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Oral Microbiota Development in 
Early Childhood
Beatrice Kennedy  1*, Sari Peura1,2, Ulf Hammar1, Silvia Vicenzi1,3, Anna Hedman4, 

Catarina Almqvist4,5, Ellika Andolf6, Göran Pershagen7,11, Johan Dicksved8, 

Stefan Bertilsson9,10 & Tove Fall  1

Early life determinants of the oral microbiota have not been thoroughly elucidated. We studied the 

association of birth and early childhood characteristics with oral microbiota composition using 16 S 
ribosomal RNA (rRNA) gene sequencing in a population-based Swedish cohort of 59 children sampled 
at 6, 12 and 24 months of age. Repeated-measurement regression models adjusted for potential 
confounders confirmed and expanded previous knowledge about the profound shift of oral microbiota 
composition in early life. These alterations included increased alpha diversity, decreased beta diversity 

and alteration of bacterial composition with changes in relative abundance of 14 of the 20 most 
common operational taxonomic units (OTUs). We also found that birth characteristics, breastfeeding 
and antibiotic use were associated with overall phyla distribution and/or with the relative abundance of 

specific OTUs. Further, we detected a novel link between morning salivary cortisol level, a physiological 
marker of neuroendocrine activity and stress, and overall phyla distribution as well as with decreased 

abundance of the most common OTU mapped to the Streptococcaceae family. In conclusion, a 

major part of the maturation of the oral microbiome occurs during the first two years of life, and this 
development may be influenced by early life circumstances.

The oral microbiota represents a complex, dynamic, and heterogeneous bacterial ecosystem1, and its composition 
has been discussed in relation to oral health2,3 and to cardiovascular disease4. However, recent studies using 16 S 
ribosomal RNA (rRNA) sequencing have also linked the oral microbiome in childhood to allergy and asthma 
diagnoses5, weight gain trajectory6, and autism spectrum disorder7.

The 16 S rRNA amplicon sequencing approach has also been employed to study the neonatal oral microbiota 
development trajectory, and associations have been noted with antibiotic treatment during pregnancy8, gesta-
tional age9,10, mode of delivery11–13 and neonatal diet14. Few longitudinal 16 S rRNA sequencing studies have 
however investigated the oral microbiota development during subsequent early childhood15,16. A recent Swedish 
longitudinal study reported an association between mode of delivery and oral microbial community composition 
at 3 and 6 months of age17, as well as more long-standing associations between partial breastfeeding and early life 
antibiotic treatment with oral microbiota composition until 7 years of age. However, the participants in that study 
all had a family history of allergic disease, and a study of potential determinants of oral microbiota development 
in early childhood in a population-based setting is warranted.

Further, measures of salivary cortisol mirror the biologically active cortisol level in the body, and have been 
shown to reflect individual stress reactivity and level of acute and/or chronic stress18. In smaller cross-sectional 
studies, salivary cortisol has been associated with the presence of cariogenic bacteria in the oral cavity, as assessed 
through bacterial cultures, and with the development of dental caries in children19–21. No previous study has 
however investigated the association between salivary cortisol and oral microbiota community development.
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In this longitudinal population-based cohort study, we combined results from repeated saliva sampling with 
prospectively collected information from questionnaires and from national birth and prescription registers. The 
overall scope of the study was to explore early life determinants for the oral microbiota development trajectory 
including maternal microbiota, birth characteristics, breastfeeding, antibiotic treatment and exposure to a furry 
pet. In addition, we obtained the results from repeated analyses of morning salivary cortisol, which uniquely 
allowed us to investigate the potential association between salivary cortisol and oral microbiota in young children.

Material and Methods
The Born into Life cohort. The Born into Life cohort is a prospective longitudinal birth cohort led and 
maintained by researchers at Karolinska Institutet in Sweden22. The main initial scope of the Born into Life cohort 
was to investigate how maternal, neonatal, and early life circumstances may influence somatic health in childhood 
and beyond. To this end, women previously enrolled in the LifeGene study23, who were living in the Stockholm 
County Council area and who became pregnant between 2010 and 2012 were invited to participate. Time-points 
for questionnaires and biomarker sampling were pre-determined before the initiation of the Born into Life cohort. 
The time-point at gestational week 26–28 was chosen in order to assess women late in pregnancy, but not too close 
to full term as this would entail a risk of missing women giving pre-term birth. The time-points for the child, at 
ages 6, 12 and 24 months, were arbitrary time-points chosen to be spread evenly across the first two years of life. 
There were investigation at other time-points, but salivary samples were not included at those assessments. The 
maternal cohort comprised of 107 pregnant women, and 93 children were included in the overall Born into Life 
child cohort at birth. We excluded 28 mothers and 27 children that did not participate in any follow-up after birth.

Questionnaire data. Mothers responded to questionnaires at inclusion in LifeGene as well as dur-
ing pregnancy at gestational week 26–28. The mother or father responded to Born into Life questionnaires at 
child age 6, 12 and 24 months. We extracted information on maternal highest attained education level from the 
LifeGene questionnaire. We obtained information on number of months of exclusive breastfeeding (categorized 
as 0–2, 3–4, or 5+) from the Born into Life questionnaire at 6 months. Subsequent information on exclusive 
breastfeeding from the later questionnaires at 12 and 24 months were not included as the upper age-range of 
the pre-determined response categories remained 5+ months even at subsequent follow-up. We also included 
time-updated information on exposure to furry pet, defined as presence of a cat or a dog in the household, from 
the Born info Life questionnaires at 6, 12 and 24 months.

National health register data. All residents in Sweden have a unique personal identification number, 
given at birth or immigration, which enabled record linkages of the mothers and their children to Swedish 
national health registers. From the Medical Birth Register we obtained information on maternal body mass 
index (BMI) and maternal smoking in the first trimester, parity (nullipara or multipara), and birth characteristics 
including the infant’s sex, day of birth, mode of delivery (vaginal or caesarean), gestational age in weeks, and 
birthweight in grams. Time-updated information on prescription of antibiotics to the child was extracted from 
the Swedish Prescribed Drug Register. Use of antibiotics was analysed both as time-updated ever-use, and use 
within the last 90 days at saliva sampling occasion.

Saliva samples. Evening and morning saliva samples were collected from the children at 6, 12, and 24 
months of age, and from the mothers at gestational week 26–28 (for sample instructions see Supplementary 
Information). Once the samples had been handed in, they were centrifuged for two minutes, transported at stand-
ard refrigerator temperature and then stored at −20 °C until cortisol analysis22. After cortisol analysis, the remain-
ing sample was stored at −80C.

Cortisol assessment. Salivary cortisol concentration were analysed at the Centre for Child Research, 
Stockholm South General Hospital, Stockholm, Sweden, using the standardised CORT-CT2 radioimmunoassay kit 
(Cisbio Bioassays, Codolet, France) according to the manufacturer’s instructions. The detection interval ranged from 
concentrations of 1–100 nmol/L. Inter-assay and intra-assay variations were below 5%. Each sample was analysed 
twice and the mean value of these were used for analysis22. Salivary cortisol level was log-transformed in all analyses. 
As the microbiota analysis was performed in evening saliva samples, we only included morning salivary cortisol as 
anexposure in our regression analyses, as we wanted to reduce the risk of potential bias from a matrix effect. The 
saliva matrix refers to the overall saliva composition and all other components of a saliva sample than the analytes 
of interest, i.e water concentration and pH level, or presence of food or drug residues24. Analysing both cortisol and 
microbiota from the same saliva samples may thereby introduce spurious associations due to sample confounding.

Microbiota analysis and quality control. Prior to DNA extraction, the analysis order was randomized 
across samples. Subsequently, DNA from 241 evening saliva samples (156 samples from children, 85 samples 
from mothers) and 5 negative controls was extracted using MoBio PowerSoil DNA kit (Mobio, Solana beach, 
CA, USA). After sequencing of the v3 and v4 regions of 16 S rRNA regions (for PCR protocol see Supplementary 
Information), the samples were purified with AMPure, quantified using Qubit (ThermoFisher Scientific) with 
dsDNA high-sensitivity assay. 216 barcoded samples with individual dual indices passed this QC step and were 
pooled in equimolar amounts into two pools of 106 and 110 samples each. The amplicons were sequenced using 
the Illumina MiSeq technology (2*300 cycles) at Science for Life Laboratory (Uppsala University, Sweden). The 
resulting reads were processed using Mothur25, following the standard operation protocol26, except for operational 
taxonomic unit (OTU) clustering, which was done using Vsearch (abundance-based greedy clustering;27) as imple-
mented in Mothur. All samples with less than 10472 sequences were removed (n = 1) and the remaining samples 
were rarefied to this sequencing depth using Mothur. A cut-off of 97% identity between sequences was used to delin-
eate OTUs. The classification of the operational taxonomic units (OTUs) was done using the Silva database (version 
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128). In total we detected 24539 OTUs, whereof 5224 in more than one sample. Sequences included in our analyses 
has been submitted to the Sequence Read Archive (SRA) open repository under reference number PRJNA575550.

Study population. Fourteen saliva samples from children had an abnormally low diversity and community 
composition, possibly implying contamination, and those were accordingly removed from the dataset. After all 
exclusions, 118 samples from 59 children remained, as well as 55 samples from their mothers. These 59 children 
constituted our final study population (Fig. 1).

Statistical analysis. Strategy. We applied a series of repeated-measurement regression models to evaluate 
the association of each of a set of exposures on four different measures of microbiota composition. Since the 
separate exposure models might require adjustments for different sets of covariates, we created a directed acyclic 
graph (DAG)28 prior to the analysis phase. The DAG is a graphical presentation of the theoretical framework 
and potential underlying causal structures connecting exposures and covariates with the microbiota outcome in 
our study (Fig. S1). The hypothesized causal structure is based on previous literature. Using the DAG, we could 
apply the d-separation criteria and identify the potential confounders for each model (Table 1), as suggested by 
Greenland et al.29. The results from all models were then evaluated jointly for statistical significance using a false 
discovery rate (FDR) of 10%, where FDR was calculated using the Benjamini-Hochberg method30. All data was 
de-identified centrally before data delivery to the researchers and all statistical analyses were performed using 
Stata v.14 (Stata, College Station, TX, USA).

Models and outcomes. In the main analyses, continuous exposures were modelled using restricted cubic splines 
with three knots, to account for possible non-linearity in the relationship with the outcomes. Knots were placed a 
priori according to Harrell’s recommendations31.

We considered four different aspects of oral microbiota composition. The association of all exposures with (1) 
alpha diversity, assessed by the inverse Simpson index32, was analysed using linear mixed models with restricted 
maximum likelihood and participant ID as random effect. For (2) overall composition based on beta diversity, 
assessed through non-metric multidimensional scaling (NMDS) calculation33–36 using Bray-Curtis distances with 
the R package vegan based on the rarefied data, we used bivariate linear mixed effects model with participant-ID 
as a random effect, evaluating both NMDS-axes jointly. This model was fitted by using the generalized structural 
equation command gsem in Stata. The test for association between mother’s beta diversity and child’s beta diver-
sity at 6, 12 and 24 months was performed using multivariate regression, jointly evaluating both NMDS-axes. The 
outcome (3) proportion of each bacterial phylum was analysed using fractional multinomial logistic models 

Figure 1. Flowchart of the study population.
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with clustered robust standard errors37 (fmlogit38) with participant identity as cluster, which is a way of modelling 
proportional outcomes. The proportions of each bacterial phyla in the saliva were calculated for phyla present in 
at least 75% of the samples, and all phyla were evaluated jointly. For the (4) relative abundance of the 20 most 
common OTUs (Table S1), the 20 most common OTUs were selected by rank-transforming OTU abundance 
within each sample (with absent OTUs given the lowest possible rank), and choosing the 20 OTUs with the high-
est average rank across all samples. The relative abundance of each OTU was analysed using fractional logistic 
regression, again with participant identity as cluster. The latter model yielded relative proportion ratios (RPR). 
An RPR > 1 indicates a higher relative abundance of the OTU in exposed group compared to non-exposed, and 
RPR < 1 a lower relative abundance.

To specifically evaluate the maternal salivary microbiota composition as an exposure, the maternal and child 
alpha diversity, beta diversity, proportions of phyla, and 20 most common OTUs were compared, respectively (e.g. 
maternal alpha diversity was explored in association with child alpha diversity).

Sensitivity analyses. We used ordered logistic regression (or, for multivariate outcomes, ordinal generalized 
structural equations) with cluster-robust standard errors for all exposure-outcome associations as a sensitivity 
analysis. Ordered logistic regression is a semi-parametric method which generalizes the Mann-Whitney test31. 
Any findings where FDR was below 10% in the main analysis but the sensitivity analysis had a p-value > 0.05 were 
assumed to be false positive and were not considered or discussed further.

In addition, we also analysed beta diversity using the permutational multivariate ANOVA (PERMANOVA) 
method39, as implemented in the R-package vegan. We used the wrapper function adonis_II from the R-package 
RVaideMemoire40 to get type II sum of squares. Independence was assumed, due to individuals having non-equal 
number of observations. We determined significance using the FDR cut-off from the main analyses, correspond-
ing to a p-value of 0.0209. These results are shown in the Supplementary material (Table S4).

Post-hoc tests. For alpha diversity as well as for the 20 most common OTU:s we added an interaction term 
between exposure and age to all models with a exposure-outcome association passing the significance thresh-
olds. If the p-value for this interaction term was below 0.05, interaction was deemed present. If an exposure was 
associated with distribution of bacterial phyla proportions, we carried out post-hoc tests, testing all phyla present 
in more than 75% of the samples individually using fractional logistic regression with cluster-robust standard 
errors. These post-hoc tests were not corrected for multiple comparisons. Associations with a p-value <0.05 in 
both main and sensitivity analysis were deemed significant.

Cladogram. We used the cladogram functionality of the Linear discriminant analysis Effect Size (LEfSe) method41 
as implemented in Galaxy42 to illustrate differences in saliva microbiota composition between 6 and 24 months. In 
the cladogram, differences between the two time-points are illustrated at phyla, class, order, family, and genus levels.

Ethical approval. This study was approved by the Regional Ethical Review Board in Stockholm, Sweden (DNR 
2011/192-31/2, with addendums), and all research was performed in accordance with all relevant guidelines and 
regulations. All women in the Born into Life cohort gave informed consent at enrolment during pregnancy, and 
both parents gave additional informed consent for the child.

Results
The final study population comprised of 59 children. Maternal median age at birth was 31.9 years (Table 2). The 
majority of mothers had a university level education, were nulliparous, and had a normal BMI during the first 
trimester. None reported smoking during pregnancy. Of the 59 children, 22 were girls and 37 were boys. Overall, 
12 children were delivered with a caesarean section. Three children were born preterm (<37 weeks) and two 
post-term (≥42 weeks). The median birth weight was 3560 grams.

Exposure Confounders

Age of child —

Maternal oral microbiota Age, maternal age, maternal BMI*

Parity Age, maternal age.

Gestational age Age, maternal education level*

Birth weight Age, maternal BMI, maternal education level, parity, sex, gestational age*

Mode of delivery Age, maternal BMI, parity, gestational age, birth weight

Exclusive breastfeeding
Age, maternal age, maternal education level, parity, mode of delivery, 
gestational age, birth weight*

Morning salivary cortisol level Age, maternal education level, gestational age, birth weight*

Antibiotic treatment (within 90 days or ever) Age, maternal education level, sex, gestational age

Exposure to furry pet Age, maternal age, maternal education level

Table 1. Covariates included in the different models. *We identified maternal smoking during pregnancy as a 
potential confounder. However, in our maternal cohort no women reported smoking whilst pregnant, and this 
variable is therefore not included in the model. BMI: Body Mass Index.
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At follow-up visits (Table 3), a dispensed antibiotic prescription within 90 days before the visit was noted for 
6%, 3%, and 16% of the children (at ages 6, 12 and 24 months, respectively). The cumulative incidence of ever 
having been prescribed antibiotic treatment reached 28% at age 24 months, and the two types of antibiotics most 
commonly prescribed were the β-lactam antibiotics phenoxylmethylpenicillin and amoxicillin (65% and 15% 
of all prescriptions, respectively). A furry pet was present in 2, 19 and 31% of the households responding to this 
question (at ages 6, 12 and 24 months, respectively).

Age of child. Age of the child was positively associated with alpha diversity, with a nearly threefold increase 
noted from the first saliva sampling at 6 months to the sampling at 24 months (p < 0.001, Fig. 2). Increasing 
age was also associated with the overall distribution of phyla (p < 0.001), with the alterations in abundance of 
the phyla Firmicutes, Proteobacteria, Epsilonbacteraoeta (phyl. nov.) and Fusobacteria specifically identified in 
post-hoc analyses and also confirmed in semi-parametric sensitivity analyses as associated with age (all p < 0.001, 
Fig. 2 and Table S3). Overall, at 6 months, the phyla Firmicutes vastly dominated the oral microbiota, with a sub-
sequent decrease noted both at 12 months and at 24 months (Fig. 3). The microbiota composition development 
between 6 and 24 months, across all investigated taxonomic levels, is depicted in the cladogram (Fig. 4).

Maternal characteristics

Age at childbirth, years (IQR) 31.9 (29.7–34.3)

University level education (%)

  Yes 51 (86)

  No 8 (14)

BMI in the first trimester, kg/m2 (%)

  Underweight (<18.5) 2 (3%)

  Normal weight (18.5–24.9) 41 (69%)

  Overweight (25.0–29.9) 13 (22%)

Obese (≥30.0) 3 (5%)

Smoking during pregnancy (%) 0 (0)

  Parity (%)

  Nullipara 41 (69)

  Multipara 18 (31)

Birth characteristics

Sex (%)

  Female 22 (37)

  Male 37 (63)

Mode of delivery (%)

  Vaginal 47 (80)

  Caesarean 12 (20)

Birth weight, grams (IQR) 3560 (3240–3825)

Gestational age (%)

  Preterm (<37 weeks) 3 (5%)

  Full term (37–41 weeks) 54 (92%)

  Post term (≥42 weeks) 2 (3%)

Table 2. Baseline characteristics of the 59 mother-child pairs included in the study IQR: Interquartile range. 
BMI: Body Mass Index.

6 months 12 months 24 months

Number of children 48 38 32

Age, months (IQR) 6.6 (6.1–7.0) 12.3 (11.8–12.8) 24.5 (23.9–24.7)

Antibiotic treatment within 90 days (%) 3 (6) 1 (3) 5 (16)

Antibiotic treatment, ever-use (%) 3 (6) 2 (5) 9 (28)

Morning salivary cortisol, nmol/L (IQR) 24.0 (19.0–34.0)a 28.5 (17.4–37.4)b 23.3 (14.4–30.8)c

Furry pet present in household (%) 1 (2)d 3 (19)e 4 (31)f

Age when exclusive breastfeeding was discontinued (%)*

0–2 months 4 (7)

3–4 months 14 (24)

5 + months 31 (53)

Table 3. Study population characteristics at follow-up IQR: Interquartile range. an = 42. bn = 34. cn = 28. 
dn = 42. en = 16. fn = 13. *Column percentages do not add to total due to missing data.
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At the more highly resolved taxonomic levels, age was associated with 14 of the 20 most common OTUs 
explored (Fig. 5 and Fig. S2). The decreasing Firmicutes abundance noted at 12 and 24 months was here repre-
sented by steep reductions in OTUs belonging to the Streptococcaceae family (OTU0001, OTU0009, OTU00019, 
Table S2) and decreases of OTUs in the Veillonella genus or the Veillonellaceae family (OTU0002, OTU0011, and 
OTU0020, respectively). However, one initially rare OTU mapped to the Streptococcaceae family (OTU00052) 
increased with increasing age. Within the Bacteroidetes phyla, Porphyromonas (OTU00012) also increased with 
age, whereas two common OTUs within the Proteobacteria phyla belonging to the Pasteurellaceae (OTU00003) 
and Neisseriaceae (OTU00004) families, respectively, both exhibited inverted u-shaped associations with age. We 
furthermore noted an association between age and an OTU mapped as Fusobacterium genus (OTU0007).

In addition, we also noted a decreased beta diversity (p < 0.001, Fig. 6).

Maternal oral microbiota. The maternal oral microbiota composition during pregnancy was not associated 
with early childhood oral microbiota. However, when we compared the child cohort across all time points with 
the maternal cohort, we noted that that the children became more similar to an adult composition with increasing 

Figure 2. Model-based predictions of inverse Simpson and proportion of phyla plotted against age. Lines 
indicate mean values and 95% confidence intervals. The y-axis shows the relative abundance in proportion. 
*p < 0.05, **p < 0.01, ***p < 0.001.

Figure 3. Stacked bar charts of phyla distribution at 6, 12, and 24 months, respectively.
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age (Fig. 6). Nevertheless, at 24 months, the microbiota of each child did not resemble their own mother’s micro-
biotaduring pregnancy more than any of the other samples of the maternal cohort (p = 0.17).

Birth characteristics and breastfeeding. Gestational age and exclusive breastfeeding wereboth associ-
ated with overall phyla distribution (p < 0.01, Table S2). However, no specific phyla were identified in post-hoc 
analyses that could subsequently be confirmed in semi-parametric sensitivity analyses (Table S3). Gestational age 
and exclusive breastfeeding were also associated with beta diversity (p = 0.003 and p = 0.02, respectively).

Figure 4. Cladogram showing differentially expressed bacteria at 6 and 24 months, respectively. Green colour 
indicates higher abundance at 6 months and red colour higher abundance at 24 months. Inner circle represents 
phyla and outer circles lower taxonomic levels.

Figure 5. Stacked bar charts of the relative distribution of the 20 most abundant operational taxonomic units 
(OTUs) at 6, 12, and 24 months, respectively. Other OTUs constituted 11.5%, 24.3%, and 36.8% of the total 
amount of reads (at 6, 12 and 24 months respectively).
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Being born at an older gestational age was associated with an increase in the relative abundance of an OTU 
within the Saccharimonadacea genus (OTU00010, p < 0.001) but with a decrease of an OTU belonging to the 
Porphyromonas genus (OTU00012, p = 0.01, Fig. 7). Birth weight exhibited u-shaped associations with two 
OTUs within the Veillonella genus (OTU0002, p = 0.003 and OTU00011, p < 0.001). We also observed inverted 
u-shaped associations between birth weight and two OTUs belonging to the Lactobacillales order (OTU00026, 
p = 0.001 and OTU00030, p = 0.02, Fig. 7). We furthermore observed an interaction between birth weight and 
age for the presence of one of the Veillonella OTUs (OTU00011), where a birth weight below the 50th percentile 
entailed a lower abundance noted foremost at 6 months of age (p < 0.001: Fig. S3). We found no associations 
between parity or mode of delivery and oral microbiota of the child.

Morning salivary cortisol, antibiotic treatment, and pet exposure. Overall, we observed similar 
median morning salivary cortisol levels across all time points. Both morning salivary cortisol level and antibiotic 
treatment within the last 90 days of the saliva microbiota assessments were associated with proportion of phyla 
(p = 0.003 and p = 0.008, respectively), but no specific phyla were identified in post-hoc analyses that could also 
be confirmed in semi-parametric sensitivity analyses.

Morning salivary cortisol was inversely associated the relative abundance of the most common OTU mapped 
to the Streptococcaceae family (OTU0001, p = 0.02). This association was mainly driven be the group of children 
with cortisol values over 25 nmol/liter (Fig. 7).

Antibiotics treatment within the last 90 days was positively associated with two OTUs belonging to the 
Pasteurellaceae and Neisseriaceae families (OTU00003, RPR 1.84; p = 0.005 and OTU00004, RPR 1.84; p = 0.01, 
respectively) but negatively associated with an OTU within the Prevotellaceae family (OTU00013, RPR 0.07; 
p < 0.001). For the Prevotellaceae OTU we further noted an interaction between antibiotics prescribed within 90 
days and age (OTU00013, p = 0.03: Fig. S3), with the lower abundance noted mainly at six months. We observed 
no association between ever-use of antibiotics and oral microbiota outcomes. Lastly, presence of a furry pet in 
the household was associated with a lower relative abundance of an OTU belonging to the Pasteurellaceae family 
(OTU00003, RPR 0.46; p = 0.01).

Discussion
In this longitudinal population-based cohort study of 59 Swedish children, our main findings were twofold. First, 
we observed a radical shift in the salivary microbiota composition from 6 months to 24 months of age, including 
a nearly threefold increase in alpha diversity as well as profound changes on all investigated taxonomic levels. 
Secondly, we found a novel link between salivary cortisol and oral microbiota composition, encompassing both 
phyla distribution and lower relative abundance of the most common oral OTU belonging to the Streptococcaceae 
family. In addition, we also found evidence of associations between birth characteristics as well as other early life 
exposures with oral microbiota composition. We specifically noted a transient association between antibiotic 
treatment and the oral microbiome.

We observed a steady increase of oral microbiota alpha diversity associated with increasing age, indicating 
that both richness and species distribution evenness in individual saliva samples increased over time. This finding 
aligns with a recent Swedish longitudinal study of children with a family history of allergic disease that reported 
a positive association between age and oral microbiome alpha diversity17. At 6 months, we observed a vast dom-
inance of Firmicutes, largely attributed to members of the Streptococci family. This is concordant with previous 
studies reporting a Firmicutes dominance at 4–8 weeks14, 3 months15, and 6 months of age16. The subsequent 
decrease of Firmicutes, accompanied by an increase in other phyla including Proteobacteria, also corresponds 
with the findings of two earlier studies which utilized pyrosequencing to examine saliva samples from 3-year old 
children3,15. We further found that the beta diversity of the children decreased with age and also that children’s 

Figure 6. NMDS illustrating the children’s beta diversity across the three time points, as well as maternal beta 
diversity during pregnancy.
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samples became more similar to that of the maternal cohort over time, suggesting both that the initially larger 
inter-individual differences were attenuated over time, and that the children had reached a more adult-like com-
position at 24 months. This oral microbiota maturation process is likely influenced by several factors, including 
the emergence of deciduous teeth which creates new micro-environments and niches for oral bacterial coloniza-
tion and microfilm adherence43 and changes in diet including the introduction of solid foods and an increase in 
variation of diet44. Additionally, an increased horizontal transmission may also occur as the child is increasingly 
exposed to a greater multitude of new people and environments, including day-care, during the first years of 
life. In Sweden, children start day-care at 12 months or later. On the OTU-level, we specifically noted increased 
relative abundances of OTUs within the Porphyromonas and the Fusobacterium genera with increasing age. The 
Porphyromonas genus include Porphyromonas gingivalis, implicated in periodontal disease but also previously 
detected in oral cavities of healthy children45, whilst the Fusobacterium genus include the bacteria Fusobacterium 
nucleatum, a species widely present in the oral cavity but also considered to be an opportunistic oral pathogen46. 
However, as our analysis pipe-line did not allow for species-level taxonomic resolution, we cannot discern the 
presence of these, or other potentially pathogenic, bacterial species within our samples.

We noted temporal similarities between our findings and previous reports on the development of the gut 
microbiota composition across the first years of life. As in the oral cavity, alpha diversity increases dramatically 
in the gut before the age of 24 months, with an adult-like composition reached at 2–3 years47–49. A longitudinal 
study of European and US children reported three distinct phases of gut microbiome progression, with an initial 
rapid development phase (3–14 months) characterized by major changes in the abundance of all five main gut 
phyla, a transitional phase (15–30 months) with distinct changes found only for two of the five main phyla, and 
a stable phase (>30 months) where little phyla redistribution occurred50. In correspondence, we observed the 
steepest changes in our two most abundant oral phyla Firmicutes and Proteobacteria in the first year of life, whilst 
less abrupt changes transpired in the children’s second year.

We could not detect any association between mode of delivery and oral microbiota. Caesarean sections has 
previously been noted as an important determinant for oral microbiota composition in newborns12. Our findings 
however align with the results from a longitudinal 16 S rRNA gene sequencing study of 81 infants, which did 
observe an association immediately after birth, but which could not detect any association at follow-up sampling 

Figure 7. Relative abundance of specific operational taxonomic units (OTUs) associated with the continuous 
variables birth weight, gestational age and morning salivary cortisol. Lines indicate predicted mean values and 
95% confidence intervals, adjusted for age and potential confounders (see Table 1). All continuous adjustment 
variables are fixed at their mean value and all categorical adjustment variables are fixed at their most common 
category. The x-axis ranges from the 10th to the 90th percentile of the variable. The y-axis shows the relative 
abundance in proportion.
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at 6 weeks of age11. In contrast, other studies have reported that caesarean section may be associated with a lower 
number of oral bacterial taxa at 3 months51, and also with beta diversity at 6 months17, although the latter associ-
ation was largely attenuated after adjustment for age, breastfeeding and later caries status. The discrepant results 
on the potential association between mode of delivery and oral microbiota likely reflect both that the influence 
of mode of delivery diminish over time and are therefore not detectable in our cohort where the first saliva sam-
pling was performed at 6 months of age, as well as methodological dissimilarities between different study designs 
including adjustments for potential confounders.

We noted an association between duration of exclusive breastfeeding and a difference in overall phyla distribu-
tion, but could not identify any specific phyla or OTU associated with exclusive breastfeeding. Breastfeeding has 
previously been associated with abundance of Actinobacteria and Proteobacteria at 4–8 weeks14, and prevalence 
of Lactobacillus at 3 months52. An important limitation of our material is however that the upper pre-determined 
age-category for exclusive breastfeeding was 5+ months in the Born into Life questionnaire. Even children who 
were exclusively breast-fed for 5+ months may therefore have been introduced to solid foods and/or formula at 
the time of the first saliva sampling (at 6 months). Overall, the children in our cohort were also older and more 
likely to have deciduous teeth. The potential influence of breastfeeding on the oral microbiota has thereby likely 
been attenuated in our study. In addition, there are again also methodological differences between the previous 
studies and ours, as we have adjusted the statistical model for exclusive breastfeeding for several potential con-
founders identified through our DAG (Table 1), covariates that have not been included in the previous studies.

We observed that gestational age was associated with overall phyla distribution, and both gestational age 
and birth weight were associated with specific OTUs, including an inverted u-shaped associations between birth 
weight and two OTUs belonging to the Lactobacillales order. An American cohort study of 40 neonates recently 
reported that children born at a young gestational age with a low birth weight exhibited a greater abundance 
of the two genera Stenotrophomonas and Enterobacter, both within the Gammaproteobacteria class, as well as 
Lactococcus, a bacterial genus within the Lactobacillales order, as compared with term-born infants9. Although 
both studies note an influence of birth weight and gestational age on bacterial taxa within the Lactobacillales 
order, direct comparisons between the two studies may not be feasible as the American study only included very 
preterm infants sampled at the neonatal intensive care unit. In our study, being born at an older gestational age 
was also associated with an increase in the relative abundance of an OTU within the Saccharimonadacea genus 
(OTU00010), a genus belonging to the Patescibacteria phyla, a newly defined major microbial group within the 
updated topology of the bacterial domain53. No cultured isolates are available of the Saccharimonadacea genus 
as it has only been encountered through sequencing, and its function remains unclear. A recent study reported a 
higher abundance of Saccharimonadacea in non-caries afflicted adults than in adult with caries54. Further studies 
will however be needed to interpret our finding in association with gestational age.

To the best of our knowledge, no previous study has explored the association between naturally occurring 
variation in salivary cortisol and oral microbiota community composition. We observed that increased level of 
cortisol was associated with changes in phyla distribution, and a lower relative abundance of a common OTU 
belonging to the Streptococcaceae family. The association with the Streptococcaceae OTU was mainly seen in chil-
dren with cortisol concentrations >25 nmol/L. Healthy Norwegian children have been reported to have a mean 
salivary cortisol of 28.7 nmol/L at 6 months, and 34.9 nmol/L at 24 months55. Cortisol has previously been found 
to alter in vitro growth of periodontal-related bacterial strains56. Our findings support that salivary cortisol is also 
associated with oral microbiota community composition in vivo.

Although we both applied a false discovery rate threshold, and filtered out results based on the more robust 
ordinal logistic regression in our analyses, we cannot exclude the possibility that random chance alone was 
responsible for our noted associations between salivary cortisol and oral microbiota. Further studies are needed 
to confirm our finding. We also adjusted all analyses of the associations between salivary cortisol and microbiota 
for the potential confounders available in the Born into Life study including maternal education level and birth 
characteristics, but we did not have access to information on other possible confounders including sleep pat-
terns and dietary timing, as well as home and childcare environmental circumstances. Residual confounding may 
therefore still be present. Further, even though it may be of interest to investigate the association between cortisol 
circadian rhythm and saliva microbiota, we did not include measurements of evening salivary cortisol in our 
study in order minimize the risk of a matrix effect. Lastly, our study is cross-sectional in nature, and though we 
primarily hypothesize that cortisol may influence microbiota composition and development we cannot attempt 
to infer any causal direction. A reverse causation where oral microbiota may influence neuroendocrine activity 
and cortisol secretion remains possible.

If our associations are truly causal, we hypothesize that there could be different, potentially non-exclusive, 
pathways linking cortisol with oral bacterial taxa. The concept of a microbiome-gut-brain axis, with bidirec-
tional communication between neuroendocrine activation including the hypothalamic-pituitary-adrenal axis 
and gut microbiota composition and function, is currently discussed within the gut microbiota research field57–60. 
Suggested mechanisms for the microbiome-gut-brain axis include a microbiota-driven pro-inflammatory activa-
tion of the hypothalamic-pituitary-adrenal axis, and an influence of cortisol on gut microbiota composition and 
gastrointestinal permeability. In parallel to this, we speculate that our results could indicate that the oral microbi-
ota composition and development in early childhood may be influenced by systemic neuroendocrine activation. 
Another potential mechanism is that salivary cortisol could influence bacterial growth and biofilm formation in 
the oral cavity through local immunomodulation. Although longitudinal data is lacking, smaller cross-sectional 
studies have reported that salivary cortisol may be associated with the development of dental caries in child-
hood, and also with a larger number of cariogenic bacteria19–21, the latter including Streptococcus mutans and 
Lactobacillus species, bacteria involved in tooth decay and caries progression, respectively. Unfortunately, due 
to limitations in our analysis pipeline, we cannot discern if the cortisol-associated Streptococcaceae OTU in the 
present study represents Streptococcus mutans.
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We further found that exposure to antibiotics within 90 days of saliva sampling was associated with pro-
portion of phyla, as well as positively associated with OTUs belonging to the Pasteurellaceae and Neisseriaceae 
families and negatively associated with a OTU within the Prevotellaceae family. The most common indication for 
antibiotic treatment in young children in Sweden is a respiratory tract infection61,62 including acute otitis media, 
with national guidelines recommending treatment with a β-lactam antibiotics for 5–10 days. Although we do not 
have access to treatment duration for the children in the Born into Life cohort, phenoxylmethylpenicillin and 
amoxicillin represented the most commonly prescribed antibiotics mirroring the national guidelines. In inter-
preting our findings, it is also noteworthy that antibiotics are most often prescribed as oral suspensions to young 
children, with potential local effects in the oral cavity.

The Pasteurellaceae and Neisseriaceae families contain known pathogens including Pasteurella multocida and 
Neisseria meningitidis. However, although we cannot determine if these species are included in the OTUs we 
have detected, these pathogens are sensitive to phenoxylmethylpenicillin and amoxicillin, and should not have 
survived the antibiotics treatment. A Swiss cohort study using pyrosequencing found that amoxicillin prescribed 
for otitis media in children was associated with a reduced species richness and diversity in the oral cavity, and 
with a major shift in relative abundance of several taxa at the end of the antibiotic treatment63. However, three 
weeks after the amoxicillin treatment ended, the saliva microbiota had largely recovered to the composition pres-
ent before treatment commenced63. Corresponding results were reported from a randomized controlled trial on 
healthy adults64, which found that antibiotic treatment had extensive and long-term effects on gut microbiota, 
whereas alternations of oral microbiota after exposure to antibiotics were of lower magnitude and transient. A 
swift recovery of oral microbiota after antibiotic treatment cessation may explain why we could not distinguish 
any association between ever-use of antibiotics and oral microbiota in our cohort.

Lastly, we also noted that presence of a furry pet in the household was associated with a lower relative abun-
dance of an OTU within the Pasteurellaceae family, a bacterial family containing strains that are potential zoonotic 
agents and are usually present in cats and dogs. The direction of the association was surprising and further studies 
are needed to confirm the finding.

Strengths and limitations. A strength of this study is the longitudinal design, which allowed for repeated 
assessments of oral microbiota and salivary cortisol, as well as for time-updated information on early childhood 
exposures. Linkages to national health registers furthermore enabled access to objectively recorded maternal 
and birth characteristics, and also to detailed information on antibiotic prescription without any risk of recall 
bias. The identification of potential confounders for each exposure before the analysis phase of the study further 
reduced the overall risk of bias.

In addition to the limitations discussion in association with our findings on salivary cortisol, a few more 
potential weaknesses of our study however also deserve mentioning. Firstly, our platform for 16 s rRNA amplicon 
sequencing did not allow for a species-level taxonomic resolution in OTUs. Interpreting potential pathogenic 
effects of our associations is therefore challenging. Secondly, the time-points for questionnaires and biomarker 
sampling were pre-determined for the Born into Life cohort, and unfortunately no saliva sampling was performed 
in the neonatal period. Further, our sample size of 59 mother-child pairs had limited power to detect associations 
for rarer exposures such as caesarean section, antibiotic treatment and furry pet in our cohort, and also to identify 
changes in specific phyla contributing to an overall change in phyla distribution. Also, fewer children participated 
in the examinations at 12 and 24 months than at 6 months which may have further reduced the possibility to 
detect associations present only at older age. Finally, the maternal cohort represents a well-educated population 
who had originally volunteered to participate in LifeGene and then also accepted to partake in Born into Life 
whilst pregnant, and the child cohort consists of mainly term-born healthy children. This limited our possibil-
ity to observe for example associations between unfavourable maternal health behaviours and the child’s oral 
microbiota, and may also restrict the generalizability of our findings. However, expanding the knowledge base of 
the oral microbiota development trajectory in a healthy context may enable future identification of adverse oral 
microbiota markers in children born in less advantageous environments.

In conclusion, the findings of this longitudinal study include a novel association between salivary cortisol and 
oral microbiota and a transient effect of antibiotics on the oral microbiome in early childhood. It also highlights the 
radical shifts in the oral microbiota composition from 6 months to 24 months of age. Future studies utilizing metage-
nome shotgun sequencing may enable an increased accuracy and a more detailed information on bacterial function.
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