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Abstract

Bacteria may play a role in esophageal adenocarcinoma (EAC)
and esophageal squamous cell carcinoma (ESCC), although
evidence is limited to cross-sectional studies. In this study, we
examined the relationship of oral microbiota with EAC and ESCC
risk in a prospective study nested in two cohorts. Oral bacteria
were assessed using 16S rRNA gene sequencing in prediagnostic
mouthwash samples from n ¼ 81/160 EAC and n ¼ 25/50 ESCC
cases/matched controls. Findings were largely consistent across
both cohorts.Metagenome contentwas predicted using PiCRUST.
We examined associations between centered log-ratio trans-
formed taxon or functional pathway abundances and risk using

conditional logistic regression adjusting for BMI, smoking, and
alcohol. We found the periodontal pathogen Tannerella forsythia
to be associated with higher risk of EAC. Furthermore, we found
that depletion of the commensal genus Neisseria and the species
Streptococcus pneumoniae was associated with lower EAC risk.
Bacterial biosynthesis of carotenoids was also associated with
protection against EAC. Finally, the abundance of the periodontal
pathogen Porphyromonas gingivalis trendedwithhigher risk of ESCC.
Overall, our findings have potential implications for the early
detection and prevention of EAC and ESCC. Cancer Res; 77(23);
6777–87. �2017 AACR.

Introduction
Esophageal cancer is the eighthmost common cancer and sixth

most common cause of cancer-related death worldwide (1).
Because late-stage presentation is common in most cases, esoph-
ageal cancers are highly fatal; 5-year survival rates range from15%
to 25% in most countries (2). Consequently, there is a critical
need for new avenues of prevention, risk stratification, and early
detection.

The two main types, esophageal adenocarcinoma (EAC) and
esophageal squamous cell carcinoma (ESCC), differ greatly in
incidence, geography, and etiology. ESCC, themost common type
worldwide, predominates in developing countries, while EAC has
become thepredominant type indeveloped countries as incidence
rates continue to rise (2, 3). Known risk factors include gastro-
esophageal reflux disease (GERD), obesity, low fruit/vegetable

intake, and smoking for EAC, and alcohol drinking, low fruit/
vegetable intake, and smoking for ESCC (4), but the etiology
of these diseases cannot be fully explained by these factors.

Recently, upper digestive tract microbiota have been suggested
to play a role in esophageal cancer etiology, and in particular in the
rising incidence of EAC in developed countries (5). The complex
microbial community of the upper digestive tract, consisting of
mutualists, commensals, and pathogens, could facilitate carcino-
genesis via activation of Toll-like receptors (6), or protect against
carcinogenesis via synthesis of vitamins or providing barriers to
pathogen invasion (5). Cross-sectional studies report distinct
differences in upper digestive tract microbiota between GERD
(7–9), Barrett's esophagus (an EAC precursor; refs. 7–10), EAC
(7, 11), esophageal squamous dysplasia (ESD, an ESCC precursor;
ref. 12), or ESCC (13) cases and controls. In addition, periodon-
titis (a disease of oral dysbiosis) may be associated with increased
esophageal cancer risk (14). However, no studies have prospec-
tively examinedwhether upper digestive tract microbiota influence
risk for subsequent esophageal cancer.

We hypothesized that oral microbiota influence develop-
ment of esophageal cancer. The oral microbiota shape the
esophageal microbiome (15), due to migration of oral bacteria
to the esophagus (16) and, therefore, may contribute to eso-
phageal carcinogenesis. We conducted a prospective study
nested in two large U.S. cohorts, to determine whether oral
microbiota are associated with subsequent EAC or ESCC risk.

Patients and Methods
Parent cohorts

Participants were drawn from two U.S. cohorts: the NCI Pro-
state, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening
Trial cohort and American Cancer Society (ACS) Cancer Preven-
tion Study II (CPS-II) Nutrition cohort. Characteristics of these
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cohorts are comparable, with both cohorts collecting oral wash
samples and comprehensive demographic information, and fol-
lowing prospectively for cancer incidence.

PLCO (17) is a large population-based randomized trial
designed to determine effects of screening on cancer-related
mortality in men and women aged 55 to 74, recruited in 1993
to 2001, and followed for cancer incidence. Participants were
randomized to a screening or control arm. Oral wash samples
were collected in the control arm only (n ¼ 52,000). Incident
cancers were ascertained by annual mailed questionnaire and
verified through medical records or death certificates.

CPS-II (18) includes >184,000 participants, aged 50 to 74 who
completed a mailed baseline questionnaire in 1992. Follow-up
questionnaires have been sent to cohortmembers every other year
to update information and ascertain incident cancers, which are
also verified through medical records, state registries, or death
certificates. During 2000 to 2002, oral wash samples were col-
lected from 70,004 participants.

Nested case–control study
Incident cases were cohort participants diagnosed with esoph-

ageal cancer any time after oral wash collection (collection to
diagnosis time ranged from <1 year to 9 years; first quartile,
median, third quartile ¼ 1, 3, 5 years) and had no prior cancer
history (except nonmelanoma skin cancer). Matched controls
were selected at a case:control ratio of 1:2 by incidence density
sampling without replacement among participants who provided
an oral wash sample in the same year as the index case, had no
cancer at or prior to index case diagnosis, and were of the same
cohort, age, sex, and race as the index case.

A total of 368 samples were provided and successfully sequenc-
ed, including 117 complete sets (1 case: 2 controls), 2 reduced
sets (1 case: 1 control), and 13 unmatched controls (due tomissing
case, case failing sequencing, or nonesophageal case). On the basis
of ICD morphology codes (EAC: 8140, 8144, 8480, 8481, 8560;
ESCC: 8070, 8071, 8072, 8074, 8052), we included 81 EAC cases
(with 160matched controls) and 25 ESCC cases (with 50matched
controls) in the current analysis (N ¼ 316). Cases of other or
missing morphology (n ¼ 13), their matched controls (n ¼ 26),
and unmatched controls (n ¼ 13) were excluded.

This studywas conducted in accordancewith theU.S. Common
Rule and approved by the IRB of New York University School of
Medicine (New York, NY), NCI (Bethesda, MD), and ACS, and
participants provided informed consent.

Covariate assessment
Covariate information was extracted from questionnaires

preceding oral sample collection for each participant. Body
mass index (BMI) was categorized as normal or underweight
(BMI < 25 kg/m2), overweight (25 � BMI < 30 kg/m2), or obese
(BMI� 30 kg/m2). Smoking status was classified as never, former,
or current. Drinking level was classified as never, moderate, or
heavy (19). Servings of fruits and vegetables per day, derived from
food frequency questionnaire responses, were categorized as low
or high based on cohort-specific medians.

Oral wash sample collection
Participants were asked to swish with 10mL Scopemouthwash

(P&G) and expectorate into a tube (17, 18). Sampleswere shipped
to each cohort's biorepository and stored at �80�C. The oral
microbiome is highly stable over time (20–22) and shows much

greater interindividual than intraindividual variation, indicating
that a one-time oral sample collection is appropriate for assessing
oral microbial risk factors in a cohort study.

Microbiome assay
We extractedDNA fromoral wash samples using the PowerSoil

DNA Isolation Kit (Mo Bio). Barcoded amplicons were generated
covering the 16S rRNA gene V4 region using F515/R806 primers.
The PCR reaction used FastStart High Fidelity PCR System, dNTP
pack (Roche) as follows: initial denaturing at 94�C for 3minutes,
followed by 25 cycles of 94�C for 15 seconds, 52�C for 45 seconds
and 72�C for 1 minute, and a final extension at 72�C for 8
minutes. PCR products were purified using Agencourt AMPure
XP (Beckman Coulter Life Sciences), quantified using Agilent
4200 TapeStation (Agilent Technologies), pooled at equimolar
concentrations and sequenced on Illumina MiSeq with a 300-
cycle (2 � 151 bp) reagent kit.

Sequence data processing
Paired-end reads were joined and demultiplexed, and poor-

quality reads excluded, using default parameters in QIIME (23).
The 11,422,831 quality-filtered reads (from N ¼ 368 samples)
were clustered into operational taxonomic units (OTU) against
the Human Oral Microbiome Database (HOMD) reference
sequence collection (version 14.5; ref. 24), and assigned
HOMD taxonomy, using QIIME script pick_closed_reference_
otus.py (23). This method discards reads not matching the
database, leaving 11,074,719 reads [mean � SD ¼ 30,094 �
21,059; range ¼ (4,965–203,242)] and 569 OTUs. We gener-
ated a phylogenetic tree from aligned HOMD reference
sequences using FastTree (25).

Quality control
All samples underwent DNA extraction and sequencing in the

same laboratory, with personnel blinded to case/control status.
DNA from volunteer oral wash samples was included in the
sequencing batches: six replicates from each of 4 volunteers in
the CPS-II batch, and eight replicates from each of the same 4
volunteers in the PLCO batch. Intraclass correlation coefficients
for the Shannon diversity index and relative abundance of major
oral phyla were high (Supplementary Table S1), and principal
coordinate analysis of UniFrac distances (26) showed clustering
of repeat samples for each volunteer, indicating excellent repro-
ducibility (Supplementary Fig. S1).

Statistical analysis
We used multiple imputation ("mice" package, R; ref. 27) to

impute missing data for three important predictors of esophageal
cancer, BMI, alcohol drinking, and fruit and vegetable intake. A
total of 23 participants (7.3%) were missing BMI, 36 (11.4%)
weremissing alcohol drinking, and 39 (12.3%)weremissing fruit
and vegetable intake (% missing by case/control group shown
in Table 1). Predictors of BMI category (<25, 25–30,�30) used in
imputation were sex, race, age, cohort, smoking status, educa-
tion level, and ethanol intake. Predictors of alcohol drinking
(none, moderate, heavy) and fruit/vegetable intake (low or high)
used in imputation were sex, race, age, cohort, smoking status,
education level, and continuous BMI. Ten imputed datasets were
used in analysis, and we present pooled estimates and P values.

a-Diversity (within-subject diversity) was assessed by richness
and the Shannon diversity index, calculated in 100 iterations of
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rarefied OTU tables of 4,500 sequence reads per sample. This
depth was chosen to sufficiently reflect sample diversity (Supple-
mentary Fig. S2) while retaining all participants. We examined
whether a-diversity differed between cases and controls in con-
ditional logistic regression using matched sets as strata and
adjusting for smoking status, BMI category, and alcohol drinking
level.

b-Diversity (between-subject diversity) was assessed at OTU
level using unweighted and weighted UniFrac distances (26).
Permutational multivariate analysis of variance (PERMANOVA;
"adonis" function, "vegan" package, R; ref. 28) was used to
examine statistically whether overall bacterial community com-
position differed by case/control status, using matched sets as
strata and adjusting for smoking status, BMI category, and alcohol
drinking level.

The 569 OTUs were agglomerated to 12 phyla, 26 classes, 42
orders, 70 families, 149 genera, and 513 species. We applied the
centered log-ratio (clr) transformation (29) to the taxa counts at
each level (e.g., phylum, class, etc.) after adding a pseudocount of
1. We used conditional logistic regression, using matched sets as
strata and adjusting for smoking status, BMI category, and alcohol
drinking level, to determine whether abundance of bacterial
taxa predicts esophageal cancer risk. This analysis included only
taxa present in�15%of the 316participants (10 phyla, 20 classes,
28 orders, 46 families, 85 genera, 266 species), to exclude rare
taxa and thereby minimize the number of statistical tests con-
ducted. A priori species of interest were "red complex" periodontal
pathogens: Tannerella forsythia (T. forsythia), Porphyromonas gingi-
valis (P. gingivalis), and Treponema denticola (T. denticola; ref. 30).
For other taxa, P values were adjusted for the FDR.

Metagenome content was predicted using PiCRUSt (31).
Because PiCRUST gene content is precomputed for the Green-
Genes database of 16S rRNAgenes, for this analysis, we performed
closed-reference OTU picking against the GreenGenes database
prior to PiCRUST. The 5507 KEGG (32) gene orthologs were
grouped into 270 KEGG pathways. We applied the clr transfor-
mation (29) to pathway counts after adding a pseudocount of
1, filtered to include pathways present in �15% of participants
(255 pathways), and used conditional logistic regression, as
described above, to determine whether abundance of functional
pathways predicts esophageal cancer risk.

Ecological networks among species were inferred using the
SPIEC-EASI (SParse InversE Covariance Estimation for Ecological
Association Inference) algorithm (33). This statistical method,
designed for ecological network inference from amplicon
sequencing datasets, accounts for compositional data structure
using the clr transformation and assumes a sparse underlying
ecological association network. We applied SPIEC-EASI separate-
ly to EAC cases and matched controls, and ESCC cases and
matched controls. The "igraph" package in Rwas used for network
visualization.

All statistical tests were two-sided. A P < 0.05 was considered of
nominal significance, and an FDR-adjusted P value (q-value)
<0.10 was considered significant after multiple comparisons
adjustment. Analyses were conducted using R 3.2.1.

Results
Participant characteristics

Cases and their matched controls did not differ on matching
factors (Table 1). Although obesity, low fruit/vegetable intake,

and smoking are recognized risk factors for EAC, and alcohol
drinking, low fruit/vegetable intake, and smoking are recognized
risk factors for ESCC, only alcohol drinking was associated with
ESCC (P ¼ 0.004).

Overall microbiota diversity in relation to EAC and ESCC
EAC and ESCC cases did not differ significantly from matched

controls in oral a-diversity, as measured by species richness and
the Shannon diversity index, or overall oral microbiome compo-
sition (b-diversity), as measured by unweighted and weighted
UniFrac distances (Supplementary Table S2).

Taxa associated with EAC
For the a priori "red complex" periodontal pathogens (30), a

doubling of T. forsythia abundance relative to the geometric
mean of all taxa was associated with 1.21 [95% confidence
interval (CI), 1.01–1.46] times higher odds of EAC (P ¼ 0.04),
while abundance of P. gingivalis and T. denticola was not
associated with EAC risk (Table 2; Fig. 1). We identified several
other oral taxa nominally associated with EAC risk (Table 3;
Fig. 1), although none reached the significance threshold after
FDR adjustment (all q-value > 0.32). Increased abundance of
species Actinomyces cardiffensis, Selenomonas oral taxon 134, and
Veillonella oral taxon 917 was associated with higher EAC risk
(all P < 0.05). Conversely, increased abundance of Corynebac-
terium durum, Prevotella nanceiensis, Streptococcus pneumoniae,
Lachnoanaerobaculum umeaense, Oribacterium parvum, Solobacter-
ium moorei, Neisseria sicca, Neisseria flavescens, and Haemophilus
oral taxon 908 was associated with lower EAC risk (all P <
0.05). Additional adjustment for fruit/vegetable intake did
not impact effect estimates (percent change in b-coefficient for
all nominally significant taxa <12%).

We observed that the majority of these species were associ-
ated with each other in an ecological network analysis (Fig. 2A).
The protective species in phylum Proteobacteria (Neisseria sicca,
Neisseria flavescens, and Haemophilus oral taxon 908) were closely
connected, as were some of the protective species in phylum
Firmicutes (Solobacterium moorei, Oribacterium parvum, and
Lachnoanaerobaculum umeaense). Some of the species formed
their own networks (i.e., unrelated to other EAC-associated
species), including Streptococcus pneumoniae and Selenomonas
oral taxon 134.

We additionally explored heterogeneity of taxon abun-
dance–EAC associations by years from oral wash collection to
diagnosis (� or >median of 3 years), cohort (CPS-II or PLCO),
smoking status (ever or never), obesity (nonobese or obese),
and fruit/vegetable intake (low or high). Taxon findings were
consistent across years to diagnosis subgroups (all Pinteraction
> 0.12; Supplementary Table S3). Similarly, taxon findings were
largely consistent across cohorts (Supplementary Table S4;
Supplementary Fig. S3); in particular, Streptococcus pneumoniae,
Solobacterium moorei, Veillonella oral taxon 917, Neisseria sicca,
Neisseria flavescens, and Haemophilus oral taxon 908 showed
homogenous associations with EAC in both cohorts. Selenomo-
nas oral taxon 134 was associated with higher EAC risk in the
PLCO cohort only (Pinteraction ¼ 0.02). Similarly, the periodon-
tal pathogens tended to be associated with higher EAC risk
only in PLCO (Pinteraction ¼ 0.11, 0.35, and 0.04 for P. gingivalis,
T. forsythia, and T. denticola, respectively). When stratifying
by smoking status, we observed that Lachnoanaerobaculum
umeaense was associated with lower EAC risk only in smokers
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(Pinteraction ¼ 0.02; Supplementary Table S5), while other tax-
on–EAC associations did not differ significantly between ever
and never smokers (Pinteraction > 0.19). When stratifying by
obesity, we observed that Actinomyces cardiffensis was associated
with higher EAC risk only in nonobese (Pinteraction ¼ 0.02),
while other taxon–EAC associations did not differ significantly
between nonobese and obese (Pinteraction > 0.11; Supplemen-
tary Table S6). Finally, when we stratified by fruit and vege-
table intake, order Actinomycetales was associated with higher
EAC risk only in those with higher fruit and vegetable intake

(Pinteraction ¼ 0.05), while other interactions were nonsignifi-
cant (Pinteraction > 0.18; Supplementary Table S7).

Taxa associated with ESCC
The periodontal pathogen P. gingivalis was marginally associ-

ated with higher ESCC risk [OR (95% CI) ¼ 1.30 (0.96–1.77);
P ¼ 0.09; Table 2; Fig. 1]. Several other species were nominally
associated with ESCC risk (Table 3; Fig. 1), although none
reached the significance threshold after FDR adjustment
(all q-value > 0.80). Increased abundance of Prevotella

Table 2. Periodontal pathogensa and risk for incident esophageal adenocarcinoma or squamous cell carcinoma

Adenocarcinoma Squamous cell carcinoma
Median relative abundance

(% carriageb)
Median relative abundance

(% carriageb)

Periodontal pathogen
EAC cases
(n ¼ 81)

Matched controls
(n ¼ 160) OR (95% CI)c Pc

ESCC cases
(n ¼ 25)

Matched controls
(n ¼ 50) OR (95% CI)c Pc

Porphyromonas gingivalis 0.00d (23.5) 0.00 (25.0) 1.06 (0.93–1.20) 0.40 0.00 (32.0) 0.00 (20.0) 1.30 (0.96–1.77) 0.09
Tannerella forsythia 0.005 (56.8) 0.00 (47.5) 1.21 (1.01–1.46) 0.04 0.004 (52.0) 0.01 (58.0) 0.95 (0.58–1.55) 0.84
Treponema denticola 0.00 (39.5) 0.00 (37.5) 0.99 (0.83–1.17) 0.87 0.00 (20.0) 0.00 (44.0) 1.09 (0.72–1.66) 0.67
aTaxon raw counts were normalized with the clr transformation and used as predictors in conditional logistic regression models; models usedmatched sets as strata
and adjusted for smoking status, BMI category, and alcohol drinking level.
bPercent of participants with presence of particular taxon in their oral cavity.
cModel parameters and P values were pooled over 10 models from 10 imputed datasets (missing values in BMI category and alcohol drinking level were imputed)
using "mice" package, R.
dZeros in table are true zeros, as when >50% of participants do not carry a taxon, the median relative abundance will be zero.

Table 1. Prediagnosis demographic characteristics of esophageal adenocarcinoma and squamous cell carcinoma cases and matched controls

Adenocarcinoma Squamous cell carcinoma
Characteristics Cases (n ¼ 81) Matched controls (n ¼ 160a) P Cases (n ¼ 25) Matched controls (n ¼ 50) P

Sexb (%) 1.00c 1.00c

Women 7.4 7.5 60.0 60.0
Men 92.6 92.5 40.0 40.0

Ageb (mean � SD) 68.0 � 6.7 68.0 � 6.6 0.95d 66.6 � 6.5 66.8 � 6.4 0.83d

Raceb (%) 1.00c 1.00c

White 97.5 97.5 84.0 84.0
Other 2.5 2.5 16.0 16.0

BMIe (%) 0.38c,f 0.07c,f

Normal weight 22.2 21.9 52.0 38.0
Overweight 50.6 55.6 36.0 32.0
Obese 21.0 13.8 4.0 26.0
Missing 6.2 8.8 8.0 4.0

Smoking (%) 0.12c 0.36c

Never 25.9 36.9 36.0 44.0
Current 9.9 5.0 16.0 6.0
Former 64.2 58.1 48.0 50.0

Alcohol drinkingg (%) 0.20c,f 0.004c,f

Never 21.0 25.6 24.0 26.0
Moderate 51.9 53.1 32.0 54.0
Heavy 17.3 9.4 36.0 6.0
Missing 9.9 11.9 8.0 14.0

Fruit and vegetable intakeh (%) 0.85c,f 1.00c,f

Low 44.4 42.5 48.0 48.0
High 43.2 45.6 40.0 38.0
Missing 12.3 11.9 12.0 14.0

aThere were two incomplete case sets (1 case: 1 control).
bSex, age, and race were matching factors.
cDifferences between cases and controls were detected using the c2 test.
dDifferences between cases and controls were detected using the Wilcoxon rank-sum test.
eNormal-weight: BMI < 25 kg/m2; overweight: 25 � BMI < 30 kg/m2; obese: BMI � 30 kg/m2.
fP value determined after exclusion of those missing the variable.
gModerate drinker: >0 but �1 drinks/day for women and >0 but �2 drinks/day for men; heavy drinker: >1 drinks/day for women and >2 drinks/day for men.
hLow and high intake groups reflect participants below or above cohort-specificmedian of servings of fruit and vegetables/day. CPS-II median¼ 4.62 servings/day;
PLCO median ¼ 6.10 servings/day.
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nanceiensis, Bergeyella oral taxon 322, Neisseria weaveri, and Trep-
onema vincentii was associated with higher ESCC risk, while
increased abundance of Prevotella oral taxon 306 and Aggregati-
bacter paraphrophilus was associated with lower ESCC risk (all
P < 0.05). Additional adjustment for fruit/vegetable intake did
not impact effect estimates (percent change in b-coefficient for all
nominally significant taxa <11%). We did not perform stratified
analysis of taxonomic findings for ESCC due to small sample size.

All of the species nominally associated with ESCC were asso-
ciated with each other in an ecological network analysis (Fig. 2B).
Interestingly, Treponema vincentii, which was associated with
increased ESCC risk and has been previously associated with
periodontal disease (34, 35), was linked to other periodontal
pathogens (P. gingivalis, T. forsythia) in the ecological network.

Inferred metagenomic analysis
Analysis of inferred metagenomes revealed a number of

metabolic pathways nominally associated with EAC risk

(Table 4), although none reached the significance thres-
hold after FDR adjustment. Increased abundance of endocyto-
sis, sulfur relay system, biosynthesis of siderophore groups,
and bisphenol degradation pathways was associated with
higher EAC risk, and a-linolenic acid (ALA) metabolism and
carotenoid biosynthesis pathways with lower risk (all
P < 0.05). We did not identify any pathways associated with
ESCC risk. Species Neisseria sicca and Neisseria flavescens, asso-
ciated with reduced EAC risk, were positively correlated with
the protective carotenoid biosynthesis and ALA metabolism
pathways (Fig. 3).

Discussion
In this first prospective study of oral microbiota and esoph-

ageal cancer risk, we did not observe significant associations
between overall microbiota diversity or composition and
subsequent EAC or ESCC risk. However, several species were

Figure 1.

Forest plot of ORs and 95% CI for associations of clr-transformed periodontal pathogen (a priori), genus, and species abundance with EAC and ESCC risk in
conditional logistic regression models. See Tables 2 and 3 for numeric display of the OR (95% CI) estimates. Taxa names are colored by phylum; OR estimates
are colored only if nominally statistically significant (P < 0.05).

Oral Microbiome and Esophageal Cancer

www.aacrjournals.org Cancer Res; 77(23) December 1, 2017 6781

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/77/23/6777/2758995/6777.pdf by guest on 26 August 2022



Table 3. Oral taxaa associated with incident esophageal adenocarcinoma or squamous cell carcinoma, by phylum

Adenocarcinoma Squamous cell carcinoma
Median relative abundance

(% carriageb)
Median relative abundance

(% carriageb)

Taxon (class; order; family; genus; species)
EAC cases
(n ¼ 81)

Matched
controls
(n ¼ 160) OR (95% CI)c Pc

ESCC cases
(n ¼ 25)

Matched
controls
(n ¼ 50) OR (95% CI)c Pc

Actinobacteria
Actinobacteria; Actinomycetales (order) 8.04 (100) 6.99 (100) 1.34 (1.01–1.78) 0.05 7.89 (100) 5.82 (100) 0.94 (0.45–1.94) 0.86
Actinobacteria; Actinomycetales; Actinomycetaceae;

Actinomyces; cardiffensis (species)
0.00d (46.9) 0.00 (38.8) 1.42 (1.03–1.96) 0.03 0.00 (44.0) 0.00 (30.0) 1.77 (0.79–3.97) 0.17

Actinobacteria; Corynebacteriales;
Corynebacteriaceae; Corynebacterium; durum
(species)

0.02 (65.4) 0.07 (76.2) 0.86 (0.75–0.98) 0.03 0.09 (76.0) 0.11 (84.0) 0.71 (0.44–1.13) 0.15

Bacteroidetes
Bacteroidetes C-1; Bacteroidetes O-1; Bacteroidetes

F-1; Bacteroidetes G-3 (genus)
0.00 (19.8) 0.00 (15.6) 1.58 (1.10–2.28) 0.01 0.00 (20.0) 0.00 (20.0) 1.04 (0.44–2.44) 0.94

Bacteroidia; Bacteroidales; Prevotellaceae;
Alloprevotella (genus)

0.47 (88.9) 0.56 (95.0) 0.89 (0.79–1.00) 0.05 0.64 (100) 0.73 (88.0) 1.15 (0.82–1.62) 0.41

Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella;
nanceiensis (species)

0.07 (74.1) 0.21 (86.9) 0.85 (0.77–0.94) 0.001 0.55 (92.0) 0.18 (78.0) 1.63 (1.02–2.6) 0.04

Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella;
oral taxon 306 (species)

0.05 (77.8) 0.08 (75.6) 1.00 (0.92–1.08) 0.93 0.02 (64.0) 0.17 (82.0) 0.49 (0.24–0.99) 0.05

Flavobacteriia; Flavobacteriales; Flavobacteriaceae;
Bergeyella; oral taxon 322 (species)

0.07 (87.7) 0.08 (90.0) 0.85 (0.71–1.01) 0.07 0.10 (96.0) 0.06 (96.0) 1.81 (1.03–3.17) 0.03

Firmicutes
Bacilli; Lactobacillales; Streptococcaceae;

Streptococcus; pneumoniae (species)
0.09 (98.8) 0.10 (99.4) 0.76 (0.60–0.96) 0.02 0.08 (100) 0.14 (98.0) 0.52 (0.24–1.14) 0.10

Clostridia; Clostridiales; Lachnospiraceae XIV;
Lachnoanaerobaculum; umeaense (species)

0.02 (72.8) 0.06 (81.2) 0.84 (0.73–0.97) 0.02 0.05 (84.0) 0.05 (78.0) 1.15 (0.81–1.63) 0.42

Clostridia; Clostridiales; Lachnospiraceae XIV;
Lachnospiraceae G-2 (genus)

0.01 (63) 0.02 (56.9) 1.02 (0.92–1.14) 0.67 0.00 (44.0) 0.04 (76.0) 0.62 (0.38–0.99) 0.05

Clostridia; Clostridiales; Lachnospiraceae XIV;
Oribacterium (genus)

0.21 (90.1) 0.21 (96.2) 0.80 (0.68–0.95) 0.01 0.13 (92.0) 0.13 (88.0) 1.16 (0.81–1.68) 0.41

Clostridia; Clostridiales; Lachnospiraceae XIV;
Oribacterium; parvum (species)

0.00 (30.9) 0.00 (40.6) 0.85 (0.73–1.00) 0.05 0.01 (52.0) 0.004 (52.0) 1.19 (0.77–1.83) 0.43

Erysipelotrichia; Erysipelotrichales;
Erysipelotrichaceae; Solobacterium (genus)

0.04 (82.7) 0.08 (91.9) 0.84 (0.72–0.99) 0.04 0.07 (96.0) 0.07 (84.0) 1.79 (0.95–3.38) 0.07

Erysipelotrichia; Erysipelotrichales;
Erysipelotrichaceae; Solobacterium; moorei
(species)

0.04 (82.7) 0.08 (91.9) 0.85 (0.73–0.99) 0.04 0.07 (96.0) 0.07 (84.0) 1.71 (0.95–3.09) 0.08

Negativicutes; Selenomonadales; Veillonellaceae;
Selenomonas; oral taxon 134 (species)

0.00 (45.7) 0.00 (31.9) 1.43 (1.07–1.89) 0.02 0.00 (24.0) 0.00 (40.0) 0.72 (0.40–1.30) 0.28

Negativicutes; Selenomonadales; Veillonellaceae;
Veillonella; oral taxon 917 (species)

0.00 (35.8) 0.00 (18.8) 1.14 (1.03–1.27) 0.01 0.00 (28.0) 0.00 (20.0) 1.01 (0.77–1.33) 0.94

Proteobacteria
Betaproteobacteria (class) 1.50 (96.3) 2.59 (96.9) 0.87 (0.78–0.97) 0.02 3.58 (96.0) 2.40 (98.0) 1.15 (0.80–1.64) 0.45
Betaproteobacteria; Neisseriales (order) 1.32 (96.3) 2.47 (96.9) 0.88 (0.79–0.98) 0.02 3.37 (96.0) 2.29 (98.0) 1.18 (0.84–1.67) 0.34
Betaproteobacteria; Neisseriales; Neisseriaceae

(family)
1.32 (96.3) 2.47 (96.9) 0.88 (0.79–0.98) 0.02 3.37 (96.0) 2.29 (98.0) 1.19 (0.85–1.66) 0.32

Betaproteobacteria; Neisseriales; Neisseriaceae;
Neisseria (genus)

1.20 (93.8) 2.42 (95.6) 0.88 (0.80–0.97) 0.01 3.23 (96.0) 2.13 (98.0) 1.19 (0.87–1.62) 0.29

Betaproteobacteria; Neisseriales; Neisseriaceae;
Neisseria; flavescens (species)

0.60 (85.2) 1.24 (92.5) 0.89 (0.82–0.98) 0.01 1.76 (96.0) 1.13 (96.0) 1.20 (0.93–1.56) 0.16

Betaproteobacteria; Neisseriales; Neisseriaceae;
Neisseria; sicca (species)

0.10 (75.3) 0.19 (85.0) 0.90 (0.81–0.99) 0.04 0.05 (88.0) 0.18 (88.0) 0.95 (0.76–1.18) 0.64

Betaproteobacteria; Neisseriales; Neisseriaceae;
Neisseria; weaveri (species)

0.00 (17.3) 0.00 (21.9) 0.89 (0.60–1.34) 0.59 0.00 (36.0) 0.00 (16.0) 5.14 (1.17–22.64) 0.03

Gammaproteobacteria; Pasteurellales;
Pasteurellaceae; Aggregatibacter; paraphrophilus
(species)

0.00 (42.0) 0.00 (41.2) 0.98 (0.85–1.12) 0.75 0.00 (28.0) 0.01 (56.0) 0.71 (0.51–0.99) 0.04

Gammaproteobacteria; Pasteurellales;
Pasteurellaceae; Haemophilus; oral taxon 908
(species)

0.07 (69.1) 0.28 (81.9) 0.90 (0.82–0.99) 0.04 0.51 (84.0) 0.31 (74.0) 1.3 (0.96–1.76) 0.09

Spirochaetes
Spirochaetia; Spirochaetales; Spirochaetaceae;

Treponema; vincentii (species)
0.00 (16.0) 0.00 (18.1) 1.06 (0.76–1.49) 0.71 0.00 (20.0) 0.00 (26.0) 2.71 (1.03–7.14) 0.04

aTaxon raw counts were normalized with the clr transformation and used as predictors in conditional logistic regression models; models usedmatched sets as strata
andadjusted for smoking status, BMI category, andalcohol drinking level. All taxa (classes, orders, families, genera, species)withP<0.05 are included in the table.We
did not observe phylum-level associations with EAC or ESCC risk.
bPercent of participants with presence of particular taxon in their oral cavity.
cModel parameters and P values were pooled over 10 models from 10 imputed datasets (missing values in BMI category and alcohol drinking level were imputed)
using "mice" package, R.
dZeros in table are true zeros, as when >50% of participants do not carry a taxon, the median relative abundance will be zero.
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Figure 2.

Ecological networks among bacterial species associated with EAC or ESCC risk. The SPIEC-EASI algorithm (33) was used to infer microbial ecological
networks. A, Algorithm was applied to EAC cases and matched controls (n ¼ 241), and only networks related to EAC-associated species or a priori
periodontal pathogens are shown. B, Algorithm was applied to ESCC cases and matched controls (n ¼ 75), and only networks related to ESCC-associated
species or a priori periodontal pathogens are shown. Species associated with EAC or ESCC are colored by phylum; other species in networks are
indicated by small gray-outlined circles. Lines connecting species are colored by sign (positive, green; negative, red).
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nominally associated with risk, among them potential patho-
gens and also commensal species. Interestingly, bacterial taxon
associations observed were unique to either EAC or ESCC, in
line with the fundamentally different origins of these cancer

types. We also show replication of several taxonomic findings
in both the CPS-II and PLCO cohorts. Our biologically plau-
sible findings warrant further investigation in larger studies, to
fully explore prospects of modulating the oral microbiota for

Table 4. KEGG pathwaysa associated with incident esophageal adenocarcinoma or squamous cell carcinoma

Adenocarcinomab Squamous cell carcinomab

KEGG pathway OR (95% CI)c Pc OR (95% CI)c Pc

Cellular processes
Meiosis – yeast 1.73 (1.10–2.70) 0.02 1.39 (0.50–3.86) 0.52
Endocytosis 1.46 (1.09–1.96) 0.01 0.80 (0.27–2.34) 0.68

Genetic information processing
Sulfur relay system 5.21 (1.19–22.7) 0.03 0.49 (0.01–48.48) 0.76

Metabolism
Glycosphingolipid biosynthesis - globo series 0.43 (0.18–0.99) 0.05 0.69 (0.29–1.68) 0.42
ALA metabolism 0.78 (0.64–0.95) 0.01 1.18 (0.73–1.90) 0.50
Porphyrin and chlorophyll metabolism 4.02 (1.23–13.15) 0.02 1.47 (0.17–12.99) 0.73
Biosynthesis of siderophore group nonribosomal peptides 2.03 (1.10–3.75) 0.02 0.79 (0.20–3.14) 0.73
Carotenoid biosynthesis 0.84 (0.70–1.00) 0.05 1.12 (0.70–1.81) 0.63
Bisphenol degradation 3.07 (1.30–7.24) 0.01 2.37 (0.35–16.16) 0.38

aKEGG pathway raw counts were normalized with the clr transformation and used as predictors in conditional logistic regression models; models used matching
set as strata and adjusted for smoking status, BMI category, and alcohol drinking level. All pathways with P < 0.05 are included in the table.
bAdenocarcinoma includes 81 EAC cases and 160 matched controls, and squamous cell carcinoma includes 25 ESCC cases and 50 matched controls.
cModel parameters and P values were pooled over 10 models from 10 imputed datasets (missing values in BMI category and alcohol drinking level were imputed)
using "mice" package, R.

Figure 3.

Correlations of bacterial species and inferred metagenomic functions. Species and KEGG pathway counts were clr-transformed. Partial Spearman correlation
coefficients were estimated for each pairwise comparison of species and KEGG pathway abundance, adjusting for age, sex, cohort, race, and smoking.
Only KEGG pathways relating to metabolism, and periodontal pathogens or species associated with EAC or ESCC (P < 0.05) are included in the heatmap.
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esophageal cancer prevention or utilizing it for risk stratifica-
tion and early detection.

Studies of oral disease and cancer provide evidence that oral
health (tooth loss, poor oral hygiene, and possibly periodontal
disease) is linked to esophageal cancer risk (14, 36–38). We
observed that T. forsythia was associated with higher EAC risk,
and P. gingivalis with ESCC risk. These two species are members
of the "red complex" of periodontal pathogens, that is, the
species most strongly associated with severe periodontitis (30).
A recent report revealed that P. gingivalis was detected at a
higher rate in ESCC tumor tissue, compared with adjacent
normal and healthy control mucosa; moreover, P. gingivalis
presence was associated with ESCC lymph node metastasis and
decreased survival time (39). More research is needed to deter-
mine whether periodontal disease and/or periodontal patho-
gens play a role in EAC/ESCC carcinogenesis, particularly as
periodontal pathogen–EAC risk associations were inconsistent
between the CPS-II and PLCO cohorts.

Several small studies have characterized the esophageal
microbiota in relation to EAC (7, 11) or its precursors, GERD
(7–9) and Barrett's esophagus (7–10). Campylobacter species
were shown to dominate GERD and Barrett's esophagus biop-
sies compared with controls in two culture-based studies of
subjects from the United Kingdom (7, 10). Yang and colleagues
surveyed 16S rRNA genes from distal esophageal biopsies of 12
controls, 12 GERD patients, and 12 Barrett's esophagus patients
in the United States (8); they observed a distinctly different
microbial composition in GERD and Barrett's esophagus
patients compared with controls, characterized by greater diver-
sity, decreased Streptococcus, and increased abundance of Gram-
negative anaerobes, including Veillonella, Neisseria, Prevotella,
Campylobacter, Porphyromonas, Fusobacterium, and Actinomyces.
Similarly, Japanese patients with Barrett's esophagus had
decreased Streptococcus and increased Veillonella, Neisseria, and
Fusobacterium in distal esophageal biopsies compared with
controls (9). Finally, Zaidi and colleagues observed decreased
abundance of Streptococcus pneumoniae in dysplastic, tumor-
adjacent normal, and EAC biopsy samples compared with
normal and Barrett's esophagus samples from U.S. patients
(11). We observed an inverse association between Streptococcus
pneumoniae and incident EAC, consistent with above-men-
tioned studies. In contrast to above-mentioned studies, we
observed an inverse association of genus Neisseria with EAC
risk. Neisseria species are oral cavity commensals (40), and we
and others previously showed that oralNeisseria are depleted by
cigarette smoking (41–43), a cause of EAC. Interestingly, we
found thatNeisseria were only associated with lower EAC risk in
smokers (although interaction was not significant), possibly
suggesting a joint effect of smoking and Neisseria depletion.
Differing findings from previous literature may relate to differ-
ences in study design (cross-sectional vs. prospective) and
sample origin (biopsy vs. oral).

Other studies have characterized the microbiota related to
ESCC (13) and its precursor, ESD (12). Yu and colleagues
observed that lower microbial richness and altered composi-
tion of upper digestive tract microbiota were associated with
ESD in Chinese subjects (12). Likewise, Chen and colleagues
reported differences in carriage and/or relative abundance of
oral genera between 87 ESCC cases and 85 controls, including
increased relative abundance of Prevotella, Streptococcus, and
Porphyromonas in ESCC cases. These authors did not report

findings at species level, making comparison with our mostly
species-level findings for ESCC difficult.

Analysis of inferred metagenomes revealed several pathways
associated with EAC, albeit not after FDR adjustment; some
appeared biologically plausible. Bacterial carotenoid biosynthesis
was associated with lower EAC risk, with Neisseria species poten-
tially contributing to this protective pathway. Carotenoids are
phytochemicals in fruits and vegetables, many acting as antiox-
idants (44). Higher fruit and vegetable intake and higher b-car-
otene intake have been associated with reduced EAC risk (4, 45).
In addition, b-carotene therapy was shown to ameliorate GERD
symptoms (46). Bacterial biosynthesis of siderophores (iron-
chelating compounds) was associated with higher EAC risk.
Although excessive iron may promote carcinogenesis (47) and
iron chelation has been considered as a potential EAC therapy
(48), iron is an essential trace element with deficiency leading to
inflammation (49). Bacterial siderophore synthesis may upset
iron homeostasis and thusmight increase EAC risk. These inferred
metagenomic functions provide insight into bacterial actions that
may potentially impact EAC risk andwarrant further investigation
with full metagenomic sequencing.

Strengths of our study included the prospective design, com-
prehensive 16S rRNA gene sequencing, inclusion of two cohorts,
and adjustment for EAC/ESCC risk factors throughout analysis.
Our study also had several limitations. Lack of periodontal status
of participants did not allow us to determinewhether periodontal
pathogens are implicated independently of periodontal disease.
We also lacked data on presence of esophageal cancer precursor
conditions (i.e., GERD and Barrett's esophagus) in the partici-
pants, which could mediate or confound oral microbiome-
esophageal cancer associations and data on medications (e.g.,
proton-pump inhibitors, antibiotics), which could confound
these associations (50, 51). In addition, although our study is
the largest of its kind, case sample sizes (n ¼ 81 EAC and n¼ 25
ESCC) remained small, limiting statistical power to detect
FDR-adjusted significant associations, and our study popula-
tion was mostly white, limiting generalizability.

In summary, we found evidence that specific bacterial patho-
gens may play a role in esophageal cancer risk, whereas other
bacterial typesmay be associated with reduced risk. Larger studies
are needed to confirm our findings, particularly among smokers
and nonsmokers to clarify joint effects, followed by experimental
animal models to clarify causal relationships. Identification of
oral bacteria causal or protective in esophageal cancer could lead
to interventions for their eradication or colonization in at-risk
individuals. Continued study of oral microbiota in esophageal
cancer may lead to actionable means for prevention of this highly
fatal disease.
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