
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2646873

Orange Locking: Channel-Free Database Concurrency Control Via Locking

Article · April 1994

Source: CiteSeer

CITATIONS

25
READS

20

1 author:

John P Mcdermott

United States Naval Research Laboratory

49 PUBLICATIONS 1,769 CITATIONS

SEE PROFILE

All content following this page was uploaded by John P Mcdermott on 06 July 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2646873_Orange_Locking_Channel-Free_Database_Concurrency_Control_Via_Locking?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2646873_Orange_Locking_Channel-Free_Database_Concurrency_Control_Via_Locking?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Mcdermott-2?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Mcdermott-2?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/United-States-Naval-Research-Laboratory?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Mcdermott-2?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Mcdermott-2?enrichId=rgreq-97bce48ad8283469e7bd593faad7e8a2-XXX&enrichSource=Y292ZXJQYWdlOzI2NDY4NzM7QVM6MjQ4MjkyMDMwMjgzNzc2QDE0MzYyMDg4NDEzMzY%3D&el=1_x_10&_esc=publicationCoverPdf

ORANGE LOCKING: CHANNEL-FREE DATABASE CONCURRENCY

CONTROL VIA LOCKING

John McDermotta and Sushil Jajodiab

aCode 5540, Naval Research Laboratory, Washington, DC 20375, USA

bDepartment of Information Systems and Systems Engineering, George Mason

University, Fairfax, VA 22030, USA

Keyword Codes: D.1.3;K.6.5;H.2.4

Keywords: Concurrent Programming; Security and Protection; Database

Management Systems

Abstract

The concurrency control lock (e.g. file lock, table lock) has long been used as a
canonical example of a covert channel in a database system. Locking is a funda-
mental concurrency control technique used in many kinds of computer systems
besides database systems.Locking is generally considered to be interfering and
hence unsuitable for multilevel systems. In this paper we show how such locks
can be used for concurrency control, without introducing covert channels.

1. Introduction

A database system is a software system that provides a collection of predefined
operations with three features: 1) efficient management of large amounts of per-
sistent data (the database), 2) transaction management for transactions com-
posed of those operations on the data (concurrency control, atomicity, and
recovery from failure), and 3) a data model that provides a simple abstraction for
understanding how the predefined operations and data interact. Our concern is
with the second of these features, transaction management.

Transaction management for conventional centralized database systems is
fairly well understood and much progress is being made for distributed and feder-
ated database systems [18]. Our concern is with transaction management in what
we call multilevel database systems (which may also be centralized, distributed,
federated, etc.). Multilevel database systems assign their data to security classes
and restrict database operations based on those classes [7]. The security classes
are partially ordered; the data and operations are considered to be in various lev-
els, hence the term multilevel.

A database system that just provides security classes and restrictions on oper-
ations is not multilevel. An additional feature of multilevel database systems is
their ability to enforce the classes and restrictions in the face of nontrivial at-
tempts to bypass or tamper with the enforcement mechanisms. One of the most

difficult challenges for multilevel databases is the covert channel problem. A da-
tabase system user with “low” privileges can obtain information from “higher” se-
curity classes by having it leaked into his or her security class from the higher
classes, by a Trojan horse or virus, via a covert channel. A covert channel is a
means of unauthorized interprocess communication that uses a mechanism not
intended for interprocess communication.

The concurrency control lock (e.g. file lock, table lock) has long been used as a
canonical example of a covert channel in a database system. Locking is a funda-
mental concurrency control technique used in many kinds of computer systems
besides database systems. Locking is generally considered to be interfering, in
the sense of [6,16], and hence unsuitable for multilevel systems.

In this paper we show how locks can be used for concurrency control, without
introducing covert channels. We have developed three locking algorithms that do
not introduce signalling channels1 yet they produce serializable transaction his-
tories. Early work on concurrency control for multilevel-secure database systems
was done by Hinke and Schaefer, where quasi-synchronization [8] was used to
solve the secure readers and writers problem, without channels. Quasi-synchro-
nized histories are not necessarily serializable (not surprisingly, since Hinke and
Schaefer’s work was coeval with the development of serializability theory [5].)
Reed and Kanodia later developed a general mechanism [17] for solving problems
similar to the secure readers and writers problem, but it too is unable to guaran-
tee serializability. Previous algorithms that do produce serializable histories for
concurrency control, without channels, have relied on timestamping [1,10,11] or
are based on subtle properties of a particular database system architecture
[3,9,14]. Our orange locking algorithms do not use timestamps and they do not
depend on the underlying architecture of the database system. The rest of this
paper is organized as follows. First, we discuss transactions, conventional lock-
ing, and covert channels. Then we present three locking algorithms: conservative
orange locking, reset orange locking, and optimistic orange locking. We show
these algorithms to be correct (serializable) and secure (noninterfering), and dis-
cuss their deadlock properties. Finally, because of our own interest in the repli-
cated architecture, we show how orange locking can be used to implement
immediate-write algorithms for the replicated architecture.

2. Transaction Management in Multilevel Databases

A transaction is an abstract unit of concurrent computation that executes
atomically. The effects of a transaction do not interfere with other transactions
that access the same data. Also, a transaction either happens with all of its ef-
fects made permanent or it doesn’t happen and none of its effects are permanent.
A useful model of a transaction must show how these properties can be achieved
by composing smaller units of computation, when those smaller units are not nec-
essarily guaranteed to compose into an atomic transaction. Thus the model must

1. We distinguish implementation invariant (i.e. inherent in the algorithm itself) covert channels
as signalling channels. An implementation of a signalling-channel free algorithm may still have
covert channels.

be concerned with showing potential conflicts between operations and with show-
ing arbitrary orderings. Since we are managing transactions for secure database
systems, our model must also reflect the security policy enforced by the DBS [13].

In this report we model transactions as sequences of abstract read, read_lock,
read_unlock, write, write_lock, write_unlock, commit, and abort operations, de-
noted r[x], rl[x], ru[x], w[x], wl[x], wu[x], c, and a, respectively. The sequence mod-
els the order in which database operations are sent to the transaction
management algorithms, without modeling the control structure of transactions
themselves.Modeling transactions as sequences is desirable because the sequenc-
es can be used in a noninterference [6,16] or restrictiveness [12] model to reason
about the security of our algorithms.

Definition 1. A databaseD is a finite set of pairwise disjoint data items that can be
operated on by a single atomic database operation. Each data item x in D has a
countable domain dom(x). A database state is an element of the Cartesian product
of the domains of elements of D, that is, a state associates a value with each data
item in the database. The integrity constraints on a database specify a subset of
the Cartesian product, that is, the consistent database states. A transaction state
of a transaction is an element of the Cartesian product of the domains of the trans-
action’s basis set. A transaction state associates a value with each data item that
is read or written by the transaction. A database system state, or DBS state, on a
history H is a tuple containing a database state as its first element and a transac-
tion state for every transaction in history H. Each database operation maps a DBS
state to a DBS state. ❑

Definition 2. A transaction T is a finite sequence of database operations from some
finite setO. UsuallyO = { r[•], rl[•], ru[•], w[•], wl[•], wu[•], c, a} . We will take
this read-write model as our definition unless we say otherwise. We denote single
operations as one-element sequences thus r[x]. Concatenation of sequences is de-
noted by juxtaposition. If transaction T reads x, then writes x and commits we can
denote transaction T as the sequence r[x]w[x]cT. We can also show a transaction
as a concatenation of unspecified sequences of database operations, like T = αr[x]β.
We will always use lower case Greek letters to indicate subsequences of database
operations.We use λ to denote the empty sequence.

If a sequence of database operations is a transaction, we further require that if
the transaction T= αp, that is, the sequence of operations α followed the singleton
sequence p, then p must be either cT or aT and also that neither cT nor aT be in
α . ❑

Definition 3. Let S1 be a sequence that contains only distinct elements and let S2
be a sequence that contains only distinct elements. Say that these two sequences
are compatible if they do not contain inconsistent orderings of elements common
to S1 and S2. For example, if a, b ∈S1 and a, b ∈S2 and if S1 orders a and b as a<b
and S2 orders a and b as b<a, then S1 and S2 are not compatible sequences. Let
image S1 denote the set of elements in sequence S1. Define the shuffle of two com-
patible sequences S1 and S2, denoted S1*S2, to be the set of all sequences that con-
tain just the elements of (image S1) �∪ (image S2) and contain S1 and S2 as
subsequences. The extension to the shuffle S1*S2*…*Sk of more than two compat-

ible sequences is straightforward. ❑

Definition 4. A history H over a set of transactions T= { T1, T2, … ,Tk} is an ele-
ment of the shuffle of T, that is H is a sequence in T1*T2*… *Tk. A serial history
has every operation of transaction Ti before every operation of transaction Tj (or
vice versa), for every pair of transactions (Ti, Tj) in H. ❑

Definition 5. We define two operations p[x] and q[x] to conflict if one of them is a
write operation. Intuitively conflicting operations do not commute; we get different
results if conflicting operations p and q are done in different orders. We say that
two transactions conflict if they contain conflicting operations. ❑

We can now define conflict equivalence using the notion of conflicting opera-
tions.

Definition 6. Two histories H1 and H2 are (conflict) equivalent if

1. they are defined over the same set of transactions and operations,

2. for any pair of conflicting operations pi[x], qj[x], (i not necessarily distinct
from j) such that ai, aj are not in H1, we have H1= α1pi[x]β1qj[x]γ1 iff
H2= α2pi[x]β2qj[x]γ2. ❑

In this discussion we take the view that histories are correct if they are serial-
izable, that is, equivalent to some serial history. Because aborted transactions
have no permanent effect on the database state we do not include them in our
equivalent serial histories. Because active transactions (i.e. those that have not
committed or aborted yet) may abort, we do not include them either. To accommo-
date this in our equivalence we define the committed projection C(H) of a history
H to be the history obtained from H by removing operations that belong to un-
committed transactions.

Definition 7. Formally, we say that history H is serializable if its committed projec-
tion C(H) is equivalent to some serial history. ❑

Definition 8. A serialization order of a history H is the order that transactions ap-
pear in a serial history that is equivalent to the committed projection of history H.
A serial history equivalent to the committed projection of H is not necessarily
unique so H may have several serialization orders. ❑

Definition 9. To model the security policy enforced by our database systems we in-
troduce a finite set of subjects S, and a finite lattice (SC, ≤) of security classes. The
data items inD of our transaction model will be the passive entities of our security
model, that is, abstract units of protected computer resources. A subject is an ab-
stract unit of secure computation. We relate subjects to transactions by defining a
subject to be a sequence of database operations. A subject may or may not be a
transaction. Every transaction will be a sequence of one or more subjects and every
subject in our security model will be in one and only one transaction. We may use
the terms higher and lower to refer to a relation between two or more security
classes. By higher, we mean strictly greater than and by lower we mean strictly
less than. We use a mapping λ :D∪S→SC to give the security class of every data

element and every transaction.

The algorithms we present here apply to database systems that enforce the fol-
lowing security policy:

1. All transactions are single-level. That is, every subject in a transaction has
the same security class and we can meaningfully apply our level function to
transactions, thus λ (T).

2. Subject S is not allowed to read data element x ∈D unless λ (S)≥λ (x).

3. Subject S is not allowed to write into data element x ∈D unless λ (S)=λ (x) .

4. λ (S) and λ (x) do not change. ❑

Definition 10. If two transactions Ti and Tj have security classes λ (Ti), λ (Tj) such
that λ (Ti)< λ (Tj), then Ti and Tj are low and high transactions with respect to each
other. We introduce this definition simply for convenience of exposition. ❑

Definition 11. A transaction Ti reads x from transaction Tj in history H if

H= α wj[x]β ri[x]γ

and aj∉ β and if wk[x]∈ β then ak∈ β . ❑

Definition 12. A read-down is a read operation r[x] of a transaction Ti such that
λ (Ti)> λ (x). Data item x is a read-down data item. If transaction Ti reads x from
transaction Tj and x is a read-down data item, then Ti reads-x-down from Tj, and
if for some data item x, Ti reads-x-down from Tj, then Ti reads-down from Tj. ❑

3. Locking and Channels

Concurrency control via conventional locking is based on the following princi-
ple: 1) each operation that is to be scheduled includes a (possibly implicit) lock re-
quest, and 2) if a transaction requests a lock pli[x] that conflicts with a lock qlj[y]
that is already set then the requesting transaction is delayed. Two locks pli[x] and
qlj[y] conflict if their corresponding operations p and q conflict, x= y, and i≠ j.
Locks can be implemented as a lock table inside the scheduler. Our abstract read
lock rli[x] is implemented as a lock table entry <x, read, i>. Transactions that are
delayed can be placed on a queue associated with the entry; the mechanism for ef-
fecting the delay depends on the underlying operating system. The setting and re-
leasing of locks and the scheduling of operations is done by the scheduler.
Transactions request operations and the scheduler returns the results when they
are available.

Intuitively, locking should be sufficient by itself to ensure correct database sys-
tem operation. Unfortunately, it is not. Locking intended to achieve serializability
must also be two-phase, in the following sense. Transactions that use two-phase
locking have a growing phase wherein all of a transaction’s locks are set and a
shrinking phase wherein all of its locks are released. A transaction’s locks are not
necessarily set or released all at the same time, but no lock may be set after a lock
has been released. Formally, we say that for any data items x and y, and any
transaction Ti, it is always the case that pli[x] precedes qui[y].

To make recovery from failures tractable, two-phase locking algorithms are of-
ten designed to be strict. A transaction scheduled by a strict two-phase locking al-
gorithm holds all of its write locks until the end of the transaction, and then
releases them together.

Conventional locking introduces a signalling channel. If a virus or Trojan horse
in transaction Ti wishes to signal information to a less privileged transaction Tj
(i.e. Tj runs in a lower security class) it can do so by reading down, from some pre-
determined data item x such that the security class of x is the same as Tj’s securi-
ty class. Transaction Ti’s read request will set a read lock rli[x]. If transaction Ti
now tries to write into data item x, transaction Tj will be delayed by the read lock
rli[x]. By selectively read locking and read unlocking data item x, transaction Ti
can leak information to Tj. It is this well-known scenario we wish to prevent.

4. Optimistic Orange Locking (OOL)

Now we show how to use locks for concurrency control, in a way that does not
introduce signalling channels. Our first algorithm is optimistic, that is, opera-
tions are never delayed by the scheduling algorithm. Instead, when a transaction
is ready to commit, the scheduling algorithm checks the schedule to see if it is
correct. If not, then some transaction is aborted (to be rerun later) to make the
schedule correct.

In our first approach we simply let the high transaction Tj set read locks on low
data items as in a conventional, untrusted database system. If a low transaction
Ti then tries to set a write lock on one of the same data items, we immediately
grant Ti’s write lock and change Tj’s read-down lock to an orange lock, indicating
the possibility of an incorrect read.

Low transactions will not be interfered with by high transactions following this
approach. However, we have to decide what to do with high transactions that
read data via orange locks instead of read-down locks. If we simply inform the
transactions of the orange locks but let them read anyway, the transactions will
probably be incorrect. The read-down operations will have been invalidated by
the conflicting write that was performed in a nonserializable fashion.

We can obtain serializable schedules by simply aborting a transaction whenev-
er its first read down is orange locked. If most transactions only read down on a
few data items and transactions are easy to restart, this approach will allow us to
correctly schedule them in a simple manner. This approach begins to have prob-
lems when the number of read-downs increases or the cost of restarting a trans-
action is high. We can do better, at the expense of an increase in complexity, by
reducing the number of aborts and making restarts easier.

First, we add a local workspace for each transaction. The local workspace con-
tains storage for all the values a transaction will read down. We begin each trans-
action by having it perform all of its read-downs before beginning any processing.
After all of the data items in the local workspace are read, the transaction pro-
ceeds as a conventional transaction, reading from and writing to the database di-

rectly, within the transaction’s security class. Any read-downs during processing
are performed from the transaction’s local workspace.

Definition 13. A transaction Ti has a home-free point that it must reach before com-
pleting its processing. A transaction Ti has reached its home-free point when all
data items x to be read down by Ti are either read locked and read into Ti’s local
workspace or orange locked and read into Ti’s local workspace. ❑

If a high transaction Ti reaches its home-free point without any orange locks it
is allowed to proceed. If Ti has an orange lock set before it reaches its home free
point, it is aborted. This abort can be made a lightweight abort, that is, we do not
need to resubmit the transaction to the scheduler. Instead we can abort by releas-
ing all read-down locks, resetting the local workspace, and moving the transac-
tion’s program counter back to the beginning of the transaction. Thus we achieve
the effect of a full abort with less overhead. Because we do all our read-downs to-
gether, we reduce the length of time we are likely to be interfered with by a low
transaction.

Our simple optimistic approach can be shown to be correct because its histories
are identical to histories produced by conventional two-phase locking. Transac-
tions that do not conform to the conventional two-phase model are aborted and do
not appear in the committed prefix that defines the current stable database state.
Our workspace-based improvement is also correct; we will show how later in this
paper.

The advantage of this optimistic approach is that we have a relatively simple
algorithm, even with our workspace version. We do not have to change our con-
ventional two-phase locking implementation very much. Unfortunately, we get
poor performance if lock contention is heavy and we can get also get starvation as
a high transaction’s read-down locks are repeatedly set to orange, forcing the
high transaction to restart.

Remark. The potential for infinite overtaking suggests a possibility for denial of
service. While this is theoretically true, it is of no practical concern. A more effec-
tive denial of service attack can be mounted with crude techniques such as re-
source exhaustion.

5. Conservative Orange Locking (COL)

If aborts and restarts are too expensive, but we still want to maintain correct-
ness for our transactions, we can do so by using a conservative approach. Our ap-
proach is not conservative in the usual sense because it can still deadlock. Our
approach is conservative in the sense that it does not need to abort any transac-
tions for concurrency control reasons and also because it tries to avoid any possi-
ble missteps in its approach to scheduling.

In the OOL scheduler, we lock and schedule operations as we normally would,
except we cannot delay low write operations to ensure correct read-down opera-
tions. In OOL we give up on the high transaction as soon as we detect a conflict
with a low write operation. We can do better than this by trying to save the high
transaction instead of aborting it. In the conservative orange locking approach,

we will use the orange locks to identify a current low transaction that we can
safely read from, thus we do not have to give up if a low transaction has a conflict
with a read-down. To do this, we may have to resubmit some read-down opera-
tions that were invalidated by low transactions. In fact, we can sometimes do
even better than rereading invalidated read-downs. If we override a read-down
lock into an orange lock before we schedule the associated read-down operation,
we can delay that read operation until we have identified the proper low transac-
tion to read from. We will avoid performing an invalid read in the first place.

We continue with some data structure definitions. We will unavoidably use
some terms before they are defined; we ask the reader to trust that all meanings
will be resolved as quickly as possible.

5.1 Local Workspace

Each transaction has a local workspace that is used to hold the values of data
items the transaction needs to read-down. The local workspace is used in the
same way as in optimistic orange locking; any read-downs during processing are
performed from the transaction’s local workspace. In conservative orange locking,
each read-down data item in the local workspace can be marked read or unread.
These markers are used to determine when a transaction has reached its home-
free point. Since a high transaction does not give up when it finds one of its read-
down operations has been invalidated, the transaction must know which data
items to reread or delay on in order to get a valid view of the database.

5.2 Read-Down Queue

The scheduler associates every transaction with a transaction-specific queue
Qi, called a read-down queue. Whenever a high transaction Tj must repeat or de-
fer one of its reads, it does so in order to read from a currently active low transac-
tion Ti. To do this, the scheduler places transaction Tj on the low transaction Ti’s
read-down queue to wait for Ti to write the necessary value. Management of the
read-down queues is done by the scheduler. A low transaction Ti is not even
aware of the existence of its corresponding read-down queue Qi.

Along with low transaction Ti’s read-down queue, the scheduler keeps a list Wi
of values written by the corresponding transaction. For efficiency, this list Wi may
be incorporated into the database system’s cache and recovery log, depending on
their implementation. When low transaction Ti commits, the scheduler services
the reads requested by any high transaction Tj that was placed on Ti’s read-down
queue. The values returned are taken from list Wi. (To preserve recoverability,
cascadelessness, and strictness, the scheduler should not make orange locked
data items in Wi available for reading via Qi until transaction Ti has committed.)

5.3 Conservative Orange Locks: Overriding Read Locks for Read-Downs

The heart of our conservative approach is the way we use orange locks. Instead
of passively marking data items, our orange locks actively affect the individual
scheduling of reads and writes. Whenever a low transaction Ti needs to obtain a
write lock on a data item x that is being read by a high transaction Tj, the sched-
uler tries1 to override the high transaction Tj’s read-down of x. On behalf of trans-

action Tj, the scheduler converts Tj’s read lock to an orange lock on data item x.
Whenever a data item x is orange locked on behalf of transaction Tj, data item x
in Tj’s local workspace is also marked unread by the scheduler. Even if data item
x had previously been read it is still marked unread. A high transaction Tj that
has its read lock converted to an orange lock is placed on the appropriate read-
down queue to wait for the overriding low transaction Ti to complete. At the same
time, all of the read-down data items in Ti’s write set are also orange locked and
thus marked unread. At this point we say that transaction Tj is orange locked
into transaction Ti. If Ti commits then Tj will read-down from transaction Ti every
data item in the write set of transaction Ti that Tj reads. If this happens then the
override is considered to have occurred. If instead transaction Ti aborts, then all
of the orange locks that were associated with it must be reset to read locks (the
affected data items will all still be unread) and transaction Tj must continue to
try to reach its read-down point. If another low transaction Tk tries to write lock
data item x and high transaction Tj already holds an orange lock on x then the
original orange lock is retained but the low transaction Tk gets its write lock and
continues. We state this formally as the orange locking rule.

Definition 14. We denote the read set and write set of a transaction Ti asRi andWi
respectively. We also define the read-down set of transaction Ti as the set Ei of all
Ti’s read-down data items and we also define the orange-locked setOij as the set of
all read-down data items that Ti reads down from transaction Tj via an orange
lock. If transaction Ti reads x down and transaction Tj converts Ti’s read lock on x
to an orange lock thenOij=Ei∩Wj. If transaction Ti reads x down and its read lock
is not converted but x is inWj then Oij is empty. We will refer to this condition as
the conservative orange locking rule, that is if data item x is in Ei∩Wj. then
Oij=Ei∩Wj or Oij= ∅ .

5.4 The Conservative Orange Locking Algorithm

Now that we have a clear definition of the override operation, it is possible to
talk about how orange locking is used in the algorithm. We give the steps to be
followed by a transaction Ti and by the scheduler in serializing Ti’s operations.

(1) Transaction Ti declares its read-down set Ei and its write setWi.

(2) The scheduler marks all of Ti’s local workspace unread and sets Qi, its read-
down queue, to empty.

(3) While some read-down data item in its local workspace is still marked un-
read, transaction Ti submits read-down operations for those unread data items.
If the read-down data item is read locked it is read from the database and marked
read in the local workspace. Otherwise the data item must be orange locked and
the transaction reads, via the scheduler’s list Wj, from the committed transaction
Tj whose write operation required conversion of Ti’s read lock into an orange lock.
When this step completes, transaction Ti has reached its home-free point.

(4) Transaction Ti now releases the locks on its read-down data items. The read-
down locks can be released together in a single operation. Alternatively, if read-

1. The read lock may be released before it is overridden.

down locks are not released together and some low transaction Tj requests a
write lock after Ti has reached its home-free point but before the scheduler has
released all of Ti’s read-down locks, the scheduler simply grants the write lock
and schedules the write before releasing the rest of Ti’s locks.

(5) Transaction Ti now performs the rest of its processing using conventional
strict two-phase locking on data items within its own security class. If transac-
tion Ti needs to perform a write operation on data item x at the same time anoth-
er transaction Tj needs to read-down x, then Ti will override Tj’s read-down by
converting Tj’s read-lock to an orange lock.

(6) When transaction Ti commits, all of the high transactions that are waiting for
Ti on the scheduler’s queue Qi are allowed to read from Ti, via the scheduler’s list
Wi. At this point transaction Ti will have succeeded in overriding the reads of
those higher transactions, thus requiring them to read from list Wi. ❑

A COL scheduler avoids starvation1 because it selects a specific active low
transaction for a high transaction to read from, or it schedules the high transac-
tion to read from the database itself via valid read-downs. It achieves this at the
expense of complexity of mechanism. Note that by waiting until the selected low
transaction completes, we incur less delay than our intuition would suggest, since
we would have had to wait almost as long for the selected low transaction if it had
already held the lock.

The serialization order established by a COL scheduler is determined by the
home-free points between security classes and by the lock points within the same
security class. The home-free point of a transaction must come either before or af-
ter the lock point of every conflicting transaction. By holding its read-down locks
until its home-free point, conservative orange locking becomes a four-phase proto-
col. There is a growing and a shrinking phase for read-downs and then a growing
and a shrinking phase for intra-class reading and writing.

6. Reset Orange Locking (ROL)

Intuitively, the conservative orange locking rule may seem to be too strong. We
would like to do something less than orange lock the entire intersection of a
transaction’s read-down set and the corresponding update transaction’s write set.
Fortunately, we can do better than the conservative orange locking rule, if we are
willing to return to the possibility of infinite overtaking or starvation. We can do
this while still avoiding the need to abort any high transactions that have had
read-downs invalidated by low write operations.

In the reset orange locking algorithm, we use the same definitions. Again the
local workspace only holds the values the transaction needs to read down. In the
ROL algorithm, values to be written are not held in a list Wi by the scheduler and
there is no read-down queue Qi for a transaction. Instead, we can let transactions
read down directly from the database.

1. An exception to this is the pathological case of infinite overtaking by transactions that abort
and restart with no other interleaved transactions committing on the same write set.

6.1 Reset Orange Locks: Resetting Read Locks for Read-Downs

In reset orange locking, just as in COL, low transactions override the read
down locks of high transactions. Whenever a low transaction Ti needs to obtain a
write lock on a data item x that is being read by a high transaction Tj, the sched-
uler tries to override the high transaction Tj’s read-down of x.

In reset orange locking, the effect of an override is different from COL. First,
the scheduler sets low transaction Ti’s write lock on data item x and schedules
transaction Ti’s write operation. Then the scheduler marks data item x in trans-
action Tj’s local workspace as unread. Next, the scheduler releases high transac-
tion Tj’s read lock. Eventually transaction Tj requests the scheduler to set it
again, by asking for the corresponding read operation. The result of this attempt
is that high transaction Tj’s read request is queued waiting for a chance to read
according to the normal rules of two-phase locking (e.g. it may have to wait for
other writes besides Ti’s). In the case of reset orange locking, if another low trans-
action Tk tries to write lock data item x and high transaction Tj has once more ob-
tained its read lock on data item x, the new low transaction does override high
transaction Tj. This repeated overriding can cause starvation and transaction Tj
may never reach its home-free point.

Because a transaction holds all its read-down locks until it reaches its home-
free point it is sure to detect (via resetting) any writes that could potentially in-
validate a previous or pending read operation.

6.2 The Reset Orange Locking Algorithm

We give the steps followed by a transaction Ti scheduled by ROL and by the
ROL scheduler. We follow the same style of exposition to allow comparison with
COL.

(1) The scheduler marks all of Ti’s local workspace unread.

(2) While some read-down data item in its local workspace is still marked un-
read, transaction Ti submits read-down operations for those unread data items.
If the read-down data item is read locked it is read from the database and marked
read in the local workspace. Otherwise transaction Ti’s read request is queued
waiting for a chance to read according to the normal rules of two-phase locking.
When this step completes, transaction Ti has reached its home-free point.

(3) Transaction Ti now releases the locks on its read-down data items. The read-
down locks can be released together in a single operation. Alternatively, if read-
down locks are not released together and some low transaction Tj requests a
write lock after Ti has reached its home-free point but before the scheduler has
released all of Ti’s read-down locks, the scheduler simply grants the write lock
and schedules the write before releasing the rest of Ti’s locks.

(4) Transaction Ti now performs the rest of its processing using conventional
strict two-phase locking on data items within its own security class. If transac-
tion Ti needs to perform a write operation on data item x at the same time anoth-
er transaction Tj needs to read-down x, then Ti will override (via the scheduler)
Tj’s read-down by converting Tj’s read-lock to a queued read-lock request. Trans-

action Ti commits according to the rules of conventional strict two-phase locking.
❑

The reset orange locking algorithm is simpler than conservative orange lock-
ing. It also does not require declaration of read-down and write sets. In return for
this decrease in complexity, we now have the possibility of delays due to multiple
overrides.

7. Correctness

Our proofs depend on the following important definition:

Definition 15. We define the home-free point HFPi of transaction Ti to be the first
unlock operation rui[x] performed on a data item x that is read down by Ti. We de-
fine the lock point LPi of transaction Ti to be the first unlock operation qui[y] per-
formed on a data item y in the same security class as transaction Ti. Intuitively,
the lock point of Ti is the conventional lock point associated with strict two-phase
locking, as we use it within a security class. For a transaction that does not read
down we consider the home-free point to be the lock point. ❑

We will now show the correctness of ROL. Instead of the usual graph theoretic
proof, we argue directly towards the definition of conflict serializability.

Given any history H produced by an ROL scheduler, construct from H a serial
history Hs as follows: take the committed projection of H and for every pair of
transactions (Ti, Tj) in C(H), if

1. the security class of transaction Ti is the same as the security class of
transaction Tj, that is, λ (Ti) = λ (Tj), then put the transactions into Hs in the
order that their lock points appear in C(H), or

2. λ (Ti) < λ (Tj) or vice versa, then put the transactions in Hs in the order that
the home-free point of the high transaction appears with respect to the low
transaction’s lock point in C(H), or

3. some transaction is pairwise incomparable to every other transaction in
C(H); put each such transaction at the end of Hs.

The serial history Hs is defined over the same set of transactions and has the
same set of operations as C(H). We show that the committed projection C(H) or-
ders pairs of conflicting operations the same as serial history Hs by constructing a
chain of equivalent histories starting from C(H) and ending with Hs.

By the definition of conflicting operation and conflict equivalence, we can swap
two adjacent nonconflicting operations in a history and the result will be equiva-
lent to the original history. Thus, if the conflicting operations in C(H) and Hs are
already in the same order we can transform C(H) into Hs via a finite number of
equivalence preserving swaps.

To show that all pairs of conflicting operations are already in the same order,
we consider three cases:

Case λ (Ti) = λ (Tj): Only operations on data items at the same security class
conflict, all other operations must be read downs. By the strict two-phase locking
of step (4) we know that, for any pair of conflicting operations pi[x], qj[x], either

(1)C(H)= α1 pi[x]α2LPiα3 qj[x]α4 and

(2)Hs= α5 pi[x]α6 LPiα7 qj[x]α8

or vice versa, depending on which lock point comes first in C(H). Thus all pairs
of conflicting operations from transactions in the same security class are ordered
the same in C(H) and Hs. ❑

Case λ (Ti) < λ (Tj): Definition 9 tells us that we can only have conflicting pairs
of the form wi[x], rj[x], in either order. Suppose we have committed projection

(3) C(H)= α rj[x]β wi[x]γ

for some pair of operations wi[x], rj[x]. By steps (2), (3), and (4) of the algo-
rithm, the committed projection must be

(4) C(H)= α rj[x]β1 HFPjβ2wi[x]γ1LPiγ2
We know that every other pair of operations wi[y], rj[y] in C(H) must also be

shuffled such that

1. rj[y]∈ α or rj[y]∈ δ , by the definition of home-free point, and

2. wi[x]∉ α and wi[x]∉ δ , since transaction Tj will be in its step 2 or step 3
and transaction Ti will be in its step 4.

Thus if one pair of conflicting operations wi[x], rj[x] is ordered according to
equation (3) then all pairs of conflicting operations are also ordered the same
way, which corresponds to the application of serial history construction rule 2:
place transaction Tj before transaction Ti in Hs because Tj’s home-free point
HFPj is before Ti’s lock point LPi in C(H).

Suppose that the committed projection has some pair of operations wi[x], rj[x]
in the other order, that is

(5) C(H)= α wi[x]β rj[x]γ

By steps (2), (3), and (4) of the algorithm, the committed projection must be

(6) C(H)= α wi[x]β1 LPiβ2rj[x]γ1HFPjγ2
We know that every other pair of operations wi[y], rj[y] in C(H) must also be

shuffled such that

1. rj[y]∉ α and rj[y]∉ δ , since transaction Tj will be in its step 2 or step 3 and
transaction Ti will be in its step 4, and

2. wi[x]∈ α or wi[x]∈ δ , by the definition of two-phase locking.

Thus if one pair of conflicting operations wi[x], rj[x] is ordered according to
equation (5) then all pairs of conflicting operations are also ordered the same way,
which corresponds to the application of serial history construction rule 2: place
transaction Ti before transaction Tj in Hs because Ti’s lock point LPi is before Tj’s
home-free point HFPj in C(H). ❑

Case λ (Ti) > λ (Tj): The arguments are symmetric to the preceding case. ❑

The correctness proofs for COL and workspace-based OOL are very similar.
For simple OOL we merely note that any potentially nonserializable transactions
are missing from C(H) and use the proof for conventional two-phase locking given
in [2].

8. Security

We argue informally that orange locking is noninterfering. We need to do this
because some parts of the algorithm may be implemented as trusted code. We can
restrict our discussion to read-down operations because they are the only parts of
the algorithms that have the potential to affect the low state of the database sys-
tem in a way that is interfering. We assume without discussion that no low state
variables are changed explicitly by any of the algorithms, including error messag-
es that might report a data item as being locked. Instead we are concerned with
delays; that the value of time as a state variable can be made to change according
to high inputs (read down requests) to our algorithms. In all three algorithms, if
no write is requested while a read-down lock is set, there is no delay possible.

In COL scheduling we must set the low transaction’s write lock immediately,
before we invalidate the read-down of the high transaction. Likewise, the sched-
uling of the write operation must precede the orange locking action. If our mecha-
nism for recording values in the list Wi causes a perceptible delay in returning an
acknowledgment for the write, then COL scheduling could have a problem. How-
ever, the value of a write is usually recorded in a cache or recovery log or both, as
part of the normal write process. If not, we can simply make the write operation
always put the value in Wi, thus it becomes a constant time operation. We also
need to make the action of placing a high transaction on the read-down queue
part of the action of setting a write lock.

In ROL scheduling, we must also set the write lock immediately and schedule
the write operation right away so as to make the write a constant time operation.
The release and resetting of the high transaction’s read lock will not interfere
with any low transaction. Also, in ROL we do not have to deal with read-down
queues and lists of writes, so it is easier to make ROL secure.

OOL scheduling is trivially noninterfering; the scheduler only has to override
read-down locks. Since the orange locked transaction will be aborted, there is no
problem of getting correct values for the read that is overridden.

9. Deadlocks

Conventional two-phase locking is subject to deadlocks. Two or more transac-
tions can obtain exclusive locks (i.e. write locks) that the others are waiting for
and none of the transactions will be able to proceed. This is because the two-
phase nature of the algorithm precludes releasing some lock and resetting it lat-
er. Deadlocks are usually resolved by restarting one of the transactions involved
in the deadlock.

Orange locking has the same potential for deadlocks, within transactions at
the same security class, for the same reason. Read-down operations across securi-
ty classes cannot cause deadlocks at lower classes because read locks can never
delay a lower transaction. Transactions that read down via orange locking can be
involved in deadlocks because they may also interact with transactions in their
own security class.

10. Application to the Replicated Architecture

While orange locking is applicable to kernelized multilevel database systems
we are interested in its potential for use in concurrency and replica control for the
replicated architecture [4].

The frontend-backend architecture with full replication has been around as a
concept for some time [15]. In its SINTRA project, the Naval Research Laboratory
is currently prototyping several frontend-backend architectures with full replica-
tion. What will be called in this paper the SINTRA architecture was proposed by
Froscher and Meadows.

The SINTRA architecture uses full replication to provide multilevel security.
There is an untrusted backend database system for each security class. Data
from dominated security classes is replicated in each backend system. Logically,
the user is allowed to read down and write at the same class but physically the
frontend reads all data at the same class and writes at the same class and up into
dominating classes to maintain the replicas. It is important to remember that
while the replicated architecture uses distributed database system technology,
the replicated approach is a centralized architecture. These techniques may be
adapted to distributed database systems but not without careful consideration of
additional issues. Figure 1 illustrates the basic replicated architecture, for the
partial order of Figure 2. Notice that the low data appears at all backends, left
data at the left and high backends, etc.

Figure 1. The Replicated Architecture

T
C
B

frontend
high backend

right backend

left backend

low backend
DBS

DBS

DBS

DBS

Figure 2. Partial Order for Figure 1

Several deferred-write algorithms have been developed for the replicated archi-
tecture [3,9,14]. Deferred-write replica control algorithms perform updates on
one replica at the time the update is requested and defer the other updates until
later. In contrast, immediate-write algorithms update all replicas simultaneously.

Immediate-write concurrency control algorithms for the replicated architec-
ture require the concurrency control mechanism in general and the lock table in
particular to reside on the frontend. Obtaining a lock on data item x must lock all
replicas of x, simultaneously, by a global lock for x acquired on the frontend. This
is because the write operations must be sent to the backend databases simulta-
neously. Since orange locking can provide this kind of concurrency control with-
out introducing signalling channels, it is suitable for immediate-write
concurrency control in the replicated architecture.

11. Conclusions

Locking is the preferred mechanism for achieving concurrency control in prac-
tical systems. Conventional locking introduces signalling channels. We have
shown three different ways of provided channel-free locking for concurrency con-
trol: conservative orange locking, reset orange locking, and optimistic orange
locking.

The structural differences between these three algorithms are significant. The
COL approach avoids the possibility of starvation in the theoretical sense. In the
practical sense, it also avoids multiple overrides that could reduce the perfor-
mance of ROL. COL is structurally more complex than the other two approaches,
in both algorithm and data structures. The ROL approach is simpler than COL in
algorithm and data structure. It can suffer from multiple overrides of its read
locks but it does not need to abort transactions to deal with overrides. The OOL
approach without the local workspace has the simplest structure of all. In sys-
tems where conflicts are few, this simplicity will give it the best performance of
the three. As the level of conflict (number of conflicting operations per transac-
tion) and multiprogramming (number of transactions active at the same time) in-
creases, determining best performance among the three approaches becomes
problematic.

The need to declare read-down sets and write sets in COL is not as limiting as
it first seems. The declarations prohibit correct scheduling of ad-hoc transactions
with COL, but not interactive applications. Many interactive DBS applications
are supported through forms, which are compatible with COL scheduling.

high

rightleft

low

Some trusted code may be necessary to implement orange locking. The lock ta-
bles themselves may be multilevel objects and should only be accessed by trusted
code. How much trusted code is required outside the lock table is also problemat-
ic. In some systems it may be possible to implement the lock table as a collection
of single-level objects and the lock manager as a collection of single-level process-
es.

Future work should investigate performance issues in greater depth and look
into orange locking implementation architectures with minimal trusted code. Ex-
tension of four-phase locking to untrusted systems, with an eye to increasing con-
currency, is something else we plan to investigate.

Acknowledgments

We would like to thank Ravi Sandhu and the students in his Advanced Topics
in Computer Security for their animated discussion of this problem, Oliver Cos-
tich for naming the home-free point, and Myong Kang, Judy Froscher, and the
anonymous referees for their comments.

References

1. P. Amman and S. Jajodia, “A Timestamp Ordering Algorithm for Secure, Single-Version, Mul-

tilevel Databases”, in Database Security V: Status and Prospects, ed. C. E. Landwehr and S.

Jajodia, North-Holland, Amsterdam, 1992

2. P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database

Systems, Addison-Wesley, 1987, ISBN 0-201-10715-5.

3. O. Costich, “Transaction Processing Using an Untrusted Scheduler in a Multilevel Database

with Replicated Architecture”, in Database Security V: Status and Prospects, ed. C. E. Land-

wehr and S. Jajodia, North-Holland, Amsterdam, 1992.

4. J. Froscher and C. Meadows, “Achieving a trusted database management system using paral-

lelism”, in Database Security II: Status and Prospects, ed. C. E. Landwehr, North-Holland,

Amsterdam, 1989, ISBN 0-444-87483-6, pp. 253-261.

5. J. Gray, R. Lorie, G. Putzulo, and I. Traiger, “Granularity of Locks and Degrees of Consistency

in a Shared Database”, IBM Research Report RJ1654, September 1975.

6. J. Gougen and J. Meseguer, “Unwinding and Inference Control”, Proceedings of 1984 IEEE

Symposium on Security and Privacy, Oakland, CA. pp. 75-86.

7. T. Hinke, “DBMS Technology vs. Threats”, in Database Security: Status and Prospects, ed. C.

E. Landwehr, North-Holland, Amsterdam, 1988, pp. 57-87.

8. T. Hinke and M. Schaefer, Secure Database Management System, RADC-TR-75-266, Final

Technical Report, System Development Corporation, November 1975.

9. S. Jajodia and B. Kogan, “Transaction Processing in Multilevel-Secure Databases Using Rep-

licated Architecture”, Proceedings of 1990 IEEE Symposium on Security and Privacy, Oak-

land, CA, pp. 360-368.

10. T. Keefe, W. Tsai, J. Srivastava, “Multilevel Secure Database Concurrency Control”, Proceed-

ings of Sixth International Conference on Data Engineering, Los Angeles, CA, February 1990,

pp. 337-344.

11. W. Maimone and I. Greenberg, “Single-Level Multiversion Schedulers for Multilevel Secure

Database Systems”, Proceedings of Sixth Annual Computer Security Applications Conference,

Tucson, AZ, December, 1990, pp. 137-147.

12. .D. McCullough, “Specifications for Multi-Level Security and a Hook-Up Property”, Proceed-

ings of 1987 IEEE Symposium on Security and Privacy, Oakland, CA, pp. 161-166.

13. J. McDermott, O.Costich, M. Kang, “A Formal Model of Secure Transaction Management”,

NRL TM 5540-192, July, 1992.

14. J. McDermott, S. Jajodia, and R. Sandhu, “A Single-level Scheduler for the Replicated Archi-

tecture for Multilevel-Secure Databases”, Proceedings of Seventh Annual Computer Security

Applications Conference, San Antonio, TX, 1991, pp. 2-11.

15. “Multilevel Data Management”, Committee on Multilevel Data Management, Air Force Stud-

ies Board, National Research Council, Washington, DC, 1983.

16. I. Moskowitz and O. Costich, “A Classical Automata Approach to Noninterference Type Prob-

lems”, Proceedings of the Computer Security Foundations Workshop 5, Franconia, NH, June

1992, pp. 2-8.

17. D. Reed and R. Kanodia, “Synchronization with Event Counts and Sequencers”, Communica-

tions of the ACM, 22, 2, February 1979, pp. 115-123.

18. A. Sheth and J. Larson, “Federated Database Systems for Managing Distributed, Heteroge-

neous, and Autonomous Databases”, ACM Computing Surveys, 22, 3 (Sep.), 1990, pp 183-236.

View publication statsView publication stats

https://www.researchgate.net/publication/2646873

