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Abstract

Vaccination is the most promising approach to control and prevent the infectious diseases. As most of pathogenic
microrganisms gain entry through the mucosal surfaces of host which provide great deal of interest in developing
oral vaccines. Despite the success of many vaccines, only little information is available regarding the oral vaccine
antigen induced immunogenic signalling pathways. Such information will be helpful to design future vaccines against
old and new infectious diseases to reduce the side effects of existing vaccines and increase their efficacy. In this
review, the oral vaccine antigen inducing complex signaling pathways of immune system has been discussed.
Various strategies to prevent inactivation of oral vaccine by gastric acid and intestinal enzymes have been also
included.
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Introduction
Immunity is a state of protection mechanism against various kinds

of infectious diseases. The immune system is a tightly regulated
complex network of various cells (lymphoid, reticular, dendritic and
epithelial cells), which are communicating with each other by soluble
cytokines mediators. Innate and adaptive immunity works
synergistically against the various infectious agents to protect the
body. Before an infection, innate immunity is developed in the body
which prevents or eliminates the pathogen within hours. Adaptive
immunity is another form of immunity which develops in response to
infection and adapts to recognize, eliminate, and then remember the
invading pathogen [1]. Various chemicals such as deltamethrin,
tributyltin have been reported to actively interfere with the activation
of complex signaling pathways of the immune system [2,3]. Immune
system provides the protection against infectious diseases but in case
of strong pathogenic microorganism, immune system is not able to
protect the body from infection which leads todiseases.Infectious
diseases remain a major problem worldwide [4]. In literature, it has
been reported that incidence of infectious diseases has been increased
continuously [5]. Antibiotics are commonly used in treatment of
infectious diseases but emerging evidence has been shown that
increased use of antibiotics leads to microbial resistance [6-8]. So, the
next best option to prevent the infectious diseases is vaccines which
are designed to generate strong immune responses against the
particular antigen delivered through various routes. Mass vaccination
programs have been used successfully for total eradication of
infectious diseases [9,10]. Despite these achievements, many infectious
diseases, especially enteric diseases, remain endemic in large part of
the world [11]. These infectious diseases are caused by pathogens that
colonise and invade the host at mucosal surfaces. Presently, most of
vaccines are administered parenterally because the antigen which are
present in vaccines are poorly delivered to the site of specific

immunity [12]. The poor delivery of oral vaccine is commonly due to
spontaneous or enzymatic breakdown and poor absorption through
gastrointestinal tract [13]. Parenteral vaccines are not successful for
induction of pathogen-specific mucosal immunity. Therefore, in order
to induce a protective immunity against intestinal pathogens, vaccines
should be delivered to the intestinal mucosa via oral route. Oral
vaccines have lots of advantages over parenteral vaccines, including
needle free delivery, increased patient compliance and ease of
production due to decrease need to purify bacterial by-products [10].
It can also induce both mucosal and systemic immunity which provide
additional protective immune responses [14]. The principle of
mucosal immunization has been illustrated by the development of oral
vaccine or intranasal vaccines against polio, cholera, typhoid, influenza
and rotavirus for human use. Some of these vaccines need further
improvement to increase efficacy or to avoid side effects. Many more
are in stages of development. However, to date only a few vaccines
have become available for mucosal use. These include OPV (Oral polio
vaccine), adenovirus, rotavirus, cold-adapted influenza virus, S.
enterica, and cholera vaccines. Several plant derived vaccines are
under research, some are under clinical trials for commercial use.

Recently, Scientists made a concerted effort to find vaccines for
complex diseases such as cancer [15], malaria [16], AIDS [17-19] and
tuberculosis [20,21]. Unfortunately, these efforts are not become
successful due to a limited understanding of how vaccine interacts
with the immune system. So, in this review, we try to describe the
mechanism of oral vaccine induced immune response signaling
pathways based on our own study [22] as well as those reported in
recent literature.

Oral Vaccine: Need, Challenges and Promising
Approaches

Most infectious organisms gain entry into the body through mucosa
l surfaces of the host’s gastrointestinal, respiratory and urogenital tract
s. The capacity to induce local protective immunity within the mucosa
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is generally not possible with parenteral vaccination. The next best
option is oral vaccine which overcomes the problems which are
associated with parenteral vaccine but there are lots of challenges
involved to design the oral vaccine. Oral vaccination may fail due to
several factors such as inactivation by gastric acid and intestinal
enzymes, poor bioavailability and interference from other bacteria and
viruses in the gastrointestinal tract. To overcome these problems, now
a days formulation scientists using various approaches like
administration of antacid solutions prior to vaccination; use of acid
resistant polymers, particulate drug delivery systems, oral adjuvants
and hybrid vaccines. Recently we also check the immunestimulating
potential of antigens in their native and associated form as chitosan
microparticles in vitro and observed that increase in immunogenic
potential by Cell Envelope Proteins (CEPs) loaded chitosan
microparticles in comparison to CEPs as native antigen in the case of
cholera [22].

Oral Vaccine Antigen Induced Immune Response
Signalling Pathways

The hallmark of vaccination is the stimulation of an antigen specific
adaptive immune response which leads to long term protection via the
development of memory cells. Activation of immune system for a
particular vaccine antigen is a complicated process which requires
number of steps. First step is uptake of vaccine antigen by microfold
(M) cells, present in the follicle-associated epithelium (FAE) overlying
the germinal centres of the Peyer’s patches [23-26]. In literature,
various studies have been shown that M cells transport
macromolecules [27-30], particles [31] and microorganism [32-39]
from the gastrointestinal lumen to the underlying lymphoid
tissue. These highly specialised M cells have some unique structural
and functional features which facilitate endocytosis and transport of
macromolecules and bacteria as shown in Figure 1 [40,41].

Figure 1: Uptake of vaccine antigen.

Recognition of oral vaccine antigen
Intestinal epithelial cells (IEC) are well known physical barrier

which provide protection to the body against pathogens [42,43].
Because of their barrier function, IEC are the first cells which are
exposed to the intestinal pathogens and act as immunological sensors
detecting the pathogen associated molecular pattern (PAMP) through

different classes of pattern recognition receptors (PRRs). List of PRRs
and their targets has been summarized in Table 1. An important
family of PRRs is the TLRs which have broad specificity for conserved
molecular patterns shared by bacteria, viruses and parasites have been
summarized in Table 2.

Receptor (PRRs) Target (PAMPs)

Mannose-binding lectin (MBL) Microbial cell walls

C-reactive protein (CRP) Phosphatidylcholine

Toll like receptors (TLRs) Microbial products

Lipopolysacchride-binding
protein (LBP)

Gram –ve bacterial cell walls

Nucleotide binding oligomerizat
ion domain (NOD proteins)

Gram +ve bacterial cell walls

Scavenger receptors (SRs) Gram +ve and –ve bacterial cell walls

Table 1: List of pattern recognition receptors (PRRs) and their targets.

TLRs Target microbes

TLR1 Mycobacteria

TLR2 Gram +ve bacteria

TLR3 Viruses

TLR4 Gram –ve bacteria

TLR5 Bacteria

TLR6 Mycobacteria,Yeast and Fungi

TLR7 Viruses

TLR8 Viruses

TLR9 Bacterial DNA

Table 2: List of different types of Toll like receptors (TLRs) and their
target microbes.

Oral vaccine antigen induced signal transduction pathways
Signal transduction pathways mediate the sensing and processing of

 stimuli. Vaccine antigen activate intracellular signalling pathway that l
ead to the expression of proinflammatory mediators such as cytokoine
s and chemokines. These proinflammatory mediators attract monocyt
es, granulocytes and natural killer cells to inflammatory sites where
monocytes differentiate into macrophages and immature dendritic
cells (DCs) are converted to mature DCs. The mature DCs present the
antigens to naive T lymphocytes.

Mechanism of presentation of processed oral vaccine antigen
to the adaptive immune system

Dendritic cells act as a bridge between the innate and adaptive imm
une system. Two signals are required for activation of naive T cells: on
e signal triggered by MHC vaccine peptide complex, and another from
 the costimulatory molecules. Costimulatory molecules provide the sig
nals necessary for lymphocyte activation as shown in Figure
2. There are many families of co-stimulatory molecules which play a
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crucial role in T-cell activation, the B7 family members are the first to
be identified. In literature, the most studied B7 family members are
CD80 and CD86 and their interaction with CD28 and CTLA-4
(cytotoxic T-lymphocyte-associated antigen-4) on T cells. CD28 is
expressed constitutively on human and murine T cells which deliver a
positive co stimulatory signal upon interaction with CD80 or CD86
[44-46]. These co stimulatory signals causes’ dendritic cells to up
regulate the expression of B7 co-stimulatory molecules on their surface
as shown in Figure 2. These activated dendritic cells migrate to the
local draining lymph node, where they present antigen to T cells.
Before it is presented by major histocompatibility complex (MHC)
molecules, antigen is processed into short peptides by proteolytic
enzyme [47]. The activated naive CD4+ T cells are differentiating into
T-helper (Th) subsets for acquire effector functions. These subsets are
distinguished as Th1, Th2 and Thr (Regulatory T cells) which are
characterized by their varying ability to produce cytokines [48]. It can
take several steps of activation for T cells to differentiate terminally to
Th1, Th2 and Thr as shown in Figure 3 [49], which suggest that T cells
can be activated and expanded in a non-polarized manner. Th1 cells
produce IFN-γ (Interferon- γ) and help the induction of CD8+
cytotoxic T cells, which kill the cells infected with the intracellular
pathogens whereas Th2 cells produce cytokines IL-4, IL-5 and IL-10
which induce IgE and eosionophil-mediated destruction of the
pathogens [50,51]. Furthermore, T regulatory cells suppress the
proliferation and differentiation of T- helper or cytotoxic T cells serve
to limit the potential immunopathology that might be caused by an
over expression of immune response [38].

Figure 2: Presentation of vaccine antigen to naive T cell.

Oral vaccine antigen induced T cell signalling pathways
Antigenic peptide which is bound to either a helper T cell or

cytotoxic T cell activates cell signalling pathways. In a resting T cell,
p56 lck, a protein tyrosine kinase (essential for the initiation of TCR
signalling), is sequestered from the TCR complex and become
activated. This activated complex phosphorylates the immunoreceptor
tyrosine based activation motifs (ITAMs) of the CD3 component
polypeptides [52] Phosphorylated tyrosines in the ITAMs of the zeta
chain provide docking sites to which another protein tyrosine kinase
called ZAP-70 attaches and become active. This event catalyzes a series
of intracellular events beginning at the inner surface of the cell
membrane and culminating in the nucleus, resulting in the
transcription of genes that drive cell cycle and differentiation of the T
cell as shown in Figure 3. Upon encounter with the antigens, naive T-

cells undergo maturation to create memory cells that recognise the
antigen on subsequent encounters, there by creating the basis of
antibody independent vaccination as shown in Figure 4.

Figure 3: Oral vaccine antigen induced T cell signalling pathways.

Figure 4: Basis of antibody independent vaccination.

Oral vaccine antigen induced B cell signalling pathways
B cell signalling pathways is activated by the TH cells and B-cell

receptor (BCR). Naive TH cell recognizes and interacts with an
antigen-MHC class 2 molecule complexes which undergoes metabolic
transformation and begins to secrete various cytokines. The secreted
cytokines play an important role in activation of B cells, TC cells,
macrophages and various other cells that participate in the immune
response. B cells interact with antigen and then differentiate into
antibody-secreting plasma cells as shown in Figure 5. The secreted
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antibody binds to the antigen and facilitates its clearance from the
body. The major antibody isotype in external secretions are secretory
immunoglobulin A which provides specific protection against many
respiratory, enteric, and genital infections.

Figure 5: Basis of antibody dependent vaccination.

Deactivation of Signalling Pathways
Activation of the signal transduction pathways is critical for

mounting an aggressive immune response to eliminate invading
pathogens, but deactivation of these signalling pathways is also very
much important to prevent self-destruction. Variety of negative
regulators operates at multiple steps of signal transduction pathways to
deactivate these signals. These negative regulators modulate the
strength and duration of the transduced signals and control the
production of inflammatory mediators [53]. For example, in response
to LPS (lipopolysaccharides), TLR-4 was shown to be transiently
suppressed [54]. A number of anti-inflammatory proteins such as IL-1
receptor-associated kinase (IRAK) [55], the suppressor of cytokine-
signalling (SOCS)-1 [56], the NF-κB inhibitor (IκB), and anti-
inflammatory cytokines such as IL-10 [57] are also induced for
deactivation of these pathways. Through these inhibitory proteins,
cells terminate the signalling cascade at the cell surface as well as
switch off downstream mediators which results in the silencing of
signalling pathways and also stopping the production of pro-
inflammatory cytokines.

Current Challenges and Future Perspectives
Oral vaccine has great potential and many benefits over parenteral

vaccines. However, despite many efforts, vaccinologists still struggle to
develop highly efficient oral vaccine due to many problems posed by
the gastrointestinal tract. To overcome these problems, numerous
delivery systems such as polymeric nanoparticles, M cell targeting
methods has been developed. Despite the proven power of these tools,
vaccines are still unavailable for many of the infectious diseases due to
complexicity of the immune system. In recent years, the introduction
of genetic engineering has fuelled rapid advances in vaccine
technology and is now leading to the entry of new products in the
marketplace. These advances in biotechnology and molecular biology
have opened new ways like DNA vaccination, cell based vaccination
and use of chitosan and nanoparticles for the delivery of vaccines
antigens [58-60]. Other methods include plant molecular farming in
which genetic manipulations in plants are carried out to make a range

of recombinant proteins which can be used as oral vaccine
components [61-66]. DNA vaccines are considered the best approach
to induce both humoral and cellular responses and also have the ability
to provoke immune responses against the wide range of pathogenic
strains [67]. For further benefits from DNA vaccines,
immunomodulators such as cytokines and other co-stimulatory
molecules can be utilised for the development of much safer, effective
and low cost DNA vaccines. DNA vaccines have proven their
efficiency against a number of pathogenic targets including influenza,
Chikungunya (CHIKV) disease and infectious bursal disease (IBD). In
literature, it has been observed that DNA vaccines provide a promising
platform for the immunisation against many viral diseases, including
Severe Acute Respiratory Syndrome (SARS), influenza and Simian
immunodeficiency virus (SIV) [68]. The immune responses generated
by DNA vaccines are highly specific and sustained. Mainly vaccination
produces antibody dependent immune response and saving millions of
lives every year. However, there is very little information regarding
antibody independent vaccination. Recent advances in T cell biology
open up new approaches for vaccine development especially in field of
antibody independent vaccination. Dendritic cells connect innate and
adaptive immune system, so dendritic cell targeting strategies is also
most promising approach for induction of antigen specific immunity.
In future more studies should be conducted to understand the
mechanism of vaccine efficacy.

Conclusion
The mucosal immune system is a complex system that generates lar

ge amounts IgA as well as cell mediated immunity at mucosal surfaces 
to kill pathogens. Mucosal vaccines are attractive strategy to provide
protection against various infectious diseases. Our current
understanding of vaccine antigen induced immune signalling
pathways is something still very much developing. Emerging
technologies will continue to provide more understanding of these
pathways. By understanding these pathways, we may able to develop
highly effective vaccine for complex diseases such as malaria, AIDS
and tuberculosis. Today, research and development must continue
to progress in the development of oral vaccines to abolish the diseases
which are without suitable treatment options. Research also requires
the need of continuous improvement for available vaccines to elicit
fewer adverse effects and to develop formulations that can be made
less costly and more widely available. New or improved vaccines for
the malaria, cancer, AIDS and tuberculosis are currently under
development. 
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