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The human oral microbiome (HOM) is the second largest microbial community after

the gut and can impact the onset and progression of several localized and systemic

diseases, including those of viral origin, especially for viruses entering the body via the

oropharynx. However, this important aspect has not been clarified for the new pandemic

human coronavirus SARS-CoV-2, causing COVID-19 disease, despite it being one of

the many respiratory viruses having the oropharynx as the primary site of replication. In

particular, no data are available about the non-bacterial components of the HOM (fungi,

viruses), which instead has been shown to be crucial for other diseases. Consistent

with this, this study aimed to define the HOM in COVID-19 patients, to evidence any

association between its profile and the clinical disease. Seventy-five oral rinse samples

were analyzed by Whole Genome Sequencing (WGS) to simultaneously identify oral

bacteria, fungi, and viruses. To correlate the HOM profile with local virus replication, the

SARS-CoV-2 amount in the oral cavity was quantified by digital droplet PCR. Moreover,

local inflammation and secretory immune response were also assessed, respectively by

measuring the local release of pro-inflammatory cytokines (L-6, IL-17, TNFα, and GM-

CSF) and the production of secretory immunoglobulins A (sIgA). The results showed

the presence of oral dysbiosis in COVID-19 patients compared to matched controls,

with significantly decreased alpha-diversity value and lower species richness in COVID-

19 subjects. Notably, oral dysbiosis correlated with symptom severity (p = 0.006),

and increased local inflammation (p < 0.01). In parallel, a decreased mucosal sIgA

response was observed in more severely symptomatic patients (p = 0.02), suggesting

that local immune response is important in the early control of virus infection and

that its correct development is influenced by the HOM profile. In conclusion, the data
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presented here suggest that the HOM profile may be important in defining the individual

susceptibility to SARS-CoV-2 infection, facilitating inflammation and virus replication,

or rather, inducing a protective IgA response. Although it is not possible to determine

whether the alteration in the microbial community is the cause or effect of the SARS-

CoV-2 replication, these parameters may be considered as markers for personalized

therapy and vaccine development.

Keywords: oral microbiome, COVID-19, symptom severity, inflammatory cytokines, secretory IgA

INTRODUCTION

The human oral microbiome (HOM) is the second largest and
complex microbial community after that of the gut in the human
body (Wade, 2013; Caselli et al., 2020a). HOM dysbiosis is
often associated with periodontal inflammation and has been
reportedly associated with several local and systemic disease
conditions (Baghbani et al., 2020; Caselli et al., 2020a), including
those sustained by viral infections (Cagna et al., 2019; Baghbani
et al., 2020). Indeed, the role of HOM in the establishment of the
infection of many viruses entering the body via the oropharynx
has been reportedly recognized (Baghbani et al., 2020). The
microbial component of a eubiotic HOM can inhibit pathogen
colonization by competitive exclusion and/or by empowering
the immune response (Wilks et al., 2013). There is evidence
that crucial mutual interactions occur between viruses and
the microbiome (Wilks and Golovkina, 2012) and that the
microbiome can regulate and is in turn regulated by viruses via
different mechanisms (Li et al., 2019). Respiratory viruses spread
by aerosol transmission encounter oral and upper respiratory
microbiota and are modulated in their ability to establish
infection and able to induce changes in the resident microbiota
(Li et al., 2019). Themicrobiota can produce antiviral compounds
(defensins) against several viruses, including respiratory or oral
viruses such as adenoviruses, herpesviruses, papillomaviruses,
orthomyxoviruses, and coronaviruses (Pfeiffer and Sonnenburg,
2011). On the other hand, viruses can alter the microbiota,
favoring dysbiosis and disease progression (Lynch, 2014).

The new pandemic human coronavirus SARS-CoV-2, causing
COVID-19 disease, is a respiratory virus that uses the
oropharynx as the primary site of replication, but the potential
impact of HOM in the development of infection is still not
elucidated. In particular, no data are available about the non-
bacterial components of the HOM (fungi, viruses), which
have been shown crucial for other diseases. Concerning the
current pandemics by SARS-CoV-2, the presence of gingival
inflammation/periodontitis has been associated with a 3.5-
fold increased risk of admission to intensive care units
(ICU), a 4.5-fold greater risk of assisted ventilation, and a
consistent impressive 8.81-fold higher risk of death in COVID-
19 patients, independently from other concomitant risk factors
(Marouf et al., 2021).

The novel human Severe Acute Respiratory Syndrome
Coronavirus type (SARS-CoV-2) is a single strand RNA virus
belonging to the Coronaviridae family, β-coronavirus genus
(Contini et al., 2020), which has spread worldwide. The associated

disease, Corona Virus Disease 2019 (COVID-19), is currently
reported by the World Health Organization (WHO) to have
caused about 120 million cases with >2.6 million deaths (World
Health Organization [WHO], 2021). In Italy, to date over 3.2
million cases have been reported, with other 102,000 deaths.
The disease is characterized by the involvement of the lower
respiratory tract, often accompanied by elevated blood levels
of inflammatory cytokines/chemokines, the so-called “cytokine
storm” (de la Rica et al., 2020; Jose and Manuel, 2020), by ageusia
and/or hyposmia (Contini et al., 2020; Li et al., 2020; Prasad
et al., 2020), and neurological and enteric symptoms in severely
symptomatic patients (Contini et al., 2020; Gupta et al., 2020).

An extraordinarily high number of studies were published the
last year, yet the mechanisms underlying virus proliferation in
the primary site of infection and understanding of how the virus
can become more invasive at the site of entry is still unclear,
even though this could shed important light on the very first
phases of the infection. It is recognized that SARS-CoV-2 enters
the body mainly via the oropharynx, where it finds epithelial
cells expressing the ACE2 and TMPRSS2 virus receptors (Herrera
et al., 2020), and the virus has been detected in saliva (Henrique
Braz-Silva et al., 2020; To et al., 2020). Thus, the resident oral
microbiome may influence the ability of SARS-CoV-2 to take
root and establish the infection. Similar to what is reported for
other viruses affecting the oral and respiratory tract, the virus-
host interplay in this site may define the vulnerability of the
infected subject and the subsequent development of the disease or
rather the early control of virus infection and prevention of severe
disease. Like other microbial communities in the body, the oral
microbiome can represent a protective barrier against exogenous
pathogens (Zaura et al., 2009; Wade, 2013; He et al., 2015; Deo
and Deshmukh, 2019) and it contributes to the lung microbiome,
thus potentially affecting also the microbial environment in the
lungs (Bassis et al., 2015). The oral microbiome can contribute
to regulating mucosal immunity and inflammation, which might
affect pathogenic potential directly or indirectly (Belkaid and
Hand, 2014; Lamont et al., 2018).

Although there is potential interest in understanding these
networks in SARS-CoV-2 infection, no information is yet
available about the microbiome profile in COVID-19 patients,
except for a two as yet unpublished reports describing the
bacterial component of the oral microbiome by NGS (Iebba et al.,
2020; Ward et al., 2021). However, several reports have evidenced
that the non-bacterial components of the microbiome can be
very important in defining individual susceptibility to diseases
besides bacteria (the mycome and virome), thus the use of Whole
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Genome Sequencing (WGS) technology may be more useful in
elucidating the microbial environment potentially impacting on
SARS-CoV-2 infecting ability.

The present work aimed to characterize, for the first time, the
oral microbiome of COVID-19 patients by WGS, comparing its
profile to controls, and simultaneously evaluating the presence
of inflammatory cytokines and local IgA immune response, to
better understand the features of the oral environment that could
potentially support SARS-CoV-2 infection and related disease,
and to identify eventual markers for the risk of developing a
severe infection.

MATERIALS AND METHODS

Ethics Statement
Recruitment of study participants was performed according to
the protocol approved by the Ethics Committee Area Vasta Emilia
Centro della Regione Emilia-Romagna (CE-AVEC): approval
document no. 408/2020/Oss/UniFe, approved on April 21, 2020.

Design of the Study
A cross-sectional observational study was performed to
characterize the oral microbiome and local response in
COVID-19 patients compared to non-COVID-19 subjects.
All participants were recruited from the University Hospital
of Ferrara, in the COVID-19 and the non-COVID Infectious
ward, respectively. Study participants were recruited in the
period April to July 2020. Each study participant was recruited
after signing informed consent. Clinical and epidemiological
data were collected from the clinicians of the enrolled ward.
The study was registered and published prospectively in the
ISRCTN International Registry (study n◦ ISRCTN87832712; doi:
10.1186/ISRCTN87832712).

Study Participants
All study participants were recruited among the hospitalized
patients of the University Hospital of Ferrara. Inclusion
criteria were: age >18 years, written consent to participate
in the study, and molecular diagnosis of SARS-CoV-2
infection (for COVID-19 group only). Exclusion criteria
included: pregnancy, breastfeeding, uncooperative patient
(inability to perform oral rinse to collect samples), lack of
written agreement. COVID-19 patients were stratified into
four categories based on symptoms: asymptomatic (1, no
symptoms), paucisymptomatic (2, aspecific flu-like symptoms),
symptomatic (3, including specific respiratory symptoms),
severely symptomatic (4, needing ventilation). The control
group consisted of SARS-CoV-2-negative subjects affected by
non-respiratory diseases. The number of study participants was
decided based on the subjects hosted at the University Hospital
of Ferrara in the study period.

Clinical Specimens
Oral rinse samples were collected in 5 mL of sterile phosphate-
buffered saline (PBS), as previously described (Caselli et al.,
2020a). The specimens were immediately inactivated with 0.1%

SDS, refrigerated (2–8◦C), and processed within 4 h. Briefly, all
samples were vortexed and centrifuged at 15,000 × g for 10 min
at 4◦C to divide the corpuscular part from the supernatant,
which were immediately frozen in liquid nitrogen and kept
at −80◦C until use.

Nucleic Acid Extraction From Clinical
Specimens
Total nucleic acids (DNA and RNA) were extracted from the
pellets by using the Maxwell CSC platform equipped with
the HT Viral TNA Kit (Promega, Milan, Italy), following the
manufacturer’s instructions (Comar et al., 2019). Extracted
total nucleic acids (TNAs) were checked and quantified by
nanodrop spectrophotometric (Thermo Fisher Scientific, Milan,
Italy) reading at 260/280 nm. The amplificability of extracted
DNA was checked by PCR amplification of human, bacterial, and
fungal genes. Namely, human β-actin, bacterial 16S rRNA gene
(pan bacterial PCR, panB), and mycetes ITS gene (pan fungal
PCR, panF) were respectively, analyzed, as previously described
(Borghi et al., 2016; Caselli et al., 2016, 2018).

Library Preparation and Sequencing
Extracted TNA (100 ng) were retrotranscribed and analyzed
by WGS by the NGS Service of the University of Ferrara
(Department of Morphology, Surgery and Experimental
Medicine, University of Ferrara), who carried out library
preparation, sequencing, and taxonomic analysis. Briefly,
WGS libraries were prepared using NEBNext R© Fast DNA
Fragmentation and Library Prep Kit for Ion Torrent TM
(Thermo Fisher Scientific, Milan, Italy), following the
manufacturer’s protocol. Samples were then sequenced by
using the Ion Gene Studio S5 System (Thermo Fisher Scientific,
Milan, Italy). Low-quality sequence data removal was performed
directly on the Ion S5 GeneStudio sequencer, as part of in-built
processing. Briefly, the Torrent Suite software (Thermo Fisher
Scientific, Milan, Italy), installed in the sequencer, automatically
clips adapter sequences and trims low-quality bases from the
3′ end of each read. Reads with quality less than Q20 were also
discarded. Additionally, PRINSEQ open source application
(Schmieder and Edwards, 2011) was used to remove reads with
lengths of less than 100 nucleotides. The taxonomic assignment
has been performed using Kraken2 (Pubmed ID: 24580807)
and a database consisting of archaea, bacteria, fungi, protozoa,
and viruses. Raw sequencing data and bioinformatics analyses
have been deposited in the European Nucleotide Archive (ENA)
website (accession number PRJEB42999).

SARS-CoV-2 Detection and
Quantification
Extracted TNA (100 ng) was used for SARS-CoV-2 detection
and quantification by droplet digital PCR (ddPCR), by using the
SARS-CoV-2 ddPCR Kit (Bio-Rad Laboratories, Milan, Italy).
Briefly, three targets are analyzed in each sample by FAM and
HEX labeled probes, targeting SARS-CoV-2 N1 and N2 genes,
and human RPP30 gene, this last was used as a control and to
normalize the virus counts. The assay sensitivity was between
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0.260 copies/µl to 0.351 copies/µl, respectively, for the genetic
markers N1 and N2.

IgA Analysis
The presence of anti-SARS-CoV-2 secretory IgA (sIgA) in the
oral samples was evaluated by a CE-IVD ELISA assay designed
to detect IgA directed against the virus S1 protein (Euroimmun,
Lubeck, Germany). The test was previously reported to have
high specificity/sensitivity for IgA detection in serum/plasma
samples (>95%) and ocular fluids (Caselli et al., 2020b). For oral
rinse analysis, the samples were diluted 1:5 in saline, allowing
optimal detection of IgA and differentiation between positive
samples and controls, as detected in preliminary assays. Each
sample was assessed in triplicate. Sample positivity was expressed
following the manufacturer’s instruction, as the ratio (R) between
the absorbance (OD450 nm) value detected in samples and that
detected in the calibrator sample provided by the manufacturer.
Samples were considered negative if R values were < 0.8, weakly
positive with R values comprised between 0.8 and 1.1, and
strongly positive with R ≥ 1.1.

Cytokines Analysis
Oral specimens were analyzed for the presence of
pro-inflammatory cytokines, by using ELISA assays specifically
detecting and quantitating the following cytokines: IL-6,
IL-17, TNFα, and GM-CSF (Thermo Fisher Scientific,
Life-Technologies, Milan, Italy).

Statistical Analyses
Statistical analyses were performed with Agilent GeneSpring
GX v11.5 software (Agilent Technologies, Santa Clara, CA,
United States) and R (R 2019, R Core Team, available as free
software at https://www.r-project.org/). Microbiome data were
expressed as the relative abundance of each taxonomic unit
at the genus or species level. The null hypothesis was tested
by the Kruskal–Wallis test. Pairwise post hoc analysis was
performed by the non-parametric Dunn test which includes
correction for multiple comparisons. A Chi-square test was
used to assess gender distribution significance. Alpha-diversity
obtained by measuring the Shannon H’ diversity index was
used to describe the microbiome diversity between clinical
samples. ELISA results were analyzed by Student’s t-test. Linear
regression and correlation analyses (Spearman r correlation
coefficient) were conducted to evaluate the correlation between
patients’ clinical parameters (a non-continuous discrete
variable), and continuous variables including microbiome
profile, immune and inflammation responses. A p-value ≤ 0.05
was considered significant.

RESULTS

Patients’ Characteristics
Seventy-five eligible subjects, including 39 COVID-19 patients
and 36 controls, were enrolled in the study. COVID-19 patients
included 20 males (51.3%) and 19 females (48.7%), with a
mean age of 71.1 ± 18.4 years (range 25–99). Oral rinses

were collected from COVID-19 patients at 0–43 days since
the first SARS-CoV-2-positive nasopharyngeal swab. At the
time of sample collection, 11/39 (28.2%) COVID-19 patients
were asymptomatic, 7/39 (17.9%) presented mild symptoms,
21/39 (55.3%) were symptomatic, with 2 of them (2/39, 5.1%)
showing severe respiratory symptoms requiring ventilation.
All recruited COVID-19 patients received hydroxychloroquine
and azithromycin on hospitalization (Gautret et al., 2020).
The control group consisted of SARS-CoV-2-negative subjects
admitted for non-respiratory diseases at the non-COVID
Infectious Disease ward, and included 22 males and 14 females
(respectively, 61% and 39% of the group), with a mean
age of 66.5 ± 18.8 years (range 20–94). The characteristics
of study participants are reported in Table 1. No statistical
differences were evidenced between COVID-19 and control
group with regard to age (Kruskal–Wallis test; p = 0.27, n.s.)
and gender (Chi-square test; χ2 = 0.734, p = 0.39, n.s.).
Similarly, no statistically significant differences were evidenced
between COVID-19 disease sub-groups (asymptomatic, pauci-
symptomatic, and symptomatic) regarding age (Kruskal–Wallis
test; p = 0.21, n.s.) or gender distribution (Chi-square test;
χ2 = 0.256, p = 0.88, n.s.).

SARS-CoV-2 Load in COVID-19 Patients
Although all the enrolled COVID-19 patients were confirmed
to be SARS-CoV-2 positive at hospital admission by the
routine molecular test performed on nasopharyngeal swab by
the Hospital microbiology laboratory, we wanted to assess the
presence of SARS-CoV-2 in the oral cavity of all the enrolled
subjects at the time of oral rinse withdrawal. The oral rinse
samples were analyzed by digital droplet PCR (ddPCR), able to
detect and quantify the virus genomes, contrarily to the routinely
used diagnostic assays (Falzone et al., 2020; Suo et al., 2020).
While the results confirmed the absence of positivity in the
control group, in the COVID-19 group both positive and negative
oral rinse specimens were observed, as summarized in Figure 1.
Quantitative analysis showed that 16/39 subjects harbored a high
load of SARS-CoV-2 (from 101 to 3,963 genome copies in 20 µl
of the amplified sample), 17/39 had lower but detectable amounts
of virus (from 3 to 100 genome copies in 20 µl), whereas 6/39
patients did not display any detectable virus copy in the oral
cavity at the time of oral withdrawal (<3 copies in 20 µl). It
is noteworthy that the virus load detected in the oral cavity
correlated with symptom severity (Spearman r = 0.774; 95% CI
0.608–0.875) (p < 0.0001), defining specific subpopulations of
COVID-19 patients.

Oral Microbiome in COVID-19 Patients
Whole Genome Sequencing analysis of the oral microbiome
evidenced significant differences in the profiles of the
COVID-19 compared to controls. Alpha-diversity values
were lower in COVID-19 patients vs. controls (p = 0.01)
(Figure 2A). Interestingly, the comparison between severely
symptomatic COVID-19 subgroups and controls revealed
the most significant differences (Figure 2B), with an
inverse correlation between alpha-diversity value and
symptoms (Spearman r = −0.431, 95% CI −0.666/−0.120,
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TABLE 1 | Characteristics of COVID-19 and control study participants.

Subject n◦ Control group COVID-19 group Age/gender distribution

Gender Age Gender Age Days after NPS COVID-19 symptoms (*)

1 F 74 M 76 13 3 Age:

2 M 72 F 72 4 3 CTR: 66.5 ± 18.8 years

3 M 73 F 56 0 1 COVID-19: 71.1 ± 18.4 years

4 F 86 M 49 3 1 CTR vs. COVID-19: p = 0.27, n.s.

5 F 38 F 49 6 2

6 F 66 M 99 6 2

7 F 67 F 80 18 4

8 F 40 F 73 16 3

9 M 53 F 68 2 1

10 M 42 F 33 18 2

11 M 75 F 51 2 2

12 F 86 M 76 4 3

13 M 60 M 82 8 3

14 M 59 F 87 29 1

15 M 83 M 47 6 1

16 M 86 F 91 18 3

17 F 86 M 89 5 3

18 M 71 F 94 16 3 Gender:

19 M 88 M 94 20 2 CTR: 22/36 males (61%)

20 M 84 M 80 15 3 COVID-19: 20/39 males (51.3%)

21 F 88 M 85 18 3 CTR vs. COVID-19: p = 0.39, n.s.

22 F 86 F 83 7 3

23 M 20 M 25 10 3

24 F 94 F 78 18 4

25 F 46 F 83 49 3

26 F 76 F 45 17 3

27 M 50 M 82 1 1

29 M 51 F 82 2 1

30 M 53 M 59 0 2

31 M 45 M 45 43 1

32 M 70 M 57 5 3

33 F 85 F 86 4 3

34 M 49 F 48 3 2

35 M 67 M 90 11 3

36 M 49 F 70 0 1

37 M 76 M 81 51 1

38 – – M 87 23 3

39 – – M 78 11 1

– – M 63 18 3

(*) Symptom score was: 1, asymptomatic; 2, paucisymptomatic; 3, symptomatic; 4, severely symptomatic.

NPS, nasopharyngeal swab.

Age and gender distribution significance were assessed, respectively, by Kruskal–Wallis and Chi-square tests.

p = 0.006). The decrease of alpha diversity was higher in male
compared to female patients (Figure 2C), which paralleled
symptoms severity.

The microbiome profile appeared profoundly altered
in COVID-19 patients compared to controls (Figure 3).
In particular, the relative abundance of the bacterial
genera Streptococcus, Veillonella, Prevotella, Lactobacillus,
Capnocytophaga, Porphyromonas, Abiotrophia, Aggregatibacter,

Atopobium was increased in COVID-19 compared to controls,
whereas Rothia, Haemophilus, Parvimonas, Fusobacterium, and
Gemella spp. were decreased (Figure 3A). Notably, Enterococcus
and Enterobacter genera were exclusively present in COVID-
19 patients, and not detectable in control subjects. At the
species level (Figure 3B), COVID-19 patients had decreased
amounts of Haemophilus parainfluenzae and parahaemolyticus,
Gemella morbillorum and sanguinis, Parvimonas micra, and
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FIGURE 1 | SARS-CoV-2 load in control and COVID-19 subjects, as measured by ddPCR. (A) Graphical representation of the values detected by the use of three

different molecular probes: negative samples, only the clouds corresponding to the housekeeping control genes are detectable (gray and purple clouds); low- and

high-positive samples, the clouds corresponding to the virus genes are detectable and counted (positives to individual FAM probes: gray, red, and yellow; positives

to individual HEX probes: purple, blue, and pink; double positives to FAM/HEX probes: beige and orange). (B) Virus load, expressed as genome copy number per

analyzed sample (20 µl of extracted nucleic acid); left y axis refers to control, negative and low-positive values, whereas right y axis refers to high-positive COVID-19

subjects. Mean value ± SEM is also reported.

Neisseria subflava, whereas Neisseria mucosa, Veillonella parvula,
Lactobacillus fermentum, Enterococcus faecalis, Atopobium
parvulum, Acinetobacter baumannii were increased. Notably,
many species of periodontopathogenic bacteria (Prevotella
melaninogenica, jejuni, denticola, and oris; Eikenella corrodens;
Capnocytophaga sputigena and gingivalis; and Aggregatibacter
aphrophilus) were significantly increased in COVID-19
compared to control subjects. Figure 4 summarizes the
taxa significantly altered in COVID-19 patients compared to
controls, with significance values.

It is of note that high differences were observed relative
to the fungal component of the oral microbiome (Figure 5).
Contrary to the decreased richness of the bacterial component,
the fungal fraction of the oral microbiome was increased
in COVID-19 patients compared to controls, both as total
normalized counts and as species richness. In detail, while
the oral mycobiome of controls was essentially constituted by
Candida and Saccharomyces spp. (47% and 52% of relative
abundance, respectively), in COVID-19 patients Aspergillus,
Nakaseomyces, and Malassezia spp. were detectable at a fair
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FIGURE 2 | Alpha-diversity values in the oral microbiomes of control and

COVID-19 subjects. (A) Comparison between control and COVID-19 patients,

expressed as median and range values. (B) Comparison between controls

and COVID-19 asymptomatic, pauci-symptomatic, and symptomatic

subjects; median and range values are shown. (C) Comparison between

genders (M, male; F, female) in the control and COVID-19 groups; median

values with interquartile range are shown for each group.

by Candida and Saccharomyces spp. (47 and 52% of relative
abundance, respectively), in COVID-19 patients Aspergillus,
Nakaseomyces, and Malassezia spp. were detectable at a fair

level, with respective relative abundance values of 4%, 3%, and
<1%. The species Candida albicans, Saccharomyces cerevisiae,
Aspergillus fumigatus, andMalassezia restricta were identified.

Interestingly, the oral virome also appeared more abundant
in COVID-19 patients compared to controls (Figure 6). While
viruses represented 0.07% of the microbial community in
controls, their relative abundance increased to 1.12% in COVID-
19 patients. Lymphocryptovirus and Simplexvirus genera of the
Herpesviridae family were detected both in COVID-19 and
control subjects. However, Epstein Barr virus (EBV) resulted
reactivated in 11/39 COVID-19 patients and in only 2/36
controls. Moreover, Herpes simplex virus type 1 (HSV-1) and
four bacteriophages targeted, respectively, toward Staphylococcus
(Staphylococcus phage ROSA), Streptococcus (Streptococcus
phage EJ-1 and phage PH10), and Lactobacillus (Lactobacillus
phage phiadh), were also increased in COVID-19 patients
compared to controls.

Oral IgA Response in COVID-19 Patients
To assess the development of a mucosal immune response
against SARS-CoV-2 in the oral cavity, oral secretory IgA was
searched and quantified by specific ELISA in the oral rinse
samples of COVID-19 patients and controls. A mucosal IgA
response was detected in 25/39 (64.1%) COVID-19 patients
and no controls (p = 0.0008). Interestingly, the extent of
mucosal response was different among the symptom subgroups
of patients (Figure 7). In fact, 10/39 patients (25.6%) exhibited
a very high concentration of sIgA (R > 2.0), whereas 15/39
patients (38.5%) had intermediate values (0.8 < R < 2.0),
and 14/39 (35.9%) showed the presence of a barely detectable
(R∼0.8 threshold value) or no sIgA response. Of note, 6/10
COVID-19 patients displaying high oral sIgA titer were
asymptomatic/paucisymptomatic, evidencing a trend toward an
inverse correlation between the salivary sIgA concentration and
symptom severity (Spearman r−0.355; 95% CI −0.600 to 0.047;
p = 0.02).

Oral Cytokines in COVID-19 Patients
Since the so-called “cytokine storm” is a hallmark of severe
COVID-19 disease, we investigated the release of pro-
inflammatory cytokines in the oral cavity. Namely, the four
main cytokines/chemokines detected in the blood of COVID-19
patients were analyzed: IL-6, IL-17, TNFα, and GM-CSF. The
results showed that both IL-6 (p = 0.005) and IL-17 (p = 0.02)
were significantly higher in COVID-19 oral samples than
in controls (Figure 8). TNFα and GM-CSF were also more
concentrated in COVID-19 patients compared to controls,
but the differences were not statistically significant. However,
the differences became significant by comparing COVID-19
symptomatic subgroup with controls (TNFα p = 0.005; GM-CSF
p = 0.002), highlighting that more inflammation was detectable
in the subjects undergoing a more severe course of the disease.

Inflammation also correlated with the oral microbiome
dysbiosis, being more pronounced in subjects with a more
evident decrease of alpha-diversity and species richness
(p < 0.01).
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FIGURE 3 | Relative abundance and distribution of microorganisms in the oral cavity of control (CTR) and COVID-19 subjects. (A) Percentage distribution of most

detected microbial genera. (B) Percentage distribution of most detected microbial species.

DISCUSSION

Recent reports have shed light on the role of the microbiome
in several diseases, including those of viral origin, suggesting
that the commensal microbiota may potentially favor or
hamper viral infections. However, most studies consider the gut
microbiome, neglecting the role of an oral one. In addition,
most if not all studies discuss only bacterial microbiota,
whereas fungi and viruses are also important components of
the commensal microbiota. Concerning SARS-CoV-2 infection,
COVID-19 patients have been reported to harbor oral pathogenic
bacteria (such as cariogenic or periodontopathic pathogens) (Bao
et al., 2020; Patel and Sampson, 2020; Xiang et al., 2020). Oral

dysbiosis might favor the establishment of SARS-CoV-2 infection
through different mechanisms, as known for other respiratory
viruses, including alteration of the respiratory epithelium,
promotion of adhesion of respiratory pathogens, and increase
of local inflammation (Baghbani et al., 2020). Despite such
suggestions, the profile of the HOM is currently still not
clarified, especially in the non-bacterial components, rendering
it difficult to understand whether the HOM dysbiosis may be
considered a risk factor for COVID-19 development (Patel and
Sampson, 2020). Two recent preprints reported on the bacterial
profile of HOM in COVID-19 patients, suggesting relationships
between some bacteria and SARS-CoV-2 infection (Iebba et al.,
2020; Ward et al., 2021). However, to date, no studies have
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FIGURE 4 | Significantly altered taxa in control (CTR) and COVID-19 subjects. The results are expressed as normalized counts ± SEM values. Significance p-values

for each comparison are also displayed.

completely addressed HOM profiling, including fungal and
viral components.

Thus, our study aimed to characterize by metagenomics
(WGS deep sequencing) the oral microbiome of COVID-
19, to get a comprehensive view of its bacterial, fungal, and
viral components.

The results showed very significant differences in the
HOM composition between COVID-19 and control subjects,
highlighting a decrease in the alpha-diversity and bacterial
species richness in COVID-19 patients compared to controls,
and a significant correlation between such decrease and symptom
severity (p = 0.006). These data are in line with previous

observations highlighting a decrease in the alpha variety and
species richness upon HCV, HIV, and influenza infection (Sun
et al., 2016; Inoue et al., 2018), with a parallel increase of pro-
inflammatory cytokines like IL-6, TNFα, and IL-1β (Yildiz et al.,
2018; Ramos-Sevillano et al., 2019).

Our results also showed an increase in the relative abundance
of genera associated with poor oral hygiene and periodontitis in
COVID-19 patients (Prevotella, Lactobacillus, Capnocytophaga,
Porphyromonas, Abiotrophia, Aggregatibacter, and Atopobium),
suggesting an association between those bacteria and SARS-
CoV-2 infection, similar to that reported for other respiratory
viruses (Andrews et al., 2012; Wang et al., 2016). The exclusive
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FIGURE 5 | Mycome profile in the oral cavity of control and COVID-19 subjects. (A) Abundance of fungi expressed as total normalized counts for each individually

detected mycetes. (B) Percentage distribution of the fungal genera in controls and COVID-19 patients.

presence of Enterococcus and Enterobacter genera in COVID-
19 patients suggests that they might be a microbial marker of
susceptibility for SARS-CoV-2 infection. Even more interesting,

fungi were instead more abundant in COVID-19 patients than
in controls, with some genera (Aspergillus, Nakaseomyces, and
Malassezia) only detectable in COVID-19 subjects, besides the
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FIGURE 6 | Virome profile in the oral cavity of control (CTR) and COVID-19 subjects. The results are expressed as relative abundance (%). Left y axis refers to Human

gammaherpesvirus 4 and Human alphaherpesvirus 1 (green bars), whereas right y axis refers to the amount of the four detected bacteriophage (orange-red bars).

more common Candida and Saccharomyces genera. In this
regard, significant differences in fungal community with a
higher richness of fungal species were detected in HIV-infected
compared to uninfected individuals (Mukherjee et al., 2014)
and in HBV/HCV symptomatic patients, where the diversity of
intestinal fungi was positively associated with disease progression
(Chen et al., 2011). Oral mycetes may be increased in the mouth
because of bacterial alterations, ultimately favoring SARS-CoV-2
infection, due to the increased inflammation originated by fungi
enzymatic and catabolic/toxic activity in the mouth (Chen X.
et al., 2020). Beyond the potential mechanisms underlying the
cooperation between SARS-CoV-2 and fungi, the results suggest
that it could be important to consider this component of HOM
in the management of virus infection.

FIGURE 7 | Mucosal sIgA response in the oral cavity of COVID-19 and control

(CTR) subjects. The positivity is expressed as the ratio (R) between the value

detected in the sample and the threshold control value, following

manufacturer’s instructions; mean value with range is also shown.

Another non-bacterial HOM component that was augmented

in COVID-19 patients was the viral one (from 0.07 to 1.12%
of the total microbiome). HSV-1 and EBV herpesviruses
were most present, and EBV coinfection was evidenced in
about 30% of COVID-19 patients compared to only 5%
of controls. In this regard, the HOM dysbiosis may have
facilitated the activation/reactivation of oral viruses, and in turn,
the high presence of herpesviruses infection/reactivation may
further impair proper immune control (Jasinski-Bergner et al.,
2020), thus potentially contributing to worse efficiency of the
immune response against SARS-CoV-2. Consistent with this,
EBV infection was detected in COVID-19 patients, associated
with increased risk of severe COVID-19 symptoms and fatal
outcome (Roncati et al., 2020; Chen et al., 2021), and correlated
increased levels of IL-6 (Lehner et al., 2020). Similarly, alpha-
herpesvirus (HSV-1, VZV) reactivation was observed, impacting
the prognosis of COVID-19 patients (Le Balc’h et al., 2020;
Hernandez et al., 2021). Thus, the presence of Herpesviridae
infections in the oral cavity and their direct consequences deserve
further investigation.

In parallel with the HOM profile, our work also characterized
the local inflammatory and immune response as critical
parameters to understand the evolution of the SARS-CoV-2
infection at the primary site of entry.

A hallmark of disease severity in COVID-19 is the
uncontrolled inflammatory response, with the detection of IL-
6, IL-17, TNFα, and GM-CSF at the serum/blood level (Chen
G. et al., 2020; Mehta et al., 2020; Parra-Medina et al., 2020),
the so-called “cytokine storm.” Here we showed a significant
increase of those cytokines in the oral cavity of COVID-19
patients, indicating the development of inflammation right at
the entry site of the virus. It is noteworthy that the level of oral
inflammation paralleled the symptom severity, pointing to the
importance of oral conditions for the subsequent systemization
of virus infection and inflammation cascade.

A still unanswered point in COVID-19 progression regards
the development and role of the local immune response against
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FIGURE 8 | Presence of pro-inflammatory cytokines/chemokines in the oral cavity of COVID-19 patients and controls (CTR). The results are expressed as the mean

values ± SEM of the concentration (pg/ml) for each indicated cytokine.

SARS-CoV-2. Mucosal sIgA has long been known to be crucial
in controlling viruses that enter the body via mucosal surfaces
(Yan et al., 2002); sIgA were indeed found in the ocular fluid
of at least 40% of COVID-19 patients (Caselli et al., 2020b),
and microbiome composition is reportedly known to interact
with and influence IgA response, in different anatomical niches
including the nares (Salk et al., 2016; Grosserichter-Wagener
et al., 2019; Pabst and Slack, 2020). Here, we demonstrate anti-
SARS-CoV-2 sIgA in the oral cavity and that they are significantly
more abundant in asymptomatic/paucisymptomatic COVID-19
patients (p = 0.02), suggesting that sIgA may be important in
controlling virus penetration in the body.

The main limitation of our study is the number of enrolled
subjects, who represented all the eligible subjects hosted at the
enrolled center. The enrollment of a higher number of subjects,
ideally in a multi-center study, may confirm the generalizability
of the study results. A higher number of subjects would also
enable us to stratify patients for age, thus providing a direct
comparison of more homogeneous microbial populations, as
the microbiome composition is dependent on the subject’s age
(Bourgeois et al., 2017; Caselli et al., 2020a). The relatively low
number of recruited patients in our study also did not enable
us to evidence a high statistically significant correlation between
sIgA production and protection from severe COVID-19. Thus,
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studying a higher number of patients may be of importance to
ascertain this point, especially in developing effective prevention
strategies and vaccines.

Overall, the data presented here suggest a correlation between
HOM dysbiosis and individual susceptibility to SARS-CoV-2
severe infection, indicating an interplay between HOM profile
(including mycobiome and virome), inflammation, and mucosal
IgA response. If HOM alteration is the cause or effect of
severe COVID-19, it is not currently possible to distinguish,
because the presence of SARS-CoV-2 in the oral cavity may
impact microbiome dysbiosis (Xiang et al., 2020; de Oliveira
et al., 2021). On the other hand, connections between oral
dysbiosis and post-viral complications have been reported,
suggesting that improving oral health may reduce the risk
of complications from COVID-19 (Sampson et al., 2020),
thus supporting the hypothesis of a role of dysbiosis in the
virus-induced disease. Toward this direction, recent studies
reported that SARS-CoV-2 load can be reduced by the use
of chlorhexidine mouthwashes (Yoon et al., 2020), supporting
the use of antiseptics against coronavirus infection (Koch-Heier
et al., 2021; Mateos Moreno et al., 2021), and clinical studies are
developing accordingly (Carrouel et al., 2020) and hopefully will
help to clarify this aspect.

These findings may be important in defining markers useful to
predict the development of symptomatic COVID-19, and open
new therapeutic opportunities addressed to balance HOM and
inflammation to prevent the development of severe symptoms.
In this direction, IL-6 inhibitors have been reported to reduce
the odds of COVID-19 mortality (Sinha et al., 2021), and
specific probiotic administration has been proposed to balance
microbiome dysbiosis and prevent the development of virus-
induced respiratory diseases (Wang et al., 2016) and may
represent a possible intervention in COVID-19 patients.
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