
Orange: From Experimental Machine Learning
to Interactive Data Mining

Janez Demšar1, Blaž Zupan1,2, Gregor Leban1, and Tomaz Curk1

1 Faculty of Computer and Information Science, University of Ljubljana, Slovenia
2 Dep. of Molecular and Human Genetics, Baylor College of Medicine, Houston, USA

Abstract. Orange (www.ailab.si/orange) is a suite for machine learn-
ing and data mining. For researchers in machine learning, Orange offers
scripting to easily prototype new algorithms and experimental proce-
dures. For explorative data analysis, it provides a visual programming
framework with emphasis on interactions and creative combinations of
visual components.

1 Orange, a Component-Based Framework

Orange is a comprehensive, component-based framework for machine learning
and data mining. It is intended for both experienced users and researchers in
machine learning who want to write Python scripts to prototype new algorithms
while reusing as much of the code as possible, and for those just entering the
field who can enjoy in the powerful while easy-to-use visual programming en-
vironment. Orange supports various tasks spanning from data preprocessing to
modelling and evaluation, such as:

– data management and preprocessing, like sampling, filtering, scaling, dis-
cretization, construction of new attributes, and alike,

– induction of classification and regression models, including trees, naive
Bayesian classifier, instance-based approaches, linear and logistic regression,
and support vector machines,

– various wrappers, like those for calibration of probability predictions of clas-
sification models, and those for boosting and bagging,

– descriptive methods like association rules and clustering,
– methods for evaluation and scoring of prediction models, including different

hold-out schemes and range of scoring methods and visualization approaches.

1.1 Scripting in Python

As a framework, Orange is comprised of several layers. The core design principle
was to use C++ to code the basic data representation and manipulation and
all time-complex procedures, such as most learning algorithms and data prepro-
cessing. Tasks that are less time consuming are coded in Python. Python is a
popular object-oriented scripting language known for its simplicity and power,

J.-F. Boulicaut et al. (Eds.): PKDD 2004, LNAI 3202, pp. 537–539, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



538 Janez Demšar et al.

and often used as a ”glue-language” for components written in other languages.
The interface between C++ and Python provides a tight integration: Python
scripts can access and manipulate Orange objects as if they were implemented
in Python. On the other hand, components defined in Python can be used by the
C++ core. For instance, one can use classification tree as implemented within
Orange (in C++) but prototype a component for attribute selection in Python.
For Orange, we took special care to implement machine learning methods so
that they are assembled from a set of reusable components one can either use in
the new algorithms, or replace them with prototypes written in Python.

Just for a taste, here is a simple Python script, which, using Orange, reads
the data, reports on the number of instances and attributes, builds two classifiers
and outputs predicted and true class of the first five instances.

import orange
data = orange.ExampleTable(’voting.tab’)
print ’Instances:’, len(data), ’Attributes:’, len(data.domain.attributes)
nbc = orange.BayesLearner(data)
knn = orange.kNNLearner(data, k=10)
for i in range(5):

print nbc(data[i]), knn(data[i]), ’vs. true class’, data[i].getClass()

Another, a bit more complicated script below, implements a classification
tree learner where node attributes that split the data are chosen at random by
a function randomChoice, which is used in place of data splitting component of
Orange’s classification tree inducer. The script builds a standard and random
tree from the data, and reports on their sizes.

import orange, random
def randomChoice(instances, *args):

attr = random.choice(instances.domain.attributes)
cl = orange.ClassifierFromVar(whichVar=attr, classVar=attr)
return cl, attr.values, None, 1

treeLearner = orange.TreeLearner()
rndLearner = orange.TreeLearner()
rndLearner.split = randomChoice

data = orange.ExampleTable(’voting.tab’)
tree = treeLearner(data)
rndtree = rndLearner(data)
print tree.treesize(), ’vs.’, rndtree.treesize()

1.2 Visual Programming

Component-based approach was also used for graphical user’s interface (GUI).
Orange’s GUI is made of widgets, which are essentially a GUI wrappers around
data analysis algorithms implemented in Orange and Python. Widgets com-
municate through channels, and a particular set of connected widgets is called
a schema. Orange schemas can be either set in Python scripts, or, preferably,
designed through visual programming in an application called Orange Canvas.



Orange: From Experimental Machine Learning to Interactive Data Mining 539

Fig. 1. Snapshot of Orange Canvas with a schema that takes a microarray data, per-
forms k-means clustering, and evaluates the performance of two different supervised
learning methods when predicting the cluster label. Clustered data is visualized in the
Heat Map widget, which sends any selected data subset to the Scatterplot widget.

Besides ease-of-use and flexibility, data exploration widgets were carefully
design to support interaction. Clicking on a classification tree node in the tree
visualization widget, for example, outputs the corresponding data instances mak-
ing them available for further analysis. Any visualization of predictive or visu-
alization models where their elements are associated with particular subsets of
instances, attributes, data domains, etc., behave in the similar way. A snapshot
of Orange Canvas with an example schema is shown in Fig. 1.

2 On Significance and Contribution

Orange is an open-source framework that features both scripting and visual
programming. Because of component-based design in C++ and integration with
Python, Orange should appeal to machine learning researchers for the speed of
execution and ease of prototyping of new methods. Graphical user’s interface
is provided through visual programming and carefully designed widgets that
support interactive data exploration. Component-based design, both on the level
of procedural and visual programming, flexibility in combining components to
design new machine learning methods and data mining applications, and user
and developer-friendly environment are also the most significant attributes of
Orange and those where Orange can make its contribution to the community.

Acknowledgement

This work was supported, in part, by the program and project grants from Slovene

Ministry of Science and Technology and Slovene Ministry of Information Society, and

American Cancer Society project grant RPG-00-202-01-CCE.


	1 Orange, a Component-Based Framework
	1.1 Scripting in Python
	1.2 Visual Programming

	2 On Significance and Contribution

