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Abstract—This paper presents ORB-SLAM, a feature-based
monocular SLAM system that operates in real time, in small
and large, indoor and outdoor environments. The system is robust
to severe motion clutter, allows wide baseline loop closing and
relocalization, and includes full automatic initialization. Building
on excellent algorithms of recent years, we designed from scratch
a novel system that uses the same features for all SLAM tasks:
tracking, mapping, relocalization, and loop closing. A survival
of the fittest strategy that selects the points and keyframes of
the reconstruction leads to excellent robustness and generates a
compact and trackable map that only grows if the scene content
changes, allowing lifelong operation. We present an exhaustive
evaluation in 27 sequences from the most popular datasets. ORB-
SLAM achieves unprecedented performance with respect to other
state-of-the-art monocular SLAM approaches. For the benefit of
the community, we make the source code public.

Index Terms—Lifelong Mapping, Localization, Monocular Vi-
sion, Recognition, SLAM

I. INTRODUCTION

BUNDLE ADJUSTMENT (BA) is known to provide ac-

curate estimates of camera localizations as well as a

sparse geometrical reconstruction [1], [2], given that a strong

network of matches and good initial guesses are provided. For

long time this approach was considered unaffordable for real

time applications such as Visual Simultaneous Localisation

and Mapping (Visual SLAM). Visual SLAM has the goal

of estimating the camera trajectory while reconstructing the

environment. Nowadays we know that to achieve accurate

results at non-prohibitive computational cost, a real time

SLAM algorithm has to provide BA with:

• Corresponding observations of scene features (map

points) among a subset of selected frames (keyframes).

• As complexity grows with the number of keyframes, their

selection should avoid unnecessary redundancy.

• A strong network configuration of keyframes and points

to produce accurate results, that is, a well spread set of

keyframes observing points with significant parallax and

with plenty of loop closure matches.

• An initial estimation of the keyframe poses and point

locations for the non-linear optimization.

• A local map in exploration where optimization is focused

to achieve scalability.

• The ability to perform fast global optimizations (e.g. pose

graph) to close loops in real-time.
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The first real time application of BA was the visual odome-

try work of Mouragon et. al. [3], followed by the ground break-

ing SLAM work of Klein and Murray [4], known as Parallel

Tracking and Mapping (PTAM). This algorithm, while limited

to small scale operation, provides simple but effective methods

for keyframe selection, feature matching, point triangulation,

camera localization for every frame, and relocalization after

tracking failure. Unfortunately several factors severely limit

its application: lack of loop closing and adequate handling of

occlusions, low invariance to viewpoint of the relocalization

and the need of human intervention for map bootstrapping.

In this work we build on the main ideas of PTAM, the

place recognition work of Gálvez-López and Tardós [5], the

scale-aware loop closing of Strasdat et. al [6] and the use of

covisibility information for large scale operation [7], [8], to

design from scratch ORB-SLAM, a novel monocular SLAM

system whose main contributions are:

• Use of the same features for all tasks: tracking, mapping,

relocalization and loop closing. This makes our system

more efficient, simple and reliable. We use ORB features

[9] which allow real-time performance without GPUs,

providing good invariance to changes in viewpoint and

illumination.

• Real time operation in large environments. Thanks to

the use of a covisibility graph, tracking and mapping is

focused in a local covisible area, independent of global

map size.

• Real time loop closing based on the optimization of a

pose graph that we call the Essential Graph. It is built

from a spanning tree maintained by the system, loop

closure links and strong edges from the covisibility graph.

• Real time camera relocalization with significant invari-

ance to viewpoint and illumination. This allows recovery

from tracking failure and also enhances map reuse.

• A new automatic and robust initialization procedure based

on model selection that permits to create an initial map

of planar and non-planar scenes.

• A survival of the fittest approach to map point and

keyframe selection that is generous in the spawning but

very restrictive in the culling. This policy improves track-

ing robustness, and enhances lifelong operation because

redundant keyframes are discarded.

We present an extensive evaluation in popular public

datasets from indoor and outdoor environments, including

hand-held, car and robot sequences. Notably, we achieve better

camera localization accuracy than the state of the art in direct

methods [10], which optimize directly over pixel intensities

instead of feature reprojection errors. We include a discussion
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in Section IX-B on the possible causes that can make feature-

based methods more accurate than direct methods.

The loop closing and relocalization methods here presented

are based on our previous work [11]. A preliminary version

of the system was presented in [12]. In the current paper we

add the initialization method, the Essential Graph, and perfect

all methods involved. We also describe in detail all building

blocks and perform an exhaustive experimental validation.

To the best of our knowledge, this is the most complete and

reliable solution to monocular SLAM, and for the benefit of

the community we make the source code public. Demonstra-

tion videos and the code can be found in our project webpage1.

II. RELATED WORK

A. Place Recognition

The survey by Williams et al. [13] compared several ap-

proaches for place recognition and concluded that techniques

based on appearance, that is image to image matching, scale

better in large environments than map to map or image to map

methods. Within appearance based methods, bags of words

techniques [14], such as the probabilistic approach FAB-MAP

[15], are to the fore because of their high efficiency. DBoW2

[5] used for the first time bags of binary words obtained from

BRIEF descriptors [16] along with the very efficient FAST

feature detector [17]. This reduced in more than one order of

magnitude the time needed for feature extraction, compared to

SURF [18] and SIFT [19] features that were used in bags of

words approaches so far. Although the system demonstrated

to be very efficient and robust, the use of BRIEF, neither

rotation nor scale invariant, limited the system to in-plane

trajectories and loop detection from similar viewpoints. In

our previous work [11], we proposed a bag of words place

recognizer built on DBoW2 with ORB [9]. ORB are binary

features invariant to rotation and scale (in a certain range),

resulting in a very fast recognizer with good invariance to

viewpoint. We demonstrated the high recall and robustness

of the recognizer in four different datasets, requiring less than

39ms (including feature extraction) to retrieve a loop candidate

from a 10K image database. In this work we use an improved

version of that place recognizer, using covisibility information

and returning several hypotheses when querying the database

instead of just the best match.

B. Map Initialization

Monocular SLAM requires a procedure to create an initial

map because depth cannot be recovered from a single image.

One way to solve the problem is to initially track a known

structure [20]. In the context of filtering approaches, points

can be initialized with high uncertainty in depth using an

inverse depth parametrization [21], which hopefully will later

converge to their real positions. The recent semi-dense work

of Engel et al. [10], follows a similar approach initializing the

depth of the pixels to a random value with high variance.

Initialization methods from two views either assumes locally

scene planarity [4], [22] and recover the relative camera pose

1http://webdiis.unizar.es/∼raulmur/orbslam

from a homography using the method of Faugeras et. al [23],

or compute an essential matrix [24], [25] that models planar

and general scenes, using the five-point algorithm of Nister

[26], which requires to deal with multiple solutions. Both

reconstruction methods are not well constrained under low

parallax and suffer from a twofold ambiguity solution if all

points of a planar scene are closer to one of the camera centers

[27]. On the other hand if a non-planar scene is seen with

parallax a unique fundamental matrix can be computed with

the eight-point algorithm [2] and the relative camera pose can

be recovered without ambiguity.

We present in Section IV a new automatic approach based

on model selection between a homography for planar scenes

and a fundamental matrix for non-planar scenes. A statistical

approach to model selection was proposed by Torr et al.

[28]. Under a similar rationale we have developed a heuristic

initialization algorithm that takes into account the risk of

selecting a fundamental matrix in close to degenerate cases

(i.e. planar, nearly planar, and low parallax), favoring the

selection of the homography. In the planar case, for the sake of

safe operation, we refrain from initializing if the solution has

a twofold ambiguity, as a corrupted solution could be selected.

We delay the initialization until the method produces a unique

solution with significant parallax.

C. Monocular SLAM

Monocular SLAM was initially solved by filtering [20],

[21], [29], [30]. In that approach every frame is processed

by the filter to jointly estimate the map feature locations and

the camera pose. It has the drawbacks of wasting computation

in processing consecutive frames with little new information

and the accumulation of linearization errors. On the other

hand keyframe-based approaches [3], [4] estimate the map

using only selected frames (keyframes) allowing to perform

more costly but accurate bundle adjustment optimizations, as

mapping is not tied to frame-rate. Strasdat et. al [31] demon-

strated that keyframe-based techniques are more accurate than

filtering for the same computational cost.

The most representative keyframe-based SLAM system is

probably PTAM by Klein and Murray [4]. It was the first work

to introduce the idea of splitting camera tracking and mapping

in parallel threads, and demonstrated to be successful for real

time augmented reality applications in small environments.

The original version was later improved with edge features, a

rotation estimation step during tracking and a better relocal-

ization method [32]. The map points of PTAM correspond to

FAST corners matched by patch correlation. This makes the

points only useful for tracking but not for place recognition. In

fact PTAM does not detect large loops, and the relocalization

is based on the correlation of low resolution thumbnails of the

keyframes, yielding a low invariance to viewpoint.

Strasdat et. al [6] presented a large scale monocular SLAM

system with a front-end based on optical flow implemented

on a GPU, followed by FAST feature matching and motion-

only BA, and a back-end based on sliding-window BA. Loop

closures were solved with a pose graph optimization with

similarity constraints (7DoF), that was able to correct the scale

http://webdiis.unizar.es/~raulmur/orbslam
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drift appearing in monocular SLAM. From this work we take

the idea of loop closing with 7DoF pose graph optimization

and apply it to the Essential Graph defined in Section III-D

Strasdat et. al [7] used the front-end of PTAM, but per-

formed the tracking only in a local map retrieved from a covi-

sibility graph. They proposed a double window optimization

back-end that continuously performs BA in the inner window,

and pose graph in a limited-size outer window. However, loop

closing is only effective if the size of the outer window is

large enough to include the whole loop. In our system we

take advantage of the excellent ideas of using a local map

based on covisibility, and building the pose graph from the

covisibility graph, but apply them in a totally redesigned front-

end and back-end. Another difference is that, instead of using

specific features for loop detection (SURF), we perform the

place recognition on the same tracked and mapped features,

obtaining robust frame-rate relocalization and loop detection.

Pirker et. al [33] proposed CD-SLAM, a very complete

system including loop closing, relocalization, large scale oper-

ation and efforts to work on dynamic environments. However

map initialization is not mentioned. The lack of a public

implementation does not allow us to perform a comparison

of accuracy, robustness or large-scale capabilities.

The visual odometry of Song et al. [34] uses ORB features

for tracking and a temporal sliding window BA back-end. In

comparison our system is more general as they do not have

global relocalization, loop closing and do not reuse the map.

They are also using the known distance from the camera to

the ground to limit monocular scale drift.

Lim et. al [25], work published after we submitted our

preliminary version of this work [12], use also the same

features for tracking, mapping and loop detection. However

the choice of BRIEF limits the system to in-plane trajectories.

Their system only tracks points from the last keyframe so the

map is not reused if revisited (similar to visual odometry)

and has the problem of growing unbounded. We compare

qualitatively our results with this approach in section VIII-E.

The recent work of Engel et. al [10], known as LSD-

SLAM, is able to build large scale semi-dense maps, using

direct methods (i.e. optimization directly over image pixel

intensities) instead of bundle adjustment over features. Their

results are very impressive as the system is able to operate

in real time, without GPU acceleration, building a semi-dense

map, with more potential applications for robotics than the

sparse output generated by feature-based SLAM. Nevertheless

they still need features for loop detection and their camera

localization accuracy is significantly lower than in our system

and PTAM, as we show experimentally in Section VIII-B. This

surprising result is discussed in Section IX-B.

In a halfway between direct and feature-based methods is

the semi-direct visual odometry SVO of Forster et al. [22].

Without requiring to extract features in every frame they are

able to operate at high frame-rates obtaining impressive results

in quadracopters. However no loop detection is performed and

the current implementation is mainly thought for downward

looking cameras.

Finally we want to discuss about keyframe selection. All

visual SLAM works in the literature agree that running BA

Fig. 1. ORB-SLAM system overview, showing all the steps performed by
the tracking, local mapping and loop closing threads. The main components
of the place recognition module and the map are also shown.

with all the points and all the frames is not feasible. The

work of Strasdat et al. [31] showed that the most cost-

effective approach is to keep as much points as possible,

while keeping only non-redundant keyframes. The PTAM

approach was to insert keyframes very cautiously to avoid

an excessive growth of the computational complexity. This

restrictive keyframe insertion policy makes the tracking fail in

hard exploration conditions. Our survival of the fittest strategy

achieves unprecedented robustness in difficult scenarios by

inserting keyframes as quickly as possible, and removing later

the redundant ones, to avoid the extra cost.

III. SYSTEM OVERVIEW

A. Feature Choice

One of the main design ideas in our system is that the

same features used by the mapping and tracking are used

for place recognition to perform frame-rate relocalization and

loop detection. This makes our system efficient and avoids

the need to interpolate the depth of the recognition features

from near SLAM features as in previous works [6], [7]. We

requiere features that need for extraction much less than 33ms

per image, which excludes the popular SIFT (∼ 300ms) [19],

SURF (∼ 300ms) [18] or the recent A-KAZE (∼ 100ms) [35].

To obtain general place recognition capabilities, we require

rotation invariance, which excludes BRIEF [16] and LDB [36].

We chose ORB [9], which are oriented multi-scale FAST

corners with a 256 bits descriptor associated. They are ex-

tremely fast to compute and match, while they have good

invariance to viewpoint. This allows to match them from wide

baselines, boosting the accuracy of BA. We already shown the

good performance of ORB for place recognition in [11]. While

our current implementation make use of ORB, the techniques

proposed are not restricted to these features.

B. Three Threads: Tracking, Local Mapping and Loop Closing

Our system, see an overview in Fig. 1, incorporates three

threads that run in parallel: tracking, local mapping and loop
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closing. The tracking is in charge of localizing the camera

with every frame and deciding when to insert a new keyframe.

We perform first an initial feature matching with the previous

frame and optimize the pose using motion-only BA. If the

tracking is lost (e.g. due to occlusions or abrupt movements),

the place recognition module is used to perform a global

relocalization. Once there is an initial estimation of the camera

pose and feature matchings, a local visible map is retrieved

using the covisibility graph of keyframes that is maintained

by the system, see Fig. 2(a) and Fig. 2(b). Then matches with

the local map points are searched by reprojection, and camera

pose is optimized again with all matches. Finally the tracking

thread decides if a new keyframe is inserted. All the tracking

steps are explained in detail in Section V. The novel procedure

to create an initial map is presented in Section IV.

The local mapping processes new keyframes and performs

local BA to achieve an optimal reconstruction in the sur-

roundings of the camera pose. New correspondences for un-

matched ORB in the new keyframe are searched in connected

keyframes in the covisibility graph to triangulate new points.

Some time after creation, based on the information gathered

during the tracking, an exigent point culling policy is applied

in order to retain only high quality points. The local mapping

is also in charge of culling redundant keyframes. We explain

in detail all local mapping steps in Section VI.

The loop closing searches for loops with every new

keyframe. If a loop is detected, we compute a similarity trans-

formation that informs about the drift accumulated in the loop.

Then both sides of the loop are aligned and duplicated points

are fused. Finally a pose graph optimization over similarity

constraints [6] is performed to achieve global consistency. The

main novelty is that we perform the optimization over the

Essential Graph, a sparser subgraph of the covisibility graph

which is explained in Section III-D. The loop detection and

correction steps are explained in detail in Section VII.

We use the Levenberg-Marquardt algorithm implemented in

g2o [37] to carry out all optimizations. In the Appendix we

describe the error terms, cost functions, and variables involved

in each optimization.

C. Map Points, KeyFrames and their Selection

Each map point pi stores:

• Its 3D position Xw,i in the world coordinate system.

• The viewing direction ni, which is the mean unit vector

of all its viewing directions (the rays that join the point

with the optical center of the keyframes that observe it).

• A representative ORB descriptor Di, which is the as-

sociated ORB descriptor whose hamming distance is

minimum with respect to all other associated descriptors

in the keyframes in which the point is observed.

• The maximum dmax and minimum dmin distances at

which the point can be observed, according to the scale

invariance limits of the ORB features.

Each keyframe Ki stores:

• The camera pose Tiw, which is a rigid body transforma-

tion that transforms points from the world to the camera

coordinate system.

(a) KeyFrames (blue), Current Cam-
era (green), MapPoints (black, red),
Current Local MapPoints (red)

(b) Covisibility Graph

(c) Spanning Tree (green) and Loop
Closure (red)

(d) Essential Graph

Fig. 2. Reconstruction and graphs in the sequence fr3 long office household

from the TUM RGB-D Benchmark [38].

• The camera intrinsics, including focal length and princi-

pal point.

• All the ORB features extracted in the frame, associated

or not to a map point, whose coordinates are undistorted

if a distortion model is provided.

Map points and keyframes are created with a generous pol-

icy, while a later very exigent culling mechanism is in charge

of detecting redundant keyframes and wrongly matched or not

trackable map points. This permits a flexible map expansion

during exploration, which boost tracking robustness under hard

conditions (e.g. rotations, fast movements), while its size is

bounded in continual revisits to the same environment, i.e.

lifelong operation. Additionally our maps contain very few

outliers compared with PTAM, at the expense of containing

less points. Culling procedures of map points and keyframes

are explained in Sections VI-B and VI-E respectively.

D. Covisibility Graph and Essential Graph

Covisibility information between keyframes is very useful in

several tasks of our system, and is represented as an undirected

weighted graph as in [7]. Each node is a keyframe and an edge

between two keyframes exists if they share observations of the

same map points (at least 15), being the weight θ of the edge

the number of common map points.

In order to correct a loop we perform a pose graph opti-

mization [6] that distributes the loop closing error along the

graph. In order not to include all the edges provided by the

covisibility graph, which can be very dense, we propose to

build an Essential Graph that retains all the nodes (keyframes),

but less edges, still preserving a strong network that yields
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accurate results. The system builds incrementally a spanning

tree from the initial keyframe, which provides a connected

subgraph of the covisibility graph with minimal number of

edges. When a new keyframe is inserted, it is included in

the tree linked to the keyframe which shares most point

observations, and when a keyframe is erased by the culling

policy, the system updates the links affected by that keyframe.

The Essential Graph contains the spanning tree, the subset

of edges from the covisibility graph with high covisibility

(θmin = 100), and the loop closure edges, resulting in a strong

network of cameras. Fig. 2 shows an example of a covisibility

graph, spanning tree and associated essential graph. As shown

in the experiments of Section VIII-E, when performing the

pose graph optimization, the solution is so accurate that an

additional full bundle adjustment optimization barely improves

the solution. The efficiency of the essential graph and the

influence of the θmin is shown at the end of Section VIII-E.

E. Bags of Words Place Recognition

The system has embedded a bags of words place recognition

module, based on DBoW22 [5], to perform loop detection and

relocalization. Visual words are just a discretization of the

descriptor space, which is known as the visual vocabulary.

The vocabulary is created offline with the ORB descriptors

extracted from a large set of images. If the images are general

enough, the same vocabulary can be used for different environ-

ments getting a good performance, as shown in our previous

work [11]. The system builds incrementally a database that

contains an invert index, which stores for each visual word

in the vocabulary, in which keyframes it has been seen, so

that querying the database can be done very efficiently. The

database is also updated when a keyframe is deleted by the

culling procedure.

Because there exists visual overlap between keyframes,

when querying the database there will not exist a unique

keyframe with a high score. The original DBoW2 took this

overlapping into account, adding up the score of images that

are close in time. This has the limitation of not including

keyframes viewing the same place but inserted at a different

time. Instead we group those keyframes that are connected

in the covisibility graph. In addition our database returns all

keyframe matches whose scores are higher than the 75% of

the best score.

An additional benefit of the bags of words representation

for feature matching was reported in [5]. When we want

to compute the correspondences between two sets of ORB

features, we can constraint the brute force matching only to

those features that belong to the same node in the vocabulary

tree at a certain level (we select the second out of six),

speeding up the search. We use this trick when searching

matches for triangulating new points, and at loop detection

and relocalization. We also refine the correspondences with an

orientation consistency test, see [11] for details, that discards

outliers ensuring a coherent rotation for all correspondences.

2https://github.com/dorian3d/DBoW2

IV. AUTOMATIC MAP INITIALIZATION

The goal of the map initialization is to compute the relative

pose between two frames to triangulate an initial set of map

points. This method should be independent of the scene (planar

or general) and should not require human intervention to

select a good two-view configuration, i.e. a configuration with

significant parallax. We propose to compute in parallel two

geometrical models, a homography assuming a planar scene

and a fundamental matrix assuming a non-planar scene. We

then use a heuristic to select a model and try to recover the

relative pose with a specific method for the selected model.

Our method only initializes when it is certain that the two-

view configuration is safe, detecting low-parallax cases and

the well-known twofold planar ambiguity [27], avoiding to

initialize a corrupted map. The steps of our algorithm are:

1) Find initial correspondences:

Extract ORB features (only at the finest scale) in the

current frame Fc and search for matches xc ↔ xr in the

reference frame Fr. If not enough matches are found,

reset the reference frame.

2) Parallel computation of the two models:

Compute in parallel threads a homography Hcr and a

fundamental matrix Fcr:

xc = Hcr xr xT
c Fcr xr = 0 (1)

with the normalized DLT and 8-point algorithms respec-

tively as explained in [2] inside a RANSAC scheme.

To make homogeneous the procedure for both models,

the number of iterations is prefixed and the same for

both models, along with the points to be used at each

iteration, 8 for the fundamental matrix, and 4 of them for

the homography. At each iteration we compute a score

SM for each model M (H for the homography, F for

the fundamental matrix):

SM =
∑

i

(

ρM
(

d2cr(x
i
c, xir,M)

)

+ ρM (d2rc
(

xic, xi
r,M)

))

ρM (d2) =

{

Γ− d2 if d2 < TM

0 if d2 ≥ TM

(2)

where d2cr and d2rc are the symmetric transfer errors [2]

from one frame to the other. TM is the outlier rejection

threshold based on the χ2 test at 95% (TH = 5.99,

TF = 3.84, assuming a standard deviation of 1 pixel in

the measurement error). Γ is defined equal to TH so that

both models score equally for the same d in their inlier

region, again to make the process homogeneous.

We keep the homography and fundamental matrix with

highest score. If no model could be found (not enough

inliers), we restart the process again from step 1.

3) Model selection:

If the scene is planar, nearly planar or there is low

parallax, it can be explained by a homography. However

a fundamental matrix can also be found, but the problem

is not well constrained [2] and any attempt to recover

the motion from the fundamental matrix would yield

https://github.com/dorian3d/DBoW2
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wrong results. We should select the homography as the

reconstruction method will correctly initialize from a

plane or it will detect the low parallax case and refuse

the initialization. On the other hand a non-planar scene

with enough parallax can only be explained by the

fundamental matrix, but a homography can also be found

explaining a subset of the matches if they lie on a plane

or they have low parallax (they are far away). In this

case we should select the fundamental matrix. We have

found that a robust heuristic is to compute:

RH =
SH

SH + SF

(3)

and select the homography if RH > 0.45, which

adequately captures the planar and low parallax cases.

Otherwise, we select the fundamental matrix.

4) Motion and Structure from Motion recovery:

Once a model is selected we retrieve the motion hy-

potheses associated. In the case of the homography

we retrieve 8 motion hypotheses using the method of

Faugeras et. al [23]. The method proposes cheriality

tests to select the valid solution. However these tests

fail if there is low parallax as points easily go in front

or back of the cameras, which could yield the selection

of a wrong solution. We propose to directly triangulate

the eight solutions, and check if there is one solution

with most points seen with parallax, in front of both

cameras and with low reprojection error. If there is

not a clear winner solution, we do not initialize and

continue from step 1. This technique to disambiguate

the solutions makes our initialization robust under low

parallax and the twofold ambiguity configuration, and

could be considered the key of the robustness of our

method.

In the case of the fundamental matrix, we convert it in

an essential matrix using the calibration matrix K:

Erc = KT Frc K (4)

and then retrieve 4 motion hypotheses with the singular

value decomposition method explained in [2]. We trian-

gulate the four solutions and select the reconstruction as

done for the homography.

5) Bundle adjustment:

Finally we perform a full BA, see the Appendix for

details, to refine the initial reconstruction.

An example of a challenging initialization in the outdoor

NewCollege robot sequence [39] is shown in Fig. 3. It can be

seen how PTAM and LSD-SLAM have initialized all points

in a plane, while our method has waited until there is enough

parallax, initializing correctly from the fundamental matrix.

V. TRACKING

In this section we describe the steps of the tracking thread

that are performed with every frame from the camera. The

camera pose optimizations, mentioned in several steps, consist

in motion-only BA, which is described in the Appendix.

Fig. 3. Top: PTAM, middle LSD-SLAM, bottom: ORB-SLAM, some time
after initialization in the NewCollege sequence [39]. PTAM and LSD-SLAM
initialize a corrupted planar solution while our method has automatically
initialized from the fundamental matrix when it has detected enough parallax.
Depending on which keyframes are manually selected, PTAM is also able to
initialize well.

A. ORB Extraction

We extract FAST corners at 8 scale levels with a scale factor

of 1.2. For image resolutions from 512 × 384 to 752 × 480
pixels we found suitable to extract 1000 corners, for higher

resolutions, as the 1241 × 376 in the KITTI dataset [40]

we extract 2000 corners. In order to ensure an homogeneous

distribution we divide each scale level in a grid, trying to

extract at least 5 corners per cell. Then we detect corners

in each cell, adapting the detector threshold if not enough

corners are found. The amount of corners retained per cell is

also adapted if some cells contains no corners (textureless or

low contrast). The orientation and ORB descriptor are then

computed on the retained FAST corners. The ORB descriptor

is used in all feature matching, in contrast to the search by

patch correlation in PTAM.

B. Initial Pose Estimation from Previous Frame

If tracking was successful for last frame, we use a constant

velocity motion model to predict the camera pose and perform

a guided search of the map points observed in the last frame. If

not enough matches were found (i.e. motion model is clearly

violated), we use a wider search of the map points around

their position in the last frame. The pose is then optimized

with the found correspondences.



IEEE TRANSACTIONS ON ROBOTICS 7

C. Initial Pose Estimation via Global Relocalization

If the tracking is lost, we convert the frame into bag

of words and query the recognition database for keyframe

candidates for global relocalization. We compute correspon-

dences with ORB associated to map points in each keyframe,

as explained in section III-E. We then perform alternatively

RANSAC iterations for each keyframe and try to find a camera

pose using the PnP algorithm [41]. If we find a camera

pose with enough inliers, we optimize the pose and perform

a guided search of more matches with the map points of

the candidate keyframe. Finally the camera pose is again

optimized, and if supported with enough inliers, tracking

procedure continues.

D. Track Local Map

Once we have an estimation of the camera pose and an

initial set of feature matches, we can project the map into the

frame and search more map point correspondences. To bound

the complexity in large maps, we only project a local map.

This local map contains the set of keyframes K1, that share

map points with the current frame, and a set K2 with neighbors

to the keyframes K1 in the covisibility graph. The local map

also has a reference keyframe Kref ∈ K1 which shares most

map points with current frame. Now each map point seen in

K1 and K2 is searched in the current frame as follows:

1) Compute the map point projection x in the current

frame. Discard if it lays out of the image bounds.

2) Compute the angle between the current viewing ray v

and the map point mean viewing direction n. Discard if

v · n < cos(60◦).
3) Compute the distance d from map point to camera

center. Discard if it is out of the scale invariance region

of the map point d /∈ [dmin, dmax].
4) Compute the scale in the frame by the ratio d/dmin.

5) Compare the representative descriptor D of the map

point with the still unmatched ORB features in the

frame, at the predicted scale, and near x, and associate

the map point with the best match.

The camera pose is finally optimized with all the map points

found in the frame.

E. New Keyframe Decision

The last step is to decide if the current frame is spawned as

a new keyframe. As there is a mechanism in the local mapping

to cull redundant keyframes, we will try to insert keyframes as

fast as possible, because that makes the tracking more robust to

challenging camera movements, typically rotations. To insert

a new keyframe all the following conditions must be met:

1) More than 20 frames must have passed from the last

global relocalization.

2) Local mapping is idle, or more than 20 frames have

passed from last keyframe insertion.

3) Current frame tracks at least 50 points.

4) Current frame tracks less than 90% points than Kref .

Instead of using a distance criterion to other keyframes

as PTAM, we impose a minimum visual change (condition

4). Condition 1 ensures a good relocalization and condition

3 a good tracking. If a keyframe is inserted when the local

mapping is busy (second part of condition 2), a signal is sent

to stop local bundle adjustment, so that it can process as soon

as possible the new keyframe.

VI. LOCAL MAPPING

In this section we describe the steps performed by the local

mapping with every new keyframe Ki.

A. KeyFrame Insertion

At first we update the covisibility graph, adding a new node

for Ki and updating the edges resulting from the shared map

points with other keyframes. We then update the spanning tree

linking Ki with the keyframe with most points in common.

We then compute the bags of words representation of the

keyframe, that will help in the data association for triangu-

lating new points.

B. Recent Map Points Culling

Map points, in order to be retained in the map, must

pass a restrictive test during the first three keyframes after

creation, that ensures that they are trackable and not wrongly

triangulated, i.e due to spurious data association. A point must

fulfill these two conditions:

1) The tracking must find the point in more than the 25%

of the frames in which it is predicted to be visible.

2) If more than one keyframe has passed from map

point creation, it must be observed from at least three

keyframes.

Once a map point have passed this test, it can only be

removed if at any time it is observed from less than three

keyframes. This can happen when keyframes are culled and

when local bundle adjustment discards outlier observations.

This policy makes our map contain very few outliers.

C. New Map Point Creation

New map points are created by triangulating ORB from

connected keyframes Kc in the covisibility graph. For each

unmatched ORB in Ki we search a match with other un-

matched point in other keyframe. This matching is done as

explained in Section III-E and discard those matches that do

not fulfill the epipolar constraint. ORB pairs are triangulated,

and to accept the new points, positive depth in both cameras,

parallax, reprojection error and scale consistency are checked.

Initially a map point is observed from two keyframes but

it could be matched in others, so it is projected in the rest

of connected keyframes, and correspondences are searched as

detailed in section V-D.

D. Local Bundle Adjustment

The local BA optimizes the currently processed keyframe

Ki, all the keyframes connected to it in the covisibility graph

Kc, and all the map points seen by those keyframes. All other

keyframes that see those points but are not connected to the



IEEE TRANSACTIONS ON ROBOTICS 8

currently processed keyframe are included in the optimization

but remain fixed. Observations that are marked as outliers are

discarded at the middle and at the end of the optimization.

See the Appendix for more details about this optimization.

E. Local Keyframe Culling

In order to maintain a compact reconstruction, the local

mapping tries to detect redundant keyframes and delete them.

This is beneficial as bundle adjustment complexity grows with

the number of keyframes, but also because it enables lifelong

operation in the same environment as the number of keyframes

will not grow unbounded, unless the visual content in the scene

changes. We discard all the keyframes in Kc whose 90% of the

map points have been seen in at least other three keyframes in

the same or finer scale. The scale condition ensures that map

points maintain keyframes from which they are measured with

most accuracy. This policy was inspired by the one proposed

in the work of Tan et. al [24], where keyframes were discarded

after a process of change detection.

VII. LOOP CLOSING

The loop closing thread takes Ki, the last keyframe pro-

cessed by the local mapping, and tries to detect and close

loops. The steps are next described.

A. Loop Candidates Detection

At first we compute the similarity between the bag of

words vector of Ki and all its neighbors in the covisibility

graph (θmin = 30) and retain the lowest score smin. Then we

query the recognition database and discard all those keyframes

whose score is lower than smin. This is a similar operation

to gain robustness as the normalizing score in DBoW2,

which is computed from the previous image, but here we

use covisibility information. In addition all those keyframes

directly connected to Ki are discarded from the results. To

accept a loop candidate we must detect consecutively three

loop candidates that are consistent (keyframes connected in

the covisibility graph). There can be several loop candidates

if there are several places with similar appearance to Ki.

B. Compute the Similarity Transformation

In monocular SLAM there are seven degrees of freedom

in which the map can drift, three translations, three rotations

and a scale factor [6]. Therefore to close a loop we need to

compute a similarity transformation from the current keyframe

Ki to the loop keyframe Kl that informs us about the error

accumulated in the loop. The computation of this similarity

will serve also as geometrical validation of the loop.

We first compute correspondences between ORB associated

to map points in the current keyframe and the loop candidate

keyframes, following the procedure explained in section III-E.

At this point we have 3D to 3D correspondences for each

loop candidate. We alternatively perform RANSAC iterations

with each candidate, trying to find a similarity transformation

using the method of Horn [42]. If we find a similarity Sil with

enough inliers, we optimize it (see the Appendix), and perform

a guided search of more correspondences. We optimize it again

and, if Sil is supported by enough inliers, the loop with Kl is

accepted.

C. Loop Fusion

The first step in the loop correction is to fuse duplicated

map points and insert new edges in the covisibility graph

that will attach the loop closure. At first the current keyframe

pose Tiw is corrected with the similarity transformation Sil

and this correction is propagated to all the neighbors of Ki,

concatenating transformations, so that both sides of the loop

get aligned. All map points seen by the loop keyframe and its

neighbors are projected into Ki and its neighbors and matches

are searched in a narrow area around the projection, as done

in section V-D. All those map points matched and those that

were inliers in the computation of Sil are fused. All keyframes

involved in the fusion will update their edges in the covisibility

graph effectively creating edges that attach the loop closure.

D. Essential Graph Optimization

To effectively close the loop, we perform a pose graph

optimization over the Essential Graph, described in Section

III-D, that distributes the loop closing error along the graph.

The optimization is performed over similarity transformations

to correct the scale drift [6]. The error terms and cost function

are detailed in the Appendix. After the optimization each map

point is transformed according to the correction of one of the

keyframes that observes it.

VIII. EXPERIMENTS

We have performed an extensive experimental validation of

our system in the large robot sequence of NewCollege [39],

evaluating the general performance of the system, in 16 hand-

held indoor sequences of the TUM RGB-D benchmark [38],

evaluating the localization accuracy, relocalization and lifelong

capabilities, and in 10 car outdoor sequences from the KITTI

dataset [40], evaluating real-time large scale operation, local-

ization accuracy and efficiency of the pose graph optimization.

Our system runs in real time and processes the images

exactly at the frame rate they were acquired. We have carried

out all experiments with an Intel Core i7-4700MQ (4 cores

@ 2.40GHz) and 8Gb RAM. ORB-SLAM has three main

threads, that run in parallel with other tasks from ROS and

the operating system, which introduces some randomness in

the results. For this reason, in some experiments, we report

the median from several runs.

A. System Performance in the NewCollege Dataset

The NewCollege dataset [39] contains a 2.2km sequence

from a robot traversing a campus and adjacent parks. The

sequence is recorded by a stereo camera at 20 fps and a resolu-

tion 512×382. It contains several loops and fast rotations that

makes the sequence quite challenging for monocular vision.

To the best of our knowledge there is no other monocular

system in the literature able to process this whole sequence.

For example Strasdat et al. [7], despite being able to close
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TABLE II
LOOP CLOSING TIMES IN NEWCOLLEGE

Loop Detection (ms) Loop Correction (s)

Loop KeyFrames
Essential Graph

Edges
Candidates
Detection

Similarity
Transformation

Fusion
Essential Graph

Optimization
Total (s)

1 287 1347 4.71 20.77 0.20 0.26 0.51

2 1082 5950 4.14 17.98 0.39 1.06 1.52

3 1279 7128 9.82 31.29 0.95 1.26 2.27

4 2648 12547 12.37 30.36 0.97 2.30 3.33

5 3150 16033 14.71 41.28 1.73 2.80 4.60

6 4496 21797 13.52 48.68 0.97 3.62 4.69

TABLE I
TRACKING AND MAPPING TIMES IN NEWCOLLEGE

Thread Operation
Median

(ms)
Mean
(ms)

Std
(ms)

TRACKING

ORB extraction 11.10 11.42 1.61

Initial Pose Est. 3.38 3.45 0.99

Track Local Map 14.84 16.01 9.98

Total 30.57 31.60 10.39

LOCAL
MAPPING

KeyFrame Insertion 10.29 11.88 5.03

Map Point Culling 0.10 3.18 6.70

Map Point Creation 66.79 72.96 31.48

Local BA 296.08 360.41 171.11

KeyFrame Culling 8.07 15.79 18.98

Total 383.59 464.27 217.89

Fig. 4. Example of loop detected in the NewCollege sequence. We draw the
inlier correspondences supporting the similarity transformation found.

loops and work in large scale environments, only showed

monocular results for a small part of this sequence.

As an example of our loop closing procedure we show in

Fig. 4 the detection of a loop with the inliers that support

the similarity transformation. Fig. 5 shows the reconstruction

before and after the loop closure. In red it is shown the local

map, which after the loop closure extends along both sides

of the loop closure. The whole map after processing the full

sequence at its real frame-rate is shown in Fig. 6. The big loop

on the right does not perfectly align because it was traversed

in opposite directions and the place recognizer was not able

to find loop closures.

We have extracted statistics of the times spent by each

thread in this experiment. Table I shows the results for the

Fig. 5. Map before and after a loop closure in the NewCollege sequence.
The loop closure match is drawn in blue, the trajectory in green, and the local
map for the tracking at that moment in red. The local map is extended along
both sides of the loop after it is closed.

tracking and the local mapping. Tracking works at frame-rates

around 25-30Hz, being the most demanding task to track the

local map. If needed this time could be reduced limiting the

number of keyframes that are included in the local map. In

the local mapping thread the most demanding task is local

bundle adjustment. The local BA time varies if the robot is

exploring or in a well mapped area, because during exploration

bundle adjustment is interrupted if tracking inserts a new

keyframe, as explained in section V-E. In case of not needing

new keyframes local bundle adjustment performs a generous

number of prefixed iterations.

Table II shows the results for each of the 6 loop clo-

sures found. It can be seen how the loop detection increases

sublinearly with the number of keyframes. This is due to
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Fig. 6. ORB-SLAM reconstruction of the full sequence of NewCollege. The
bigger loop on the right is traversed in opposite directions and not visual loop
closures were found, therefore they do not perfectly align.

the efficient querying of the database that only compare the

subset of images with words in common, which demonstrates

the potential of bag of words for place recognition. Our

Essential Graph includes edges around 5 times the number

of keyframes, which is a quite sparse graph.

B. Localization Accuracy in the TUM RGB-D Benchmark

The TUM RGB-D benchmark [38] is an excellent dataset

to evaluate the accuracy of camera localization as it provides

several sequences with accurate ground truth obtained with

an external motion capture system. We have discarded all

those sequences that we consider that are not suitable for pure

monocular SLAM systems, as they contain strong rotations,

no texture or no motion.

For comparison we have also executed the novel, direct,

semi-dense LSD-SLAM [10] and PTAM [4] in the benchmark.

We compare also with the trajectories generated by RGBD-

SLAM [43] which are provided for some of the sequences

in the benchmark website. In order to compare ORB-SLAM,

LSD-SLAM and PTAM with the ground truth, we align the

keyframe trajectories using a similarity transformation, as

scale is unknown, and measure the absolute trajectory error

(ATE) [38]. In the case of RGBD-SLAM we align the trajec-

tories with a rigid body transformation, but also a similarity to

check if the scale was well recovered. LSD-SLAM initializes

from random depth values and takes time to converge, there-

fore we have discarded the first 10 keyframes when comparing

with the ground truth. For PTAM we manually selected two

frames from which we get a good initialization. Table III

shows the median results over 5 executions in each of the

16 sequences selected.

It can be seen that ORB-SLAM is able to process

all the sequences, except for fr3 nostructure texture far

(fr3 nstr tex far). This is a planar scene that because of the

camera trajectory with respect to the plane has two possible

interpretations, i.e. the twofold ambiguity described in [27].

Our initialization method detects the ambiguity and for safety

refuses to initialize. PTAM initializes selecting sometimes

the true solution and others the corrupted one, in which

case the error is unacceptable. We have not noticed two

different reconstructions from LSD-SLAM but the error in this

sequence is very high. In the rest of the sequences, PTAM and

LSD-SLAM exhibit less robustness than our method, loosing

track in eight and three sequences respectively.

In terms of accuracy ORB-SLAM and PTAM are similar

in open trajectories, while ORB-SLAM achieves higher

accuracy when detecting large loops as in the sequence

fr3 nostructure texture near withloop (fr3 nstr tex near).

The most surprising results is that both PTAM and ORB-

SLAM are clearly more accurate than LSD-SLAM and

RGBD-SLAM. One of the possible causes can be that they

reduce the map optimization to a pose-graph optimization

were sensor measurements are discarded, while we perform

bundle adjustment and jointly optimize cameras and map over

sensor measurements, which is the gold standard algorithm to

solve structure from motion [2]. We further discuss this result

in Section IX-B. Another interesting result is that LSD-SLAM

seems to be less robust to dynamic objects than our system

as seen in fr2 desk with person and fr3 walking xyz.

We have noticed that RGBD-SLAM has a bias in the scale

in fr2 sequences, as aligning the trajectories with 7 DoF

significantly reduces the error. Finally it should be noted that

Engel et al. [10] reported that PTAM has less accuracy than

LSD-SLAM in fr2 xyz with an RMSE of 24.28cm. However,

the paper does not give enough details on how those results

were obtained, and we have been unable to reproduce them.

C. Relocalization in the TUM RGB-D Benchmark

We perform two relocalization experiments in the TUM

RGB-D benchmark. In the first experiment we build a map

with the first 30 seconds of the sequence fr2 xyz and perform

global relocalization with every successive frame and evaluate

the accuracy of the recovered poses. We perform the same

experiment with PTAM for comparison. Fig. 7 shows the

keyframes used to create the initial map, the poses of the

relocalized frames and the ground truth for those frames. It

can be seen that PTAM is only able to relocalize frames

which are near to the keyframes due to the little invariance of

its relocalization method. Table IV shows the recall and the

error with respect to the ground truth. ORB-SLAM accurately

relocalizes more than the double of frames than PTAM. In

the second experiment we create an initial map with se-

quence fr3 sitting xyz and try to relocalize all frames from

fr3 walking xyz. This is a challenging experiment as there

are big occlusions due to people moving in the scene. Here

PTAM finds no relocalizations while our system relocalizes

78% of the frames, as can be seen in Table IV. Fig. 8 shows

some examples of challenging relocalizations performed by

our system in these experiments.

D. Lifelong Experiment in the TUM RGB-D Benchmark

Previous relocalization experiments have shown that our

system is able to localize in a map from very different view-

points and robustly under moderate dynamic changes. This

property in conjunction with our keyframe culling procedure
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TABLE III
KEYFRAME LOCALIZATION ERROR COMPARISON IN THE TUM RGB-D

BENCHMARK [38]

Absolute KeyFrame Trajectory RMSE (cm)

ORB-SLAM PTAM LSD-SLAM
RGBD-
SLAM

fr1 xyz 0.90 1.15 9.00 1.34 (1.34)

fr2 xyz 0.30 0.20 2.15 2.61 (1.42)

fr1 floor 2.99 X 38.07 3.51 (3.51)

fr1 desk 1.69 X 10.65 2.58 (2.52)

fr2 360
kidnap

3.81 2.63 X 393.3 (100.5)

fr2 desk 0.88 X 4.57 9.50 (3.94)

fr3 long
office

3.45 X 38.53 -

fr3 nstr
tex far

ambiguity
detected

4.92 /
34.74

18.31 -

fr3 nstr
tex near

1.39 2.74 7.54 -

fr3 str
tex far

0.77 0.93 7.95 -

fr3 str
tex near

1.58 1.04 X -

fr2 desk
person

0.63 X 31.73 6.97 (2.00)

fr3 sit
xyz

0.79 0.83 7.73 -

fr3 sit
halfsph

1.34 X 5.87 -

fr3 walk
xyz

1.24 X 12.44 -

fr3 walk
halfsph

1.74 X X -

Results for ORB-SLAM, PTAM and LSD-SLAM are the median over 5
executions in each sequence. The trajectories have been aligned with 7DoF
with the ground truth. Trajectories for RGBD-SLAM are taken from the
benchmark website, only available for fr1 and fr2 sequences, and have been
aligned with 6DoF and 7DoF (results between brackets). X means that the
tracking is lost at some point and a significant portion of the sequence is not
processed by the system.

allows to operate lifelong in the same environment under

different viewpoints and some dynamic changes.

In the case of a completely static scenario our system is

able to maintain the number of keyframes bounded even if

the camera is looking at the scene from different viewpoints.

We demonstrate it in a custom sequence were the camera is

looking at the same desk during 93 seconds but performing

a trajectory so that the viewpoint is always changing. We

compare the evolution of the number of keyframes in our map

and those generated by PTAM in Fig. 9. It can be seen how

PTAM is always inserting keyframes, while our mechanism to

prune redundant keyframes makes its number to saturate.

While the lifelong operation in a static scenario should be a

requirement of any SLAM system, more interesting is the case

where dynamic changes occur. We analyze the behavior of our

system in such scenario by running consecutively the dynamic

sequences from fr3: sitting xyz, sitting halfsphere, sitting rpy,
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Fig. 7. Relocalization experiment in fr2 xyz. Map is initially created during
the first 30 seconds of the sequence (KFs). The goal is to relocalize subsequent
frames. Successful relocalizations (R) of our system and PTAM are shown.
The ground truth (GT) is only shown for the frames to relocalize.

Fig. 8. Example of challenging relocalizations (severe scale change, dynamic
objects) that our system successfully found in the relocalization experiments.

walking xyz, walking halfspehere and walking rpy. All the

sequences focus the camera to the same desk but perform

different trajectories, while people are moving and change

some objects like chairs. Fig. 10(a) shows the evolution of the

total number of keyframes in the map, and Fig. 10(b) shows for

each keyframe its frame of creation and destruction, showing

how long the keyframes have survived in the map. It can be

seen that during the first two sequences the map size grows as

all the views of the scene are being seen for the first time. In

Fig. 10(b) we can see that several keyframes created during

these two first sequences are maintained in the map during

the whole experiment. During the sequences sitting rpy and

walking xyz the map does not grow, because the map created

so far explains well the scene. In contrast, during the last two

sequences, more keyframes are inserted showing that there

are some novelties in the scene that were not yet represented,
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TABLE IV
RESULTS FOR THE RELOCALIZATION EXPERIMENTS

Initial Map Relocalization

System KFs
RMSE
(cm)

Recall
(%)

RMSE
(cm)

Max. Error
(cm)

fr2 xyz. 2769 frames to relocalize

PTAM 37 0.19 34.9 0.26 1.52

ORB-SLAM 24 0.19 78.4 0.38 1.67

fr3 walking xyz. 859 frames to relocalize

PTAM 34 0.83 0.0 - -

ORB-SLAM 31 0.82 77.9 1.32 4.95
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Fig. 9. Lifelong experiment in a static environment where the camera is
always looking at the same place from different viewpoints. PTAM is always
inserting keyframes, while ORB-SLAM is able to prune redundant keyframes
and maintains a bounded-size map.

due probably to dynamic changes. Finally Fig. 10(c) shows a

histogram of the keyframes according to the time they have

survived with respect to the remaining time of the sequence

from its moment of creation. It can be seen that most of the

keyframes are destroyed by the culling procedure soon after

creation, and only a small subset survive until the end of the

experiment. On one hand, this shows that our system has a

generous keyframe spawning policy, which is very useful when

performing abrupt motions in exploration. On the other hand

the system is eventually able to select a small representative

subset of those keyframes.

In these lifelong experiments we have shown that our map

grows with the content of the scene but not with the time,

and that is able to store the dynamic changes of the scene

which could be useful to perform some scene understanding

by accumulating experience in an environment.

E. Large Scale and Large Loop Closing in the KITTI Dataset

The odometry benchmark from the KITTI dataset [40]

contains 11 sequences from a car driven around a residential

area with accurate ground truth from GPS and a Velodyne

laser scanner. This is a very challenging dataset for monocular

vision due to fast rotations, areas with lot of foliage, which

make more difficult data association, and relatively high car

speed, being the sequences recorded at 10 fps. We play the

sequences at the real frame-rate they were recorded and ORB-

SLAM is able to process all the sequences by the exception

of sequence 01 which is a highway with few trackable close

objects. Sequences 00, 02, 05, 06, 07, 09 contain loops that

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

Frames

K
e
y
F

ra
m

e
s

xyz halfsphere rpy xyz halfsphere rpy
sitting sitting sitting walking walking walking

(a) Evolution of the number of keyframes in the map

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

350

400

Frames

K
e
y
F

ra
m

e
 I
D

xyz halfsphere rpy xyz halfsphere rpy
sitting sitting sitting walking walking walking

(b) Keyframe creation and destruction. Each horizontal line corresponds to
a keyframe, from its creation frame until its destruction

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

% Survival with respect to the remaining sequence time

%
 K

e
y
F

ra
m

e
s

(c) Histogram of the survival time of all spawned keyframes with respect to
the remaining time of the experiment

Fig. 10. Lifelong experiment in a dynamic environment from the TUM RGB-
D Benchmark.

were correctly detected and closed by our system. Sequence

09 contains a loop that can be detected only in a few frames

at the end of the sequence, and our system not always detects

it (the results provided are for the executions in which it was

detected).

Qualitative comparisons of our trajectories and the ground

truth are shown in Fig. 11 and Fig. 12. As in the TUM RGB-D

benchmark we have aligned the keyframe trajectories of our

system and the ground truth with a similarity transformation.

We can compare qualitatively our results from Fig. 11 and

Fig. 12 with the results provided for sequences 00, 05, 06, 07

and 08 by the recent monocular SLAM approach of Lim et.

al [25] in their figure 10. ORB-SLAM produces clearly more

accurate trajectories for all those sequences by the exception

of sequence 08 in which they seem to suffer less drift.

Table V shows the median RMSE error of the keyframe

trajectory over five executions in each sequence. We also

provide the dimensions of the maps to put in context the errors.

The results demonstrate that our system is very accurate being
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Fig. 11. Sequences 00, 05 and 07 from the odometry benchmark of the KITTI dataset. Left: points and keyframe trajectory. Center: trajectory and ground
truth. Right: trajectory after 20 iterations of full BA. The output of our system is quite accurate, while it can be slightly improved with some iterations of BA.
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−100 0 100 200 300 400 500
−50

0

50

100

150

200

x [m]

y
 [
m

]

 

 

Ground truth

ORB−SLAM + 7DoF Alignment
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(e) Sequence 08
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(f) Sequence 09
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Fig. 12. ORB-SLAM keyframe trajectories in sequences 02, 03, 04 ,06, 08, 09 and 10 from the odometry benchmark of the KITTI dataset. Sequence 08
does not contains loops and drift (especially scale) is not corrected.
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TABLE V
RESULTS OF OUR SYSTEM IN THE KITTI DATASET.

ORB-SLAM + Global BA (20 its.)

Sequence
Dimension

(m×m)
KFs

RMSE
(m)

RMSE
(m)

Time BA
(s)

KITTI 00 564× 496 1391 6.68 5.33 24.83

KITTI 01 1157× 1827 X X X X

KITTI 02 599× 946 1801 21.75 21.28 30.07

KITTI 03 471× 199 250 1.59 1.51 4.88

KITTI 04 0.5× 394 108 1.79 1.62 1.58

KITTI 05 479× 426 820 8.23 4.85 15.20

KITTI 06 23× 457 373 14.68 12.34 7.78

KITTI 07 191× 209 351 3.36 2.26 6.28

KITTI 08 808× 391 1473 46.58 46.68 25.60

KITTI 09 465× 568 653 7.62 6.62 11.33

KITTI 10 671× 177 411 8.68 8.80 7.64

the trajectory error typically around the 1% of its dimensions,

sometimes less as in sequence 03 with an error of the 0.3% or

higher as in sequence 08 with the 5%. In sequence 08 there

are no loops and drift cannot be corrected, which makes clear

the need of loop closures to achieve accurate reconstructions.

In this experiment we have also checked how much the

reconstruction can be improved by performing 20 iterations

of full BA, see the Appendix for details, at the end of each

sequence. We have noticed that some iterations of full BA

slightly improves the accuracy in the trajectories with loops but

it has negligible effect in open trajectories, which means that

the output of our system is already very accurate. In any case

if the most accurate results are needed our algorithm provides

a set of matches, which define a strong camera network, and

an initial guess, so that full BA converge in few iterations.

Finally we wanted to show the efficacy of our loop closing

approach and the influence of the θmin used to include edges

in the essential graph. We have selected the sequence 09 (a

very long sequence with a loop closure at the end), and in

the same execution we have evaluated different loop closing

strategies. In table VI we show the keyframe trajectory RMSE

and the time spent in the optimization in different cases:

without loop closing, if we directly apply a full BA (20 or

100 iterations), if we apply only pose graph optimization (10

iterations with different number of edges) and if we apply

pose graph optimization and full BA afterwards. The results

clearly show that before loop closure, the solution is so far

from the optimal, that BA has convergence problems. Even

after 100 iterations still the error is very high. On the other

hand essential graph optimization shows fast convergence and

more accurate results. It can be seen that the choice of θmin has

not significant effect in accuracy but decreasing the number

of edges the time can be significantly reduced. Performing

an additional BA after the pose graph optimization slightly

improves the accuracy while increasing substantially the time.

TABLE VI
COMPARISON OF LOOP CLOSING STRATEGIES IN KITTI 09

Method Time (s) Pose Graph Edges RMSE (m)

- - - 48.77

BA (20) 14.64 - 49.90

BA (100) 72.16 - 18.82

EG (200) 0.38 890 8.84

EG (100) 0.48 1979 8.36

EG (50) 0.59 3583 8.95

EG (15) 0.94 6663 8.88

EG (100) + BA (20) 13.40 1979 7.22

First row shows results without loop closing. Number between brackets for
BA (Bundle Adjustment) means number of Levenberg-Marquardt (LM)
iterations, while for EG (Essential Graph) is the θmin to build the Essential
Graph. All EG optimizations perform 10 LM iterations.
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Fig. 13. Comparison of different loop closing strategies in KITTI 09.

IX. CONCLUSIONS AND DISCUSSION

A. Conclusions

In this work we have presented a new monocular SLAM

system with a detailed description of its building blocks and

an exhaustive evaluation in public datasets. Our system has

demonstrated that it can process sequences from indoor and

outdoor scenes and from car, robot and hand-held motions.

The accuracy of the system is typically below 1 cm in small

indoor scenarios and of a few meters in large outdoor scenarios

(once we have aligned the scale with the ground truth).

Currently PTAM by Klein and Murray [4] is considered the

most accurate SLAM method from monocular video in real

time. It is not coincidence that the backend of PTAM is bundle

adjustment, which is well known to be the gold standard

method for the offline Structure From Motion problem [2].

One of the main successes of PTAM, and the earlier work of

Mouragnon [3], was to bring that knowledge into the robotics

SLAM community and demonstrate its real time performance.
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The main contribution of our work is to expand the versatility

of PTAM to environments that are intractable for that system.

To achieve this, we have designed from scratch a new monoc-

ular SLAM system with some new ideas and algorithms,

but also incorporating excellent works developed in the past

few years, such as the loop detection of Gálvez-López and

Tardós [5], the loop closing procedure and covisibility graph

of Strasdat et.al [6], [7], the optimization framework g2o

by Kuemmerle et. al [37] and ORB features by Rubble et.

al [9]. To the best of our knowledge, no other system has

demonstrated to work in as many different scenarios and with

such accuracy. Therefore our system is currently the most

reliable and complete solution for monocular SLAM. Our

novel policy to spawn and cull keyframes, permits to create

keyframes every few frames, which are eventually removed

when considered redundant. This flexible map expansion is

really useful in poorly conditioned exploration trajectories, i.e.

close to pure rotations or fast movements. When operating

repeatedly in the same environment, the map only grows if

the visual content of the scene changes, storing a history of

its different visual appearances. Interesting results for long-

term mapping could be extracted analyzing this history.

Finally we have also demonstrated that ORB features have

enough recognition power to enable place recognition from

severe viewpoint change. Moreover they are so fast to extract

and match (without the need of multi-threading or GPU accel-

eration) that enable real time accurate tracking and mapping.

B. Sparse/Feature-based vs. Dense/Direct Methods

Recent real-time monocular SLAM algorithms such as

DTAM [44] and LSD-SLAM [10] are able to perform dense

or semi dense reconstructions of the environment, while the

camera is localized by optimizing directly over image pixel

intensities. These direct approaches do not need feature ex-

traction and thus avoid the corresponding artifacts. They are

also more robust to blur, low-texture environments and high-

frequency texture like asphalt [45]. Their denser reconstruc-

tions, as compared to the sparse point map of our system or

PTAM, could be more useful for other tasks than just camera

localization.

However, direct methods have their own limitations. Firstly,

these methods assume a surface reflectance model that in real

scenes produces its own artifacts. The photometric consistency

limits the baseline of the matches, typically narrower than

those that features allow. This has a great impact in recon-

struction accuracy, which requires wide baseline observations

to reduce depth uncertainty. Direct methods, if not correctly

modeled, are quite affected by rolling-shutter, auto-gain and

auto-exposure artifacts (as in the TUM RGB-D Benchmark).

Finally, because direct methods are in general very computa-

tionally demanding, the map is just incrementally expanded

as in DTAM, or map optimization is reduced to a pose graph,

discarding all sensor measurements as in LSD-SLAM.

In contrast, feature-based methods are able to match features

with a wide baseline, thanks to their good invariance to

viewpoint and illumination changes. Bundle adjustment jointly

optimizes camera poses and points over sensor measurements.

In the context of structure and motion estimation, Torr and

Zisserman [46] already pointed the benefits of feature-based

against direct methods. In this work we provide experimental

evidence (see Section VIII-B) of the superior accuracy of

feature-based methods in real-time SLAM. We consider that

the future of monocular SLAM should incorporate the best of

both approaches.

C. Future Work

The accuracy of our system can still be improved incorpo-

rating points at infinity in the tracking. These points, which

are not seen with sufficient parallax and our system does not

include in the map, are very informative of the rotation of the

camera [21].

Another open way is to upgrade the sparse map of our

system to a denser and more useful reconstruction. Thanks

to our keyframe selection, keyframes comprise a compact

summary of the environment with a very high pose accuracy

and rich information of covisibility. Therefore the ORB-SLAM

sparse map can be an excellent initial guess and skeleton, on

top of which a dense and accurate map of the scene can be

built. A first effort in this line is presented in [47].

APPENDIX

NON-LINEAR OPTIMIZATIONS

• Bundle Adjustment (BA) [1]:

Map point 3D locations Xw,j ∈ R
3 and keyframe poses

Tiw ∈ SE(3), where w stands for the world reference, are

optimized minimizing the reprojection error with respect

to the matched keypoints xi,j ∈ R
2. The error term for

the observation of a map point j in a keyframe i is:

ei,j = xi,j − πi(Tiw,Xw,j) (5)

where πi is the projection function:

πi(Tiw,Xw,j) =

[

fi,u
xi,j

zi,j
+ ci,u

fi,v
yi,j

zi,j
+ ci,v

]

[

xi,j yi,j zi,j
]T

= RiwXw,j + tiw

(6)

where Riw ∈ SO(3) and tiw ∈ R
3 are respectively

the rotation and translation parts of Tiw, and (fi,u, fi,v)
and (ci,u, ci,v) are the focal length and principle point

associated to camera i. The cost function to be minimized

is:

C =
∑

i,j

ρh(e
T
i,jΩ

−1
i,j ei,j) (7)

where ρh is the Huber robust cost function and Ωi,j =
σ2
i,jI2×2 is the covariance matrix associated to the scale

at which the keypoint was detected. In case of full BA

(used in the map initialization explained in Section IV

and in the experiments in Section VIII-E) we optimize

all points and keyframes, by the exception of the first

keyframe which remain fixed as the origin. In local BA

(see section VI-D) all points included in the local area

are optimized, while a subset of keyframes is fixed. In

pose optimization, or motion-only BA, (see section V) all

points are fixed and only the camera pose is optimized.
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• Pose Graph Optimization over Sim(3) Constraints [6]:

Given a pose graph of binary edges (see Section VII-D)

we define the error in an edge as:

ei,j = logSim(3)(Sij Sjw S
−1
iw ) (8)

where Sij is the relative Sim(3) transformation between

both keyframes computed from the SE(3) poses just

before the pose graph optimization and setting the scale

factor to 1. In the case of the loop closure edge this

relative transformation is computed with the method of

Horn [42]. The logSim3 [48] transforms to the tangent

space, so that the error is a vector in R
7. The goal is to

optimize the Sim(3) keyframe poses minimizing the cost

function:

C =
∑

i,j

(eTi,jΛi,jei,j) (9)

where Λi,j is the information matrix of the edge, which,

as in [48], we set to the identity. We fix the loop closure

keyframe to fix the 7 degrees of gauge freedom. Although

this method is a rough approximation of a full BA, we

demonstrate experimentally in Section VIII-E that it has

significantly faster and better convergence than BA.

• Relative Sim(3) Optimization:

Given a set of n matches i ⇒ j (keypoints and their

associated 3D map points) between keyframe 1 and

keyframe 2, we want to optimize the relative Sim(3)

transformation S12 (see Section VII-B) that minimizes

the reprojection error in both images:

e1 = x1,i − π1(S12,X2,j)

e2 = x2,j − π2(S
−1
12 ,X1,i)

(10)

and the cost function to minimize is:

C =
∑

n

(

ρh(e
T
1 Ω

−1
1,ie1) + ρh(e

T
2 Ω

−1
2,je2)

)

(11)

where Ω1,i and Ω2,i are the covariance matrices associ-

ated to the scale in which keypoints in image 1 and image

2 were detected. In this optimization the points are fixed.
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