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Abstract. In this contribution I propose a (hopefully) pedagogical ap-
proach to the computation of orbifold Gromov-Witten invariants using
mirror symmetry and topological string theory, focusing on the orbifold
C

3/Z3. Recent B-model developments on the mirror side, which led to
predictions for “open orbifold Gromov-Witten invariants” of C

3/Z3, are
also addressed. This contribution is based on the results of [1] and [9].

1 Introduction

1.1 General idea. Historically, mirror symmetry has proved to be very suc-
cessful in addressing problems of enumerative geometry, starting with the seminal
work of Candelas et al [13] on the number of rational curves in the quintic three-
fold. The leitmotiv of the physical approach to Gromov-Witten theory is to map
the problem to the mirror side, where computationally efficient techniques such as
special geometry and the holomorphic anomaly equations of [7] are available.

Our goal is to pursue this line of thought in the context of enumerative geom-
etry of orbifolds. Since direct evaluation of the Hodge integrals entering into the
definition of orbifold Gromov-Witten invariants is rather complex (see for instance
[8]), we aim at using mirror symmetry to map the problem of computing orbifold
Gromov-Witten invariants to the mirror side.

1.2 Geometry. More precisely, we consider orbifolds of the form X = C3/G,
where G is a finite abelian group, G ⊆ SU(3); such orbifolds admit a toric Calabi-
Yau crepant resolution X . The prototypical example that we follow throughout
this paper is X = C3/Z3, which has a unique crepant resolution given by the total
space of the canonical bundle over P2. Another example that could be studied
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2 Vincent Bouchard

along similar lines is C3/Z4, which has a toric crepant resolution given by the total
space of the canonical bundle over F2 — the second Hirzebruch surface.

1.3 Strategy. The usual mirror symmetric approach consisted in mapping
the local problem of computing A-model topological string amplitudes near the
large radius point in the stringy Kähler moduli space KM(X) of X — that is,
generating functions of Gromov-Witten invariants of X — to the often simpler
problem of computing B-model topological string amplitudes near the mirror point
in the (suitably compactified) complex structure moduli space M(Y ) of the mirror
threefold Y . The main ingredients were the mirror map near the large radius point,
and a formalism to compute the B-model amplitudes.

When X is the crepant resolution of an orbifold X, the stringy Kähler moduli
space KM(X) contains both a large radius point, where the A-model amplitudes
generate Gromov-Witten invariants of X , and an orbifold point, where the A-model
amplitudes now generate orbifold Gromov-Witten invariants of X. Since mirror
symmetry provides a global isomorphism between KM(X) and M(Y ), we should
be able to parallel the large radius procedure near the orbifold point to compute
orbifold Gromov-Witten invariants of X from mirror symmetry. In order to make
such an attempt successful, we need to understand the mirror map near the orbifold
point, and we must provide a formalism to compute the B-model amplitudes at the
mirror point. This is precisely the aim of this paper.

1.4 Opening up the strategy. In fact, we go even further. From a physics
perspective, closed topological string theory can hardly live without its best friend
open topological string theory. The latter is related to enumerative problems involv-
ing open Gromov-Witten invariants, which are concerned with maps from Riemann
surfaces with boundaries. Again, one can use (an open version of) mirror symmetry
at large radius combined with the open B-model to compute these invariants.

Using the new B-model formalism developed in [9, 33], as in the closed case
we are able to extend this procedure to the orbifold point: we obtain predictions
for generating functions of “open orbifold Gromov-Witten invariants”. While open
Gromov-Witten invariants are well-defined for smooth target spaces (see [24] for a
computational definition using localization), it is not clear whether and how they
can be generalized to the orbifold setting. However, the physics calculation provides
an incentive for looking for a mathematical definition of such invariants.

1.5 Outline. In this contribution we propose a (hopefully) pedagogical ap-
proach to these ideas, which were mostly developed in [1] with Mina Aganagic and
Albrecht Klemm and in [9] with Albrecht Klemm, Marcos Mariño and Sara Pas-
quetti. In section 2, we review the usual mirror symmetry approach at large radius.
In section 3 we propose a parallel procedure to map orbifold Gromov-Witten the-
ory to the mirror side, and use it to compute (high genus) orbifold Gromov-Witten
invariants of C3/Z3. These two sections follow relatively closely the physics presen-
tation in [8]. Section 4 is then devoted to the study of open amplitudes, using the
B-model formalism of [9, 33]. As an application, we compute the “disk amplitude”
of the orbifold C3/Z3.

Acknowledgments. I would like to thank heartily M. Aganagic, R. Cavalieri,
A. Klemm, M. Mariño and S. Pasquetti for very enjoyable collaborations leading
to the results presented in this contribution. I would also like to thank J. Bryan
and T. Coates for interesting discussions. Finally, thanks are due to the organizers
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of the Banff workshop on String dualities and modular forms for the stimulating
research environment.

2 Mirror symmetry at large radius

Let us start by reviewing general features of mirror symmetry at large radius,
and how it can be used to compute Gromov-Witten invariants of smooth Calabi-
Yau threefolds. Good references on mirror symmetry include the two books [19, 28],
while topological string theory is discussed in the book [34].

2.1 General statement. The main characters are:

• (X,Y ): a mirror pair of smooth Calabi-Yau threefolds, where X is a (non-
compact) toric Calabi-Yau threefold which is the crepant resolution of an
orbifold X of the form C3/G, with G ⊆ SU(3) a finite abelian group;

• M(Y ): a suitable compactification of the complex structure moduli space
of Y ;

• KM(X): a suitable compactification of the complexified Kähler moduli
space of X (the so-called enlarged or stringy Kähler moduli space).

Mirror symmetry provides a local isomorphism, called the mirror map, between
KM(X) and M(Y ), which maps a neighborhood of a maximally unipotent bound-
ary point q0 ∈ M(Y ) to a neighborhood of a corresponding large radius point
p0 ∈ KM(X). Moreover, mirror symmetry tells us that the mirror map lifts to an
isomorphism between the A-model amplitudes at p0 ∈ KM(X), and the B-model

amplitudes at q0 ∈ M(Y ). Of course, we have not yet defined what the A- and the
B-model amplitudes are; we will come back to that in a minute. Let us start by
expanding a little more on how the mirror map is defined.

2.2 The mirror map. The isomorphism in the neighborhood of a large radius
point p0 ∈ KM(X) can be described as follows. H2(X,C) is spanned by

t1T1 + . . .+ trTr, (2.1)

where T1, . . . , Tr ∈ H2(X,C) is a basis of generators for the cone σ containing the
large radius point p0 ∈ KM(X) corresponding to X . The complexified Kähler
parameters ti parameterize KM(X) near p0.

On the mirror side, when Y is compact, M(Y ) is projective special Kähler,1

hence can be parameterized by the periods of the holomorphic volume-form Ω on
Y . More precisely, choose a symplectic basis of three-cycles AI , BJ ∈ H3(Y,Z),
I, J = 0, . . . , r, and define the periods

ωI =

∮

AI

Ω,
∂F

∂ωI
=

∮

BI

Ω, (2.2)

where F is the prepotential. The periods are solutions of the Picard-Fuchs equa-
tions, with the following properties. In terms of coordinates qi, i = 1, . . . , r, centered
at the maximally unipotent boundary point q0 ∈ M(Y ), there is a unique period
which is holomorphic, say ω0, and r periods have logarithmic behavior,

ωi =
ω0

2πi
log(qi) + O(qi), i = 1, . . . , r. (2.3)

There are r other periods which are quadratic in the logarithm, and one is cubic.

1See [23] for a mathematical description of special geometry.
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The mirror map then consists in choosing appropriate combinations of these
periods which are mapped to the complexified Kähler parameters ti. It turns out
that the mirror map reads

(t1, . . . , tr) 7→
1

ω0
(ω1, . . . , ωr), (2.4)

which are sometimes called the flat coordinates on the projective special Kähler
manifold M(Y ).

When X and Y are noncompact, as in the case of a toric threefold X , M(Y )
is not projective special Kähler anymore. However, various properties of special
geometry still hold, such as the existence of a prepotential F , and the parameteri-
zation of M(Y ) by “periods” — once those are properly defined in the noncompact
case — of the holomorphic volume-form. This can be understood either by see-
ing Y as the limit of a compact threefold [16], or intrinsically for the noncompact
geometry (see for instance [30] for the latter point of view). Furthermore, in the
noncompact case the mirror map is simplified by the fact that ω0 = 1, hence the ti

are directly identified with the logarithmic periods ωi.

2.3 A-model on X. We now describe the A-model amplitudes on X . Recall
that X is a toric Calabi-Yau threefold, which can be described as a symplectic
quotient

X = {X1, . . . , X3+k ∈ (C3+k − Z)|

3+k∑

i=1

Lai |Xi|
2 = ra , a = 1, . . . , k}/(S1)k, (2.5)

where the k S1’s act as

Xi 7→ eiL
a
i θaXi. (2.6)

The charge matrix L gives the toric data of X , and for X to be Calabi-Yau the
charges must satisfy

3+k∑

i=1

Lai = 0, a = 1, . . . , k. (2.7)

Z is the union of the singular sets Za implied by the relations
∑3+k

i=1 L
a
i |Xi|

2 = ra,
and the ra ∈ R+ are the Kähler parameters of X .

To describe the A-model amplitudes, start with a theory — a nonlinear sigma
model — of maps f : Σ → M from Riemann surfaces Σ to a target Calabi-Yau
threefold M . There are two ways of twisting this sigma model to obtain topological
theories, namely the A- and the B-models. The A-model does not depend on
complex moduli, while the B-model is independent of Kähler moduli.

The A-model on X becomes a theory of holomorphic maps f : Σ → X , which
can be reformulated in terms of Gromov-Witten invariants of the target space X .
In the neighborhood of p0 ∈ KM(X), the A-model genus g amplitudes Fg become
generating functions for the unmarked genus g Gromov-Witten invariants Ng,β of
X , that is,

Fg =
∑

β∈H2(X)

Ng,βQ
β , (2.8)

where

Qβ = e
2πi
∫

β
ω
, (2.9)
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and ω is a complexified Kähler class of X . In terms of the basis of H2(X,C)
introduced above, we can write

Qβ =

r∏

i=1

Q

∫
β
Ti

i , (2.10)

with the exponentiated complexified Kähler parameters

Qi = e2πiti . (2.11)

2.4 B-model on Y . Following the general procedure of Hori-Vafa [29], the
mirror Y of a toric Calabi-Yau threefold X has the form

Y = {ww′ = G(x, y; q1, . . . , qr)}, (2.12)

where w,w′ ∈ C, x, y ∈ C∗, and q1, . . . , qr are coordinates on M(Y ) centered
around the corresponding maximally unipotent boundary point. G(x, y; q1, . . . , qr)
is a polynomial in x and y which describes a family of punctured Riemann surfaces
embedded in C∗ × C∗, parameterized by the qi’s. In other words, Y is given by
a conic fibration over C∗ × C∗, where the fiber degenerates to two lines over the
family of Riemann surfaces

Σ(q1, . . . , qr) = {G(x, y; q1, . . . , qr) = 0}. (2.13)

In the following, for brevity we will often omit the dependence on the qi’s, and call
Σ a Riemann surface, understanding implictly that it is in fact a family of Riemann
surfaces parameterized by the qi’s. Σ is generally called the mirror curve of X .

The B-model on Y localizes on constant maps, and becomes a theory of vari-
ations of complex structures of the target space Y . In particular, the genus 0
amplitude F0 is simply given by the prepotential F of special geometry introduced
above. Let us be a little more specific on special geometry for the noncompact Y ,
following [2]. When Y has the form (2.12), we consider only complex structure
deformations that only involve varying the mirror curve Σ. The periods of the
holomorphic volume-form

Ω =
dwdxdy

wxy
(2.14)

over three-cycles reduce to integrals
∫

D

dx

x
∧

dy

y
, (2.15)

where D ⊂ C∗ × C∗ is a real two-dimensional domain such that ∂D ⊂ Σ. The
above integral reduces, in a given coordinate patch, to

∫

γ

log y
dx

x
, (2.16)

where γ ∈ Σ is a one-cycle. Thus, the periods become integrals of the one-form

λ = log y
dx

x
(2.17)

over one-cycles on the Riemann surface Σ. These periods govern the complex
structure deformations, and, as in the compact case, are annihilated by a system
of Picard-Fuchs equations which can be determined following the work of Chiang,
Klemm, Yau and Zaslow [16]. Moreover, they satisfy special geometric relations,
which define a prepotential F as before.
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The higher genus B-model amplitudes are harder to describe mathematically.
The genus 1 amplitude F1 can be defined in terms of Ray-Singer torsion of Y . For
g ≥ 2, one can use the holomorphic anomaly equations of [7] — which may be
understood as some sort of higher genus generalization of special geometry — to
reconstruct the amplitudes recursively in the neighborhood of q0 ∈ M(Y ), up to
an unknown holomorphic function at each genus depending on a finite number of
constants. External data, such as boundary conditions, must be used to fix these
functions.

2.5 Computing Gromov-Witten invariants of X. The mirror symmetric
isomorphism between the A-model amplitudes at a large radius point and the B-
model amplitudes near a maximally unipotent boundary point provides a concrete
way of computing Gromov-Witten invariants of X , which has proved very succesful
historically. This was the approach first used by Candelas et al [13] to compute
the number of rational curves in the quintic threefold, which was then extended to
higher genus in [7]. The two main ingredients entering in the calculation are:

• the mirror map near the large radius point;
• a framework to compute the B-model amplitudes near q0, such as special

geometry and the holomorphic anomaly equations.

Recall however that the holomorphic anomaly equations, in themselves, do not
provide a complete framework to compute the higher genus amplitudes Fg, due to
the holomorphic ambiguity persisting at each genus. It must be supplemented by
additional data. However, recently boundary conditions for the amplitudes have
been found which fully fix the ambiguities in some local geometries (such as local
P2), and allow computations of high (but finite) genus amplitudes for compact
threefolds (for instance, g = 51 for the quintic) [25, 26, 27].

2.6 Example: local P2. The main example that we will study in this paper
is the orbifold X = C3/Z3. Its unique crepant resolution is the toric threefold
X = O(−3) → P

2, which is the total space of the canonical bundle over P
2. It is

usually called local P2 in the physics literature. Let us describe mirror symmetry
at the large radius point in the Kähler cone of local P2.

X is toric; its fan is generated by the one-dimensional cones:

{(0, 0, 1), (0,−1, 1), (−1, 0, 1), (1, 1, 1)}. (2.18)

These satisfy the linear relation

− 3(0, 0, 1) + (0,−1, 1) + (−1, 0, 1) + (1, 1, 1) = (0, 0, 0), (2.19)

hence the charge matrix is simply L = (−3, 1, 1, 1).
The mirror threefold Y is given by

Y = {ww′ = y2 + y(1 + x) + qx3}, (2.20)

where w,w′ ∈ C, x, y ∈ C∗ and q is a coordinate on M(Y ) centered at the maxi-
mally unipotent boundary point q0 := {q = 0} ∈ M(Y ). That is, the mirror curve
reads

Σ = {y2 + y(1 + x) + qx3 = 0}, (2.21)

which has genus 1 and three punctures. It can be seen pictorially by fattening the
toric diagram of local P2, as in figure 1.

Following [16], the Picard-Fuchs system in the coordinate q reads

Dq = Θ3
q + 3q(3Θq + 2)(3Θq + 1)Θq, (2.22)
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Figure 1 The toric diagram of local P2 and the mirror curve Σ ⊂ C∗ × C∗.

where we introduced the logarithmic derivative Θq = q∂q. Solving D1Π = 0, we
get the solution vector

Π = (1, ω(q), π(q)), (2.23)

where 1 is just the constant solution, ω(q) is a logarithmic solution and π(q) is
doubly logarithmic. The mirror map is given by

t = ω(q) =
1

2πi

(
log q +

∞∑

n=1

(−1)n

n

(3n)!

(n!)3
qn

)
, (2.24)

where t is the complexified Kähler parameter of local P2. The period tD dual to t
is given by the combination

tD =
1

2
π(q) −

1

2
ω(q) −

1

4
= −3

∂F

∂t
, (2.25)

which defines the prepotential F .2

The prepotential F computes the genus 0 amplitude F0 at the large radius
point of local P2. To compute the higher genus amplitudes, one can solve the
holomorphic anomaly equations and supplement them with boundary conditions to
fix the holomorphic ambiguity at each genus [32].

3 Mirror symmetry at the orbifold point

So far we only gave a local description of mirror symmetry, near a large radius
point of KM(X). However, from a physics point of view, mirror symmetry should
be global, in the sense that KM(X) should be globally isomorphic to M(Y ), and
similarly for the A- and the B-model amplitudes.

3.1 A global formulation of mirror symmetry. To study this global de-
scription we need to understand better the enlarged Kähler moduli space KM(X).
Generically, the compactification KM(X) of the Kähler moduli space has a rather
complicated structure which goes beyond the Kähler cone of X . Roughly speaking,
KM(X) is obtained by gluing along common walls the Kähler cones of threefolds

2The unusual factor of −3 here comes from the fact that since Y is noncompact, it is not possible
to find a symplectic basis of three-cycles; instead, the A- and the B-cycles have intersection
number −3.
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birationally equivalent to X . Some of these cones correspond to smooth threefolds
related to X by flops; each such cone then contains a large radius point, which is
mapped to a corresponding maximally unipotent boundary point in M(Y ) on the
mirror side. However, some other patches correspond to “non-geometric phases”,
by which we mean that they are obtained from X by contracting some cycles.

When X is toric, it turns out that KM(X) is also toric and is easily described
by the secondary fan associated to X (see for instance [19], section 3.4 and chapter
6, for a more precise discussion). In toric geometry, the secondary fan of a toric
manifold X is the fan generated by the one-dimensional cones encoding the linear
relations between the one-dimensional cones in the fan of X . In other words, the
one-dimensional cones in the secondary fan of X are given by the columns of the
charge matrix L of X .

In this paper, we are interested in toric Calabi-Yau threefolds X which are
the crepant resolutions of orbifolds X of the form C3/G. In these cases, KM(X)
comprises a patch which contains an orbifold point porb ∈ KM(X), where the cycles
of X are contracted to yield the orbifold X. On the mirror side, the orbifold point
is mapped to the point qorb ∈ M(Y ) at the intersection of the orbifold divisors in
M(Y ), which are the divisors around which the periods have finite monodromy.
We will call qorb the point of finite monodromy. When M(Y ) is one-dimensional,
as for local P2, the point of finite monodromy is simply the orbifold divisor itself,
around which the periods have finite mondoromy.

We studied mirror symmetry near the large radius point p0 corresponding to
X ; we now want to understand mirror symmetry near the orbifold point porb cor-
responding to X. Our aim is to use mirror symmetry in this neighborhood to
compute orbifold Gromov-Witten invariants of X. In order to do so, we first need
to describe the mirror map near the orbifold point, and then propose a formalism
to compute the B-model amplitudes near this point.

3.2 The orbifold mirror map. Recall that the mirror map at large radius
was defined by providing a map between the parameters spanning H2(X,C) in
a basis canonically defined at p0 to the logarithmic solutions of the Picard-Fuchs
equations near q0. In fact, the “full” mirror map may be understood as mapping
the parameters spanning the even cohomology groups H2n(X,C), n = 0, 1, 2, 3, to
corresponding solutions of the Picard-Fuchs equations.

The correct notion of cohomology of an orbifold C3/G consists in the Chen-
Ruan orbifold cohomology ring [14, 15]. With respect to ordinary cohomology,
orbifold cohomology contains extra classes incorporating combinations of geometric
and representation theoretic data associated to the action of G on C3. In particular,
although C3/G has no compact cycles, its orbifold cohomology ring is not trivial.
The extra classes correspond to twisted sectors in physics language, and are in
correspondence with the even cohomology classes at the large radius point.

The mirror map at the orbifold point can then be defined by mapping the
parameters spanning the orbifold cohomology ring of C3/G in a basis canonically
defined at porb to corresponding solutions of the Picard-Fuchs solutions near the
point of finite monodromy qorb. The burden of the work consists in finding a
canonical basis for the orbifold cohomology ring, and a good basis of solutions for the
Picard-Fuchs equations. We claim that for simple orbifolds such as C3/Z3 we can
determine the orbifold mirror map uniquely, up to a scale factor, simply by requiring
that the B-model genus 0 amplitude be invariant under the Z3-monodromy around
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qorb. An equivalent prescription will be to match the representation theoretic data
in the orbifold cohomology ring, keeping track of the action of Z3, to the action of
the Z3-monodromy on the periods.

3.3 B-model at the point of finite monodromy. The next step is to
provide a framework to compute the B-model amplitudes at the point of finite
monodromy qorb ∈ M(Y ). In section 4, we will propose a new formalism to compute
unambiguously all open and closed B-model amplitudes at any point in the moduli
space, which can then be used to calculate the closed B-model amplitudes at qorb.
However, for the purpose of computing only the closed B-model amplitudes, we
do not need such a formalism, the holomorphic anomaly equations being sufficient.
Let us now explain why.

3.3.1 The holomorphic anomaly equations and modularity. For simplicity, in
the following we focus on the case where M(Y ) is one-dimensional; the results are
easily generalized to the multi-dimensional case. Parameterize M(Y ) by a period
t, for instance the logarithmic period canonically chosen by the mirror map near
a maximally unipotent boundary point. It turns out that the B-model amplitudes

F̂g,
3 when expanded in terms of the period t, are not holomorphic. Their anti-

holomorphic dependence is in fact encoded in the holomorphic anomaly equation,
which reads, in the noncompact case,

∂t̄F̂g =
1

2
C

(0)tt
t̄

(
Dt∂tF̂g−1 +

g−1∑

n=1

∂tF̂n∂tF̂g−n

)
, (3.1)

where both C
(0)tt
t̄ , which is related to the Yukawa coupling, and the covariant

derivative Dt can be defined in terms of special geometric data. We refer the
reader to [7, 25] for precise definitions of these objects.

The crucial point for us is that (3.1) can be integrated, either using an iterative
Feynman graph procedure as in [7, 1], or by direct integration of (3.1) using modular
properties of the amplitudes [25]. For g > 1, the result is [1, 25]

F̂g(τ, τ̄ ) = (∂tτ)
2g−2

3g−3∑

k=0

Êk2 (τ, τ̄ )c
(g)
k (τ), (3.2)

where we now expressed the amplitudes in terms of the period matrix

τ = −
1

4π

∂tD
∂t

= −
1

4π

∂2F

∂t2
, (3.3)

with tD the period dual to t and F the prepotential, to make the modular properties
of the amplitudes manifest. In (3.2), we introduced the standard non-holomorphic
extension of the second Eisenstein series E2(τ), defined by

Ê2(τ, τ̄ ) = E2(τ) −
3

πIm (τ)
. (3.4)

The c
(g)
k (τ) are holomorphic modular forms of weight 6(g − 1) − 2k with respect

to the monodromy group of the periods — that is, the monodromy group of the
Picard-Fuchs equations. It can be shown that ∂tτ is a holomorphic modular form

3The reason for the hat here is that these amplitudes are the physical B-model topological string
amplitudes, which are defined globally all over the moduli space M(Y ). To make contact with
the objects considered so far we will need to take their limits at special points in M(Y ), such as
maximally unipotent boundary points and points of finite monodromy.
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of weight −3, while Ê2(τ, τ̄ ) is an almost holomorphic modular form of weight 2.

As a result, we get that the F̂g’s are almost holomorphic modular forms of weight

0. Their only anti-holomorphic dependence appears through Ê2(τ, τ̄ ).

Moreover, the c
(g)
k (τ), for k ≥ 1 and g > 1, are entirely fixed by the holomorphic

anomaly equation. On the one hand, by solving the equation iteratively using a

Feynman procedure, as in [7, 1], one can show that the c
(g)
k (τ) are determined in

terms of derivatives of lower genus amplitudes; see [1] for the explicit formulae.

On the other hand, since we know that the c
(g)
k (τ) are modular forms of weight

6(g − 1) − 2k, we can express them as polynomials in the generators of the ring of
modular forms of the given weight, and find the coefficients by directly integrating
the holomorphic anomaly equation. The second procedure, which was studied in

[25], is a much more efficient way to fix the forms c
(g)
k (τ) for k ≥ 1, g > 1.

However, at each genus the form c
(g)
0 (τ), which is a holomorphic modular form

of weight 6(g − 1), is undetermined by the holomorphic anomaly equation. It
corresponds to the so-called holomorphic ambiguity at each genus, which comes
from the fact that the equation (3.1) only fixes the anti-holomorphic derivative

of the F̂g’s. This is the main hindrance when using the holomorphic anomaly
equations to compute the amplitudes Fg; additional data must be used to calculate

the c
(g)
0 (τ)’s.

3.3.2 Going to special points in M(Y ). As mentioned above, so far we dis-

cussed the physical amplitudes F̂g, which are defined globally all over the moduli
space. To make contact with the rest of the paper, we must consider the limits of
these amplitudes near special points in M(Y ).

Recall that the holomorphic anomaly equation (3.1) was written in terms of
a chosen period t. Suppose that t is the logarithmic period near a maximally
unipotent boundary point, canonically chosen by the mirror map. Then, it was
explained in [7] that the limit of the amplitudes at this point, which are mirror
dual to the Gromov-Witten generating functions at large radius, is obtained by
sending t̄→ ∞. In terms of the period matrix τ , this corresponds to

Fg = lim
Im(τ)→∞

F̂g. (3.5)

In mathematical language, since F̂g is an almost holomorphic modular form, it can
be written as a finite power series in Im(τ)−1, starting with a constant term. This
limit is given by keeping only the constant term; this is the usual isomorphism be-
tween the ring of almost holomorphic modular forms and the ring of quasi-modular
forms; see [31]. The Fg’s are then quasi-modular forms of weight 0 under the
monodromy group.

Now suppose we consider another period, call it σ, instead of t, and rewrite
the holomorphic anomaly equations (3.1) in terms of σ. For instance, let σ be the
period canonically chosen by the mirror map at the point of finite monodromy.
Again, the limit of the amplitudes at the orbifold point will be given by sending
Im(τσ) → ∞, where τσ is now defined by (3.3) in terms of the dual periods σ and
σD. Taking this limit should give the B-model amplitudes F orbg at the point of finite
monodromy, which should be mirror dual to the generating functionals of orbifold
Gromov-Witten invariants.
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Figure 2 A schematic illustration of our strategy to compute orbifold
Gromov-Witten invariants.

Hence, the holomorphic anomaly equation can be used to determine the Fg’s
at any point in the moduli space, including the point of finite monodromy, up to

the holomorphic ambiguities c
(g)
0 at each genus.

3.4 Computing orbifold Gromov-Witten invariants of X. Now, what
kind of additional data can we use to fix the ambiguities at the point of finite
monodromy? Well, the simple realization of [1] is that we in fact do not need any
new data! Indeed, a crucial point is that the ambiguities at each genus, which
correspond to the combinations

hg = (∂tτ)
2g−2 c

(g)
0 , (3.6)

are globally defined holomorphic functions on the moduli space M(Y ). Hence, if
we know the amplitudes at a large radius point q0 ∈ M(Y ), we can fix the hg,
and use them, in conjunction with (3.2), to compute the amplitudes at the point
of finite monodromy qorb ∈ M(Y ).

Our strategy to compute orbifold Gromov-Witten invariants should now be
clear. Consider a toric Calabi-Yau threefold X which is the crepant resolution of an
orbifold X = C3/G; the enlarged Kähler moduli space KM(X) contains an orbifold
point porb ∈ KM(X) corresponding to X. We first determine the mirror maps near
the large radius point p0 ∈ KM(X) and the orbifold point porb ∈ KM(X). The
calculation then proceeds in three steps, which are illustrated in figure 2.

1. We compute the generating functionals of Gromov-Witten invariants of X ,
using for instance the topological vertex [3], or localization of Hodge inte-
grals. These are mapped by mirror symmetry at large radius to the B-model
amplitudes near q0 ∈ M(Y ).

2. From these amplitudes we fix the holomorphic functions hg, which are valid
all over the moduli space and can be used to compute the B-model ampli-
tudes at qorb through (3.2).

3. Finally, we use the orbifold mirror map to extract the orbifold Gromov-
Witten invariants of X from the B-model amplitudes at qorb.

3.4.1 An alternative strategy. Note that there is a second method that can be
used to compute the B-model amplitudes at qorb, which was emphasized in [1]. The
amplitudes at the maximally unipotent boundary point q0, which we denote by
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F∞
g (τ), can be written as

F∞
g (τ) = (∂tτ)

2g−2
3g−3∑

k=0

Ek2 (τ)c
(g)
k (τ), (3.7)

since taking the limit Im(τ) → ∞ simply corresponds to replacing Ê2(τ, τ̄ ) by
E2(τ). At the orbifold point qorb, similarly the amplitudes read

F orbg (τσ) = (∂στσ)
2g−2

3g−3∑

k=0

Ek2 (τσ)c̃
(g)
k (τσ), (3.8)

where now τσ is defined from the periods σ, σD canonically chosen at the point
qorb. By definition of the period matrix, τ and τσ must be related by a symplectic
transformation, that is,

τσ =
aτ + b

cτ + d
for some

(
a b
c d

)
∈ SL(2,C). (3.9)

By using modular properties of the objects entering into (3.7) one can implement
the symplectic transformation to calculate the amplitudes (3.8). That method
relates directly, on the mirror side, the orbifold amplitudes to the amplitudes of its
crepant resolution, in the spirit of the crepant resolution conjecture [11, 18, 35].

Note however that this procedure may seem a little bit strange from a modular
forms point of view, since the transformation is generically in SL(2,C) rather than
in SL(2,Z). But the transformation of the amplitudes from the point q0 to the
point qorb can be made precise without direct reference to modular forms, as in [1],
using wavefunction properties of the amplitudes. There it was also shown that this
alternative approach is indeed equivalent to the first method proposed above.

3.5 Example: C3/Z3. Let us come back to our main example. Recall that
X = O(−3) → P2 is the unique crepant resolution of the orbifold X = C3/Z3. The
enlarged Kähler moduli space KM(X) is described by the secondary fan associated
to X . The secondary fan is generated by the two one-dimensional cones,

{(−3), (1)}. (3.10)

Hence KM(X) is one-dimensional and has two patches, one of which contains the
large radius point p0 associated to X , and the other of which includes the orbifold
point porb associated to X.

The mirror threefold Y was described in (2.20), in terms of the coordinate q
centered at the maximally unipotent boundary point q0 = {q = 0} ∈ M(Y ). The
point of finite monodromy qorb ∈ M(Y ) is located at q → ∞. A natural coordinate
centered at qorb is

ψ = q−1/3, (3.11)

as can be read off from the secondary fan. Note that under Z3-monodromy around
qorb = {ψ = 0}, ψ undergoes

ψ 7→ e2πi/3ψ. (3.12)
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3.5.1 The orbifold mirror map. We first need to fix the mirror map near the
orbifold point porb ∈ KM(X). Writing the Picard-Fuchs equations (2.22) in terms
of the coordinate ψ, we get

Dψ = ψ3Θ3
ψ + 27(Θψ − 2)(Θψ − 1)Θψ, (3.13)

with Θψ = ψ∂ψ. A solution vector to DψΠorb = 0 is given by

Πorb = (1, B1(ψ), B2(ψ)),

with

Bk(ψ) =
(−1)k+1ψk

k
3F2

(
k

3
,
k

3
,
k

3
;
2k

3
, 1 +

k

3
;

(
−
ψ

3

)3
)
. (3.14)

Using the explicit expansion of the hypergeometric system we get

Bk(ψ) =
∑

n≥0

(−1)3n+k+1ψ3n+k

(3n+ k)!

(
Γ
(
n+ k

3

)

Γ
(
k
3

)
)3

. (3.15)

As described in section 3.2, to get the orbifold mirror map we need to find linear
combinations of the solutions above that are mapped to a basis for the orbifold
cohomology of C3/Z3. The orbifold cohomology H∗

orb(C3/Z3) has basis 11, 1ω and

1ω2 , which are indexed by the elements 1, ω, ω2 ∈ Z3, with ω = e2πi/3 . The basis
elements have degrees

deg(11) = 0, deg(1ω) = 2, deg(1ω2) = 4. (3.16)

Hence H∗
orb(C3/Z3) is spanned by

σ011 + σ11ω + σ21ω2 . (3.17)

The orbifold mirror map will be given by mapping σ1 to an appropriate combination
of 1, B1(ψ) and B2(ψ).

Recall that monodromy around qorb is given by ψ 7→ e2πi/3ψ, which implies

(1, B1(ψ), B2(ψ)) 7→ (1, e2πi/3B1(ψ), e4πi/3B2(ψ)). (3.18)

But 1ω corresponds to the element ω ∈ Z3; thus, it is clear that σ1 should be
mapped to B1(ψ) directly, up to an overall scale factor. More precisely, we claim
that the mirror map is given by

(σ1, σ2) = (B1(ψ), B2(ψ)). (3.19)

Another way of arguing for this mirror map is by computing the genus 0 amplitude,
as we do next. Up to scale, the above mirror map is the only map that yields a
genus 0 amplitude which is invariant under orbifold monodromy. Note that this is
also the mirror map that was proved in [17].

3.5.2 Genus 0 amplitude. Before computing the genus 0 amplitude, let us clar-
ify the relation between the A-model amplitudes and Gromov-Witten theory at the
orbifold point. At large radius, the genus g A-model amplitudes became generating
functions for unmarked genus g Gromov-Witten invariantsNg,β in homology classes
β ∈ H2(X,Z). At the orbifold point, C

3/Z3 contains no compact curve, hence
the only invariants correspond to constant maps β = 0. However, the A-model
amplitudes now become generating functions for marked orbifold Gromov-Witten
invariants; more precisely

F orbg =

∞∑

n=0

1

(3n)!
Ng,nσ

3n
1 , (3.20)
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where the invariants Ng,n are given by 3n insertions of the orbifold cohomology
class 1ω. Note that the unmarked (n = 0) invariants are only well-defined for
g ≥ 2. Moreover, we incorporated implicitly the fact that only invariants with
3n insertions are non-zero, which ensures that the amplitudes are invariant under
orbifold monodromy.

The genus 0 amplitude is as usual given by the prepotential of special geometry,
in the basis canonically chosen at qorb. That is,

σ2 = −3
∂Forb

∂σ1
= −3

∂F orb0

∂σ1
. (3.21)

Integrating σ2, we get:

N0,1 =
1

3
, N0,2 = −

1

33
, N0,3 =

1

32
, N0,4 = −

1093

36
, . . . (3.22)

This potential has now been computed mathematically in three independent ways
by Coates, Corti, Iritani and Tseng in [17], Bayer and Cadman in [6] and by Cadman
and Cavalieri [12]. Agreement with these results for the genus 0 amplitude fixes
the normalization of the mirror map (3.19).

3.5.3 Higher genus amplitudes. To extract the higher genus amplitudes of C3/Z3,
we need to compute the holomorphic functions hg at each genus g. This can be
done easily at large radius, by first computing the A-model amplitudes through the
topological vertex, and then mapping them to the B-model side using the usual
mirror map at large radius. We obtain, for the marked invariants:

F orbg =

∞∑

n=1

1

(3n)!
Ng,nσ

3n
1 , (3.23)

with the numbers:4

g n = 1 2 3 4

0 1
3 − 1

33

1
32 − 1093

36

1 0 1
35 − 14

35

13007
38

2 1
24·34·5 − 13

24·36

20693
24·38·5 − 12803923

24·310·5

3 − 31
25355·7

11569
25395·7 − 2429003

253105·7
871749323
243115·7

4 313
273952 − 1889

2739

115647179
2631352 − 29321809247

2831252

5 − 519961
29311527·11

196898123
29312527·11 − 339157983781

29314527·11
78658947782147

293165·7

6 14609730607
212313537211 − 258703053013

210315517211
2453678654644313

212314537211 − 40015774193969601803
211318537211

The unmarked invariants (n = 0) for g ≥ 2 (these are not well-defined for
g = 0, 1) can also be calculated, and read

N2,0 =
−1

2160
+
χ(X)

5760
, N3,0 =

1

544320
−

χ(X)

1451520
, (3.24)

N4,0 = −
7

41990400
+

χ(X)

87091200
, N5,0 =

3161

77598259200
−

χ(X)

2554675200
, . . .

4We would like to thank A. Klemm for the computation of the invariants with g ≥ 3.
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where χ(X) is the “Euler number” of X = O(−3) → P2. Although χ(X) is not
really well defined mathematically since X is noncompact, its natural value can be
found by noting that any vector bundle retracts to its zero section; hence, since
X = O(−3) → P2, we obtain that χ(X) = χ(P2) = 3. Note that the numbers N2,0

and N3,0 have now been computed independently by myself and R. Cavalieri in
[8], by evaluating directly the Hodge integrals entering in the definition of orbifold
Gromov-Witten invariants.

3.5.4 Symplectic transformation. If we wanted to implement the second strat-
egy to compute the invariants, as in [1], we would need the symplectic transforma-
tion between the basis of periods (tD, t, 1) at q0 and the basis of periods (σ2, σ1, 1)
at qorb canonically chosen by the mirror maps. The transformation is easily found
by analytic continuation of the periods; see for example [20]. Define

c1 = −
1

2πi

Γ(1/3)

Γ(2/3)2
, c2 =

1

2πi

Γ(2/3)

Γ(1/3)2
, β =

1

(2πi)3
, ω = e2πi/3.

(3.25)
We get the transformation




tD
t
1



 =




βω2

c1

βω
c2

1
3

−c2 c1 0
0 0 1








σ2

σ1

1



 . (3.26)

Note that this transformation is not quite symplectic, since its determinant is −β;
that is, it changes the scale of the symplectic form. However, this can be taken into
account by renormalizing the string coupling constant; see [1] for the details of this
procedure.

4 Open mirror symmetry

So far we considered A- and B-model closed topological string theory, and
used mirror symmetry and the holomorphic anomaly equations to compute orbifold
Gromov-Witten invariants. In this section we would like to extend this line of
thought to open topological string theory, following the recent work of [9].

The general idea is the same: we want to use mirror symmetry and B-model
topological string theory to compute the A-model amplitudes at the orbifold point,
which are related to Gromov-Witten theory of the orbifold X. However, we now
consider open topological string theory, which is a theory of maps with boundaries
ending on submanifolds (usually called branes) of the target space. At large ra-
dius, A-model open topological strings compute the so-called open Gromov-Witten
invariants of X [24]. On the contrary, to the best of our knowledge it is not clear
what A-model open topological string theory computes in orbifold enumerative ge-
ometry; it should be some sort of generalization of open Gromov-Witten invariants
to the orbifold setting. Keeping this in mind, we use the mirror symmetric physical
approach to compute some generating functions for such as yet undefined “open
orbifold Gromov-Witten invariants”.

The main differences in considering open topological string theory are:

• the mirror map now comprises an open sector, which maps the moduli as-
sociated to the branes on the A- and the B-model sides;

• the holomorphic anomaly equations are no longer sufficient to compute the
open B-model amplitudes. Hence, we need a new formalism to compute the
amplitudes at the orbifold point.
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We (partially) overcame these two obstacles in [9] for simple orbifolds such as C3/Z3.
Let us first review general features of topological open string theory and the new
B-model formalism of [9], which is based on the ideas of [33]. We then study how
the open/closed mirror map can be fixed at the orbifold point, and compute some
“open orbifold Gromov-Witten invariants” of C3/Z3.

4.1 Open A-model on X. A-model topological open string theory is a theory
of holomorphic maps f : Σg,h → X , where Σg,h is a genus g Riemann surface with
h holes, and X is a Calabi-Yau threefold, such that f maps the boundaries of Σg,h
to a special Lagrangian submanifold L ⊂ X , which is called a brane. Near a large
radius point p0 ∈ KM(X), the A-model produces the generating functionals

A
(g)
h (X1, . . . , Xh) =

∑

wi∈Z

Fg,wX
w1

1 · · ·Xwh

h , (4.1)

where the Xi are the open moduli associated to the brane. The Fg,w here are
generating functions for open Gromov-Witten invariants of (L,X), counting maps
at genus g, indexed by their relative homology class β ∈ H2(X,L), and with winding
numbers wi, i = 1, . . . , h, specifying how many times the i-th boundary wraps
around the one-cycle in L:

Fg,w =
∑

β∈H2(X,L)

Ng,w,βQ
β . (4.2)

To define the open A-model amplitudes we needed to fix the brane L. When X is
a toric threefold, the usual branes considered are noncompact and have topology
C × S1; we will call these branes toric branes.5

4.2 Open B-model on Y . In the B-model, the Lagrangian branes are mapped
to holomorphic submanifolds of Y . More precisely, the toric brane L introduced
above maps to a one-complex dimensional holomorphic submanifold of Y , given by

G(x, y; q1, . . . , qr) = 0 = w′. (4.3)

Hence, it is parameterized by w, and its moduli space corresponds to the mirror
curve

Σ = {G(x, y; q1, . . . , qr) = 0}. (4.4)

The open string moduli Xi thus become variables on the mirror curve Σ.
We proposed in [9], following the ideas of [33], a complete recursive formalism

to generate the B-model open and closed amplitudes. The formalism is based on
the recursion relations of Eynard and Orantin which solve the loop equations of
matrix models [22]. We refer the reader to [9] for the details of the formalism.
To be concise, let us simply say that the open amplitudes are encoded by some
meromorphic differentials living on the mirror curve Σ, while the closed amplitudes
are functions on Σ. The recursive process can be understood as some sort of
gluing process for the open amplitudes, whereby the gluing procedure consists in
taking residues of some meromorphic differentials at the ramification points of the
projection map Σ → C∗. It is important to note that, in contrast to the holomorphic
anomaly equations for closed amplitudes (or their generalization to open amplitudes
[36]), the recursive formalism proposed in [9] is complete, in the sense that there is

5See [9] for an extensive discussion of these branes and the different phases in the open moduli
space.
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no ambiguity at each genus, and no additional data is needed to fix the topological
string amplitudes.

The input of the recursive process is rather simple. Using the notation above,
to generate all the open and closed amplitudes near a given point in M(Y ), say a
maximally unipotent boundary point q0 ∈ M(Y ), one only needs to know the disk

amplitude A
(0)
1 and the annulus amplitude A

(0)
2 near q0.

4.2.1 Disk amplitude. Following the work of [4, 5], we know that the disk am-
plitude is simply given by the Abel-Jacobi map of the curve Σ ⊂ C∗ × C∗:

A
(0)
1 (x) =

∫
λ =

∫
log y(x)

dx

x
, (4.5)

where y(x) is obtained by solving the defining equation of Σ for y; x here is the

B-model open string modulus. Note that A
(0)
1 is globally defined all over the moduli

space M(Y ), and can be expanded both at maximally unipotent boundary points
and the point of finite monodromy.

4.2.2 Annulus amplitude. The annulus amplitude is slightly more complicated.
Generically, it is given by

A
(0)
2 (x1, x2) =

∫ (
B(x1, x2) −

dx1dx2

(x1 − x2)2

)
, (4.6)

where B(x1, x2) is the Bergman kernel of the Riemann surface Σ. This is defined
to be the unique meromorphic differential on Σ with a double pole at x1 = x2 with
no residue, and no other pole, and normalized such that

∮

AI

B(x1, x2) = 0, (4.7)

where (AI , B
I) is a canonical basis of one-cycles on Σ. Note that by definition the

Bergman kernel depends on a choice of canonical basis of cycles, or periods, on Σ.
In fact, we can be more precise on how the Bergman kernel depends on the

choice of cycles. Under an Sp(2g,Z) transformation of the periods, the Bergman
kernel transforms with a shift, as follows:

B(x1, x2) 7→ B(x1, x2) − 2πiω(x1)(Cτ +D)−1Cω(x2), (4.8)

with (
A B
C D

)
∈ Sp(2g,Z), (4.9)

and τ is the period matrix. Here, ω(p) is the holomorphic differentials put in vector
form. Hence, B(x1, x2) provides an “open analog” – since it is a differential on Σ –
to the second Eisenstein series E2(τ), which also transforms with a shift. For more
on the modular properties of the Bergman kernel, see [21, 22].

Therefore, once one knows the disk and the annulus amplitude at a given point
in M(Y ), one can generate unambiguously all other open and closed amplitudes
at this point, using the recursive process of [9]. However, to map the results to
the more interesting A-model where the amplitudes are related to Gromov-Witten
theory, one must also know the open/closed mirror map near this point, which we
now turn to.
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4.3 The open/closed mirror map. In the context of open topological string
theory, the usual mirror map must be supplemented with an open sector, which re-
lates the A-model open modulus X to the B-model open modulus x. Consider
first a large radius point p0 ∈ KM(X) and its corresponding maximally unipotent
boundary point q0 ∈ M(Y ). The open mirror map is defined such that, in conjunc-
tion with the closed mirror map, it lifts to an isomorphism of the open and closed
A- and B-model amplitudes near p0 and q0.

Since x and X are C∗ coordinates, as is customary in the physics literature we
write x = eu, X = eU . While the closed mirror map is given by the integrals of the
one-form λ over one-cycles on the mirror curve Σ (the “periods” of λ), the open
mirror map, as argued in [4], is given by a chain integral of the one-form λ:

U =

∫

αu

λ, (4.10)

where αu is a given chain on Σ. In analogy with the flat coordinates on M(Y ) —
which we now call “closed flat coordinates” to avoid confusion — we will call this
integral the open flat coordinate on the open/closed moduli space. As explained in
[9], once evaluated, the chain integral always takes the form

U = u+ 2πi

r∑

i=1

rui

(
1

2πi
log qi − ωi

)
, (4.11)

where the qi and ωi were introduced in section 2.2; the ωi are the logarithmic
periods (the closed flat coordinates) at q0 ∈ M(Y ), while the qi are the usual
coordinates on M(Y ) centered at q0. The coefficients rui are rational numbers. In
physics language, what this statement means is that the open string coordinates
only receive corrections coming from closed string instantons.

What we are now interested in is determining the open mirror map at the point
of finite monodromy qorb ∈ M(Y ) mirror dual to the orbifold point porb ∈ KM(X).
By definition, we know that the open flat coordinate at qorb, which we denote by
Uorb, will always be given by a linear combination of the period integrals of λ and
the chain integral (4.10). We claim that, as in the closed case, for simple orbifolds
such as C3/Z3, the good linear combination can be uniquely determined, up to
scale, by requiring that the disk amplitude be invariant under finite monodromy
around qorb.

Let us now put these ideas into practice for our orbifold friend C
3/Z3.

4.4 Example: C3/Z3. Consider again the crepant resolution X = O(−3) →
P2 of C3/Z3. We now fix a toric brane, that is, a special Lagrangian submanifold
of X with topology C × S1; for example, we consider an “outer brane” with zero
framing, in the terminology of [9]. The mirror curve reads

Σ = {y2 + y(1 + x) + qx3 = 0}. (4.12)

The maximally unipotent boundary point is at q = 0. Recall that the only loga-
rithmic period is given by

ω(q) =
1

2πi

(
log q +

∞∑

n=1

(−1)n

n

(3n)!

(n!)3
qn

)
. (4.13)
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The chain integral (4.10) giving the open mirror map at large radius was performed
in [4], and the result is

U = u+
2πi

3

(
1

2πi
log q − ω(q)

)
= u−

1

3

∞∑

n=1

(−1)n

n

(3n)!

(n!)3
qn. (4.14)

To compute the disk amplitude we need to integrate the one-form λ. Solving
(4.12) for y, we get

y(x) = −
1 + x

2
−

1

2

√
(1 + x)2 − qx3, (4.15)

where we kept the branch of the square root which is relevant for the disk amplitude.
The B-model disk amplitude at q0 is then given by expanding

A
(0)
1 =

∫
log y(x)

dx

x
(4.16)

around q = 0. To get the A-model amplitude at large radius, we simply plug in the
open and closed mirror maps.

4.4.1 Orbifold mirror map. We now want to compute the amplitude at the
orbifold point porb ∈ KM(X). We first need to compute the B-model amplitude at
the point of finite monodromy qorb ∈ M(Y ). Recall that qorb is located at ψ = 0,
with

ψ = q−1/3. (4.17)

The disk amplitude at qorb is simply given by writing (4.15) in terms of ψ, and
then expanding (4.16) around ψ = 0. However, to obtain the A-model amplitude
at the orbifold point we need to plug in the open and closed mirror maps near the
orbifold point. We already found the closed mirror map in (3.19), which is given
by

(σ1, σ2) = (B1(ψ), B2(ψ)). (4.18)

We now need to find the open mirror map.
Well, the open flat parameter must be given by a linear combination of the

periods of λ and the chain integral (4.10). It turns out that the only combination,
up to scale, that gives a disk amplitude invariant under the Z3-monodromy is

Uorb = U +
2πi

3
ω(q) = u+

1

3
log q. (4.19)

In terms of exponentiated parameters, Xorb = eUorb and x = eu, we get

Xorb = xq1/3 =
x

ψ
. (4.20)

This gives the open mirror map at the orbifold point, where Xorb is the A-model
open modulus and x is the B-model open modulus.

4.4.2 Orbifold disk amplitude. Now, expanding the disk amplitude around ψ =
0 and plugging in the open and closed orbifold mirror maps (4.18) and (4.20) we
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obtain

A
(0)
1 =

(
σ1 +

σ4
1

648
−

29 σ7
1

3674160
+

6607

71425670400
σ10

1 + . . .

)
Xorb

+

(
−
σ2

1

4
−

σ5
1

1296
+

197 σ8
1

58786560
−

5737

142851340800
σ11

1 + . . .

)
X2
orb

+

(
−

1

3
+
σ3

1

9
+

σ6
1

1944
−

σ9
1

544320
+ . . .

)
X3
orb + O(X4

orb). (4.21)

Up to the scale of Xorb, which we could not fix in the mirror map (4.20), we predict
that this amplitude should generate “open orbifold Gromov-Witten invariants” of
C

3/Z3 at genus 0 with one hole; it would be fascinating to understand what these
invariants really are. Finally, note that (4.21) is indeed invariant under the Z3-
monodromy given by ψ 7→ e2πi/3ψ, as it should be.

A little note of care may be added here. In the B-model, the open amplitudes
explicitly depend on a choice of parameterization for the mirror curve Σ. At large
radius, this corresponds on the mirror A-model side to a choice of framing and
phase for the Lagrangian brane [9]. However, for the A-model amplitudes at the
orbifold point it is unclear what this freedom means. In particular, we should be
more precise and say that, in the terminology of [9], the orbifold disk amplitude
presented above should be for an “outer brane with zero framing” in the orbifold
C3/Z3, even though we do not really understand what this means yet.

4.4.3 Orbifold annulus amplitude. To compute the remaining amplitudes at the
orbifold point, we first need to obtain the B-model annulus amplitude at the point
of finite monodromy. In turn, this involves computing the Bergman kernel at this
point. The strategy goes as follows; we will use our knowledge of the Bergman
kernel at q0 to compute it at qorb.

In terms of closed periods, moving from q0 to qorb involves a symplectic transfor-
mation of the periods; that is, the periods (tD, t, 1) at q0 and the periods (σ2, σ1, 1)
at qorb are related by the transformation (3.26). However, we have seen that the
Bergman kernel is not modular under symplectic transformations of the periods;
instead, it transforms with a shift, see (4.8). Hence, we can use this transformation
formula, in conjunction with (3.26), to extract the Bergman kernel at qorb from the
Bergman kernel at q0. This also involves analytically continuing the large radius
Bergman kernel to the point qorb : {ψ = 0}, which can be done with standard meth-
ods. In fact, a consistency check is that the analytic continuation of the large radius
annulus amplitude, when expanded in terms of σ1 after plugging in the open/closed
orbifold mirror map, does not have rational coefficients; however, after shifting it
using (4.8), the result should have a rational expansion.

We are presently in the process of computing the annulus amplitude at qorb
[10]. When this is done, we can generate all open and closed amplitudes at the
point of finite monodromy qorb unambiguously, and then plug in the open and
closed orbifold mirror maps found above to compute the open and closed A-model
amplitudes at the orbifold point. We hope to report on that in the near future.
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