table 5.5), but the other comparative samples do 

not show lessened periodontal disease with time. The Indian Knoll average is below any of the 

Pleistocene values and the Point Hope value is larger than any of the Pleistocene values. The 

Point Hope population is skewed older though, and perhaps a larger sample would look more 

like the Neandertals. This is not an unlikely hypothesis given their diet, cold environment, and 

strenuous lifestyle. There is no definitive Holocene hunter-gatherer pattern here though; they are 

quite divergent from one another. Therefore it appears that into the Holocene, differences in diet 

and health increase between groups. To examine temporal trends in the Holocene, one needs to 

look regionally or even locally. Temporal patterns no longer hold at a Continent-wide scale. 

     Diet: 

 What an individual eats affects his/her oral cavity in two ways: the diet directly interacts 

with the dentition and oral flora; and the nutrition derived from their diet has systemic affects on 

both dental development and lifelong alveolar and mucosal health. Therefore nutrition has a 

generally constructive influence on teeth, while diet is destructive (through wear and acidity) 

(König, 2000). But the relationship between diet and other oral soft tissues is less direct than it is 

with dental tissues, with diet modifying oral tissues through nutrition (Schifferle, 2009). 

Costa (1982) hypothesized that generalized mild periodontal disease with localized 

severe periodontal disease reflects a high protein/fat diet. The Point Hope Ipiutak peoples ate a 

diet dominated by caribou, fish and seals (Rainey, 1941; 1971; Larsen and Rainey, 1948), and 

the Late Pleistocene diet was also likely high in animal proteins and fats. Dental calculus is 

deposited during alkaline periods in the oral cavity, which is caused by protein consumption—as 
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opposed to acidic oral conditions caused by carbohydrate consumption (Hillson, 1979; 

Meiklejohn et al., 1988). The presence of dental calculus was recorded with this analysis, but it is 

a gross underestimation due to poor preservation. Isotope analyses of Pleistocene fossils also 

confirm that the diet was dominated by protein from vertebrates (Richards et al., 2008; Richards 

and Trinkaus, 2009). This could suggest similar dietary etiology for the high periodontal disease 

prevalence of Point Hope and Late Pleistocene peoples, namely high protein consumption and 

dental calculus.  

It has been assumed that dietary carbohydrates were low in the diets of Late Pleistocene 

peoples (Cordain et al., 2005), but the previous caries chapter as well as new archaeological and 

calculus data have called that into question. In modern humans, dietary carbohydrates can have 

an inflammatory effect on oral soft tissues within a matter of weeks, but the systemic effects will 

not be felt for years (Hujoel, 2009). This is why epidemiologists have argued for periodontal 

disease and caries as a so-called “warning bell” for heart disease, diabetes, and other systemic 

diseases to come if dietary interventions are not taken. The high periodontal disease prevalence 

in the Late Pleistocene, taken with the caries data, could be used to argue for greater 

carbohydrate consumption than has been reconstructed. The relationship between the amount of 

carbohydrates consumed and the severity of caries and periodontal disease is not direct (König, 

2000), so I would not argue Neandertals were eating more carbohydrates than Early Upper 

Paleolithic modern humans because of greater advanced periodontal disease prevalence. It 

should be weighed with other data. Hujoel (2009) hypothesized that high caries and periodontal 

disease indicated carbohydrate consumption from a young age, and lower caries and high 

periodontal disease would be associated with carbohydrate consumption in adults only. If this 
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prediction is correct, it could be used to argue for changing differential food access for children 

in the Late Pleistocene. 

A number of other dietary components have relationships with periodontal disease that 

could have implications for the Pleistocene though. Omega 3 fatty acids are anti-inflammatory 

and are found to ameliorate the effects of periodontal disease (Kesavalu et al., 2006; 2007). 

These are found in fish oils, and there is evidence for the consumption of both salt water and 

fresh water fish in different Upper Paleolithic modern humans from isotope studies (Richards et 

al., 2001). This may also contribute to why Mediterranean and Atlantic individuals generally had 

less severe periodontal disease than the land-locked Continental sample. Conversely fish 

consumption is also sometimes associated with a lot of dietary grit and attrition, which can 

accelerate dental wear, pulpal exposure, and potentially periodontal inflammation (Oztunc et al., 

2006). The Point Hope sample was likely eating large amounts of fish, at least seasonally, but 

everyone over the age of 35 had at least mild periodontal disease (Costa, 1982).  

Low blood serum levels of vitamin D are linked to periodontal disease, which has 

implications for Late Pleistocene peoples living at more northerly latitudes. Humans produce 

vitamin D with exposure to UV radiation, which can be difficult to come by in the north due to 

both the oblique angle with which the sun’s rays hit the planet at higher latitudes, and in cold 

areas, people cover their skin with clothing. Individuals living beyond 50° latitude have the 

strongest selection for vitamin D3 synthesis (Jablonski and Chaplin, 2000). Vitamin D is also 

generally anti-inflammatory, anti-bacterial, and anti-vital (Wintergerst et al., 2007; Garcia et al., 

2011). Finding high prevalences of periodontal disease in Pleistocene peoples living at northerly 

clines therefore possibly suggests they may not have been getting the optimal amount of vitamin 

D. Periodontal disease is mapped with respect to latitude in Fig. 5.13, but there is no clear 
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pattern. There is only one known example of possible rickets in the Late Pleistocene, Arene 

Candide (Formicola, 1995)—but possibly Sunghir 3 (Trinkaus et al., 2014; but see Ortner, 

2003)—suggesting severe hypovitaminosis D was uncommon, but does not rule out insufficient 

levels of circulating Vitamin D. 

The inflammation caused by obesity is also associated with periodontal disease 

(Schifferle, 2009). There is evidence that at least some people may have been seasonally obese in 

the Upper Paleolithic based on the anatomical correctness of obese Venus figures (Trinkaus, 

2005). Many of the individuals from the Czech Early Upper Paleolithic exhibit moderate to 

severe periodontal disease, and there are a number of obese Venus figurines known from the 

Continental region (e.g., Willendorf, Dolní Věstonice, Kostenki, Moravany, Gagarino), but they 

also appear across Eurasia (Svoboda, 2008). Perhaps the cluster of caries in this subgroup along 

with the advanced periodontal disease and corpulence of the local Venus figures could be used to 

argue for seasonal excess in foods, namely carbohydrates. Further, a recent genomic study found 

alleles of Neandertal origin in recent human associated with type 2 diabetes, a disease also 

associated with obesity and periodontal disease (Sankararaman et al., 2014). 

Periodontal disease was quite common in the Late Pleistocene, even for adolescents. 

Once they reached mid-life and beyond, moderate to severe periodontal disease becomes 

ubiquitous. Frayer (1989) suggested that the high amounts of “alveolar disease” in the Upper 

Paleolithic meant many individuals were not at optimal masticatory efficiency as well as needing 

some social care or special dietary/culinary techniques well in advance of death. The high 

prevalence of periodontal disease suggests though that a “special” diet was not required. Either 

this was common enough to affect the cultural preparation of food or people literally “grinned 

and bore it”.  
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     Smoke Inhalation: 

 A future direction to explore is the connection between smoke inhalation and periodontal 

disease in fossil humans. The association between cigarette smoking and periodontal disease is 

well established in recent humans (e.g., Bergström, 1989; 2004; Albandar et al., 2000; Kinane 

and Chestnutt, 2000). Late Pleistocene humans often inhabited caves, and it is possible they were 

regularly subjected to smoky environments. Analysis of dental calculus from El Sidron suggests 

evidence of wood smoke inhalation or the consumption of smoked foods (Hardy et al., 2012). 

Barrel-shaped chests, ubiquitous in Neandertals (Smith FH, 1976; Franciscus and Churchill, 

2002), are a symptom of emphysema in recent humans (Pierce and Ebert, 1958). The inhabitants 

of Point Hope constructed small homes with central open fires (Rainey, 1941; Daifuku, 1952) 

and were therefore also likely subjected to frequent smoke inhalation. Other researchers have 

suspected smoke inhalation as a factor in Late Pleistocene life (Platek, 2002; Størmer and 

Mysterud, 2007), and though this theory needs more support, the periodontal disease data 

presented here could contribute to it. 

     Overall Health: 

There are a number of systemic diseases associated with periodontal disease; however, 

periodontal disease is too common to be used as a diagnostic tool for any one specific disease. 

Periodontal disease can be weighted with other evidence to make hypotheses about Late 

Pleistocene health and morbidity though. Periodontal disease is associated with cardiac disease, 

likely related to systemic inflammation (Slavkin and Baum, 2000; Meurman et al., 2004). 

Pleistocene peoples were certainly eating a large amount of dietary proteins and fats, but would 

that result in higher blood cholesterol and cardiac disease in an active population? A high 

cholesterol diet is associated with periodontal disease in modern peoples (Schifferle, 2009). In a 
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population with low life expectancy, there may be little selection against diseases like heart 

disease that do not have an effect until later in life. But with more than 80% of the Late 

Pleistocene sample having mild periodontal disease to advanced periodontitis, there was 

certainly increased morbidity in the samples. At least for those individuals with advanced 

alveolar bone loss and assumed soft tissue inflammation, there would have been health 

implications, though exactly what those were is unclear. 

     Conclusion: 

 All Late Pleistocene subgroups showed relatively high prevalence of periodontal disease 

and severity increased with age, with the Neandertals showing the most advanced cases. This 

suggests relatively high morbidity for these groups, but early modern humans in general show a 

moderate improvement in periodontal disease prevalence and severity relative to Neandertals. 

This decrease in morbidity did not result in increased life expectancy for Upper Paleolithic 

modern humans, but perhaps was enough to give them a small demographic advantage over the 

Neandertals in the Upper Paleolithic transition.  
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Chapter 6: Antemortem Tooth Loss 

Introduction: 

 Antemortem tooth loss has not been systemically analyzed for the Pleistocene. The few 

individuals who lost many teeth before death (e.g., Late Pleistocene La Chapelle-aux-Saints 1 

and Guattari 1&2, Middle Pleistocene Aubesier 11, Early Pleistocene Dmanisi D3444/D3900) 

have been debated in the context of societal/conspecific care, with much disagreement (Rowlett 

and Schneider, 1974; Tappan, 1985; Lebel et al., 2001; DeGusta, 2002; 2003; Lebel and 

Trinkaus, 2002a; Lordkipanidze et al., 2005; Hublin, 2009; Spikins et al., 2010). However 

focusing the discussion on such extreme conditions, though severe for those living with them, 

does not adequately characterize the broader prevalence of tooth loss for Pleistocene individuals. 

It is highly unlikely that the only individuals experiencing tooth loss were missing a third or 

more of their teeth. There must be intermediate conditions, but this has not been explored for 

early modern humans. The only survey of Neandertals analyzed their antemortem tooth loss in 

the context of chimpanzees and recent humans and with a sample size of 26 individuals 

(Gilmore, 2011; n.d.). Gilmore’s conclusion is that Neandertals are closer to chimpanzees in 

their antemortem tooth loss prevalence than recent modern human groups. But to understand the 

Upper Paleolithic transition, Neandertals need to be compared with those who came directly after 

them: Upper Paleolithic modern humans. 

 Antemortem tooth loss is reported as the number of teeth missing before death over the 

total number of alveoli observed. Postmortem loss of teeth is quite common, but it has no 

meaning beyond a study of taphonomic processes. Identifying antemortem loss is not always 

straightforward, as some alveoli show either some in-filling (osteoblastic activity), but the 

alveolus is not completely healed (and therefore it is possible a small portion of the tooth root is 
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still present); or there was an infection and the alveolus is obliterated (osteoclastic activity), but 

the tooth may have been held in by soft tissue. So though tooth loss is a binary state, the 

interpretation of the alveolar bone’s condition must acknowledge gradations (Gilmore, 2013). To 

address this issue, definitive examples of antemortem tooth loss are reported followed by a 

number in parentheses, which indicates the pooled value of definitive and probable cases of 

antemortem tooth loss. This can also be interpreted as the first value is a conservative estimate 

and the second value a more liberal one. Similar methods have been employed elsewhere 

(Gilmore, 2013). The number of individuals with at least one tooth missing antemortem is also 

reported, following the above method of a conservative value, followed by the pooled definitive 

and probable cases. This value has less meaning in that specimens can be represented by between 

one and 32 alveoli, and one missing tooth and an edentulous individual are considered the 

same—which they are not. 

 Sometimes it can be difficult in older individuals to determine whether a tooth was lost 

long ago, or if it was never present. Dental agenesis, or the failure of a dental bud to form or 

progress to an adult tooth, is common for the third molar in recent humans, but can happen to 

any tooth with fourth premolars and maxillary lateral incisors being most common after third 

molars (Polder et al., 2004; Scott and Turner, 1997). Third molar agenesis is assumed to be much 

less common in Late Pleistocene individuals, but this has not been quantified. I include all 

observed instances of dental agenesis in this chapter as they can be confused with tooth loss, 

especially for third molars in older individuals. One individual, Malarnaud 1, is an adolescent 

Neandertal with bilateral second lower incisor agenesis, but all of the other Late Pleistocene 

examples are of third molar agenesis. There are three cases of unilateral lateral incisor agenesis 

from Indian Knoll in addition to third molar agenesis. 
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 Intentional removal is also difficult to differentiate from “natural” tooth loss and is 

known from many societies, especially hunter-gatherer groups (e.g., Cook, 1981; Kangxin and 

Nakahashi, 1996; Scott and Turner, 1997; Lukacs, 2007 Humphrey and Bocaege, 2008; 

Bocquentin, 2011; Temple et al., 2011). However definitive examples of dental ablation have not 

been presented for the Late Pleistocene, with some Epi-Paleolithic exceptions (i.e., Humphrey 

and Bocaege, 2008; Bocquentin, 2011). All examples seen here were assumed to be natural tooth 

loss and not examples of dental ablation. 

Results: 

     Time period: 

 

 
Neandertal MPMHs EUP LUP Total 

No. of teeth missing AM 34 [40] 1 [2] 4 [17] 38 [43] 76 [101] 

No. of individuals with AMTL 4 [5] 1 3 [11] 6 [9] 13 [25] 
Total Alveoli 689 184 750 531 2070 

% of alveoli with some 
evidence of AMTL 

4.9% 
[5.8%] 

0.5% 
[1.1%] 

0.5% 
[2.4%] 

7.2% 
[8.1%] 

3.7% 
[4.9%] 

% of individuals with any 
AMTL 

7.4% 
[9.3%] 9.1% 

7.3% 
[26.8%] 

16.7% 
[25.0%] 

9.4% 
[18.0%] 

No. of agenetic teeth 2 0 2 11 15 
No. of individuals with agenesis 1 0 2 8 11 
% of individuals with at least 
one agenetic tooth 1.9% 0% 4.9% 22.2% 7.9% 

 
Table 6.1: Distribution of antemortem tooth loss and agenesis across temporal/taxonomic 

groups; values in parentheses are definitive plus probable cases (AMTL per alveolus: p-value: 
<<0.001) 

  

 Neandertals show considerably more antemortem tooth loss than Middle Paleolithic and 

Early Upper Paleolithic modern humans, who are roughly equivalent for definitive examples per-

alveolus (Table 6.1) (Definitive and definitive plus probable cases: Chi-Square, p-value: 
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<<0.001). This result has some major health and behavioral/cultural implications discussed 

below. The Middle Paleolithic modern humans have no elderly individuals, which likely makes 

antemortem tooth loss appear more rare. In the age category section below, antemortem tooth 

loss is considerably more prevalent in the elderly category over the younger three. Tooth loss is 

cumulative over one’s life, so this is not surprising and has been reported elsewhere (Müller et 

al., 2007). The Early Upper Paleolithic specimens have a similar age distribution to the 

Neandertals though (see Chapter 5: Periodontal disease), so the difference in antemortem tooth 

loss prevalence is large and striking. Neandertals have statistically significantly more tooth loss 

per-alveolus, and this suggests both behavioral and health causal differences producing more 

tooth loss in Neandertals as opposed to Early Upper Paleolithic modern humans, as well as a 

greater need in Neandertal groups to care for those who had lost some of their teeth. Neandertals 

also had more severe periodontal disease than Upper Paleolithic modern humans, so the 

covariance of these pathologies is explored in the following chapter. The Late Upper Paleolithic 

peoples have more tooth loss per-alveolus than any of the preceding groups (7.2% [8.1%]). For 

modern humans, there is stark difference between the Late Upper Paleolithic and those that came 

before, which may suggest a relaxing of mortality risk associated with tooth loss. The few 

available published tooth loss values relevant for this study are presented in Table 6.2. 
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This 
Study: 
indiv. 

Frayer, 
1989: 
indiv 

This 
Study: 

alveolus Other Studies: alveolus 

Neandertals 
7.4% 

[9.3%] - 
4.9% 

[5.8%] 
4.8% (Brabant and Twiesselmann, 

1964) 

MPMH 
9.1% 

- 
0.5% 

[1.1%] - 

EUP 
7.3% 

[26.8%] 7.10% 
0.5% 

[2.4%] - 

LUP 
16.7% 
[25%] 17.60% 

7.2% 
[8.1%] 7.8%* (Wells, 1975) 

Mesolithic - 21.50% - - 

Natufians 
16.9% 

[18.9%] - 
3.1% 

[3.6%] 3.7% (Eshed et al., 2006) 
Point Hope 

(Ipiutak) 
50% 

- 
16.9% 

[17.6%] 15% (Costa, 1980a) 
Indian Knoll 32% - 5.40% - 

Hunter-Gatherers - - - 2.0-41.6% (Wells, 1975) 
 

Table 6.2: Comparison of this study’s results (tooth loss per-alveolus and per individual 
percentages) with previous publications; *presented as a value for the “Paleolithic” 

 

The per-individual values tell a much different story than the per-alveolus values, making 

tooth loss appear much more common in the Early Upper Paleolithic (7.3% [26.8%]) (Table 6.1). 

In the Early Upper Paleolithic, most individuals with tooth loss are only missing one or two 

teeth. By comparison in the Neandertals, some individuals are missing half or more of their teeth. 

For the definitive cases of tooth loss, the temporal pattern generally holds for the per-individual 

values set by the per-alveolus values, but it is to a much lesser degree. In the Middle Paleolithic 

modern human sample from this study, only one tooth is missing, but there is an N of 11, 

inflating the per-individual prevalence to 9.1%. 
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     Region: 

 

 
Atlantic Continental Mediterranean 

Pooled 
Mediterranean 

(incl. Natufians) 
No. of teeth missing AM 37 [46] 14 [24] 26 [32] 54 [64] 

No. of individuals with AMTL 5 [9] 3 [8] 6 [9] 15 [19] 

Total Alveoli 799 509 846 1742 
% of alveoli with some evidence 
of AMTL 4.6% [5.6%] 2.8% [4.7%] 3.1% [3.8%] 

 
3.1% [3.7%] 

% of individuals with any AMTL 8.3% [15.0%] 
11.5% 

[30.8%] 
10.7% 

[16.1%] 
13.8% 

[17.4%] 
No. of agenetic teeth 10 2 3 9 

No. of individuals with agenesis 7 2 2 6 
% of individuals with at least one 
agenetic tooth 11.7% 8.0% 3.6% 

 
5.5% 

 
Table 6.3: Distribution of antemortem tooth loss and agenesis across regions of Western 
Eurasian; values in parentheses are definitive plus probable cases (Definitive per-alveolus 

AMTL: p-value: 0.374; Definitive plus probable: p-value: 0.422) 

 

 There is little difference in antemortem tooth loss prevalence between regions (Table 6.3) 

(Definitive cases: Chi-square, p-value: 0.374; Definitive plus probable: p-value: 0.422). The age 

distribution of each region (for specimens with preserved alveolar bone) was tested in the 

periodontal disease chapter, and found to be not significantly different. This suggests that region 

and the variables related to it (e.g., environment, climate, diet) play little role in the presentation 

of tooth loss in Late Pleistocene humans. This also suggests that the temporal and taxonomic 

differences in antemortem tooth loss are not artifacts of some underlying regional pattern. 

     Age category: 

 Antemortem tooth loss is known to increase through the aging process. It is not only 

cumulative, but the alveolar bone and periodontal ligaments weaken over time, further 
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accelerated by periodontal disease (Copeland et al., 2004; Müller et al., 2007; but see Papapanou 

et al., 1991). And once it reaches an advanced degree, processing of food in the mouth becomes 

difficult. This is fixed with dentures and other implants in modern, urban/industrial societies, but 

tooth loss has more impact in societies without access to dental care (e.g., Neely et al., 2005). 

Therefore it is not unusual to see here that elderly individuals have the most tooth loss (Both 

definitive and definitive plus probable cases: Chi-square, p-value: <<0.001). What is surprising 

is that tooth loss prevalence per-alveolus does not appear to be gradual; it is less than 1% in all 

age categories and then jumps to 23.6-26.6% in the elderly sample (Table 6.4). Other studies 

have shown an acceleration in tooth loss rate over time, but not to this degree (Norderyd and 

Hugoson, 1998). Certainly a few individuals are tipping the scale, namely La Chapelle-aux-

Saints 1, Guattari 1 & 2, Oberkassel 1, and those missing the majority of their teeth are almost 

automatically assumed to be elderly. Wear is accelerated on the few teeth remaining by focusing 

chewing on a reduced surface area, ensuring they will be categorized as elderly (based on wear 

alone) (Hillson, 2008). However there is little evidence to assume that these individuals are not 

older by Late Pleistocene standards, i.e., over approximately 35-40 years of age; their cranial and 

postcranial remains confirm the age assessment (La Chapelle-aux-Saints 1 (Trinkaus, 1985); 

Oberkassel 1 (Henke, 1986); Guattari 1&2 (Mallegni, 1995)). 
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Adolescent 

Young 
Adult 

Mid-Aged 
Adult Elderly Unaged 

No. of teeth missing AM 1 [1] 7 [13] 5 [13] 64 [72] 0 [3] 
No. of individuals with AMTL 1 [1] 3 [6] 3 [7] 7 [10] 0 [3] 

Total Alveoli 237 739 717 267 162 
% of alveoli with some evidence 

of AMTL 0.40% 
0.9% 

[1.8%] 
0.7% 

[1.8%] 
21.4% 

[24.1%] 
0% 

[1.9%] 

% of individuals with any AMTL 4.0% 
6.5% 

[13.0%] 
7.0% 

[16.3%] 
46.7% 

[66.7%] 
0% 

[7.3%] 
No. of agenetic teeth 2 6 4 3 0 

No. of individuals with agenesis 1 5 3 2 0 
% of individuals with at least one 

agenetic tooth 4.0% 10.9% 7.0% 13.3% 0% 
 

Table 6.4: Distribution of antemortem tooth loss and agenesis across age category; values in 
parentheses are definitive plus probable cases (AMTL per-alveolus: p-value: <<0.001) 

 

     Comparative Samples: 

 

 
Natufians Point Hope Indian Knoll 

No. of teeth missing AM 28 [32] 118 [123] 119 

No. of individuals with AMTL 9 [10] 12 24 
Total Alveoli 896 697 2193 
% of alveoli with some evidence 
of AMTL 3.1% [3.6%] 

16.9% 
[17.6%] 5.40% 

% of individuals with any AMTL 
16.9% 

[18.9%] 50% 32% 
No. of agenetic teeth 5 12 10 
No. of individuals with agenesis 4 7 7 
% of individuals with at least one 
agenetic tooth 7.70% 30.40% 9.30% 

 
Table 6.5: Distribution of antemortem tooth loss and agenesis across comparative samples; 

values in parentheses are definitive plus probable cases (per-alveolus AMTL: p-value: <<0.001) 

 

 The Point Hope comparative sample shows more antemortem tooth loss (16.9% (17.6%)) 

than the other two samples, Natufians and Indian Knoll (Table 6.5) (Chi-square, p-value: 



 139 

<<0.001). This may further strengthen the argument for an analogy between Neandertals and 

Arctic peoples; however, the Neandertal tooth loss prevalence (4.9% (5.8%)), though higher than 

Middle Paleolithic and Early Upper Paleolithic modern humans, is within the range of other 

modern groups including the Natufians (3.1% (3.6%)) and Indian Knoll (5.4%). The Point Hope 

prevalence is especially high, but likely driven in part by high periodontal disease prevalence and 

an age distribution skewed towards older individuals. Costa (1980a) found high antemortem 

tooth loss rates for the Point Hope peoples, especially the Ipiutak (15.0%), which are the only 

sub-group from Point Hope included for this study here. A strong relationship between number 

of teeth lost and age was also found (Costa, 1980a). The elderly individuals in my study have 

slightly less tooth loss than the mid-aged adults in the Point Hope sample, and this may reflect 

mortality risk associated with tooth loss (Table 6.6) (p-value: <<0.001). Those whom made it to 

the elderly category were slightly healthier and had more teeth than those whom died younger, 

invoking the Osteological Paradox (Wood et al., 1992). Costa’s (1980a) data also showed a small 

decrease in antemortem tooth loss in the over age 46 group, suggesting that the pattern here is 

not just a result of small sample size. 
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Natufian 
     

 
Adolescent 

Young 
Adult 

Mid-Aged 
Adult Elderly Unaged 

No. of teeth missing AM 0 6 (7) 19 (21) 0 2 (3) 
No. of individuals with AMTL 0 3 (4) 4 0 1 

Total Alveoli 54 584 243 0 15 
% of alveoli with some evidence 

of AMTL 0% 
1.0% 

(1.2%) 
7.8% 

(8.6%) 0% 
13.3% 

(20.0%) 
No. of agenesised teeth 0 6 0 0 0 

No. of individuals with agenesis 0 4 0 0 0 
% of individuals with at least one 

agenetic tooth 0% 13.30% 0% 0% 0% 
Point Hope 

     

 
Adolescent 

Young 
Adult 

Mid-Aged 
Adult Elderly 

 No. of teeth missing AM 0 9 84 (87) 25 (27) 
 No. of individuals with AMTL 0 1 7 4 
 Total Alveoli 86 154 329 127 
 % of alveoli with some evidence 

of AMTL 0% 5.80% 
25.5% 

(26.4%) 
19.7% 
(21.3%)  

No. of agenesised teeth 0 6 5 1 
 No. of individuals with agenesis 0 3 3 1 
 % of individuals with at least one 

agenetic tooth 0% 60% 27.30% 25% 
 Indian Knoll 

     

 
Adolescent 

Young 
Adult 

Mid-Aged 
Adult Elderly 

 No. of teeth missing AM 0 7 60 52 
 No. of individuals with AMTL 0 4 12 8 
 Total Alveoli 432 857 628 172 
 % of alveoli with some evidence 

of AMTL 0% 0.80% 9.60% 30.20% 
 No. of agenesised teeth 1 5 3 1 
 No. of individuals with agenesis 1 4 1 1 
 % of individuals with at least one 

agenetic tooth 6.70% 14.30% 13.00% 12.50% 
  

Table 6.6: Distribution of antemortem tooth loss and agenesis across age categories for all three 
comparative samples; values in parentheses are definitive plus probable cases (All samples per-

alveolus AMTL, p-value: <0.002) 
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The Natufians’ lower prevalence in this study (3.1% [3.6%]) is partially the result of the 

lack of elderly individuals, but this matches prior estimates (3.7% from Eshed et al., 2006). 

Tooth loss prevalences increase through the first three Natufian age categories (Chi-square, p-

value: <0.002). The Indian Knoll sample also shows tooth loss increasing over the aging process, 

up to 30.2% in the elderly sub-sample (p-value: <<0.001). All the data from this study and that 

available from the literature (see Table 6.2) suggest that for individuals over approximately the 

age of 40 in forager societies, the loss of a quarter or more of the teeth is relatively common.  

     Agenesis: 

Third molar agenesis increases over time in Homo as faces become more orthognathic 

and the length of the dental arcade shortens (Wu and Xianglong, 1996). The only two Neandertal 

agenetic teeth are from Malarnaud, and they are lower lateral incisors. The Neandertals and 

Middle Paleolithic modern humans show no example of third molar agenesis (Table 3.1). The 

Early Upper Paleolithic has two individuals (both from the Czech Republic), each missing one 

third molar, and there are many more examples in the Late Upper Paleolithic (8 individuals or 

22.2% of individuals) (Table 6.1). By the Late Holocene, groups range in third molar agenesis 

rates from 0.2- 36% (Brothwell et al., 1963) and range in the comparative samples here from 7.7- 

30.4% (Table 6.5), putting the Late Upper Paleolithic modern human value from this study 

within the range of recent Europeans. This pattern represents a cranial morphological trajectory 

over time in facial flatness and posterior dental reduction and therefore is not an independent 

trait. Excluding third molars, agenesis has a much lower prevalence, but it is not rare (3.9-5.5% 

of individuals in Western populations (Thierry et al., 2007); 2.2-10.1% globally (Polder et al., 

2004)). Also there are rare exceptions all the way back to the Early Pleistocene (Homo erectus 

Omo 75-14a (Wallace, 1977)). 
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Agenesis has been described as being common in some Continental samples (i.e., Dolní 

Věstonice) suggesting a small, closely genetically related group (Alt et al., 1997; Hillson, 2006); 

however, agenesis appears to be more common in the Atlantic region than the Continental region 

(Table 6.3). There are few Late Upper Paleolithic individuals in the Continental sample, and 

therefore this regional pattern is likely the indirect result of the temporal pattern in agenesis. 

Agenesis is not expected to be correlated with age (Table 6.4). It occurs during growth and 

development and persists through the rest of life. 

Discussion: 

 The major findings of this chapter include that: 1) tooth loss was significantly lower in 

Early Upper Paleolithic modern humans relative to Neandertals and Late Upper Paleolithic 

peoples; 2) tooth loss did not pattern regionally in the Late Pleistocene; 3) tooth loss increases 

significantly over the aging process for both Late Pleistocene humans and the comparative 

samples; and 4) tooth loss differed significantly for the comparative samples with Point Hope 

having the most tooth loss. These findings have implications for behavior and health in foragers 

of the Late Pleistocene and Holocene. 

     Taxonomy & Social Care: 

There is one previous study that assessed Neandertal tooth loss (Gilmore, 2011; n.d.). 

However it’s conclusion—that Neandertals were not necessarily practicing modern human 

behaviors, such as the care of the disabled, because of their antemortem tooth loss prevalence—

is called into question with these results. Gilmore (2011) assumes that since her data show 

Neandertals have a “rate” of tooth loss (3.7% teeth lost per individual) closer to chimpanzees 

(2.0% teeth lost per individual) (who do not provide special care for those with missing teeth) 

than recent humans (7.8% teeth lost per individual) (who assumedly do supplement the diet of 
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those who are missing teeth), then Neandertals ipso facto did not provide care or process the 

food of those with tooth loss. This thesis found that Neandertals had 3.4% [4%] of teeth lost 

antemortem per individual and pooled Upper Paleolithic modern humans had 2.2% [4.1%], 

suggesting that taxonomy places little role (Definitive cases: One sample T-test, p-value: 0.213; 

definitive plus probable cases: One sample T-test, p-value: 0.956). Her work did find the 

Neandertal tooth loss rate to be intermediate between chimpanzees and modern humans if she 

assumed a faster development rate in Neandertals than modern humans (Gilmore, n.d.), but that 

assumption is problematic (i.e., if dental development is faster (Smith et al., 2007), is whole 

body aging also accelerated?).  

Neandertals in this study show more antemortem tooth loss per-alveolus than the 

contemporary Middle Paleolithic modern humans or the Early Upper Paleolithic humans that 

follow them, and the modernity of Upper Paleolithic humans is not in question. Therefore if 

Neandertals have more antemortem tooth loss than the definitively “modern” humans who 

replaced them, why would one interpret Neandertals to be incapable of or unwilling to care for 

their disabled? There are even other Neandertal individuals with tooth loss known from the 

literature that were not included in the sample (e.g., Krapina 59 (Lebel and Trinkaus, 2002a)).  

This is also brings into question how far back should the possibility of conspecific care 

be extended? There are many examples of extensive tooth loss or oral impairment from the 

Middle Pleistocene (e.g., Broken Hill, Arago 21, Sima de los Huesos 1, Aubesier 11) and Early 

Pleistocene (Dmanisi D3444/D3900) from around the Old World. This care could include 

softening and processing food by one individual to provision another, and this has broader 

implications about social structure, care for the diabled, centralized food sharing, and 



 144 

communication (both communicating pain and need for help, as well as the social need to keep 

older individuals around who can communicate their knowledge) (Tilley, 2012). 

 Many examples of congenital abnormalities and trauma have been used to argue for a 

great antiquity in conspecific care (Sima de los Huesos 14, Shanidar 1, Qafzeh 12), but extensive 

antemortem tooth loss has been the most discussed (Degusta, 2002; 2003; Hublin, 2009; Lebel 

and Trinkaus, 2002a; Lebel et al., 2001). The debate is polarized with those suggesting tooth loss 

requires no special treatment (Dettwyler, 1991), pointing to evidence of its presence in non-

human primates (Tappan, 1985; Degusta, 2002; 2003; see Hublin, 2009). But chimpanzees do 

provision one another, and yet there are few wild examples of chimpanzees living long while 

missing a third or more of their teeth (though chimpanzees have shorter life expectancies than 

later Homo) (Lovell, 1990; Lebel and Trinkaus, 2002a).  

This debate has major implications for behavior and cognition, but it has ignored the 

basic pathological/biological question: how prevalent is tooth loss in Pleistocene humans? As 

presented in the introduction to this chapter, these papers have only discussed extensive oral 

impairment and not tooth loss in general. The present study attempts to elucidate this issue 

around the Upper Paleolithic transition, not the whole Pleistocene; though, the focus in the 

literature has generally been around Neandertals and early modern humans. An emphasis on 

advanced tooth loss, ignoring the larger oral health of these individuals, has lead to conjectural 

narratives for both sides of the debate. In this study, there are prevalences for tooth loss available 

across Western Eurasia, elucidating the issue of tooth loss more broadly in the Late Pleistocene 

and providing concrete data for those interested in the bioarchaeology of compassion (e.g., 

Tilley, 2012). 
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     Time Period: 

Perhaps the decrease in antemortem tooth loss prevalence per-alveolus in Early Upper 

Paleolithic humans relative to Neandertals suggests an increase in tooth loss-related mortality in 

the Early Upper Paleolithic, as opposed to the interpretation that they were loosing fewer teeth 

because of differential behavior. Neandertals also showed more severe periodontal disease than 

Early Upper Paleolithic modern humans, perhaps reflecting the osteological paradox (Wood et 

al., 1992): Were Neandertals less healthy than Early Upper Paleolithic modern humans because 

they had more periodontal disease and tooth loss; or were Neandertals healthier because they 

survived despite periodontal disease and tooth loss? The major inflection in tooth loss prevalence 

in the Late Upper Paleolithic likely reflects both an evolution in behavior and a relaxing of tooth 

loss-related mortality risk (e.g., teeth-as-tools, social care, diet). Cultures were becoming more 

complex and social divisions in labor were arising in the Late Upper Paleolithic (e.g., Villotte et 

al., 2010). The result may have been both a place in society for elderly individuals with few teeth 

and other individuals to assist in the preparation of their processed diet. The debate erupts over 

the assessment of these behaviors outside Homo sapiens sensu stricto, specifically relevant for 

Neandertals in this study. 

Relative to recent modern human rates of tooth loss (2.0- 41.6% (Wells, 1975); 3.1- 

17.6% comparative samples here), the low Early Upper Paleolithic prevalence per-alveolus 

(0.5% (2.4%)) is actually more surprising than the higher Neandertal prevalence (4.9% (5.8%)). 

The question may more logically be: why were Early Upper Paleolithic modern humans not 

losing their teeth? Tooth loss is assumed to be higher in populations eating abrasive diets causing 

increased dental wear, pulpal exposure, tooth fractures, periapical lesions, and consequent tooth 

loss (Wells, 1975); however these factors were experienced by all Pleistocene groups. Tooth loss 
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has been demonstrated to decrease with the transition to agriculture from foraging, with the main 

cause of antemortem tooth loss shifting from attrition to caries (Anderson, 1968). Gilmore (n.d.) 

argues that the high variance in antemortem tooth loss rates in modern human groups suggests 

that modern human behavior reduces tooth loss-related mortality. Does this then mean that the 

low prevalence of tooth loss in Early Upper Paleolithic humans derives from higher tooth loss-

related mortality caused by a lack of mediating (modern) behaviors? Or did they truly have better 

oral health than Neandertals or Late Upper Paleolithic peoples? Though Early Upper Paleolithic 

modern humans have less advanced periodontal disease than Neandertals, their oral health is by 

no means “good” when compared with recent humans (Hildebolt and Molnar, 1991; Oliver et al., 

1998; Hugoson et al, 2008). Perhaps Early Upper Paleolithic modern humans were using their 

teeth less as tools than Neandertals, and this alleviated the physical stress on the dentition that 

produced pulpal exposure, trauma, and tooth loss (Wallace et al., 1975; Smith, 1983). The low 

prevalence of tooth loss in Early Upper Paleolithic peoples, whose age distribution is not 

statistically different from the Neandertals and Late Upper Paleolithic peoples, remains 

somewhat enigmatic and is likely related in part to some behavioral (less use of teeth-as-tools?) 

or morbidity difference. 

     Region: 

 The lack of difference between regions for antemortem tooth loss prevalence suggests 

that other variables associated with region are likely not affecting tooth loss. This would include 

environment, climate, and available diet. If diet is not contributing to tooth loss, only health and 

behavioral differences remain. This is rather provocative when taken with the temporal pattern 

suggesting more tooth loss in Neandertals than Early Upper Paleolithic modern humans. A 

previous study suggested less tooth loss in Southwest Asia relative to Europe for the Middle 
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Paleolithic (Neandertals versus Middle Paleolithic modern humans), but no regional difference in 

the Upper Paleolithic (Smith P, 1976), and this study supports that. Though the focus in the 

literature on antemortem tooth loss has been on the behavioral responses to those already 

experiencing major tooth loss by other members of their groups, there are likely other behavioral 

differences that are producing tooth loss. Something about Neandertal health and behavior is 

either producing more tooth loss than Early Upper Paleolithic modern humans or ameliorating 

the negative mortality affects of tooth loss, and this is likely independent of climate or 

climatically-dictated dietary variables. There is no regional pattern in tooth loss identified in 

here. 

     Age Category: 

 Not surprisingly, tooth loss is highest in the Late Pleistocene elderly sample, but the 

increase with age is not linear. The adolescent prevalence is low with only one antemortem 

missing tooth, and there is no difference between the young adult and mid-aged adult groups per-

alveolus (1.8%). Nearly all the tooth loss occurs in the elderly group, and this pattern is repeated 

in the comparative samples. Also the entire elderly sample showed at least mild periodontal 

disease, and 64.3% had advanced periodontal disease. Periodontal disease is a risk factor for 

tooth loss (Neely et al., 2005 and many others); however, it has been argued that periodontal 

disease is not causing much tooth loss in Pleistocene humans (Clarke et al., 1986). The 

covariance of these two pathologies is further tested in the next chapter. Considering that the 

members of the oldest age category here—based on dental wear—were likely not elderly by 

modern standards (40-55 years old), this could suggest some oral health-related mortality is 

occurring, but within the context of larger health decline. 
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     Health and diet: 

 The causal relationship between dietary variables and tooth loss in recent humans is not 

well researched (e.g., Eklund and Burt, 1994). What is clear though is that once extensive tooth 

loss has occurred, there is an effect on the individual’s subsequent diet (Joshipura et al., 1996). 

Hard and tough foods are difficult to process orally, so the individual begins to favor soft foods 

and fat and carbohydrate intake goes up and fiber goes down (Joshipura et al., 1996). As caries 

were increasing in the Late Upper Paleolithic relative to earlier periods in Europe, likely from 

increased carbohydrate consumption, this would also indicate that softer foods were socially 

available for those with antemortem tooth loss. Even if tooth loss in the Late Upper Paleolithic is 

not a result of caries, both pathologies point to a dietary pattern where tooth loss was less of a 

handicap than before. 

 Having fewer than 20 teeth (out of 28, not including third molars) is directly correlated 

with increased mortality in recent humans, even when other variables are controlled for, 

including diabetes, caries, periodontal disease, coronary artery disease, etc. (Padilha et al., 2008). 

This suggests it is not common risk factors driving this relationship. The relationship between 

tooth loss and mortality is further supported by other tooth loss research showing a small 

increase in the number of original teeth per individual in the oldest age category in a cross 

sectional and longitudinal study in modern Swedes, which generally showed a decrease in 

number of teeth through each decade (Norderyd and Huguson, 1998). The oldest individuals 

were likely healthier (i.e., lived longer) and had more teeth than those who had died in earlier 

decades. The Point Hope sample here, and surveyed by Costa (1980a), showed the same pattern. 

It seems poor health can cause tooth loss and vice versa, and therefore good oral health as 

represented by number of teeth present is a good indicator of lowered mortality risk. 
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     Agenesis: 

 Dental agenesis is not a disease state, but it is included here as: 1) it can be confused with 

antemortem tooth loss; and 2) it has never been systemically analyzed for the Late Pleistocene. 

The only available values for third molar agenesis in the Upper Paleolithic are 3.9%, contrasted 

with 0.6% in the Mesolithic from Brothwell et al. (1963). Values were higher here with 4.9% of 

individuals in the Early Upper Paleolithic and 22.2% in the Late Upper Paleolithic. As faces 

become flatter in the hominin lineage, teeth have also become smaller (Frayer, 1978; Brace et al., 

1987; Calcagno and Gibson, 1991). But this dental reduction is not always enough to alleviate 

space issues, and third molar agenesis became much more common in recent groups (Bermúdez 

De Castro, 1989; Mattheeuws et al., 2004) as has third molar impaction (Gibson and Calcagno, 

1993)) There is also an individual-level positive relationship between smaller teeth and third 

molar agenesis (Brook, 1984). The pattern found here where third molar agenesis increases in 

frequency though the Late Pleistocene with most of it occurring in the Late Upper Paleolithic 

confirms what had already been assumed. Agenesis of other teeth is more likely related to 

genetic and environment interactions than general lack of space (tooth development is a 

threshold trait) (Pinho et al., 2010), but third molar agenesis is also associated with agenesis of 

other teeth (Garn et al., 1963). It is a complicated relationship, and there is a large amount of 

variance in the expression of this trait in modern samples, ranging from nearly none to over a 

third of individuals in a sample showing agenesis of at least one third molar (Brothwell et al., 

1963).  

There was only one example from the Late Pleistocene of agenesis of teeth other than the 

third molars, i.e., the symmetrical lower lateral incisor agenesis of the Malarnaud, Neandertal. 

Lateral incisor agenesis is rare in the mandible and twice as common in females (Stamatiou and 
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Symons, 1991), who tend to have smaller faces, at least in modern humans (agenesis overall is 

1.37 times more common in recent modern females (Polder et al., 2004)). These trends are also 

present in the comparative sample data: the Indian Knoll sample had two unilateral cases of 

upper lateral incisor agenesis and one unilateral case of lower lateral incisor agenesis. Lateral 

incisor agenesis frequencies in recent groups range from 0.2%-2.1% of individuals (Brothwell et 

al., 1963). 

There are other reported cases of third molar agenesis from the Pleistocene outside 

Western Eurasia (e.g., Early Pleistocene African Omo 75-14b (Wallace, 1977), Middle 

Pleistocene Chinese Lantian Mandible (Wu and Zeng, 1996), the Chinese Liujiang maxilla (Liu 

and Zeng, 1996)), suggesting sporadic cases are a feature of human dentition. It is the high 

number of cases in the Late Upper Paleolithic continuing into the Holocene that reflects a change 

in facial morphology and tooth size. 

     Additional Note on impacted teeth: 

 Dental malocclusion and impaction were not a primary focus of this study. Dolní 

Věstonice 3 was described as having asymmetrical lower third molar agenesis along with Dolní 

Věstonice 16 (Hillson, 2006), perhaps suggesting a familial relationship amongst those buried at 

Dolní Věstonice (Alt et al., 1997). Radiographs from this study show that Dolní Věstonice 3 

actually has a third molar, but because of its bony impaction, it cannot be seen externally (see 

Fig. 6.1). Impacted third molars are quite common in recent populations (25% of third molars 

present: Scherstén et al., 1989). In the Late Pleistocene, impacted third molars are already known 

from Dolní Věstonice 15, Cro-Magnon 4 (Hillson, 2006), and Cap Blanc (Dunsworth, 2007), and 

now Dolní Věstonice 3, all Upper Paleolithic modern humans. The presence of the retromolar 

space in Neandertals makes an impacted third molar unlikely, but it is known from Krapina 
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(Wolpoff, 1979) and also early modern human Zhoukoudian Upper Cave 101 (Liu, 1997) and 

Australopithecus (STS52b and KNM-WT17400 (Gibson and Calcagno, 1993)). It should now be 

noted that Dolní Věstonice 3 is not a case of third molar agenesis. 

 
 

Figure 6.1: Impacted left lower third molar from Dolní Věstonice 3, two views and exposures 
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Chapter 7: Oral Health & Systemic Health 

Introduction: 

 As caries, periapical lesions, periodontal disease, and antemortem tooth loss are being 

considered in the aggregate to approximate oral health for this study, it is relevant to understand 

whether these pathologies co-vary within individuals. This is done using Spearman’s rho rank 

correlation scores (Table 7.1), reported here along with the number of tested pairs and p-values. 

The results of this inquiry line are presented to contribute to the larger discussion of oral health, 

systemic health, and morbidity in the Late Pleistocene of Western Eurasia. The results of an 

overall morbidity score between each temporal group similar to Brennan’s (1991) method are 

also reported. The previous results chapters’ conclusions considered with the co-variance data 

can be used to inform our understanding of the role region and its correlates (namely climate and 

diet), culture and taxonomy, temporal change, and overall health affect and are affected by oral 

health. Though previous chapters contain discussion sections relevant for each individual 

pathological analysis, this chapter attempts to bring these discussions together to test the project 

hypotheses and understand health more broadly in the context of the Late Pleistocene. 
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Pathology covariance results: 

 

Late Pleistocene only Caries Lesions 
Tooth loss: 
Definitive 

Tooth loss: 
+Probable 

 
Lesions 0.1436 -- 

  Tooth loss Definitive cases -0.0448 0.1058 -- 
 

 
+ Probable cases -0.0732 0.3245** -- -- 

 
Periodontal D. 0.1124 0.3470** 0.2249* 0.3423** 

Pooled Samples Caries Lesions 
Tooth loss: 
Definitive 

Tooth loss: 
+Probable 

 
Lesions 0.3235

1
** -- 

  Tooth loss Definitive cases -0.0122 0.3938** -- 
 

 
+ Probable cases 0.0157 0.5174** -- -- 

 
Periodontal D. 0.0446 0.3599** 0.3319** 0.4258** 

 
Table 7.1: Table of Spearman’s rho values for co-variance of pathologies: Periodontal disease 
severity scores and % of affected teeth per individual for caries, lesions and antemortem tooth 

loss (Bolded values are statistically significant with *p-value: 0.01, **p-value: 0.001); 1this value 
is being driven by the Indian Knoll sample; it is non-significant when Indian Knoll is removed 

 

     Caries and Periapical Lesions: 

 The majority of Late Pleistocene caries are non-penetrant (34 of 53 examples, or 64.2%); 

therefore the non-significant and only slightly positive relationship between percent carious teeth 

and percent lesioned alveoli per individual is expected (124 individuals in the Late Pleistocene 

preserved both teeth and alveoli; Spearman’s rho: 0.14, p-value: 0.11) (Table 7.1). Carious 

lesions were not progressing far enough to affect the pulp chamber and produce periapical 

lesions. When the Natufian and Point Hope samples are included, the relationship is still non-

significant (N=192, Spearman’s rho: 0.12, p-value: 0.09). This suggests that periapical lesions in 

all of these samples are generally not caused by caries. In agricultural samples and recent skeletal 

populations, periapical lesions are generally considered to be of carious origin (e.g., Lucas et al., 

2010), but this assumption does not appear to be valid for these pre-agricultural groups. The 
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observed alveolar lesions are more likely to be of dental attrition (Kieser et al., 2001) or 

periodontal disease origins (see results below). The Early Upper Paleolithic sample had the most 

lesions (5.0% of alveoli), but the least caries of modern humans (1.9% of teeth), and conversely 

the Middle Paleolithic modern humans had the most caries of any group (7.7% of teeth), but the 

least percentage of lesions (1.6% of alveoli). Part of this may be related to age. The Middle 

Paleolithic modern humans have no elderly individual and lesions increase with age, but caries 

do not. However the lack of matching patterning between the two pathological conditions over 

regional and temporal samples or within individuals suggests they are independent variables. 

 The Indian Knoll sample was not pooled with the other sub-samples, as it did not follow 

the same pattern. The people of Indian Knoll practiced early garden agriculture and heavily 

processed gathered items such as acorns (Leigh, 1925). Percent carious teeth and percent of 

alveoli with periapical lesions were significantly and somewhat positively correlated for the 

Indian Knoll sample (N=74, Spearman’s rho: 0.31; p-value: <0.01). When Indian Knoll is 

included with the other samples, it overwhelms the pattern and artificially makes the relationship 

between caries and periapical lesions appear stronger for the whole sample (N=266, Spearman’s 

rho: 0.32; p-value: <<0.01). Grouping was only done for subsequent comparisons when the 

relationships between pathological conditions were similar for all sub-groups. 

     Caries and Antemortem Tooth Loss: 

 In the Late Pleistocene sample, the variables “percent carious teeth” and “percent of 

alveoli showing evidence of antemortem tooth loss per individual” are independent for the 

definitive cases (N=124, Spearman’s rho: -0.04; p-value: 0.62), and also for the definitive cases 

plus the probable cases of tooth loss (Spearman’s rho: -0.07; p-value: 0.42). When the Natufian 

and Point Hope samples are included with the Late Pleistocene sample, the pattern is still the 
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same for the definitive cases (N=192, Spearman’s rho:  -0.01; p-value: 0.87) and definitive plus 

probable cases (Spearman’s rho: -0.04; p-value: 0.60). With all the comparative samples 

(including Indian Knoll), the sign switches, but the interpretation is the same (Definitive plus 

probable cases: N=266, Spearman’s rho: 0.02; p-value: 0.80) (Table 7.1). The relationship is 

generally negative, but always near zero and non-significant, i.e., there is no relationship 

between percent carious teeth and percent of alveoli with antemortem missing teeth per 

individual. Therefore caries are not associated with much tooth loss in any of these groups. The 

results are even slightly negative, related to age; there was only one example from the literature 

(Banyoles) of an elderly individual with an example of caries in the Late Pleistocene. Tooth loss 

was greatest by an order of magnitude in the elderly category relative to the other age groups.  

Recently erupted teeth are most vulnerable to demineralization and caries, and wear 

likely removes many carious lesions (Caries-Attrition Competition: Maat and van der Velde, 

1987; but see Meiklejohn et al., 1992). Because the aging of these specimens was done using 

dental wear scores, the relationship between caries and antemortem tooth loss is likely also 

confounded by dental attrition. Attrition removes caries, but can also expose the pulp chamber 

and cause infection or inflammation and tooth loss (Kieser et al., 2001). Therefore the elderly 

individuals, i.e., those with the most dental wear, having fewer caries and much tooth loss is 

predictable under the caries-attrition competition model and likely driving the relationship—or 

lack thereof—between caries and antemortem tooth loss. Tooth loss before agriculture was not 

uncommon, and it has been suggested that this loss was the result of attrition; with agriculture, 

tooth loss rates decreased within the same regions and are likely the result of caries where tooth 

loss does occur (Anderson, 1968). The results here further support that proposed shift in that the 

pre-agricultural groups here have much tooth loss in the elderly, but few caries. 
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The Caries Correction Factor estimates the percentage of antemortem missing teeth 

caused by caries (Lukacs, 1995). This should hypothetically account for one of the issues of the 

osteological paradox: where what is preserved may only represent the health status of individuals 

when they died. Therefore caries may be underestimated, and this should be accounted for. 

However in this sample, there appears to be no relationship between antemortem tooth loss and 

caries. The dip in the elderly caries prevalence despite the general caries increase trajectory over 

age categories for the Indian Knoll sample is likely partially a result of caries progressing to 

pulpal death and tooth loss in the elderly; however the Spearman’s rho changes little when 

Indian Knoll is pulled out on its own (N=74, Spearman’s rho: -0.05; p-value: 0.64). These teeth 

with small carious lesions are being lost for other reasons, likely attrition, trauma, and 

periodontal disease. 

     Antemortem Tooth Loss & Periapical Lesions 

 Severe periapical lesions can result in tooth loss if they are persistent. Individuals in sub-

recent and Neolithic-era populations even attempted on occasion to extract teeth to alleviate the 

discomfort of infection and inflammation (Jackson, 1914; Brothwell, 1959; Zias and Numeroff, 

1986; Forshaw, 2009). For the Late Pleistocene only sample, the relationship is only slightly 

positive and non-significant for the percentage of definitive cases of antemortem tooth loss and 

percent of alveoli with periapical lesions per individual (N=136, Spearman’s rho: 0.11; p-value: 

0.22), but the relationship is more positive and significant when the probable cases of tooth loss 

are added (Spearman’s rho: 0.32; p-value: <<0.01). With the comparative samples included, both 

definitive cases (N=259, Spearman’s rho: 0.39; p-value: <<0.01) and definitive plus probable 

cases of tooth loss (Spearman’s rho: 0.52; p-value: <<0.01) have a positive and significant 

relationship with periapical lesions (Table 7.1). Correlations for the Late Pleistocene and pooled 
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samples strengthen when probable cases are added. This is because cases of severe lesions are 

also likely diagnosed as possible, but not definitive examples of antemortem tooth loss (perhaps 

perimortem?) depending on the amount of bony support still present in the alveolus. Therefore 

there is some redundancy in those diagnoses, though one would expect these pathologies to be 

positively correlated either way. Whether caries, attrition, or periodontal disease is causing 

periapical lesions, they can produce tooth loss if they are chronic and expansive. Another study 

of the Late Pleistocene also confirms the co-variance of “abscesses” and tooth loss, at least for 

the Early Upper Paleolithic, suggesting common risk factors like trauma and heavy attrition 

(Frayer, 1989). 

     Caries and Periodontal Disease: 

 Periodontal disease severity score and percent of carious teeth per individual are slightly 

positively, but non-significantly correlated for the Late Pleistocene sample (N=112, Spearman’s 

rho: 0.11; p-value: 0.24) and even less correlated when the comparative samples are included 

(N=254, Spearman’s rho: 0.04; p-value: 0.48), especially considering that Point Hope had the 

highest prevalence of periodontal disease and the least caries. The lack of relationship between 

periodontal disease and caries in these samples may be related to non-dietary causes of 

periodontal disease. If carbohydrate consumption can cause both caries and periodontal disease, 

but these pathologies are not co-varying in individuals, they likely do not share an etiology in 

these samples. High periodontal disease and low caries prevalence in a sample could still 

indicate carbohydrate consumption if it is restricted to adults, who are less susceptible to the 

formation of new carious lesions (Hujoel, 2009). Because periodontal disease severity decreased 

over time in Europe, especially for the older age categories, but caries increased over time, one 

would not anticipate these pathologies to be strongly correlated. A strong relationship between 
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caries and “alveolar disease” was lacking in previous assessments of the Upper Paleolithic and 

Mesolithic (Frayer, 1989), and Brothwell and colleagues (1963) considered caries to be a “minor 

factor” in alveolar disease for the Pleistocene. However certain species of oral flora are 

associated with both periodontal disease and caries in recent samples (Loesche, 1986; Löe, 

2000), and the two pathologies are associated with one another in modern dentistry practice, 

especially root caries and periodontal disease (Ravald and Hamp, 1981). Few root caries were 

observed in this study. 

     Periapical Lesions and Periodontal Disease: 

 For the Late Pleistocene, periodontal disease severity score (most severe septa diagnosis) 

and “percent of alveoli affected by periapical lesions per individual” are somewhat positively 

correlated (N=117, Spearman’s rho: 0.35; p-value: <<0.01) and the pattern strengthens when the 

comparative samples are included (with only Point Hope and Natufians, N=185, Spearman’s rho: 

0.47; p-value: <<0.01; with all comparative samples, N=257, Spearman’s rho: 0.36; p-value: 

<<0.01). The data were tested with and without the Indian Knoll sample since many of the 

lesions in the Indian Knoll sample were likely of carious origin (see above), and the Spearman’s 

rho value is lower when the Indian Knoll sample is included. Food production at Indian Knoll 

was not like the other samples (Leigh, 1925). This suggests that indeed many lesions are related 

to periodontal disease and not caries for pre-agricultural groups (caries and periapical lesions 

were not significantly correlated except at Indian Knoll). However because the relationship is not 

stronger, many lesions may be attributable to another cause, perhaps wear or oral trauma; or 

there may be a strong mortality risk associated with periapical lesions. Also the causality is two-

way for these pathological conditions: the inflammation from a lesion can induce alveolar 
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resorption; and periodontal inflammation and alveolar destruction can create conditions that 

allow bacteria to enter the alveolus. 

     Antemortem Tooth Loss & Periodontal Disease 

For the Late Pleistocene, periodontal disease severity scores and percent of definitive 

cases of tooth loss per individual are somewhat positively and significantly correlated (N= 117, 

Spearman’s rho: 0.22; p-value: 0.01), as are periodontal disease severity scores and definitive 

plus probable cases of tooth loss (Spearman’s rho: 0.34; p-value: <<0.01). The pattern further 

strengthens when the comparative samples are included (definitive cases (N=259, Spearman’s 

rho: 0.33; p-value: <<0.01) and definitive plus probable cases (Spearman’s rho: 0.43; p-value: 

<<0.01)) (Table 7.1). This suggests that some tooth loss in pre-agricultural groups (Late 

Pleistocene and Holocene) is caused by periodontal disease—and nearly none caused by caries.  

Previous research hypothesized that tooth loss in the Pleistocene could not be attributed 

to periodontal disease, but more likely attrition and trauma (Clarke et al., 1986; Kerr, 1994). This 

position was supposedly supported by results showing a decrease in tooth loss with agriculture as 

the cause shifts from attrition to caries (Anderson, 1968). Though the Point Hope sample has 

high wear, high periodontal disease prevalence, and high tooth loss prevalence, any causality 

between periodontal disease and tooth loss for this sample was also dismissed (Costa, 1982). But 

other researchers presume a stronger relationship between periodontal disease and tooth loss is 

possible in the fossil record (Scott and Turner, 1988) and it is assumed to be so in the dental 

literature (McLeod et al., 1997; Nibali et al., 2013). The Assos skeletal remains had much 

periodontal disease, but tooth loss was rare. This was explained as being attributed to short life 

expectancy where the individuals did not have enough time for their periodontal disease to 

progress to tooth loss (Oztunc et al., 2006). There is likely much multicollinearity between 
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periapical lesions caused by attrition and periodontal disease producing tooth loss in this sample. 

Running all the pathologies but caries through a regression is now done to attempt to control for 

these confounding factors. 

     All pathologies:  

 Antemortem tooth loss percentage per individual (definitive plus probable) in the Late 

Pleistocene can be predicted from a regression equation of age, periodontal disease severity, and 

percent of lesioned alveoli per individual (see Equation 7.1). This regression shows that for each 

increase in age category, there is a 4% increase in alveoli with evidence of tooth loss per 

individual ceteris paribus, and for each increase in periodontal disease severity score, alveoli 

with evidence of tooth loss increases by 2% per individual ceteris paribus (periapical lesions are 

not a significant coefficient value). This suggests that the dental wear (age) and periodontal 

disease more strongly predict tooth loss than periapical lesions and the relationship between 

lesions and antemortem tooth loss identified above may then be a result of multicollinearity. And 

even with age/wear held constant, periodontal disease severity score still predicted tooth loss. In 

an ANCOVA with tooth loss as the dependent variable and time period, region, and age as the 

independent variables, only the age variable (p-value: <<0.01) significantly predicted tooth loss 

in the Late Pleistocene model (p-value: <<0.01). 

 

%  𝐴𝑀𝑇𝐿   =  .𝟎𝟒 𝐴𝑔𝑒 + .14   %𝑙𝑒𝑠𝑖𝑜𝑛𝑒𝑑  𝑎𝑙𝑣𝑒𝑜𝑙𝑖 +.𝟎𝟐 𝑃𝑒𝑟𝑖𝑜𝑑𝑜𝑛𝑡𝑎𝑙  𝑑𝑖𝑠𝑒𝑎𝑠𝑒  𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 -‐

0.09(constant) 

 
Equation 7.1: Regression using age category (1-4), percentage of lesioned alveoli per individual 

and periodontal disease severity score (0-3) to predict percentage of teeth lost antemortem 
(bolded coefficients were statistically significant; r2=0.20, p-value: <<0.01) 
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 Using Brennan’s (1991) equation (3.1, see Chapter 3: Methods) to calculate the weight 

and directionality of health changes, there is little overall oral health change pattern here (Table 

7.2). From Neandertals to Early Upper Paleolithic peoples, two pathological conditions increase 

(caries and periapical lesions), but two decrease (periodontal disease and antemortem tooth loss) 

with a score of 2.67. From Middle Paleolithic to Early Upper Paleolithic modern humans, one 

pathology increases (periapical lesions), one pathology decreases (caries) and the other two 

prevalences are stagnant (periodontal disease and antemortem tooth loss) for a score of 1.33. 

From the Early Upper Paleolithic to the Late Upper Paleolithic modern humans, two pathologies 

increase (caries and antemortem tooth loss) and one decrease (lesions) and one has an 

inconsistent pattern (periodontal disease) with a score of 2.67. Considering that the highest 

possible score here would be a 5.33, the health changes overall between these temporal groups 

are minimal. The trajectories per pathology are compelling, but conflictory when taken together 

as “overall health”. However caries is unlikely to have a strong systemic effect unless severe—

though diet itself can—and the other three pathological conditions are more strongly linked to 

morbidity and mortality. The differing implications for diet and health are discussed further. 

 

	  

Caries Lesions* 
Periodontal 
Disease Tooth loss Value 

Neandertals to EUP é é ê ê 2.67 
MPMHs to EUP ê é No change No change 1.33 
EUP to LUP é ê No change é 2.67 

 
Table 7.2: Table of pathology prevalence directionality between time periods (MPMHs: Middle 

Paleolithic modern humans; EUP: Early Upper Paleolithic; LUP: Late Upper Paleolithic); 
*insignificant 
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     Summary: 

 Caries stands alone and is not significantly correlated with any of the other pathologies, 

except within the Indian Knoll sample. It is also the only pathology that does not increase with 

age/ dental wear. The other pathological conditions—periodontal disease, periapical lesions, and 

antemortem tooth loss (whether only definitive cases or with the definitive and probable cases 

pooled)—are all positively and significantly correlated with each other for the Late Pleistocene 

and comparative samples (except for definitive tooth loss and periapical lesions for the Late 

Pleistocene sample) and also increase with age. Therefore one of the contributing factors in the 

co-variance of these pathologies is the age of the individual, related to either cumulative 

exposure risk including dental attrition or increasing susceptibility to disease. Since age is 

calculated by dental wear for these individuals, increases in periapical lesions and antemortem 

tooth loss with age is related to dental attrition’s contribution to the formation of periapical 

lesions and tooth loss. However periodontal disease could also be contributing to both periapical 

lesions and tooth loss in these samples; all of the variables but caries are highly correlated with 

one another. Because wear can increase alveolar crest to cemento-enamel junction distances 

through continuous eruption without disease present in samples with high dental attrition, the 

“most severe” periodontal disease diagnoses were produced with interdental septa condition 

scores. Hopefully this avoided a situation where all of these pathologies are correlated with one 

another because they are all correlated with dental wear. Regression shows that even when 

holding age/ dental wear constant though, periodontal disease and tooth loss are still positively 

correlated. 
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Project Hypotheses: 

 This dissertation project was designed around four basic null hypotheses presented in the 

introductory chapter. These concern differences in oral health, ergo morbidity, between the 

variously defined subgroups. Here the results of this project are discussed as they pertain to each 

of the four hypotheses and within the context of the larger issues surrounding systemic health, 

diet, and quality of life. 

     H10: There are no significant differences between Late Pleistocene groups and Holocene pre-

agricultural comparative samples: This project had only three comparative samples to represent 

the whole of Holocene hunter-gatherers. However the initial pattern suggests that for oral health, 

there is not a major shift from the Late Pleistocene to the Holocene when the Agricultural 

Revolution is removed from consideration, but rather regional differences become stronger. The 

Epi-Paleolithic Natufians actually have slightly fewer caries, periapical lesions, periodontal 

disease diagnoses, and antemortem tooth loss than Late Upper Paleolithic modern humans, 

though life expectancy was very low for Natufians (Eshed et al., 2006) and most pathologies 

increase with age. The Point Hope sample is similar to Neandertals for caries, but Point Hope has 

even higher periodontal disease diagnoses, and percent of alveoli affected by periapical lesions 

and antemortem tooth loss than any Late Pleistocene group. The Point Hope diet was high in fat 

and protein, similar to the Late Pleistocene, but the age distribution skews older. This may 

explain the increase in pathologies correlated with age, but similar caries prevalence. The 

increases in regional heterogeneity in the Holocene with respect to subsistence strategy may be 

driving these subtle trends, but it does not seem that the Holocene is wholly more or less healthy 

than the Pleistocene with the exception of increasing life expectancy in the Mesolithic of Europe 

(Wittwer-Backofen and Tomo, 2008) and at Point Hope (Dabbs, 2009). Including Mesolithic 
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European samples in the future can further refine this hypothesis. Initial surveys of available 

Mesolithic samples found higher caries prevalence than the Upper Paleolithic (15.2% of adult 

teeth, as compared with 3.8% in the Late Upper Paleolithic) and roughly consistent periodontal 

disease diagnosis (81.5% of adults, as compared to 82.4% in the Late Upper Paleolithic) 

(Wittwer-Backofen and Tomo, 2008). 

The peoples of Indian Knoll were practicing early forms of agriculture, and this is likely 

reflected in their higher caries prevalence (8.1%, similar to the Middle Paleolithic modern 

humans though, 7.7%) and much higher lesion prevalence (10.6%). The lower periodontal 

disease diagnoses, 68.9% of individuals, suggests they were slightly healthier, though life 

expectancy is not longer for the Indian Knoll peoples than Paleolithic peoples (Johnston and 

Snow, 1961). Tooth loss prevalence does not differ in the Indian Knoll sample from the Late 

Pleistocene, but the co-variance tests suggest that the cause of this tooth loss shifted from 

periodontal disease and attrition to caries and attrition. Where subsistence patterns shift in the 

Holocene, oral health differs from the Pleistocene, but otherwise it does not appear that oral 

health increases or decreases dramatically or consistently in the Holocene. Other sociocultural 

changes must take place first. Therefore this hypothesis is not rejected. 

     H20: There are no significant differences between the Middle Paleolithic (Neandertals and 

modern humans) and Early Upper Paleolithic: There were two Middle Paleolithic samples 

considered here: Middle Paleolithic modern humans from Southwest Asia and Middle Paleolithic 

Neandertals from Europe and Southwest Asia (the few Initial Upper Paleolithic Neandertal 

remains were not available for this study). From Table 7.2, there is not a concrete pattern from 

the Middle Paleolithic to the Early Upper Paleolithic. Periapical lesions increased in the Early 

Upper Paleolithic relative to both Middle Paleolithic modern humans and Neandertals, but there 
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was no change in periodontal disease severity and antemortem tooth loss prevalence between 

Middle Paleolithic and Early Upper Paleolithic modern humans.  

Earlier analyses of stress indicators on both sides of the Upper Paleolithic transition 

found that stress decreased in the Early Upper Paleolithic relative to Neandertals (dental enamel 

hypoplasias (Ogilvie et al., 1989; Brennan, 1991; Skinner, 1996; Hillson and Bond, 1997; 

Teschler-Nicola et al., 2006; Doboş et al., 2010), stature (Holliday, 1995)). Early Upper 

Paleolithic peoples have slightly more caries (non-significant when published examples are 

included in the sample) and less advanced periodontal disease and tooth loss than Neandertals. 

Recent summaries of the Upper Paleolithic transition have dialed back the contrast between 

Early Upper Paleolithic modern humans and Neandertals, recognizing that the differences are 

minimal with Early Upper Paleolithic modern humans reducing their use of teeth-as-tools and 

other uses of anatomy for manipulation as well as reducing stress levels (Trinkaus, 2013). 

Otherwise this shift is subtle and not due to some hypothetical overwhelming technological, 

biological or resource advantage in the favor of modern humans (Trinkaus, 2013). The results 

here could be used to support this conclusion in that caries prevalence, perhaps representing diet, 

changes little, but periodontal disease and tooth loss, representing systemic health and mortality 

risk, alleviate. Others have also declared that periodontal disease was high in Neandertals, but 

without citation or data (Lanfranco and Eggers, 2012). It is unclear whether population density in 

the Early Upper Paleolithic was lower than it had been previously (Morin, 2008) or higher 

(Mellars and French, 2011); therefore it is further unclear which direction population stress was 

driven as environmental stress increased (Lambeck and Chappell, 2001). The decrease in tooth 

loss and mild alleviation of periodontal disease suggests some social aspect was combatting the 

effects of increasing environmental stress though. 
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Rarely are Middle Paleolithic modern humans explicitly compared with Early Upper 

Paleolithic modern humans, but they both show lower levels of dental enamel hypoplasias as 

compared with Neandertals or Late Upper Paleolithic modern humans (Skinner, 1996; 

Buzhilova, 2000; Tillier et al., 2004; Teschler-Nicola et al., 2006; Trinkaus et al., 2006b; Doboş 

et al., 2010), mirroring the static levels of tooth loss and periodontal disease between the two 

groups observed here. Therefore if tooth loss and periodontal disease are assumed to represent 

systemic health, there is little difference between modern humans in the Middle Paleolithic and 

Early Upper Paleolithic. The major difference in caries prevalence (MPMH: 7.7%; EUP: 1.9%) 

likely reflects regional dietary variation in that Middle Paleolithic modern humans included here 

are exclusively from Southwest Asia along the Mediterranean, and the Early Upper Paleolithic 

peoples cover a wide latitudinal range in Europe, but not Southwest Asia. Once again, this 

verifies the hypothesis that the major shift in modern human health and behavior occurs later on 

in the Upper Paleolithic, not at the Middle to Upper Paleolithic transition (Holt and Formicola, 

2008; Trinkaus, 2013). Hypothesis two is rejected for Neandertals to Early Upper Paleolithic 

modern humans, but only rejected in references to caries and lesions for the Middle Paleolithic 

modern humans to Early Upper Paleolithic. 

     H30: There are no significant differences between the Early Upper Paleolithic and the Late 

Upper Paleolithic: This hypothesis is firmly rejected for all oral pathologies except periodontal 

disease. In the Late Upper Paleolithic—as compared with the Early Upper Paleolithic—caries, 

tooth loss, and agenesis (not a pathology) increase, and lesions decrease. This reflects the 

demographic and subsistence shifts occurring around the Last Glacial Maximum including the 

decrease of group territory sizes caused by population density increases (Mellars, 1985; Jochim, 

1987) and the contraction of productive environments and decreased resource reliability in 
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Western Eurasia (Dennel, 1983; Gamble, 1986; Straus, 1995; Holt et al., 2000). This resulted in 

increasing foraging costs for groups (Stiner, 2001) and decreasing mobility (Holt, 2003), coupled 

with increasing regional cultural diversity (Bosinsky, 1990) and specialized resource exploitation 

camps (Straus 1986; 1990). In the context of a degrading environment, human groups were 

attempting to intensify and specialize resource extraction as well as differentiate themselves from 

other groups in both ecological and cultural niches. This resulted in dietary change producing 

increased carious lesions for some groups and increasing cultural and group cohesion (Bar-

Yosef, 2007), which may have reduced mortality risk from tooth loss. Lesion percentage 

decreases, and this could be because carious lesions were still mostly non-penetrant and therefore 

not affecting the pulp chamber (but this is a consistent pattern across the Late Pleistocene), or 

dental attrition is less severe (but there are no dental wear differences between the Early Upper 

Paleolithic and Late Upper Paleolithic at least in immature individuals (Skinner, 1997)).  

Greater intra-individual variance in alveolar condition in the Early Upper Paleolithic 

makes it difficult to compare periodontal disease severity with the Late Upper Paleolithic. Based 

on CEJ-AC averages, there is a slight increase in periodontal disease severity in the Late Upper 

Paleolithic compared with the Early Upper Paleolithic (not statistically significant, but perhaps 

biologically meaningful), but with most severe septa diagnosis per individual, the Late Upper 

Paleolithic decreases from the Early Upper Paleolithic. Considering that a number of other stress 

indicator analyses have found a slight, but definitive increase in stress in the Late Upper 

Paleolithic relative to the Early Upper Paleolithic, this seems like the most likely interpretation: 

focusing on the increase in average CEJ-AC distance diagnoses in the Late Upper Paleolithic. 

But others have reported a decline in periodontal disease presence (no severity was reported) 

between the Early Upper Paleolithic and Late Upper Paleolithic (Brennan, 1991), which may 
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also reflect the decrease in periapical lesions observed. Dental enamel hypoplasias increased 

(Brennan, 1991) and stature and body mass decreased as well in the Late Upper Paleolithic 

(Frayer, 1980; Holt and Formicola, 2008). Perhaps there was selection for smaller overall body 

size (Formicola and Holt, 2007), but it could reflect declining nutrition’s effect on growth and 

development (Formicola and Giannecchini, 1999), also seen in increasing caries prevalence. 

Whether periodontal disease severity increases or decreases in the Late Upper Paleolithic, the 

shift is slight relative to the other pathologies that support the rejection of the null hypothesis. 

     H40: There are no significant differences between the three identified regions of western 

Eurasia: The pathology with the strongest regional pattern is caries, rejecting the null hypothesis. 

There is a clear latitudinal cline. In the Middle Paleolithic, there are no caries above 44°N 

latitude (Aubesier 5 and 12 from Southern France are the most northerly examples). In the Upper 

Paleolithic, modern humans colonize the North regardless of climatic cycle (van Andel and 

Davies, 2003). Caries prevalence inches northward with them, but continues to focus and 

intensify around the Mediterranean. The confounding factor for Western Eurasia is that the 

Mediterranean Sea dominates the southern portion of the continent here. Is this a latitudinal cline 

or an ocean-proximity cline? The Mediterranean’s coastline shifted throughout history, but the 

sea was never completely dry during the Late Pleistocene (Vesica et al., 2000). However 

portions of what is now Maritime Atlantic Europe were not consistently oceanfront in the past 

(e.g., Atlantic France, Northern Spain, Southern England) (Donn et al., 1962).  

Therefore was the warmer environment of Mediterranean Europe producing vegetal 

resources higher in sugars; or was it the access to water from the Mediterranean affecting the 

plants; or the decreased groundwater fluoride levels produced by ocean proximity? Some 

Mediterranean regions are and have been somewhat dry (Robinson et al., 2006), and there is no 
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evidence of increased water access for plants increasing their sugars (drought actually 

concentrates sugars (Chaves et al., 2002)); therefore it was not likely that the water itself was 

affecting the plants. Perhaps it was a combination of both of the other factors in that individuals’ 

teeth were developing without much dietary fluoride and their diets contained more sugar (Epi-

Paleolithic caries in Mediterranean Morocco was extensive (Humphrey et al., 2014)). The Late 

Pleistocene diet was high in protein regardless of region, so these regional differences may have 

been small, producing small increases in caries prevalence in the Mediterranean. For the Late 

Pleistocene, the Mediterranean caries prevalence is more than double that of the other two 

regions (Mediterranean: 4.6%; Atlantic: 1.8%; Continental: 1.2%). Mediterranean Europe 

recovered faster from cold intervals in the Late Pleistocene and was consistently temperate and 

usually wet (van Andel, 2003), and longer hours of daylight and a warm and wet climate produce 

higher levels of sugars in plants (Kirschbaum, 2004; Zheng et al., 2009). Relative to other parts 

of the world, all of Europe generally has low groundwater fluoride levels, and wet environments 

have even lower fluoride levels than arid ones because of aquifer dilution (Brunt et al., 2004). 

Therefore many Western Eurasian peoples did not have the protective benefits of fluoride in their 

diets, and Mediterranean ones had access to plants with higher sugar contents than peoples living 

further north. Greater caries prevalence is unsurprising in this context. 

 Conversely, there is half the prevalence of periapical lesions along the Mediterranean 

(1.8%, or 1.5% when the Natufians are included) than further North (Atlantic, 3.9%: Continental, 

4.9%). This further confirms the lack of relationship between caries and periapical lesions in the 

Late Pleistocene. An explanation for this pattern has yet to be identified. It could be related to 

some introduced dietary grit causing dental attrition further north or lack of vitamin D from 

reduced sun exposure. Other studies have linked oral infections to carbohydrate consumption in 
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skeletal remains (Larsen, 1997), which is the opposite of what is seen here considering dietary 

carbohydrates are inversely related to latitude (Ströhle and Hahn, 2011). 

 Whether using most severe septa diagnosis or CEJ-AC average per individual, 

Continental Europe has non-significantly more severe periodontal disease than the other two 

regions. This could mean there was no regional difference in health; or it could indicate that 

there was a slight increase in periodontal disease severity in Continental Europe, but it is not 

strong enough with this sample size to be statistically confirmed. Low circulating vitamin D can 

cause periodontal disease (Hennig et al., 1999; Garcia et al., 2011) and for Early Upper 

Paleolithic modern humans (which dominate the Continental sample) recently arriving from 

further south, Vitamin D insufficiency may have been an issue. But there is no definitive 

example of rickets or osteomalacia from the Late Pleistocene (Skinner, 1996), suggesting severe 

vitamin D deficiency was not a persistent problem. There may have been some yet unexplained 

environment or biocultural phenomenon in Continental Europe during the Late Pleistocene 

causing decreased health relative to the rest of Western Eurasia (Seasonal obesity? (Coleman, 

1998; Trinkaus, 2005)); or a broader pattern of decreased health over all of Europe (Smoke 

Inhalation? (Platek et al., 2002; Størmer and Mysterud, 2007)). There was no difference by 

region for antemortem tooth loss.  

Overall health and environment discussion: 

     Systemic Health: 

Both periodontal disease (Destefano et al., 1993; Jansson et al., 2002; Dewitte and 

Bekvalac, 2010) and tooth loss (Padilha et al., 2008) are associated with increased mortality risk 

in living humans and recent skeletal samples. Considering that periodontal disease and tooth loss 

are both correlated with each other as well as with periapical lesions (infection) in the samples 
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examined here, the reconstruction of oral health in these fossil humans has implications for life 

expectancy and mortality risk. People did not live long in general in the Late Pleistocene 

(Trinkaus, 1995; 2011; Caspari and Lee, 2004), and the elderly age category here contained 

individuals approximately aged 40 and over (Smith, 1984). The elderly individuals had the most 

severe periodontal disease, the most teeth missing antemortem, and the most alveoli affected by 

periapical lesions. The only pathology that did not affect the elderly the most severely was 

caries.  

 The Middle Paleolithic modern humans sampled here contained no elderly individual 

(Trinkaus, 2011) and had the most caries, the least lesions, the least severe periodontal disease 

based on average CEJ-AC distance, and the least antemortem tooth loss. Are modern humans in 

Southwest Asia in the Middle Paleolithic living shorter lives; or is this preservation bias? The 

Middle Paleolithic modern human sample was not living long enough for their oral disease to 

reach severe states, but if this is the true demographic structure, this was a stressed population 

(Trinkaus, 2011). None of the Southwest Asia Neandertals sampled here were elderly either (The 

Shanidar Neandertals were not available for this study). Based on their oral health alone, one 

may surmise that this sample was healthier than the rest, but without elderly individuals, that 

interpretation is likely incorrect. 

 Previous research did not find a difference in mortality distribution between Neandertals 

and Upper Paleolithic modern humans in Europe (Trinkaus, 2011), so the oral health differences 

observed here were not producing mortality differences. The morbidity differences are real 

though. The relationship between oral health and systemic health are well established in recent 

humans from a number of different research lines (Slavkin and Baum, 2000; Garcia et al., 2001; 

Meurman et al., 2004; Williams et al., 2008; Cullinan et al., 2009; Hujoel, 2009), and this 
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relationship is assumedly the same in the past. Periodontal disease is considered to be a good 

indicator of general health and socioeconomic status in skeletal remains (Minotti, 2003; Dewitte 

and Bekvalac, 2010).  

Neandertals had more tooth loss and more severe periodontal disease than Early Upper 

Paleolithic modern humans. Neandertals were then suffering from greater morbidity than their 

direct ecological competitors, and this may have contributed to their shrinking demographics 

around the arrival of modern humans and ultimate disappearance (Sørensen, 2011; Bonquet-

Appel and Degioanni, 2013). Periodontal disease is also correlated with negative pregnancy 

outcomes (Cohen et al., 1969; Garcia et al., 2001; Lieff et al., 2004; Shetty et al. 2010), a major 

factor in demographic differences between groups. Though Early Upper Paleolithic modern 

humans also have high levels of periodontal disease, their slight improvement in periodontal 

health and tooth loss over Neandertals may have been enough to improve reproductive fitness 

and contribute to their ascendancy in Western Eurasia. 

 Research on other indicators of health from Late Pleistocene skeletal remains can be used 

to verify the patterns seen here in oral pathologies in the Late Pleistocene. Dental enamel 

hypoplasias (Ogilvie et al., 1989; Brenna, 1991; Skinner, 1996; Buzhilova, 2000; Guatelli-

Steinberg et al., 2004; Teschler-Nicola et al., 2006; Trinkaus et al., 2006; Doboş et al., 2010), 

Harris lines (Brennan, 1991), trauma (Berger and Trinkaus, 1995; Trinkaus 2005b; Trinkaus, 

2013), and infection (Dastugue, 1967; Oliva, 2000; Lebel and Trinkaus, 2002a; Trinkaus, 2005a; 

Vercellotti et al., 2008) all show a decrease in the Early Upper Paleolithic as compared with 

Neandertals (Holt and Formicola, 2008; Trinkaus, 2013). The pattern is more conflictory for the 

Early Upper Paleolithic to Late Upper Paleolithic with respect to other stress indicators (Holt and 

Formicola, 2008; Trinkaus, 2013), and this is also the pattern here. Average CEJ-AC distance 
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increases in the LUP, but most severe periodontal disease diagnosis per individual decreases. 

Percent of lesioned alveoli decrease, but percent of teeth lost antemortem and carious increases. 

Diet was certainly shifting between the Early and Late Upper Paleolithic along with the 

environment, but it is unclear to what extent health did as well. 

     Subsistence: 

 Diet is strongly tied to caries and dental attrition, but also periodontal disease and 

infections in systemic ways, and these can all result in tooth loss. Historically the main focus of 

research on Late Pleistocene diet has been on large terrestrial mammals through 

zooarchaeological surveys. These large packages of protein and fat were certainly a major 

component of any Paleolithic human groups’ subsistence and they dominate archaeological 

assemblages. Only more recently have paleoanthropologists begun to focus on small mammals 

(Stiner et al., 1999; Stiner, 2001), fish (Richards et al., 2001), birds (Hardy and Moncel, 2011; 

Peresani et al., 2011; Finlayson et al., 2012) and vegetal dietary resources (Hardy et al., 2001; 

Lev et al., 2005; Revedin et al., 2010; Hardy and Moncel, 2011; Henry, 2011; Henry et al., 

2011). There is little dietary shift at the Upper Paleolithic transition (Stiner, 1994; Hardy, 2010; 

Fiorenza et al., 2011; Henry, 2011; Trinkaus, 2013); but diet does vary regionally (Fiorenza et 

al., 2011; Henry, 2011). The more noticeable subsistence shift in the middle of the Upper 

Paleolithic does not reflect improved food acquisition techniques though, but increased hunting 

pressures on the larger animals resources forcing humans to shift to other sources (Stiner et al., 

1999; Richards and Trinkaus, 2009; Trinkaus, 2013). Wholly new items are not necessarily 

added to the diet, but there is intensification and specialization on resources previously exploited 

only on occasion, e.g., turtles, lagomorphs, bivalves (Straus, 1987; Grayson and Delpech, 2002; 

Stiner and Kuhn, 2006; Morin, 2008). 
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 The caries data support the hypothesis that modern humans shifted from fats to 

carbohydrates in the Late Upper Paleolithic as the supplement of choice to avoid protein 

poisoning (Cachel, 1997). Humans must consume either fats and/or carbohydrates with protein, 

or they risk calcium depletion and protein poisoning. This increase in caries is therefore the 

result of a sociocultural phenomenon and not a biological one (Caselitz, 1998). Carbohydrates 

were not absent from earlier diets (Homo erectus got perhaps 50% of its calories from 

carbohydrates (Wrangham, 2009)), but the poor energy trade-off of collecting fruits, berries, and 

honey (all high in sugars) became more necessary as the availability of large packages of calories 

(large terrestrial mammals) became more ecologically expensive. Modern human expansion was 

largely influenced by shifting ecozones (Trinkaus, 2013), and biocultural adaptations were 

necessary for their success in any climatic zone. One of these was resource flexibility reflected in 

increasing caries prevalence, especially for those further south, who had available resources in 

their environment with high amounts of sugar.  

Neandertals may not have been able to shift their resource exploitation strategies as 

easily. Neandertals show more dental enamel hypoplasias post-weaning, suggesting higher 

resource instability once maternal buffering is removed (Ogilvie et al., 1989; Hillson and Bond, 

1997; Trinkaus, 2013). Large mammal resources also fluctuate greater and more frequently in 

colder climates (Morin, 2008), suggesting population crashes in reindeer and other mammals 

could results in population crashes for humans dependent on those resources without fallback 

dietary supplements (Monge and Mann, 2007; Dennell et al., 2011; Sørensen, 2011). Though 

periodontal disease can be the result of carbohydrate consumption (Hujoel, 2009), high 

periodontal disease and tooth loss in Neandertals more likely reflects higher physiological stress 

related to high mobility as well as dietary instability. 
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     Quality of life: 

 Understanding morbidity in the past is a worthy endeavor to elucidate ecological 

competition between groups and sample life expectancies. However it can also inform a 

biocultural approach to exploring stress, survival, and qualify of life for these Late Pleistocene 

groups (Trinkaus and Svoboda, 2006; Trinkaus, 2013). How did oral pathologies affect these 

individuals’ lives, and what did they do to mediate unpleasant symptoms? A recent case study of 

a Neandertal from Spain with periodontal disease also showed evidence of toothpick grooves 

(Lozano et al., 2013). This individual may have been picking at his inflamed interdental septa 

with a sharpened piece of wood or bone or attempting to remove food or plaque caught in the 

interproximal spaces between his teeth. The interpretation provided for the presence of both of 

these conditions (periodontal disease and tooth pick grooves) suggested Neandertals were 

practicing a medical solution to a bodily discomfort. Toothpick grooves have been documented 

as far back as Australopithecus (Ungar et al., 2001), so it is unlikely that they represent a novel 

innovation to oral hygiene problems in Neandertals. But it does suggest that oral inflammation 

affected the individual to the point where he/she sought remedy (Lozano et al., 2013). Tooth pick 

grooves were recorded when noted during the data collection portion of this project, and 

therefore a broader context to periodontal disease and one potential mediating behavior can be 

explored in the future. 

Extensive tooth loss and generalized gingival inflammation has been used to argue for 

societal care in the past (Lebel et al., 2001; Lebel and Trinkaus, 2002a; Lordkipanidze et al., 

2005; Hublin, 2009). Post-tooth loss was not painful state for individuals, but it may have 

compromised their masticatory efficiency (Hublin, 2009). Abscessed teeth can be very agonizing 

though and also produce mechanical instability during mastication (Hublin, 2009). This suggests 
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that perhaps it is more problematic for the individual just before a tooth is lost, when it is 

unstable and more painful, than after the tooth is lost and inflammation subsides. The loss of the 

tooth is likely a relief as there is much evidence for dental extractions in the Neolithic and in sub-

recent groups for reasons other than aesthetics (Jackson, 1914; Brothwell, 1959; Zias and 

Numeroff, 1986; Forshaw, 2009). Those with abscessed and loose teeth perhaps required more 

provisioning and care than those who have lost the problem teeth (McLeod et al., 1997). 

Periodontal disease is now demonstrated to be common in the Late Pleistocene. It seems 

unlikely that everyone with advanced periodontal disease required extensive special food 

preparation and care when 40% of Neandertals had advanced periodontal disease somewhere in 

their dental arcades. There would more likely be cultural innovations in food preparation to 

avoid oral discomfort for everyone than special treatment for two out of five members of every 

group. Tooth loss is generally confined to the elderly age category for every temporal group 

though, so it was considerably less widespread and perhaps necessitated—and received—special 

food preparation. Considering that elderly individuals were likely left behind when they could no 

longer keep up with the mobility of the group (Trinkaus, 2013), they may have been expected to 

keep up with the diet of the group as well.  

Oral health was not stellar in the Upper Paleolithic. Many previous authors assert that 

oral health was good, perhaps because caries and malocclusion are rare (e.g., Holt and 

Formicola, 2008), but no one had attempted to survey the tooth loss, oral infection, and 

periodontal disease status of these individuals. Oral pathological conditions did affect the lives of 

those who suffered from them in the Late Pleistocene (e.g., Lozano et al., 2013), but considering 

how common periodontal disease was (81.3% of all individuals surveyed in the Late Pleistocene 

had at least mild periodontal disease), especially for the older individuals (94.4% of all Late 
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Pleistocene Mid-Aged or Elderly individuals had at least mild periodontal disease), individuals 

were afflicted equally. 

     Summary: 

 Regardless of taxonomic designation, the changes over time in oral health in the 

Pleistocene are relevant for our understanding of health today. Entire subfields of medical 

research are devoted to understanding the effects of modern diet, lifestyle, and environment on 

human health and mortality. A baseline of pathology prevalences before the introduction of these 

variables is vital to interpreting their effect on modern human health. The vast majority of human 

evolution occurred when humans were practicing hunter-gatherer subsistence and living at low 

population densities across the Old World. Without understanding oral pathological conditions in 

the Late Pleistocene, modern oral health has no context. The research here suggests that 

periodontal disease, especially in older cohorts, actually lessened through the Late Pleistocene, at 

least between Neandertals and modern humans. 

Caries increase through time in Europe. This likely reflects dietary changes occurring 

further south, namely tempering high protein consumption with carbohydrates in the diet as 

opposed to fats, moving northward over time initially with modern human expansion into 

Europe, and then along with shifting ecozones as the Last Glacial Maximum waned. This 

trajectory likely continued into the Holocene (Wittwer-Backofen and Tomo, 2008), but not 

consistently as seen with low caries in the Natufian sample here. Tooth loss also increases within 

the Upper Paleolithic and may reflect decreasing mortality risk associated with the pathology 

from increasing social complexity. 

Finally the hypotheses of this thesis were framed to test whether oral health could provide 

another avenue of data on the causes of the Upper Paleolithic transition. It does appear that 
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periodontal disease and antemortem tooth loss prevalences were slightly lower in the Early 

Upper Paleolithic relative to Neandertals, but differences are generally small. They may have 

been enough to contribute to the larger ecological advantages that modern humans exercised 

over Neandertals, ultimately producing demographic expansion in modern humans and 

contraction in Neandertals. Hypotheses presented elsewhere that the major shift in the biology 

and culture in the Late Pleistocene does not take place at the Middle to Upper Paleolithic 

transition, but between the Early and Late Upper Paleolithic, are further supported with these 

data. Especially since diet has such a strong relationship with oral health—as opposed to the 

health of any other part of the bony skeleton—and dietary shifts were occurring most strongly 

around the Last Glacial Maximum. Changes in oral health in the Late Pleistocene reflect both 

known changes in health and demography as well as diet and culture, validating the use of oral 

health as a proxy for systemic/ overall status for fossil humans. 
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Chapter 8: Conclusion 

Casual observations of oral pathology in fossil remains "tempts one to conclude that the 

same kind of dental diseases affected ancient as well as modern humans" (Tillier et al., 1995: 

191), and this survey confirms Tillier and colleagues’ suspicion. Though the prevalence of 

pathology may change, all the same oral diseases of recent humans are present in the fossil 

record. Rare and idiosyncratic pathologies were not explored in this paper, though they were 

observed and recorded during data collection for future analysis. The focus of this thesis has 

been on the major scourges of modern dentistry: caries, oral lesions and infections, periodontal 

disease, and tooth loss. Caries may have increased in prevalence dramatically with the advent of 

agriculture (Larsen, 1995), but they were certainly present in Late Pleistocene hunter-gatherers, 

and an increasing trend in prevalence was initiated well in advance of agriculture (see Humphrey 

et al. (2014) as well). The caries of the Late Pleistocene are rarely severe though—baring earlier 

examples such as Broken Hill. And because these carious lesions rarely progressed to pulpal 

involvement, caries are not correlated with periapical lesions or tooth loss within individuals, nor 

do they follow the temporal or regional patterns of the other pathologies examined. 

Periodontal disease severity may have alleviated through the Late Pleistocene, but overall 

prevalence remained high in all groups (73.5- 86% of individuals have at least mild periodontal 

disease) relative to modern, dentistry analyses where individuals assumedly have access to oral 

hygiene (e.g., 56% of surveyed Swedes in 2003 has some level of periodontal disease (Hugoson 

et al, 2008); 40% of Americans had more than 3mm of alveolar loss (Oliver et al., 1998); 27.1% 

of Americans have periodontal disease (Eke et al., 2012)). Periodontal disease is not a recent 

phenomenon, nor is it exclusively the result of modern behaviors.  
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Tooth loss was actually higher in Neandertals than Early Upper Paleolithic modern 

humans. Previous attempts to dismiss the likelihood of Neandertals using “modern” mediating 

behaviors to deal with antemortem tooth loss by comparing them with primates or recent humans 

are invalidated (e.g., Degusta, 2002; Gilmore, n.d.). Neandertals were able to survive more tooth 

loss than incontrovertibly modern humans in Western Eurasia on both sides of the Middle to 

Upper Paleolithic transition. This morbidity data should not be used to argue for the less-than-

modern status of Neandertals. Tooth loss was also not caused by caries (they do not co-vary), but 

was significantly predicted by age/ dental wear and periodontal disease status. 

 The one pathology that went against previous assessments of health was the increase in 

periapical lesions in the Early Upper Paleolithic relative to both Neandertals and Late Upper 

Paleolithic modern humans. This could be a function of higher dental wear and survival in spite 

of oral infection for Early Upper Paleolithic peoples, but the temporal pattern was not 

statistically significant. Periapical lesions do not co-vary with caries and therefore are likely 

caused by attrition, trauma, or periodontal disease. 

Three of the four research hypotheses were rejected in some way; a Holocene versus 

Pleistocene contrast could not be identified independent of region. Early Upper Paleolithic 

peoples were healthier than the preceding Neandertals with the exception of the prevalence of 

periapical lesions (Hypothesis 2). Late Upper Paleolithic peoples had more tooth loss and caries 

than the Early Upper Paleolithic as well as having higher average CEJ-AC distances per 

individual reflecting the major climatic shifts occurring around and after the Last Glacial 

Maximum and their affect on diet, social structure, and behavior (Hypothesis 3). Caries followed 

a negative latitudinal cline that relaxed through time (Hypothesis 4). The comparative samples’ 

oral health reflected their regional origin and subsistence patterns, but did not demonstrate a 
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major shift from the Pleistocene pattern until the initial adoption of agriculture, represented by 

Indian Knoll, which practiced early garden agriculture (Hypothesis 1 not rejected). The Holocene 

samples represent a continuation of the trajectory from the Late Upper Paleolithic of increasing 

regional heterogeneity. Ultimately this research has implications for our understanding of dietary 

and health changes through time from both an anthropological and broader medical perspective. 

Importance of this research within and outside anthropology 

The field of anthropology has long been concerned with the interplay between human 

biology and behavior. These interests include a variety of topics currently included within either 

cross-cultural medical anthropology for living populations—situated within larger ethnology—or 

paleopathology of Holocene past human populations within bioarchaeology.  Both of these fields 

have experienced a recent renaissance, providing insight into the complex dynamics of human 

health, economy, subsistence, and social structure. At the same time, the subfield of 

paleoanthropology has become increasingly focused on the Late Pleistocene, which saw the 

emergence and eventual establishment of modern humans across the Old World.  Much of this 

paleoanthropological research has been concerned with the populational processes involved in 

modern human evolution and migration, which has implications for assessing recent human 

biological and cultural diversity.  But there has also been a growing concern with assessing 

possible differential ecological, technological, or demographic mechanisms that led to the 

“dominance” of modern humans over late archaic humans.  This has been addressed in terms of 

possible dietary, functional anatomical, and other parameters, but only secondarily in terms of 

possible shifts in the morbidities and life histories of these past populations. 

Within the context of these debates, this project contributes to our understanding of the 

evolutionary dynamics leading to the origins and establishment of modern humans across the 
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globe through the lens of oral health. Drawing from previous research in medical anthropology 

and paleopathology, this survey used established methods and questions of morbidity and 

differential health in recent humans and applied these to Late Pleistocene humans. This furthers 

the debate on how and why modern humans expanded into Western Eurasia despite Neandertal 

occupation. Incorporating a biocultural paradigm to the interpretation of the resultant data allows 

for new explanations of both modern human ascendancy and diversity. Past studies have found 

little difference between early modern humans and Neandertals for some variables previously 

thought to differentiate them (e.g., diet: Richards and Trinkaus, 2009; Henry et al., 2011; 

mortality: Trinkaus, 2011), and this study provides a new example of how modern humans 

ecologically out-competed Neandertals with decreased morbidity as represented by oral health.  

A cross-cultural perspective permits these paleontological results to be taken beyond 

human origins studies by establishing an pre-agricultural oral health baseline before the 

widespread (known) use of oral inhalants and intoxicants (e.g., tobacco, betel-nut, coca), and 

comparing it with oral health statistics in recent groups. The Holocene samples included here 

also present another test of the applicability of “recent” hunter-gatherers as comparative models. 

The high prevalence of caries and periodontal disease in some comparative samples contrast 

strongly with studies of recent hunter-gatherer groups showing caries and periodontal disease to 

be relatively uncommon (e.g., Wells, 1975; Caselitz, 1998). Oral health and morbidity in the 

Late Pleistocene has implications beyond paleoanthropological debates and can elucidate 

differential health and its effects on modern cultural and physiological diversity for the broader 

health and social science community.  

Assessing oral health in Holocene and Late Pleistocene hunter-gatherers gives a general 

global health evaluation from which to compare health levels in non-industrial populations 
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today. Oral health is correlated with overall health and is especially important for maternal and 

childhood health issues, i.e., periodontal disease is associated with low fetal birth weight and 

preterm birth, childhood oral infections can adversely affect the eruption of the permanent 

dentition, etc., and maternal and childhood health issues are a major focus in global public health 

appraisals. The Late Pleistocene sample takes this analysis of pre-industrial oral health deeper 

into human history. These comparisons are important for dentists worldwide to provide a 

baseline of oral pathology prevalences in humans, especially for populations eating non-

industrial diets. Caries and periodontal disease affliction rates increase with decreasing socio-

economic status (Hobdell et al., 2003). A prehistoric standard provides perhaps a better 

comparison for low socioeconomic status individuals in developing countries besides using 

dentistry studies of high socioeconomic status individuals in developed countries as the assumed 

baseline for “normal” oral health.  

This project’s results and conclusions also further evaluate the popular “Paleo-fantasy” 

movement in Western popular culture, which fetishizes the supposedly superior health and diet 

of Pleistocene peoples (Zuk, 2013). Besides the gross misinterpretation of the dietary habits of 

Paleolithic humans by this movement, this study shows that Pleistocene individuals were not the 

paragons of health to which one should aspire. Well-occluded teeth do not define good oral 

health.  

Furthermore oral health has already been debated within the developing field of 

evolutionary medicine, but only as a hypothetical in respect to the Pleistocene (Williams and 

Nesse, 1991). This perspective advocates viewing oral health within the lens of the interaction of 

multiple organisms (humans and their oral flora) over evolutionary time and selection acting on 

the variation in the immunological responses of individuals to physiological and external forces 
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(see Supplement A in Lukacs (2008) for a summary). This thesis provides concrete data with 

which to test the hypotheses generated within evolutionary medicine. A study of human oral 

health over the last 120,000 years therefore has global implications for understanding current 

human oral pathology and general health for those addressing it from either an academic or 

clinical perspective. 

Conclusion: 

 Caries, periodontal disease, oral lesions, and tooth loss are not only a consequence of an 

agricultural diet. The so-called “original affluent society” (Sahlins, 1968), Pleistocene hunter-

gatherers, also suffered from oral diseases, including pathologies that affected systemic health, 

chewing efficiency, and the comfort of the individual. However these pathologies’ prevalence in 

the human population were not consistent; they shifted over time and geography in response to 

changes in population structure, behavior, and environment, along with other previously studied 

indicators of health and stress. A contributing factor of the demographic success of modern 

humans was their improved health relative to Neandertals (less periodontal disease and tooth 

loss, but also less dental enamel hypoplasias, cribia orbitalia, Harris lines, etc. (Brennan, 1991; 

Formicola and Holt, 2008; Trinkaus, 2013)); however the cause of this improved health—better 

hunting technology, demographics, subsistence strategy—has been explored elsewhere. Modern 

humans were also not static, and as the environment of Europe changed rapidly in response to 

the Last Glacial Maximum, human populations changed too. This is reflected in increasing caries 

prevalence in the Late Upper Paleolithic from shifting diets, and increasing antemortem tooth 

loss prevalence, perhaps from social cohesion alleviating the mortality risk associated with tooth 

loss. This survey of oral health elucidates the underlying shifting patterns of diet and behavior in 

the Late Pleistocene and their effect on the health of the individual and their population. 
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Ultimately poor oral health is a warning indicator for suboptimal diet and declining systemic 

health, and my hope is that this study provides a new insight into the demographic competition 

amongst human groups over the last 120,000 years in Western Eurasia. 
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Appendix 1: Site descriptions 

Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

Neandertals 

      

Belgium Goyet 

River Samson, near Namèche, 

Mozet, Namur Mousterian Cold, Mammoth 3 

Oakley et al., 

1971; Toussaint et 

al., 2011 

 

La Naulette 

River Lesse, near Dinant, 

Hulsonniaux, Namur 150,000  Cold, Mammoth 1 

Oakley et al., 

1971; Toussaint et 

al., 2011 

 

Spy 

Betche-aux-Rotches, Spy, 

Namur OIS 3 Cold, Mammoth 1,2 Oakley et al., 1971 

Croatia Vindija Donja Voća, Croatia 42,000 BP Temperate 

 

Janković et al., 

2006 

Czech Republic Kulna 

Near Sloup village, 35 km N 

Brno 

45,660 (+2,850-

2,200)BP Cold, Mammoth 1 

Jelínek & 

Orvanová, 1999 

 

Ochoz Near Ochoz village OIS 4 Cold 1 

Jelínek & 

Orvanová, 1999 

England: Boxgrove Dover, England 

Early Middle 

Pleistocene, 

MIS 13/12 Cold 2,3 Hillson et al., 2010 

France: 

La Chapelle-aux-

Saints 40 km SE of Brive, Corrèze 

Würm II, 

Mousterian Cold, Rangifer 1 Oakley et al., 1971 

 

Les Fadets Lussac-les-Chateaux Mousterian Cold 1-4 Lacy et al., in prep 

 

La Ferrassie 40 km SE of Périgueux OIS 4 

Cold, Wholly 

Rhino 1,2 

Gambier & Houet, 

1993 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

La Quina 

Gardes-le-Pontaroux, 25 km S 

of Angoulême, Charente OIS 4-3 Cold, Rangifer 5 Oakley et al., 1971 

 

Malarnaud 

Arize, Montseron, NE of St 

Girons, Ariège 

Possibily Riss-

Würm Temperate 1 Oakley et al., 1971 

 

Monsempron 

Monsempron, 25 km NE of 

Villeneuve-Sur-Lot OIS 4 Cold, Rangifer 2,3,4 Oakley et al., 1971 

 

Montmaurin 

La Niche, Montmaurin, 19 km 

N of Saint-Gaudens, Haute-

Garonne 

Possibly 

Mindel-Riss - 1 Oakley et al., 1971 

 

Petit-Puynoyen 

Puymoyen, 5 km S of 

Angoulême, Charente OIS 3 Cold, Rangifer 1,2,3,4 Oakley et al., 1971 

 

Regourdou 

Montignac sur Vézère, 50 km 

E of Périgueux. Dordogne 

45500 +/- 1800 

BP Cold 1 

Oakley et al., 

1971; d’Errico et 

al., 2011 

Germany Neanderthal 

Neander Valley, 12km E of 

Düsseldorf 

38,000-44,000 

BP Cold 2, new teeth Orschiedt, 2000 

Gibraltar Genista 

W side of Windmill Flats at S 

end of Gibraltar 

Upper 

Pleistocene Temperate 1 Oakley et al., 1971 

 

Devil's Tower 

North Front, 350 m E-SE of 

Forbes' Quarry 30,000 BP Temperate Gibraltar 2 

Oakley et al., 

1971; d’Errico et 

al., 2011 

 

Forbes' Quarry 

W end of North Front, 

Gibraltar Würm? Temperate Gibraltar 1 Oakley et al., 1971 

Israel Amud Northwest Sea of Galilee OIS 3 Warm, Gazelle 1 

Rabinovich & 

Hovers, 2004 

 

Kebara Mount Carmel, Israel OIS 4/3 Warm, Gazelle - 

Speth & 

Tchernov, 1998 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

Tabun Mount Carmel, Israel OIS 6/5 Temperate - 

Jelinek et al., 

1973; Albert et 

al., 1999 

Italy Archi Archi, Reggio Calabria >40,000 BP Temperate 1 Orban, 1988 

 

Castel di Guido 20 km NW of Rome Riss Temperate 4 

Orban, 1988; 

Mallegni 

 

Ciota Ciara & 

Ciutarun 

Monte Fenera, Borgosesia, 

Piedmont, NW Italy Mousterian Cold, Alpine 1-4 

Villa & Giacobini, 

1996 

 

Caverna dell Fate 

4 km NE of Finale Ligure, 

Savona 

75,000-82,000 

BP Temperate 2,3 

Giacobini et al., 

1984; Orban, 1988 

 

Fossellone San Felice Circeo, Latina 

25380 +/- 1060 

BP Temperate 3 

Bietti & Manzi, 

1991; d’Errico et 

al., 2011 

 

Guattari 

300 m SE of San Felice 

Circeo, Latina 

Late Würm 

I/Early Würm II Temperate 

1,2,3, loose 

teeth Oakley et al., 1971 

 

Saccopastore 

River Aniene, 3.5km from 

Porta Pia, Rome OIS 5e Temperate 1,2 Oakley et al., 1971 

 

San Bernardino 

Colli Berici, near Mossano, 

Vicenza Würm Temperate 

 

Oakley et al., 1971 

Spain Lezetxiki 

Lezetxiki, Mondragón, 

Guipuzcoa OIS 3 Temperate 1,2 

Baldeón, 1987; 

Orban, 1991; 

d’Errico & 

Sánchez Goñi, 

2003 

 

Palomas Murcia, SE Spain 

Late 

Middle/Early 

Upper 

Paleolithic Temperate Many Walker et al., 1999 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

Cova Negra near Xátiva, Valencia 

28900 +/- 5600 

BP Temperate 1-6 

Arsuaga et al., 

1989; Orban, 

1991; Walker et 

al., 1999; d’Errico 

et al., 2011 

 

El Sidron Malagá, Spain 43,000 BP Temperate 

1-6, 1-3 

adolescent Rosas et al., 2006 

 

Zafarraya: 

Zafarraya, 35 km NE of 

Málaga 

OIS 3: 33,500 

years BP Temperate 2 

Orban, 1991; 

Barroso Ruiz & 

de Lumley, 2006 

Middle 

Paleolithic 

Modern Humans 

      

Israel Skhul: Mount Carmel 

OIS 5: 130,000 

- 100,000 years 

BP Warm, Gazelle 5 

Schwartz & 

Tattersall, 2003 

 

Qafzeh: near Nazareth, Israel 

OIS 5: 120,000 

- 90,000 years 

BP 

Temperate, 

Gazelle Many 

Vandermeersch, 

1981; Schwartz & 

Tattersall, 2003 

Early Paleolithic 

Modern Humans 

      Austria Miesslingtal Spitz, Lower Austria Post Würm II Cold, Rangifer 1 Oakley et al., 1971 

 

Willendorf 

23 km N of Willendorf 

Station, Lower Austria 

41700 +/- 3700 

BP Cold, Mammoth 1 

Oakley et al., 

1971; d’Errico et 

al., 2011 

Czech Republic Brno Center of Town, Brno 

28550 +/- 320 

BP Cold Brno 2 

Jelínek & 

Orvanová, 1999; 

d’Errico et al., 

2011 

 

Dolní Věstonice Near town of Dolní Věstonice 26,640+-110 BP Cold 

3,13,14,15,

16, loose 

teeth 

Jelínek & 

Orvanová, 1999, 

Klíma 1995 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

Mladeč Mladeč village 

34930 +/- 520 

BP Cold 

Full 

cranium, 

loose teeth, 

8 5457, 

Lautsch 2 

 Jelínek 1987, 

Jelínek & 

Orvanová, 1999; 

d’Errico et al., 

2011 

 

Pavlov 

Pavlov hills, near town of 

Dolní Věstonice 26,620+-230 BP Cold, Mammoth 

1,2,3, loose 

teeth 

Klíma & Kukla, 

1963; Jelínek & 

Orvanová, 1999;  

 

Předmostí W part of Předmostí 

~26,000 BP 

(based on 

Pavlov dates) Cold, Mammoth 

Whole & 

Hemi 

mandible 

(both given 

# A 17 088) 

Jelínek & 

Orvanová, 1999 

France Abri Labatut Labatut, Castelmerle Valley 

25,000 and 

18,000 years 

BP Cold 1,2 

Oakley et al., 

1971; Simek, 1986 

 

Abri Pataud Les Eyzies-de-Tayac 

26,900-25,500 

BP Cold 1 

Oakley et al., 

1971; Movius 

1963; Pottier, 

2005 

 

Les Battuts 

River Aveyron, 22 km E-NE 

of Montauben, Penne Recent Würm Cold 1 

Gambier & Houet, 

1993 

 

Blanchard Blanchard, Castelmerle 

Early Upper 

Paleolithic - 1 Oakley et al., 1971 

 

Brassempouy 

35km S-SE of Mont-de-

Marsan, Brassempouy 

28,000-32,000 

BP Cold - 

Gambier & Houet, 

1993 

 

Castanet 

Castanet, Castelmerle valley, 

10 km SW of Montignac, 

Sergeac, Dordogne Würm III Cold, Rangifer 1 Oakley et al., 1971 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

Cro-Magnon Les Eyzies-de-Tayac 

27,680 +/- 270 

yr bp Cold, Rangifer 1 to 4 Oakley et al., 1971 

 

Grotte des 

Abeilles 

Montmaurin site, 19 km N of 

Saint Gaudens Massif of 

Lespugue, Montmaurin Recent Würm Cold 1,2,3 

Gambier & Houet, 

1993 

 

Lachaud 

Terrasson, 18 km W of Brive, 

Dordogne OIS 3 Cold, Rangifer Found 1980 Oakley et al., 1971 

 

Oreille d'Enfer 

Val d'Enfer, Les Eyzies-de-

Tayac Würm? Cold 1 

Pradel, 1959; 

Oakley et al., 1971 

 

La Rochette 

Saint Léon sur Vézère, 10 km 

SW of Montignac, Dordogne 

23.630 ± 

130 B.P. Cold 1 

Oakley et al., 

1971; Orschiedt, 

2002 

 

Les Rois 

River Boëme, Mouthiers, 13 

km S of Angoulême 

OIS 3: 30,000 to 

28,000 years BP Cold, Mammoth Many 

Oakley et al., 

1971; Ramirez 

Rozzi et al., 2009 

 

La Tannerie Lussac-les-Chateaux 18,020±270 Cold 1-3 Straus, 1986 

 

La Vachons 

River Boëme, Voulgezac, 14 

km S of Angoulême Würm III Cold 1 Oakley et al., 1971 

Italy 

Baousso de Torre 

(Grimaldi) 

Destroyed cave 6th from W, 

Balzi Rossi, 5 km W of 

Ventimiglia Late Pleistoc. Temperate - Oakley et al., 1971 

 

Barma Grande 

5th of W, 5 km  W of Balzi 

Rossi 

24,800 +/- 800 

BP Temperate 

2,3,4 (or 

3,4,5) 

Oakley et al., 

1971; d’Errico et 

al., 2011 

 

Caviglione 

(Grimaldi) 

4th from W, 5 km W of 

Ventimiglia Late Pleistoc. Temperate 1 Oakley et al., 1971 

Romania Muierii Baia de Fier, Romania 

35 ka cal  

BP Temperate 1 

Soficaru et al., 

2006 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

Oase 

Southwestern Carpathian 

Mountains, Romania 

34,000–36,000 
14

C years B.P Temperate 1,2 

Trinkaus et al., 

2003 

Spain Aitzbitarte III Guipuzcoa, Spain 

25 000 et 23 000 

BP Temperate 1 

Foucher et al., 

2002 

Late Paleolithic 

Modern Humans 

      Croatia Romualdo near Rovinj, Istria Würm III Temperate 1 Oakley et al., 1971 

 

Sandalja 

4 km NE of Pula, Southern 

Istria 12,320+-100 BP Cold, Rangifer 2 Oakley et al., 1971 

 

Vindija Donja Voća, Croatia 

OIS 2: 22,000 -

17,500 years 

BP 

Temperate, but 

Rangifer present Many 

Janković et al., 

2006 

England Gough’s Cave Cheddar Gorge, Somerset 

11,900-12,800 

BP Cold, Rangifer 

1,4,6,86,87,

87 253, 

loose teeth Orban, 1990 

 

Tornewton Torbryan Valley, Devonshire 

Late Upper 

Paleolithic Cold, Rangifer 1 Orban, 1990 

France Bois-Ragot Near Lussac-les-Châteaux 11,000 BP Cold 2 

Gambier & Houet, 

1993 

 

Bruniquel 

Aveyron valley, 22 km E-NE 

of Montauban, Tarn Penne 11,750+-300 BP Cold, Rangifer 1 

Oakley et al., 

1971; Barket et al., 

1969 

 

Chancelade 

Beauronne river, Chancelade, 

6 km NW of Périgueux, 

Dordogne Würm IV Cold, Rangifer 1 Oakley et al., 1971 

 

Font de Gaume 

1 km from Les Eyzies-de-

Tayac 

Beginning of 

recent Würm Cold - - 

 

Fourneau du 

Diable 20 km NW of Périgueux Recent Würm Cold 1,2,3,5 

Gambier & Houet, 

1993 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

La Greze 

6 km from Les Eyzies-de-

Tayac 

Recent Würm to 

Holocene Cold 1 

Gambier & Houet, 

1993 

 

La Gravette 

Couze River, 18 km E-SE of 

Bergerac, Dordogne Würm III Cold, Rangifer 1 Oakley et al., 1971 

 

Isturitz Saint-Germain-la-Rivière OIS 3/2 Cold, Rangifer 

None of the 

#s match 

Gambier & Houet, 

1993 

 

Lalinde 

Lalinde, 15 km E Bergerac, 

Dordogne 12,540 BP Cold 1 

Oakley et al., 

1971; d’Errico et 

al., 2011 

 

Laugerie-Basse Les Eyzies-de-Tayac 

OIS 2: 15,000 

to 12,000 years 

BP Cold, Rangifer 1 

Oakley et al., 

1971; Gambier et 

al., 2000 

 

Les Peyregues 

2.5 km NE of Cabrerets, 

Orgnac 13,020+-140 BP Cold - 

Gambier & Houet, 

1993; Allard, 1992 

 

Limeuil 30 km E of Bergerac, Limeuil 11,720 BP Cold 3 

Gambier & Houet, 

1993; d’Errico et 

al., 2011 

 

Lussac les 

Chateau Lussac les Châteaux 

Beginning 

Würm IV Cold, Rangifer 2, 5? Oakley et al., 1971 

 

La Madeleine: 

4 km N-NE of Les Eyzies-de-

Tayac 

12,070-12,750 

BP Cold 4 

Gambier & Houet, 

1993 

 

Le Morin 

Le Moustelate, 50 km E of 

Bordeaux Recent Würm Cold 1 

Gambier & Houet, 

1993 

 

Moulin Neuf 

Canodonne valley, Saint-

Quentin-de-Baron 14,280-13,570 Cold 2 

Gambier & Houet, 

1993; Lenoir, 

1983 

 

Pech de la 

Boissiere 7 km SE of Sarlat, Carsac Recent Würm Cold 2 

Gambier & Houet, 

1993 

 

La Piscine Montmorillon, Vienne Recent Würm Cold 

Un-

numbered 

Gambier & Houet, 

1993 
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Temporal 

Group: Country Site Location Date(s) Temperate/ Cold 

Specimens 

Examined Citations 

 

Roc de Combe 

Capelle 

Couze River, 20 km E of 

Bergerac Recent Würm Cold 3 

Gambier & Houet, 

1993 

 

Saint Germain la 

Rivière 

River Dordogne, 10 km from 

Libourne, Saint-Germain-la-

Rivière 15,300+-410 BP Cold, Rangifer 4,8-16 

Gambier & Houet, 

1993; Lenoir et al., 

1991 

Germany Oberkassel Oberkassel, 4 km SE of Bonn 

1: 11,570+-100 

BP; 2: 12,180+-

110 BP  Cold 1,2 Orschiedt, 2000 

Israel Ein Gev East Sea of Galilee 

13.750  

BC Temperate 1 

Arensburg & Bar-

Yosef, 1973 

 

Nahal Ein Gev East Sea of Galilee 

Late Upper 

Paleolithic Temperate 1 

Belfer-Cohen et 

al., 2004 

 

Ohalo Near the Sea of Galilee 

OIS 2: 23,500 

to 22,500 years 

BP Warm, Gazelle 1,2 

Nadel & 

Hershkovitz, 

1991; Nadel et 

al., 2006 

Italy: Continenza Trasacco L'Aquila, Italy 

11,500 +- 120 

BP Temperate 4-6 Astuti, 2002 

 

Romanelli 5 km S of Lecce, Puglia 

Late Würm, 

10,000-11,000 

BP Temperate 

1,4-8, loose 

teeth Oakley et al., 1971 

 

Tagliente 

Near Stallavena, Valpantena, 

Verona Würm Temperate 1 Oakley et al., 1971 

 

Villabruna: Belluno, Italy 12,150 BP Temperate 1 

D’Errico et al., 

2011 

Luxembourg Oetrange 

Grotte de Schleid, 8 km E of 

Luxembourg Würm Cold, Mammoth 1 Oakley et al., 1971 

Spain Nerja Nerja village, Málaga Epi-paleolithic? Temperate Pepita 

Garcia Sanchez, 

1982; Orban, 1991 
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Appendix 2: Pathological Diagnoses (alphabetical order) 

Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

Abri Labatut EMH A E Y 

       

2 1 

Abri Pataud EMH A E Y 

 

UM2 0 2 

   

16 1 

Abri Sur Cure 27 EMH A E Y 

  

0 0 

   

3 1 

Aitzbitarte III EMH A E 

2 A, 

1 E 

       

3 3 

Amud (1?) Nean M N P UI2 UI2 2 3 

   

32 1 

Archi Nean M N A 

  

0 0 

   

5 1 

Baousso de 

Torre 1 adult EMH A E Y 

       

4 1 

Baousso de 

Torre 3 

immature EMH A E A 

       

2 1 

Barma Grande 2 EMH M E Y LM2 

 

0 1 

   

30 1 

Barma Grande 3 EMH M E Y 

  

1 0 

   

12 1 

Barma Grande 4 EMH M E E 

 

UP3 2 3 2 2 

 

18 1 

Blanchard EMH A E A 

       

3 2 

Bois-Ragot EMH A L Y LM2 

      

1 1 

Boxgrove 

Pre-

Nean A N Y 

       

2 1 

Brassempouy EMH A E Y 

       

4 1 

Brno II EMH C E E 

 

LM1 3 3 0 1 

 

6 1 

Bruniquel (Abri 

Lafaye) EMH A L P LM2 

 

1 3 

   

30 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

Bruniquel 539 EMH A L P 

  

1 1 0 0 1 1 1 

Castanet 1935-1-

1 EMH A E E 

       

1 1 

Castel di Guido 4 

Pre-

Nean M N P 

 

2 

     

2 1 

Caverna dell 

Fate adult Nean M N E 

  

1 2 

   

1 1 

Caverna dell 

Fate child Nean M N A 

  

0 0 

   

1 1 

Caviglione EMH A E P 

       

32 1 

Chancelade EMH A L E 

 

2 3 3 17 19 2 9 1 

Ciota Ciara 2 Nean M N Y 

       

1 1 

Ciota Ciara 3 Nean M N Y 

       

1 1 

Ciutarun 1 

(formerly Fenera 

4) Nean M N Y 

       

1 1 

Continenza 4 EMH M L P UM 

 

1 2 

   

8 1 

Cro Magnon 1 EMH A E ? 

 

LI2, LP3,  

LP3, LM1,  

LM2, UM1,  

UP3, UP4 

  

0 1 

Cro Magnon 2 EMH A E Y 

       

2 1 

Cro Magnon 3 EMH A E ? 

       

0 1 

Cro Magnon 4 EMH A E P LM2 UP3 2 3 

   

5 1 

Cueva Negra Nean M N P 

       

6 1 

Dolni Vestonice EMH C E Y LM 

 

1 2 

   

26 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

13 

Dolni Vestonice 

14 EMH C E Y 

  

1 2 

   

30 1 

Dolni Vestonice 

15 EMH C E Y LM3 

 

1 2 

   

30 1 

Dolni Vestonice 

16 EMH C E E 

 

2UM1, 

UP4, 

UI2, 

UI1, 

UI2, 

UM1, 

UM2, 

UM3 2 3 

  

1 28 1 

Dolni Vestonice 

3 EMH C E P 

  

2 3 

   

31 1 

DV loose teeth EMH C E A, Y 

       

5 2 

Ein Gev EMH M L P 

 

LM1 1 2 0 1 

 

2 1 

El Sidron 

Adolescente 1 Nean A N A 

  

0 0 

   

13 1 

El Sidron 

Adolescente 2 Nean A N A 

       

20 1 

El Sidron 

Adolescente 3 Nean A N A 

       

12 1 

El Sidron Adulto 

1 Nean A N P 

  

2 1 

   

27 1 

El Sidron Adulto Nean A N Y 

 

LM3, 1 3 

   

23 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

2 LM1, 

LC, LI2 

El Sidron Adulto 

3 Nean A N Y 

  

1 1 

   

11 1 

El Sidron Adulto 

4 Nean A N Y 

  

1 0 

   

23 1 

El Sidron Adulto 

5 Nean A N Y 

  

0 1 

   

25 1 

El Sidron Adulto 

6 Nean A N Y 

       

15 1 

Font de Gaume 

FG1 et 2 EMH A L A 

       

2 1 

Fossellone Nean M N Y 

  

0 1 

   

2 1 

Fourneau du 

Diable EMH A L Y 

  

1 1 

   

8 2 

Genista Nean A N A 

       

1 1 

Gibralter 1 Nean M N E 

 

UP4, 

UC 3 3 3 3 

 

9 1 

Gibralter 2 Nean M N A 

  

0 2 1 1 

 

7 1 

Gough's Cabe 86 EMH A L Y 

  

0 1 1 1 1 13 1 

Gough's Cave 1 EMH A L Y UM1 U5 1 2 5 5 

 

20 1 

Gough's Cave 4 EMH A L A 

  

0 0 

   

1 1 

Gough's Cave 6 EMH A L P 

 

LM2 2 1 0 0 2 1 1 

Gough's Cave 87 

253 EMH A L Y 

  

1 0 

  

1 2 1 

Gough's Cave EMH A L A 

  

0 1 

   

11 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

87? 

Gough's Cave 

loose teeth EMH A L Y 

       

5 1 

Goyet Nean A N Y 

  

2 2 

   

2 1 

Grotte des 

Abeilles MNP 

1989-5-2 EMH A E A LM1 

      

3 1 

Grotte des Rois 

1955-148 EMH A E A 

  

1 2 

   

8 1 

Guattari 1 Nean M N E? 

    

16 16 

 

0 1 

Guattari 2 Nean M N P 

    

1 3 

 

1 1 

Guattari 3 Nean M N P 

  

2 3 

   

11 1 

Guattari 4 Nean M N Y 

       

3 1 

Isturitz 111-1936 EMH A E Y 

 

2U 1 2 

  

1 5 3 

Isturitz 1950-10-

2 EMH A E Y 

  

0 1 

   

2 1 

Isturitz 1950-11-

1 EMH A E E 

 

LM1 2 2 0 1 

 

3 1 

Isturitz 1950-4-1 EMH A E P 

 

LM1 1 2 0 1 

 

7 1 

Kebara 2 Nean M N P 

  

2 3 

   

16 1 

Kulna maxilla Nean C N A 

  

1 2 

   

4 1 

La Chapelle Aux 

Saints Nean A N E 

 

UC 3 3 13 16 

 

3 1 

La Chaud 3 

1980-6 EMH A E Y 

  

0 0 

   

6 1 

La Ferrassie 1 Nean A N E 

 

LP4, 3 3 

   

32 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

LP3, 

LC, LI2 

La Ferrassie 2 Nean A N P 

  

3 3 

   

8 1 

La Ferrassie 

MNP 1934-2-1-

to 3 N A N Y 

       

3 1 

La Gravette 

1993-10-1 EMH A E A 

       

1 1 

La Greze 1949-

2-1 EMH A L P 

       

1 1 

La Madeleine 

Child EMH A L A dcC 

      

13 1 

La Naulette Nean A N ? 

  

3 3 

   

0 1 

La Piscine EMH A L A 

  

1 2 

   

1 1 

La Quina 5 Nean A N P 

  

3 1 

   

25 1 

La Rochette EMH A E A, Y 

       

9 2 

La Tannerie EMH A L A 

       

5 1 

La Vachons EMH A M P 

       

3 1 

Lachaud 1980-8-

1 EMH A E A 

  

1 2 

   

14 1 

Lalinde MNP 

1930-1-2 

? See 

brennan 

1991 A L P UM1 LM1 0 1 

   

5 1 

Laugerie-Basse EMH A L A LM2 

 

1 3 

   

26 1 

Le Morin EMH A L A M3 UM2 

     

4 1 

Les Battuts 122 EMH A E P 

       

1 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

ab 

Les Fadets Nean A N A 

       

4 1 

Les Peyrugues 

12.A EMH A L Y 

       

8 1 

Les Peyrugues 7 

et 9 EMH A L A 

       

3 1 

Les Peyrugues 

Carre 12 A EMH A L P 

       

13 1 

Les Rois 11-13 EMH A E Y 

       

5 1 

Les Rois B 1955-

148 EMH A E A 

  

0 1 

   

2 1 

Les Rois loose 

teeth EMH A E Y 3 

      

24 3 

Lexetxiki Nean A N A 

       

2 1 

Limeuil 1924-2-

113 EMH A L ? 

  

1 0 

   

0 1 

Lussac les 

Chateau 123-13 EMH A L E 

       

1 1 

Malarnaud Nean A N A 

  

1 2 

  

2 1 1 

Miesslingtal EMH C E A 

  

0 0 

   

10 1 

Mladec 8 5457 EMH C E P 

 

UM1 2 3 0 2 

 

4 1 

Mladec cranium EMH C E Y 

 

UM2, 

UM3 1 3 0 4 

 

4 1 

Mladec Lautsch 

II EMH C E Y 

  

2 3 1 2 

 

4 1 

Mladec loose EMH C E Y 

       

3 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

teeth 

Monsempron 

1953-1 Nean A N Y 

  

3 3 

   

10 4 

Monsempron 

Individual 3 Nean A N A 

  

1 1 

     

Montmaurin 

Pre-

Nean A N Y 

  

0 0 

   

6 1 

Moulin Neuf 

MN 1 et 2 EMH A L A 

       

3 2 

Muierii cranium EMH C E P 

  

1 2 

   

8 1 

Nahal Ein Gev EMH M L P 

  

2 2 

   

13 1 

Neandertal Nean C N P 

       

2 1 

Nerja EMH M L Y 

  

0 1 

  

2 30 1 

New Neandertal 

loose teeth Nean C N A, P 

       

5 2 

Oase cranium (1) EMH C E Y 

  

0 0 

   

6 1 

Oase mandible 

(2) EMH C E P 

  

1 0 

   

5 1 

Oberkassel 

female EMH C L Y 

 

UM1 3 3 

  

1 20 1 

Oberkassel male EMH C L E 

 

LP4 3 3 12 12 

 

14 1 

Ochoz mandible Nean C N P 

  

3 3 

   

15 1 

Oetrange 1 EMH A L P 

  

1 2 1 1 

 

3 1 

Ohalo 1 EMH M L P LM2 

 

1 3 

   

11 1 

Ohalo 2 EMH M L P UM3 LM1 1 3 2 2 

 

30 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

Oreille d'Enfer EMH A E ? 

 

LP3 

  

0 1 

 

0 1 

Palomas 59 Nean M N Y 

  

1 0 

   

5 1 

Palomas 

collection Nean M N 

A, 

Y, P 

       

76 37 

Pavlov 1 EMH C E P LM3 UC 3 3 

   

26 1 

Pavlov 2 EMH C E P 

  

2 2 

   

7 1 

Pavlov 3 EMH C E P 

  

2 3 

   

4 1 

Pavlov loose 

teeth EMH C E A, P 

       

22 2 

Pech de la 

Boissiere 1934-

1&2 EMH A L Y 

       

2 2 

Petit-Puynoyen 

1976-29 

(Individual 1) Nean A N Y 

  

1 2 

   

15 1 

Petit-Puynoyen 

1976-29 

(Individual 2) Nean A N A 

  

0 2 

   

4 1 

Petit-Puynoyen 

1976-29 

(Individual 3) Nean A N Y 

  

1 1 

   

2 1 

Predmosti hemi 

mandible EMH C E Y 

 

UM3 1 2 

   

5 1 

Predmosti whole 

mandible EMH C E Y 

LM1, 

LM2 LI2, LC 1 2 0 1 

 

9 1 

Qafzeh 11 EMH M M Y LM1 

 

0 2 

   

26 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

Qafzeh 3 EMH M M P 1 

 

2 2 

   

10 1 

Qafzeh 4  EMH M M A 

P3, 

P4, C, 

P4 UC 0 0 

   

19 1 

Qafzeh 4b loose 

teeth EMH M M Y 

       

3 1 

Qafzeh 5 EMH M M Y 

  

0 1 

   

11 1 

Qafzeh 6 EMH M M P 

  

2 2 1 2 

 

12 1 

Qafzeh 7 EMH M M P 

UM2, 

LM2 

 

2 3 

   

31 1 

Qafzeh 8 EMH M M Y 

  

1 2 

   

9 1 

Qafzeh 9 EMH M M Y 

LM1, 

LM3 

 

2 3 

   

32 1 

Qafzeh H4 EMH M M Y M3 

      

8 1 

Regourdou Nean A N P 

  

3 3 

   

16 1 

Roc de Combe 

Capelle 1943-1-2 Nean A L A 

  

0 1 

   

2 1 

Romanelli (no?) EMH M L P 

  

3 2 

  

1 4 1 

Romanelli 2 EMH M L P 

  

0 0 

   

1 1 

Romanelli 29 EMH M L Y LM2 

 

0 0 

   

3 1 

Romanelli 4 EMH M L P 

  

2 1 

   

1 1 

Romanelli 5697 EMH M L E 

  

2 2 

   

6 1 

Romanelli loose 

teeth EMH M L 

A, 

Y, P LM3 

      

15 3 

Romualdo EMH M L A 

       

2 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

Saccopastore 1 Nean M N E 

  

1 2 

   

5 1 

Saccopastore 2 Nean M N P 

 

UP3 1 1 

   

11 1 

Saint Germain la 

Riviere (IPH) EMH A L E 

  

2 3 0 1 

 

8 1 

Saint Germain le 

Riviere (MNP) EMH A L A 

       

1 1 

Saint Germain 

loose teeth EMH A L A C 

      

14 2 

San Bernardino Nean? M N E, Y 

       

3 1 

Sandalja loose 

teeth EMH M L A, P 

       

8 2 

Skhul 5 EMH M M P 

 

LM1 

     

31 1 

Skhul 6 EMH M M Y 

       

5 1 

Skhul 7 EMH M M P 

  

2 0 

   

6 1 

Spy 1 Nean A N P 

  

1 2 

   

19 1 

Spy 2 Nean A N Y 

  

2 2 

   

25 1 

Tabun Nean M N Y 

  

2 3 

   

31 1 

Tabun D loose 

teeth Nean M N A, P 

       

13 2 

Tabun i Nean M N A 

  

1 0 

   

2 1 

Tabun ii Nean M N 

A, 

Y, P UM2 

      

7 3 

Tabun misc 

series iii Nean M N A 

       

6 1 

Tagliente loose 

teeth EMH M L A 

       

2 1 
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Specimen Taxon. Reg. Time Age  Caries Lesions 

PD: 

Average 

CEJ-AC 

PD: 

Most 

Severe 

# teeth 

DEF 

AMTL 

# teeth 

def + 

prob 

AMTL 

Age-

nesis 

# 

teeth 

M

N

I 

Tornewton EMH A L P 

       

1 1 

Villabruna EMH M L Y LM3 

 

1 2 

   

29 1 

Vindija 11.39 Nean M N Y 

  

2 0 

   

4 1 

Vindija 11.40 Nean M N Y 

  

2 0 

   

1 1 

Vindija 11.41 Nean M N ? 

 

M1 

     

0 1 

Vindija 11.42 Nean M N ? 

  

3 3 

   

0 1 

Vindija 11.43 Nean M N ? 

 

1 

     

0 1 

Vindija 11.44 Nean M N ? 

  

2 1 

   

0 1 

Vindija 11.45 Nean M N P 

 

LM1 2 3 

   

4 1 

Vindija 11.46 Nean M N Y 

  

2 3 

   

1 1 

Vindija loose 

teeth Nean M N Y 

       

7 1 

Vindija MH 

21.18 EMH M L ? 

  

3 3 0 1 

 

0 1 

Vindija MH 

21.20 EMH M L A 

  

1 2 

   

3 1 

Vindija MH 

loose teeth EMH M L A, P UM 

      

8 2 

Willendorf II EMH C E ? 

    

0 1 

 

0 1 

Zafarraya mand Nean M N P 

 

LM3 2 3 

 

1 

 

13 1 

Abbreviations: 

Region: A: Atlantic; C: Continental; M: Mediterranean 

Time: N: Neandertal; M: Middle Paleolithic Modern Humans; E: Early Upper Paleolithic; L: Late Upper Paleolithic 

Age: A: Adolescent: Y: Young Adult; P: Mid-Aged Adult; E: Elderly 

PD: 0: No periodontal disease; 1: Mild; 2: Moderate; 3: Advanced
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Appendix 3: Correlation Testing: CEJ-AC and septa score      

 Is there a correlation between the two forms of periodontal disease diagnostic data 

collected: CEJ-AC distances (CEJ-AC) and septum condition scores? Both represent alveolar 

bone loss, but describe it in different ways. The septum scores are based on two values, 

presence/absence of porosity and shape—convex, flat, and concave—of the interdental 

septum (adapted from Costa, 1982). Costa (1982) assigned combined ordinal ranking scores: 

no porosity with either convex and flat shape is considered free of periodontal disease; 

“osteoporosis” with convex shape is mild periodontal disease; “osteoporosis” with flat shape 

is moderate; and “osteoporosis” with concave shape was advanced. “No porosity with a 

concave shape” was not an option in his study; however, it was occasionally observed here. 

Adolescents who still had erupting teeth were most likely to have healthy alveolar bone 

without a convex shape (Costa (1982) concurs). I assigned each of these a ranked numerical 

score (see Table A3.1). 

 

Score Description 

1 No porosity, convex shape, generally healthy alveolar bone, no PD 

2 No porosity, flat or concave shape, but otherwise healthy, no definitive PD 

3 Porosity, convex shape, early, mild PD 

4 Porosity, flat shape, advancing moderate PD 

5 Porosity, concave shape, advanced severe PD 

 

Table A3.1: Ranking of interdental septum shape 

 

 These numerical scores are used to test the correlation between interdental septum 

condition (ordinal) and average cemento-enamel junction to alveolar crest distance 

measurements (continuous) using Spearman’s rank correlation. I tested it by tooth to avoid 
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inter-correlation between data points from the same individuals and both the Late Pleistocene 

and Comparative sample data was used. 31 of 32 Spearman’s rho were significant and varied 

between 0.6034 (p-value <0.0001) to 0.2996 (p-value=0.0180) (see Table A3.2 and A3.3 for 

full values). Only one Spearman’s rho value, upper left central incisor, was low (0.1400) and 

insignificant (p-value= 0.4606). This suggests that generally CEJ-AC distances and septum 

scores are positively monotonically correlated. The lack of a stronger correlation is an artifact 

of the fact that there are only 5 options for septa condition, but many more options for the 

continuous CEJ-AC measurements (0.0 mm to over 20.0 mm where there is a lesion). They 

cannot be perfectly correlated.  

The measurements also tend to be more strongly correlated in posterior than anterior 

teeth. This may reflect greater preservation damage in anterior alveoli of fossils. These tests 

only contain individuals whose teeth AND alveoli were present and in relatively good 

condition. Teeth lost from severe periodontal disease or infection are not represented as well 

as postmortem loss, common in anterior teeth with their less complex root shapes. Also 

correlation scores are generally higher in the maxilla than the mandible, possibly suggesting 

there is less continuous eruption in the maxilla than the mandible (Glass, 1991). 
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Upper Left 

Teeth 

Rho P-value N Upper Right 

Teeth 

Rho P-value N  

LM
3
 (16) 0.56 <<0.01 43 RM

3
(1) 0.64 <0.01 30 

LM
2
 (15) 0.49 <<0.01 67 RM

2
(2) 0.37 <0.01 59 

LM
1
 (14) 0.45 <<0.01 71 RM

1
 (3) 0.51 <<0.01 64 

LP
4
 (13) 0.32 0.01 67 RP

4
 (4) 0.58 <<0.01 62 

LP
3
 (12) 0.43 <<0.01 61 RP

3
 (5) 0.60 <<0.01 58 

LC (11) 0.36 <0.01 61 RC (6) 0.37 <0.01 61 

LI
2 
(10) 0.60 <<0.01 39 RI

2
 (7) 0.45 0.01 34 

LI
1
 (9) 0.14 0.46 30 RI

1
 (8) 0.54 <0.01 30 

 

Table A3.2: Spearman’s Rank Order Correlation values for Septa Condition scores and CEJ-

AC distances: Upper Teeth 

 

 

Lower Left 

Teeth 

Rho P-value N Lower Right 

Teeth 

Rho P-value N 

LM3 (17) 0.31 0.03 47 RM3 (32) 0.38 0.02 39 

LM2 (18) 0.50 <<0.01 77 RM2 (31) 0.46 <<0.01 70 

LM1 (19) 0.42 <<0.01 77 RM1 (30) 0.53 <<0.01 80 

LP4 (20) 0.37 <0.01 59 RP4 (29) 0.60 <<0.01 67 

LP3 (21) 0.30 0.02 62 RP3 (28) 0.38 <0.01 59 

LC (22) 0.33 0.02 50 RC (27) 0.35 0.01 60 

LI2 (23) 0.33 0.02 51 RI2 (26) 0.30 0.03 54 

LI1 (24) 0.40 0.01 46 RI1(25) 0.38 0.01 42 

 

Table A3.3: Spearman’s Rank Order Correlation values for Septa Condition scores and CEJ-

AC distances: Lower Teeth 
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