
HAL Id: hal-01879009
https://hal.science/hal-01879009v2

Submitted on 6 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orbifold Stability and Miyaoka-Yau Inequality for
minimal pairs

Henri Guenancia, Behrouz Taji

To cite this version:
Henri Guenancia, Behrouz Taji. Orbifold Stability and Miyaoka-Yau Inequality for minimal pairs.
Geometry and Topology, In press. �hal-01879009v2�

https://hal.science/hal-01879009v2
https://hal.archives-ouvertes.fr


ORBIFOLD STABILITY AND MIYAOKA-YAU INEQUALITY FOR

MINIMAL PAIRS

by

Henri Guenancia & Behrouz Taji

Abstract. — After establishing suitable notions of stability and Chern classes for singular

pairs, we use Kähler-Einstein metrics with conical and cuspidal singularities to prove the slope

semistability of orbifold tangent sheaves of minimal log canonical pairs of log general type.
We then proceed to prove the Miyaoka-Yau inequality for all minimal pairs with standard

coefficients. Our result in particular provides an alternative proof of the Abundance theorem

for threefolds that is independent of positivity results for cotangent sheaves established by
Miyaoka.
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1. Introduction

In 1954 Calabi conjectured that a compact complex manifold with negative first Chern

class c1(X) < 0 admits a Kähler-Einstein metric. This conjecture was famously settled

by Aubin [Aub78] and Yau [Yau78] leading to many remarkable applications in algebraic

geometry for those manifolds. An important consequence was the celebrated Miyaoka-Yau

inequality (cf. [Yau77]):

(1.1)
(
2(n+ 1) · c2(X)− n · c21(X)

)
· (−c1(X))n−2 > 0,
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where n = dim(X).

The first main result of the current paper is the generalization of Inequality (1.1) to the

case of all minimal models.

Theorem A. — (The Miyaoka-Yau inequality for minimal models)

Any minimal model of dimension n verifies the Miyaoka-Yau inequality:

(1.2)
(
2(n+ 1) · c2(X)− n · c21(X)

)
· (−c1(X))n−2 > 0,

A minimal model X is a normal complex projective variety with only terminal singular-

ities whose canonical divisor is a Q-Cartier nef divisor. According to standard results and

conjectures in the Minimal Model Program minimal varieties exist, at least conjecturally,

in the birational class of any non-uniruled projective manifold. In this context, thanks to

his celebrated result on the so-called generic semi-positivity of cotangent sheaves, Miyaoka

proved that the inequality

(1.3)
(
3c2(X)− c21(X)

)
·Hn−2 > 0,

holds, for any ample divisors H ⊂ X, cf. [Miy87]. In this light, the inequality (1.2) can be

seen as bridging the gap between the two inequalities of Miyaoka (1.3) and Yau (1.1), when

the polarization is chosen to be the canonical one.

More generally, minimal models are studied in the setting of pairs (X,D) where a projec-

tive variety X is considered together with a divisor D such that KX +D is nef and (X,D)

has only “mild” singularities. Naturally one would like to generalize the inequality (1.1) in

this setting.

Generalization of Miyaoka-Yau inequalities have attracted a lot of attention over the

last thirty years, with major contributions due to Tsuji, R. Kobayashi, Tian-Yau, Simpson,

Megyesi, Y. Zhang, Song-Wang, Greb, Kebekus, Peternell together with the second author,

to cite only a few. We have tried to render a brief account of these contributions in the last

section of the introduction.

One of the remaining cases of interest for this inequality is that of log canonical pairs

(X,D) where KX + D is nef. Here the situation gets significantly more complicated; even

when defining the correct notion for Chern classes. In fact in the most general setting, where

all possible rational coefficients for D are allowed, it is not even clear how one should define

higher Chern classes. However, under the assumption of Theorem B below (which seem

to be somehow the maximally singular cases where orbifold Chern classes can be defined,

cf the remarks under the aforementioned theorem), there exists a Zariski open subset X◦

with codimX(X\X◦) > 3 where it is possible to find a collection of local smooth charts

encoding the structure of the boundary D. Then, one can follow constructions similar to

those of Mumford [Mum83] for Q-varieties to define c2(X,D) cycle theoretically. With

this definition at hand, we prove the Miyaoka-Yau inequality for minimal dlt pairs whose

boundary has standard coefficients:
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Theorem B. — (The Miyaoka-Yau inequality for minimal dlt pairs)

Let X be a normal, projective variety of dimension n and let D be an effective Q-divisor

with standard coefficients, i.e. D =
∑

(1− 1
ni

) ·Di with ni ∈ N ∪ {∞}. Assume that

(i) Each component Di of D is a Q-Cartier divisor;

(ii) The pair (X,D) has dlt singularities;

(iii) The Q-line bundle KX +D is nef.

Let ν denote the numerical Kodaira dimension of KX +D. Then, for any ample divisor H

in X, the inequality

(1.4)
(
2(n+ 1) · c2(X,D)− n · c21(X,D)

)
· (KX +D)i ·Hj > 0.

holds, where i = min(ν, n− 2) and j = n− i− 2.

We follow the usual convention by setting “ni =∞” when the expression (1− 1
ni

) is equal

to 1. Also recall that the numerical Kodaira dimension ν(B) of a nef Q-divisor B is defined

by ν(B) := max{m ∈ N
∣∣ c1(B)m 6= 0}. For the definition of the various types of singularities

that appear in this paper we refer to [KM98, §2.3]. We recall that klt singularities are dlt.

A few remarks about Theorem B. — We would like to detail a few points in Theo-

rem B.

(a) First, the restriction on the singularities is essential to guarantee the existence of

suitable covers, and consequently a good notion for c2(X,D); we refer to Section 2.4 for an

in-depth discussion.

(b) We can extend Theorem B to the following case:

∗ The pair (X,D) is log smooth, where D =
∑
di ·Di, di ∈ [0, 1] ∩Q.

(c) The strategy of the proof of Theorem B relies, in a crucial way, on an approxima-

tion process which amounts to replacing (X,D) by (X,D + 1
mH) for some suitable ample

divisor H, and then passing to the limit when m → ∞. This approximation, detailed in

Proposition 2.16 is required for the following two things.

∗ To be able to deal with the case where KX +D is nef but not big.

∗∗ To clear the poles of the Higgs field in the last step of the proof: as the new

pair is klt, the canonical Higgs field on the cover has no poles along the divisor

(rather zeros), allowing us to apply Simpson’s results on the Kobayashi-Hitchin

correspondence.

The remark above highlights the importance of having a good (intrinsic) theory of orbifold

sheaves (and related objects) in the case of boundary with arbitrary rational coefficients,

which forms the main bulk of the preliminary sections 2 and 3 of the current paper. These

constructions provide sufficient flexibility that is crucial in dealing with the approximation

process mentioned above. Indeed it is in this context that we establish slope semistability

for the tangent sheaf of minimal models; a result that turns out to be an essential tool in

proving Theorem B.
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Theorem C. — (Semistability of the orbifold tangent sheaf of minimal lc pairs).

The orbifold tangent sheaf of any minimal log canonical pair of log general type (X,D) is

slope semistable with respect to KX +D.

The general strategy to prove Theorem C is inspired from [CP16] and [Gue16], and the

main analytical input is the theory of conical/cuspidal metrics, cf §4.1. These metrics are the

logarithmic (or pair) analogue of Kähler metrics and they provide canonical -though possibly

singular- hermitian metrics on the orbifold tangent sheaf of a pair (X,D), say when KX +D

is ample. These metrics are the key to derive geometric properties of the orbifold tangent

sheaf (like semistability) knowing only positivity/negativity properties of its determinant.

However, when the pair (X,D) is singular, these metrics are unfortunately too singular to

carry over the existing analysis in the (log) smooth case. So one needs to regularize the

metrics on a resolution and control the resulting error terms.

The control of the error term is given by Lemma 4.3; from a technical point of view,

this constitutes the core of the proof. This lemma is the equivalent in this more general

context of [Gue16, Lemma 3.7]. However, the strategy of its proof is completely different

and somewhat simpler. It relies on pluripotential theory and more specifically on the notion

of strong convergence developed e.g. in [BBE+19]. We explain in Remark 4.4 why a new

strategy was actually needed.

The last step of the proof of Theorem C is to relate the semistability of the orbifold

tangent sheaf of a resolution to the one of X. This is a place where it is crucial to

have defined the orbifold tangent sheaf in an intrinsic way (that is, not with any particular

choice for a cover but rather the possibility to work with all adapted covers at the same time).

Application to the Abundance Conjecture. — The inequality (1.4) in dimension 2

and in the smooth setting was established by Miyaoka through purely algebraic methods. In

higher dimensions a weaker inequality was famously proved, again by Miyaoka ([Miy87]),

via his work on generic semipositivity of the cotangent sheaves of minimal models, an ap-

proach that heavily depends on sophisticated characteristic-p arguments. Miyaoka’s result in

dimension 3, and its generalization by Megyesi ([K+92, Chapt. 10]), namely the inequality

c2(X,D) · (KX +D) > 0

for a minimal lc pair (X,D) with klt X, were fundamental to the proof of Abundance

conjecture for threefold cf. [Kaw92] and [K+92]. In this light, Theorem B provides an

alternative way for proving the Abundance Conjecture (in dimension 3), that is independent

of generic positivity results for cotangent sheaves of minimal models.

Structure of the paper. —

• Sections 2 and 3 provide the suitable algebraic framework to work with sheaves on pairs

(X,D), where D has rational coefficients. Roughly speaking, every lc pair (X,D), with
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X being klt, has a natural structure of a smooth Deligne-Mumford stack in codimension

two (see Subsection 2.3). Such structures can then be endowed with linearized sheaves; the

orbifold sheaves. In particular, and inspired by the works of Campana, we can naturally

define an orbifold tangent sheaf for the pair (X,D) (Definition 2.23). The Chern classes of

such orbifold sheaves can then be defined in an orbifold sense (see Section 2.6).

• In Section 4, after recalling the basic definitions about conical/cuspidal metrics, we

then use the regularity results of [GP16] about conical/cuspidal Monge-Ampère equations

to derive the semistability of the orbifold tangent sheaf of any minimal lc pair, in the spirit

of [Gue16]. Even though the global approach is similar, one of the key estimates (Lemma

4.3) requires a new input, cf Remark 4.4.

• In Section 5, and by following a similar strategy to that of [GKPT19], we prove Theo-

rem B using Theorem C to construct a a stable orbi-Higgs sheaf whose Bogomolov-Gieseker

Chern class discriminant is equal to that of Miyaoka-Yau for the orbifold tangent sheaf of

(X,D). At this point Simpson’s result on the Kobayashi-Hitchin correspondence for Higgs

bundles can be used to prove the Miyaoka-Yau inequality for (X,D).

Previously known results. — As we explained above already, the Miyaoka-Yau inequal-

ity and its various generalizations have been intensely studied. There are been different

types of generalization so far:

· By relaxing the assumption on ampleness of KX and replacing it with KX nef and

big. The first approach seems to be due to Tsuji [Tsu88] using orbifold metrics; later, Y.

Zhang [Zha09a] gave a proof using the Kähler-Ricci flow relying on the scalar curvature

bound of Z. Zhang [Zha09b]. Finally, Song and Wang [SW16] used the regularity results

of [JMR16] about conical metrics to reprove that inequality. The idea that conical metrics

could be used to generalize Miyaoka-Yau inequality has been suggested by Tian [Tia94]

already twenty years ago.

· In the setting of log smooth pairs (X,D) with standard coefficients, the Miyaoka-Yau

inequality has been obtained by R. Kobayashi [Kob84] (assuming D reduced) and Tian-Yau

[TY87] (in general). The proofs rely on the generalization of Aubin-Yau theorem in this

setting, where the suitable geometry involves orbifold and cuspidal metrics. Using conical

Kähler-Einstein metrics, Song-Wang [SW16] (partially) generalized these results to the case

where (X,D) is log smooth and D is smooth with arbitrary real coefficients in (0, 1).

· For singular klt surfaces, and more generally for log canonical pairs (S,C) where S is a

klt surface and C is a (reduced) curve such that KS +C is nef, the Miyaoka-Yau inequality

was showed by Megyesi [K+92, Chap. 10].

· In another direction, Simpson [Sim92] observed that Miyaoka-Yau inequality can be

(almost formally) deduced from Bogomolov-Gieseker inequality for semistable bundles using

the Higgs bundle ΩX ⊕OX .
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· Using Simpson’s much more robust approach and the first author’s semistability result

[Gue16], Greb, Kebekus, Peternell and the second author have recently proved the Miyaoka-

Yau inequality for projective minimal varieties of general type with klt singularities, cf.

[GKPT19].

Acknowledgements. — Both authors would like to thank Daniel Greb, Stefan Kebekus,

Robert Lazarsfeld, Mihai Păun, Thomas Peternell and Jason Starr for helpful discussions.

The authors also owe a debt of gratitude to the anonymous referees for numerous helpful

comments and for pointing out some errors in an earlier version of this paper.

2. Preliminaries on orbifold sheaves, Chern classes and stability

We begin the current section by reviewing some basic orbifold constructions. These

constructions will then be used in Subsection 2.6 to introduce relevant notions of stability

and Chern classes that are crucial for the rest of the paper.

Definition 2.1 (Pairs). — A pair (X,D) consists of a normal quasi-projective variety X

and a divisor D =
∑
di ·Di, where di = (1− bi

ai
) ∈ [0, 1] ∩Q with ai ∈ N ∪ {+∞}, bi ∈ N,

and each Di is prime. We say that (X,D) has standard coefficients if bi = 1, for every i.

In the following, ai and bi are always assumed to be relatively prime.

Definition 2.2 (Pull-back of Weil divisors). — Let f : Y → X be a finite and surjective

morphism between normal quasi-projective varieties Y and X. For every Weil divisor D ⊂
X, we define the pull-back f∗(D) by the Zariski-closure of (f |f−1(Xreg))

∗(D|Xreg
).

2.1. Adapted morphisms. — We now recall a notion of morphism that encodes frac-

tional structure in the boundary divisor of a given pair. See for example [JK11, Sect. 2]

or [CKT16, Sect. 2.6] for similar definitions and more examples.

Definition 2.3 (Adapted morphisms). — Let (X,D) be a pair as in Definition 2.1. A

finite, Galois and surjective morphism f : Y → (X,D) is called adapted to (X,D) if

(2.3.1) The variety Y is a normal and quasi-projective.

(2.3.2) For every Di, with di 6= 1, there exists mi ∈ N and a reduced Weil divisor D′i ⊂ Y
such that f∗(Di) = (miai) ·D′i.

(2.3.3) The morphism f is étale over the generic point of Supp(bDc).
Furthermore, we say that f is strictly adapted if mi = 1, for all i.

It will be important for subsequent constructions to work with adapted morphisms that

are, in codimension one, only ramified along a given boundary divisor. For this we introduce

the notion of orbi-étale morphisms.

Definition 2.4 (Orbifold-étale morphisms). — Given a pair (X,D), we call a strictly

adapted morphism f : Y → (X,D) orbifold-étale, if the divisorial part of the branch locus of

f is contained in Supp(D).
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2.2. Orbifold structures. — In this subsection we give a construction of local charts

adapted to pairs, which we will use for the orbifold notions of stability and Chern classes

introduced later on in the current section.

Definition 2.5 (Local orbifold structures). — Let Ux ⊆ X be a Zariski open neigh-

bourhood of x ∈ X equipped with a surjective, étale (quasi-finite) morphism σx : Ũx → Ux

and a morphism gx : Xx → Ũx adapted to σ∗x(D):

Xx

fx

((gx

adapted
// Ũx

σx

étale
// Ux.

We call the ordered triple (Ux, fx, Xx) an orbifold structure at x. Furthermore, if (Xx, f
∗
xD)

is log-smooth, we say that the orbi-structure defined by (Ux, fx, Xx) is smooth.

Let us emphasize that we do not require σx to be finite and thus no such assumption has

been made for fx either. As we will see later this has to do with the fact that algebraic klt

varieties have algebraic quotient singularities in codimension two only in the étale topology,

cf. e.g. the proof of Proposition 2.12. However, we note that gx is assumed to be finite.

Definition 2.6 (Strict and étale orbifold structures). — In Definition 2.5, if fx is

strictly adapted or orbi-étale, we say that the orbi-structure at x is, respectively, strict or

étale.

Definition 2.7 (Global structures). — Let C = {(Uα, fα, Xα)}α∈I , where I is an index

set, be a collection of ordered triples describing local orbi-structures on X. Let α, β ∈ I

and define Xαβ to be the normalization of the fibre product (Xα ×X Xβ) with the associated

commutative diagram:

Xαβ

gβα //

gαβ

��

Xβ

fβ

��
Xα

fα // X,

where gαβ : Xαβ → Xα and gβα : Xαβ → Xβ are the projection maps. We say that C defines

an orbi-structure on the pair (X,D), if the following holds.

(2.7.4) X =
⋃
α∈I Uα.

(2.7.5) The two morphisms gβα and gαβ are étale in codimension one.

We note that the latter assumption is equivalent to the condition that, for each α, β ∈ I,

the two morphisms fα and fβ have the same branch locus in codimension one with equal

ramification indices.

If the structure C is smooth, i.e. if the local orbi-structures (Uα, fα, Xα) are smooth for

for any α ∈ I, then it follows from Nagata’s purity of branch locus that the varieties Xαβ

are smooth and the morphisms gαβ are étale, for all indices α, β ∈ I.
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The reader may also like to compare the data {(Uα, fα, Xα)}α to the definition of an

algebraic Deligne-Mumford stack with local isotropic groups being trivial at the generic

point of Xα and cyclic of order ai over the fractional components of D. Here X should be

thought of as the coarse moduli space.

Definition 2.8. — We say that a pair (X,D) admits an orbi-structure in codimension k

for some integer k ∈ N if there exists a Zariski open subset X◦ ⊂ X such that

(2.8.6) codimX(X \X◦) > k.

(2.8.7) (X◦, D|X◦) admits an orbi-structure.

Assumption (Orbi-structures are smooth). — From here onwards and until the end

of the paper, any orbi-structure on any pair (X,D) will be assumed to be smooth, unless

otherwise stated.

Note that a variety X admitting a (smooth) orbi-structure has necessarily finite quotient

singularities in the étale and consequently analytic topology.

2.2.1. Examples. — Every pair (X,D) with D reduced, trivially admits an orbifold struc-

ture via the identity map. We now give a list of examples that are relevant to the rest of

our discussions in the current article.

Example 2.9 (Orbi-structures for snc pairs). — Every pair (X,D) with X smooth

and D having a simple normal crossing support admits various orbi-structures. Indeed, for

every x ∈ X there exists a Zariski open subset Ux ⊂ X that can be endowed with a natural

étale orbi-structure as follows. Let Ux be a Zariski neighbourhood of x where each irreducible

component {(Di|Ux)}ki=1 of D − bDc is principal, given by the zero locus of fi ∈ OUx . Let

{ti}ki=1 parametrize each copy of C in the cartesian product Ck × Ux. Then, the subvariety

Vx ⊂ Ck × Ux defined by the zero locus of {(taii − fi)}ki=1 admits a projection onto Ux that

is orbi-étale with respect to (X,D)|Ux . The existence of the orbi-étale structure now follows

from repeating this construction for each x ∈ X.

Such pairs also admit a global, but certainly non-canonical orbifold structure. More

precisely, thanks to Kawamata’s construction, cf. e.g. [Laz04a, Prop. 4.1.12], every snc

pair (X,D) admits a strict, orbi-structure f : Y → X, which fails to be orbi-étale along a

non-unique, very ample divisor.

Remark 2.10. — As a consequence of Example 2.9 above, any pair (X,D) admits various

orbi-structures in codimension one.

Example 2.11 (The normal case). — In the normal case constructions similar to the

smooth example exist. For example, thanks to [CKT16, Prop. 2.38], there exists a (global)

strictly adapted morphism f : Y → (X,D). We note that in this construction f : Y → X

is constructed as the finite morphism in the Stein factorization of the map Ỹ → X, where

Ỹ is the smooth quasi-projective variety in the Kawamata covering f̃ : Ỹ → (X̃, D̃) of a

log-resolution π : X̃ → X of (X,D):
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Ỹ

��

f̃ // X̃

π

��
Y

f // X.

As such the morphism is branched in codimension one over Supp(D) and a divisor H.

Moreover, if one assumes that each component Di of D is Q-Cartier, then one can guarantee

that H belongs to a very ample linear system in X. To see this one can argue as follows.

By assumption, there exist mi ∈ N such that for any index i, mi · Di can be written as

the difference of two very ample divisors Ai and Bi: mi ·Di = Ai − Bi. Let E an effective

exceptional divisor such that −E is ample over X and that, for sufficiently small ε ∈ Q+,

the two divisors (π∗Ai − ε · E) and (π∗Bi − ε · E) are ample in X̃.

Now, let ci ∈ N be sufficiently large and divisible so that ci·(π∗Ai−εE) and ci·(π∗Bi−ε·E)

are very ample. After pulling back we have

(ci ·mi) · π∗Di = ci · (π∗Ai − ε · E)− ci · (π∗Bi − ε · E).

The original arguments of Kawamata as in the proof of [Laz04a, Thm. 4.1.10]—via the

so-called Bloch-Gieseker covering—now apply and we can construct a covering σ : Z → X

by taking roots. In particular there exists a line bundle N on Z such that

N ⊗(ai·ci·mi) ∼= σ∗OX̃
(
π∗(ci ·mi ·Di)

)
.

Following the rest of the arguments of Kawamata as in [Laz04a, Prop. 4.1.12] we can then

proceed to construct the morphism f̃ as above with H (the additional branch locus) being

a general member of a very ample linear system in X.

2.3. Orbi-structures for log canonical spaces. — In this section, we construct orbi-

étale structures in codimension two for pairs satisfying the assumptions of Theorem B.

Later, this will make it possible to define a meaningful notion of Chern classes for such pairs.

But first, let us recall the following result, which is a consequence of the classification of

dlt singularities pairs in dimension two, see [GKKP11, Cor. 9.14] for more details.

Proposition 2.12. — (Dlt spaces admit orbi-étale structures in codimension 2).

Let (X,D) be a dlt pair with reduced D. There exists a Zariski open subset X◦ ⊆ X with

codimX(X\X◦) > 3 over which (X,D) admits an orbi-étale structure.

Proof. — According to [GKKP11, Cor. 9.14], there exists a Zariski open subset X1 ⊆ X

with codimX(X\X1) > 3 such that

D|X1
⊂

k⋃
i=1

Ui,
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where each Ui is a Zariski open subset equipped with a finite, quasi-étale, surjective and

Galois morphism of quasi-projective varieties fi : Xi → Ui and such that (Xi, f
∗
i (D)) is

log-smooth.

On the other hand, as X\D is klt, it has only quotient singularities in codimension

two, cf. [GKKP11, Prop. 9.3]. Thanks to Artin’s approximation for algebraic quotient

singularities [Art69, Cor. 2.6], it follows that there exists an open subset X2 ⊆ (X\D) with

codimX\D((X\D)\X2) > 3, admitting a Zariski open covering Uk+1, . . . , Uk+l satisfying the

following properties.

(2.12.8) Each Ui, i ∈ {k + 1, . . . , k + l}, is equipped with an étale and surjective morphism

σi : Ũi → Ui.

(2.12.9) For each such Ũi there exists a quasi-étale, Galois, surjective morphism gi : Xi → Ũi

with Xi smooth that is ramified only over the singular locus of Ũi.

Now, for i ∈ {k + 1, . . . , k + l}, let fi := gi ◦ σi and define X◦ = X1 ∩ X2. The set

{(Uα, fα, Xα)}α∈I , I = {1, . . . , k + l}, now defines a orbi-étale structure over X◦.

2.4. Two examples of singularities without orbi-structures. — The very elemen-

tary examples below show how the restrictions on the singularities in Theorem B cannot be

removed if one wants to find a smooth cover (in codimension two) that is adapted to the

boundary divisor.

The first example below shows that if the pair (X,D) is not dlt but merely log canonical,

there is no hope in finding a smooth cover in codimension two, even if the coefficients are

standard.

Example 2.13. — Set X := C2, and let C = {y2 + x3 = 0} ⊂ C2 be the cusp. Then it

is well known that lct(X,C) = 5
6 , which means that (X, 5

6C) is lc but not klt. Denote by

Y := {t6 = y2 + x3} ⊂ C3 the standard cover and set C ′ := {t = 0}. The ramification

formula can be written the following two ways

KY ∼Q p
∗(KX +

5

6
C) or KY + C ′ ∼Q p

∗(KX + C)

which shows that Y is indeed lc but not klt and that (Y,C ′) is not lc. (We also note that the

singularity (Y, 0), called simple elliptic, is not —as expected— a finite quotient singularity,

cf. [Kol97, Thm. 3.6].)

The next example, in a similar vein as above, shows that if one does not require D to have

standard coefficients, then the ramified covers will in general not be klt; an obstruction to

much of the theory that will be developed in Subsection 2.6, cf also Proposition 2.12.

Example 2.14. — Let (X,D) be a pair with X smooth, D irreducible and reduced such

that lct(X,D) < 1. Then for m large enough, (X, 1
mD) is klt; however, any cover p : Y → X
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ramified at order m along D will satisfy

KY ∼Q p
∗(KX +

m− 1

m
D)

but for m large enough, the pair (X, m−1
m D) is not klt (or lc) anymore so that Y has worse

singularities than lc. Therefore Y cannot be (locally) covered by a smooth variety, which as

we will see in Subsection 2.6 poses a major difficulty for defining orbifold Chern classes.

2.5. The approximation process. — In the current section we establish a technical

ingredient that enables us to reduce the problem of establishing the Miyaoka-Yau inequality

to the klt case. This is the content of Proposition 2.16, but first need the following variant

of [KM98, Prop. 5.20] on the behaviour of singularities under certain finite morphisms. We

note that we will use the notation (X,D)reg to denote the locus of Xreg over which D has

simple normal crossing support.

Lemma 2.15. — Let Y be a quasi-projective variety and let DY be an effective Q-divisor

such that (Y,DY ) is dlt. Let f : X → Y be a finite surjective morphism from a normal

variety X and let us define the effective divisor DX by the identity KX+DX = f∗(KY +DY ).

Assume that f−1((Y,DY )reg) ⊂ (X,DX)reg. Then (X,DX) is dlt.

Proof. — We follow the proof and notations of [Kol97, Prop. 3.16]. Let ZY (resp. ZX) be

the complement of (Y,DY )reg (resp. (X,DX)reg) in Y (resp. X). By the assumption made,

one has f(ZX) ⊂ ZY . For any birational proper morphism πY : Y ′ → Y , one deduces a

proper birational morphism πX : X ′ → X by taking the normalization of the fiber product.

As (Y,DY ) is dlt, it follows that for any prime divisor EY ⊂ Y ′ such that πY (EY ) ⊂ ZY ,

one has a(EY , Y,DY ) > −1. Let us now consider a prime divisor EX ⊂ X ′ such that

πX(EX) ⊂ ZX , its image EY on Y ′ satisfies πY (EY ) ⊂ ZY , and it the follows from the

proof of loc. cit. that a(EX , X,DX) > a(EY , Y,DY ), which concludes the proof.

Proposition 2.16. — Let (X,D) be a dlt pair with standard coefficients such that each

component of D is Q-Cartier. Then, there exists an ample divisor H such that the following

condition is satisfied:

For all integers m > 2, the new pair (X,Dm) := (X,D + 1
m ·H) is a klt pair admitting an

orbi-étale structure in codimension two, up to a strictly adapted morphism. More precisely,

there exists a strictly adapted morphism f : Y → (X,D − bDc) with Y having an orbi-étale

structure {(Vα(m), fα(m), Yα(m))} in codimension two with respect to the divisor f∗(Dm).

Remark 2.17. — The orbifold structure on (X,Dm) is not the obvious one but it is rather

the one adapted to the decomposition (2.10) below.

Proof of Proposition 2.16. — Let L be a very ample Cartier divisor and A ∈ |L| a general

member to be chosen later. Define H := A− bDc. Now, the divisor Dm := D + (1/m) ·H
can be decomposed as:

(2.10) Dm := (D − bDc)︸ ︷︷ ︸
Dorb

+ (1− 1

m
) · bDc +

1

m
·A.
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From here, we proceed in several steps.

Step 1. (X,Dm) is klt.

Given π : X̃ → X a log resolution of (X,D), the linear system |π∗L| on X̃ is basepoint free.

By Bertini theorem, one can choose a sufficiently general member π∗A of that system that

contains no components of the exceptional divisor or the strict transform of D, and such that

π∗A + Exc(π) + π∗D has snc support, cf. [Laz04b, 9.1.9 & 9.2.29]. As a consequence, the

pair (X,D+A) is lc and as X is klt, it follows easily that (X,Dm) is klt as soon as m > 2.

More can be said: since (X,D) is dlt, the proof of [KM98, Lem. 5.17(2)] and Szabo’s char-

acterization of dlt pairs [KM98, Thm. 2.44] easily imply that (X,D+A) is dlt for A general.

Step 2. Global cover adapted to Dorb.

Following Example 2.11, we can find a morphism f : Y → (X,Dorb) strictly adapted to

Dorb. By construction, f is ramified along a divisor a general member H ′ of a very ample

linear system in X. For simplicity we assume that f is totally ramified along H ′. As such,

the same arguments as in Step. 1 show that (X,Dorb +H ′) is dlt and thus so is(
X,Dorb +

N − 1

N
·H ′

)
,

where N = deg(f). From the ramification formula

KY + f∗(bDc+A) ∼Q f
∗(KX +D +

N − 1

N
·H ′ +A),

together with Lemma 2.15, it follows that (Y, f∗(bDc+A)) is dlt.

Step 3. Covers adapted to (1− 1
m )· bDc+ 1

m ·A.

According to Proposition 2.12, there exists Y ◦ ⊆ Y with codimY (Y \Y ◦) > 3, over which we

can find a finite family of (quasi-finite) quasi-étale covers hα : Wα → Vα by quasi-projective

varieties Wα factoring as follows:

Wα
hα //

Galois

rα

  

Vα

Ṽα

σα

étale

>>

and such that:

• Y ◦ =
⋃
α Vα.

• For each α, the pair (Wα, h
∗
αf
∗(bDc+A)) is log-smooth.

• Each rα is Galois and σα is étale.

Now, following Example 2.9, for each Wα, one can find a finite collection of finite maps

gαβ : Yαβ →Wα,
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whose images cover Wα, are branched exactly at order m along h∗α
(
f∗(bDc+A)

)
. Moreover

each g∗αβh
∗
α

(
f∗(bDc+A)

)
is log-smooth.

Now, define fαβ := gαβ◦hα. Noting that the branch locus of gαβ is equal to h−1
α (bDc+A),

from the constructions in Example 2.11 it follows that along the fibres of (gαβ ◦ rα) the

ramification index is constant and therefore it is Galois.

Let α(m) denote the indexing pair (α, β) and define

Wα(m) := Im
(
fα(m) : Yα(m) →Wα

)
,

hα(m) := hα|Wα(m)
, and

Vα(m) := Im
(
hα(m) : Wα(m) → Vα

)
.

Finally, set Dred
Wα(m)

:= h∗α(m)(f
∗(bDc)) and AWα(m)

:= h∗α(m)(f
∗A). We summarize this

construction in the following diagram.

Yα(m)

fα(m)

**gα(m)

adapted to (1− 1
m )Dred

Wα(m)
+ 1
mAWα(m)

// Wα(m)
hα(m)

// Vα(m) ⊆ Y
f

adapted to Dorb

// X.

The collection {
(
Vα(m), fα(m), Yα(m)

)
} now defines, up to the strictly adapted morphism

f : Y → X, an orbi-étale structure for the pair (X,Dm).

2.6. Orbi-sheaves and Chern classes. — In this subsection we introduce sheaves and

Higgs sheaves associated to orbifold structures. We will then define a notion of orbifold

Chern classes.

Definition 2.18 (Orbi-sheaves). — Let C = {(Uα, fα, Xα)}α∈I be an orbi-structure on

a given pair (X,D). As in Definition 2.7, let Xαβ be the normalization of the fibre product

Xα ×X Xβ with naturally induced morphisms gαβ : Xαβ → Xα and gβα : Xαβ → Xβ. We

call a collection {Fα}α of coherent sheaves of rank r on each Xα an orbi-sheaf on (X,D)

of rank r with respect to C, if the following conditions are verified.

(2.18.11) There exists an isomorphism

g∗αβ(Fα) ∼= g∗βα(Fβ)

of sheaves of OXαβ -modules on Xαβ.

(2.18.12) The collection {Fα}α verifies further natural compatibility conditions over triple

overlaps.

We denote this collection by FC. We say that FC is torsion-free, reflexive or locally free

orbi-sheaf, if each Fα is torsion-free, reflexive or locally free, respectively.

Remark 2.19. — From the compatibility condition (2.18.11), with α = β, it follows that

each Fα has a natural structure of a Gα-sheaf, where Gα := Gal(Xα/Ũα).
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Definition 2.20 (Orbi-subsheaves). — Let (X,D) be a pair with an orbi-structure C =

{(Uα, fα, Xα)}α∈I . Let EC and FC be two orbi-sheaves with respect to C. We say that FC

is an orbi-subsheaf of EC, if, for each α, we have the inclusion Fα ⊆ Eα.

One can also naturally define orbifold morphisms.

Definition 2.21 (Orbifold morphisms). — An orbifold morphism of two orbi-sheaves

FC and GC is a collection of morphisms of sheaves of OXα-modules φα : Fα → Gα that can

be glued, that is, for every α and β, the diagram

g∗αβFα

g∗αβφα //

∼=
��

g∗αβGα

∼=
��

g∗βαFβ

g∗βαφβ // g∗βαGβ

commutes, where the vertical isomorphisms are the ones defined in Definition 2.18.

2.6.1. Higgs sheaves in the orbifold setting. — Higgs bundles are holomorphic bundles with

compatible and integrable smooth operators. To define orbifold Higgs sheaves we first recall

the definition of the sheaf of 1-forms adapted to a given orbifold structure.

Notation 2.22. — Let f : Y → X be a morphism adapted to D, where D =
∑
di · Di,

di = (1− bi
ai

) ∈ (0, 1]∩Q. Set Df = f∗(bDc). For every prime component Di of D−bDc, let

{Dij
Y }j(i) be the collection of prime divisors that appear in f−1(Di). We define new divisors

in Y by

D̂ij
Y := bi ·Dij

Y(2.13)

Definition 2.23 (Orbifold (co)tangent sheaf). — Let (X,D) be a pair with a given

orbifold structure C = {(Uα, fα, Xα)}α∈I . Let Gα := Gal(Xα/Ũα). For every α ∈ I, define

Dij
Xα

and Dfα to be the divisors defined in Notation 2.22. Define Ω1
(Xα,fα,D) to be the kernel

of the sheaf morphism

((fα)|Xα)[∗](Ω[1]
X (log(pDq))

)
// ⊕
i,j(i)

OD̂ijXα

induced by the natural residue map. We define the orbi-cotangent sheaf Ω1
C of (X,D) with

respect to C to be the orbi-sheaf given by the collection of Gα-sheaves {Ω1
(Xα,fα,D)}α∈I . We

define the orbifold tangent sheaf T(C,D) by the collection {T(Xα,fα,D)}α, where T(Xα,fα,D) :=

(Ω1
(Xα,fα,D))

∗.

By Ω
[1]
X and f [∗](·) in Definition 2.23 we denote the reflexive hull of Ω1

X and f∗, respec-

tively. We note that when (Xα,
∑
Dij
Xα

) is not log-smooth, through coherent extensions,

we can use Definition 2.23 to define the orbifold cotangent sheaf as a reflexive sheaf on Xα,

which we can denote by Ω
[1]
(Xα,fα,D). We refer to [CKT16, §3] for local, explicit description
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of the orbi-cotangent sheaf in terms of differential forms with zeros and poles. Using this

description it is not difficult to check that Definition 2.23 indeed defines an orbifold sheaf.

Let us briefly explain the case of the smooth orbi-étale structure C = {(Uα, fα, Xα)} for a

log-smooth pair (X,D) with D =
∑

(1− 1
ai

)Di. The more general case will be similar.

According to Definition 2.23, for each α we have

Ω1
(Xα,fα,D) = Ω1

Xα .

Let Xαβ be the normalization of Xα ×X Xβ with maps fαβ : Xαβ → Xα and fβα : Xαβ →
Xβ . The condition (2.7.5) now guarantees that, as subsheaves of Ω1

Xαβ
, the two sheaves

f∗αβΩ1
(Xα,fα,D) and f∗βαΩ1

(Xβ ,fβ ,D) are isomorphic. The compatibility condition over triple

overlaps can be checked similarly.

Definition 2.24 (Orbi-Higgs sheaves). — Let (X,D) be a pair equipped with an orbi-

structure C. We call an orbi-sheaf FC an orbi-Higgs sheaf, if there is an orbi-sheaf morphism

θC : FC → FC⊗Ω1
C satisfying the integrability condition θC ∧θC = 0. An orbi-Higgs subsheaf

is then defined to be an orbi-subsheaf that is invariant under θC.

2.6.2. Global covers associated to orbi-structures. — In this section, we recall a construc-

tion due to Mumford [Mum83, §2] enabling to define Chern classes for varieties with

quotient singularities. We refer to [GKPT19, §3.7] for more details in the case of orbifold

with no boundaries; the classical Q-varieties. Let us note that in our case, the local covers

will not be quasi-étale but this won’t affect the general constructions.

Let (X,D) be a pair with an orbi-structure C = {(Uα, fα, Xα)}α∈I . We consider a finite,

Galois field extension of the function field C(X) containing all the function fields C(Xα).

Let X̂C be the normalization of X in this field extension so that X = X̂C/G with Galois

group G. Let f : X̂C → X be the induced finite Galois morphism factoring through each fα:

X̂C X

X̂α Xα Uα

f

qα fα

where we have set X̂α := f−1(Uα). By construction, f |X̂α factors through fα, so that there

exists qα : X̂α → Xα such that f |X̂α = fα ◦ qα. We sometimes refer to f as the Mumford

cover associated to C = {(Uα, fα, Xα)}α∈I . Furthermore, given any orbi-sheaf FC we can

define a G-sheaf F̂C on X̂C associated to C by

F̂C |X̂α = q∗α(Fα).

2.6.3. Orbi-Chern classes. — Let (X,D) be a pair such that X◦, the maximal Zariski

open subset of X over which (X,D) admits an orbi-structure C = {(U◦α, fα, X◦α)}, satisfies

codimX(X\X◦) > 3.
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Let f : X̂◦C → X◦ be the Mumford cover, defined in Subsection 2.6.2, associated to the

orbi-structure C. Let G := Gal(X̂◦C/X
◦). Following the notations introduced in Subsec-

tion 2.6.2, let F ◦C := {F ◦α}α be a coherent orbi-sheaf and F̂ ◦C the associated G-sheaf on X̂◦C
defined by the equality F̂ ◦C |X̂◦α = q∗α(F ◦α).

As X̂◦C is normal, it is Cohen-Macaulay in codimension 2, so up to shrinking X◦ one can

assume that X̂◦C is Cohen-Macaulay. Combined with the smoothness of X◦α, this implies

that the finite morphism qα is flat (see, for example, [GKPT19, Obs. 3.5]) and therefore

the finite resolution of each F ◦α by locally free sheaves lifts. Thanks to [Mum83, Prop. 2.1],

the G-sheaf F̂ ◦C on X̂◦C has a finite, locally free resolution; in particular we can define its

Chern classes F̂ ◦C . We define the ith orbifold Chern class of F ◦C by:

ci(F
◦
C ) :=

1

|G|
· ψi
(
ci(F̂

◦
C )
)
∈ An−i(X

◦)⊗Q,

where ψ• is the canonical map

ψ• : A•(X̂◦C)
G ⊗Q→ An−•(X

◦)⊗Q,

defined by the cap product with [X̂◦C ] and pushforward. (1)

On the other hand, from the localization sequence of Chow groups, we have An−i(X
◦) ∼=

An−i(X), whenever codimX(X\X◦) > i. As a result when X is projective, and by using the

homomorphism ψ•, the classes c1(F ◦C ) and c2(F ◦C ) are all well-defined as multilinear forms

on N1(X)n−1
Q and N1(X)n−2

Q , respectively.

Remark 2.25. — Recall from Remark 2.10 that any pair (X,D) admits an orbi-structure

C in codimension one. Now, if F◦C is a coherent orbi-sheaf with respect to C, the construction

above allows us to construct its first Chern class c1(F◦C ) ∈ An−1(X).

Remark 2.26. — It is clear from the above construction that Chern classes of orbi-sheaves

can be defined even in the absence of the Galois property for adapted morphisms in the

orbifold structure in Definition 2.5 and the linearization property for such sheaves in Def-

inition 2.18. But as we will see next, such equivariance conditions is necessary to have a

meaningful notion of products for Chern classes.

To see that we can define product of Chern classes of orbi-sheaves in the Chow group

A(X◦) ⊗ Q, we need to equip this graded group with a ring structure compatible with ψ•.

To this end, we are going to assume that the orbifold structure C = {(U◦α, fα, X◦α)} satisfies

the following condition:

Assumption 1. — In the setting of Definition 2.5, the (adapted) morphism gα : X◦α → Ũ◦α
factors as follows:

1. As we are defining Chern classes as elements of A•(X◦) the appearance of the factor 1
|G| is natural.

More precisely, this choice is a reflection of the fact that the composition of maps A•(X◦)→ An−•(X̂◦C)G
ψ•−−→

A•(X◦) is just multiplication by |G| (see [Mum83, Lem. 3.5]). For the map A•(X◦) → An−•(X̂◦C)G we

refer the reader to [Mum83, Thm. 3.1] or Claim 6.2 in the appendix of this paper.
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X◦α

gα

''pα

adapted
// W ◦α

p′α

66
quasi-étale // Ũ◦α

σα

étale
// U◦α,

where W ◦α is smooth and pα is adapted (and flat).

Using the arguments of [Mum83, Thm. 3.1], we show in Appendix §6 that ψ• is a group

isomorphism. A key consequence is, as in the case of [Mum83], that A•(X
◦)⊗Q can then

be endowed with a compatible ring structure (as long as Assumption 1 is satisfied). As a

result, as an element of An−k−`(X
◦), the product ck(F ◦C ) · c`(G ◦C ) of two orbi-sheaves F ◦C

and G ◦C is well-defined. In particular, c21(F ◦C ) is a multilinear form on N1(X)n−2
Q .

To finish these preliminary discussions on the definition of orbi-Chern classes we now

investigate a simple example where the orbifold data is given by a single chart.

Example 2.27. — Let (X, 1
mD) be a log-smooth pair with D being reduced and irreducible

and let f : Y → (X, 1
mD) be an adapted morphism defining a smooth, orbi-étale structure

for (X, 1
mD). Assume that f is totally ramified along D. Define DY := f−1D. We are

interested in computing c1 and c2 of the orbi-sheaf {ODY } in terms of (the numerical class

of) D.

c1({ODY }) =
1

m
· f∗(c1(ODY ) ∩ [Y ])

=
1

m
· f∗(DY )

=
1

m
·D,

where by DY (resp. D) we mean the class of [DY ] ∈ An−1(Y ) (resp. [D] ∈ An−1(X)).

Similarly we have:

c2({ODY }) =
1

m
· f∗(c2(ODY ) ∩ [Y ])

=
1

m
· f∗(c1(OY (DY ))2 ∩ [Y ])

=
1

m2
D2.

2.6.4. Slope and stability. — Having thus far established the definitions of orbi-sheaves and

Chern classes, we can now define a notion of orbifold stability.

Definition 2.28 (Slope of orbi-sheaves). — Let X be a normal projective variety and

D a Q-effective divisor with an orbi-structure C in codimension one. Given an orbi-sheaf

FC we define its slope µP (FC) with respect to a nef divisor P on X by

µP (FC) =
1

rank(FC)
c1(FC) · [P ]n−1,
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where [P ] denotes the numerical class of P , cf. Remark 2.25.

Definition 2.29 (Stability of orbi-sheaves). — In the setting of Definition 2.28 as-

sume that the nef divisor P verifies Pn−1 6≡ 0. We say that a torsion-free orbi-sheaf EC is

semistable with respect to P , if for every non-zero, torsion free orbi-subsheaf FC ⊂ EC we

have

(2.14) µP (FC) 6 µP (EC),

In case of stability we require the inequality in (2.14) to be strict for any such subsheaf FC

with rank(FC) < rank(EC).

3. Behaviour of Chern classes and stability under change of orbi-structures

In this section, we investigate how Chern classes may change once we allow the orbifold

structures to vary. Provided that change of structure is compatible in a sense to be defined,

we show that such characteristic classes remain invariant under change of orbifold structures.

We will also establish similar results for the notion of slope stability.

Set-up 3.1. — Let (X,D) be a pair equipped with two orbi-structures C1 = {(Uα, fα, Xα)}α∈I
and C2 = {(Vβ , gβ , Yβ)}β∈J . Let Zαβ be the normalization of the fibre product Xα ×X Yβ

leading to the commutative diagram:

Zαβ
gαβ //

fαβ

��

Yβ

gβ

��
Xα

fα // X.

Having defined hαβ := gβ ◦ gαβ , assume that C′ := {(Zαβ , hαβ , Uα ∩Vβ)}(α,β)∈I×J is also an

orbifold structure (2).

Definition 3.2 (Compatible orbi-sheaves). — In the situation of Set-up 3.1 let FC1
and GC2 be two locally free orbi-sheaves (with respect to C1 and C2 respectively) and define

the two orbi-sheaves FC′ := {f∗αβFα} and GC′ := {g∗αβGβ} (with respect to C′) (3). We say

FC1 and GC2 are compatible if FC′ and GC′ are orbifold isomorphic (see Definition 2.21).

Example 3.3. — (Compatibility of orbi-cotangent sheaves) Let C1 and C2 be two

strict orbi-structures for a pair (X,D). Then the orbi-cotangent sheaves Ω1
C1 and Ω1

C2 are

compatible.

2. This can be easily guaranteed for example when C1 and C2 are strict (but this is not a necessary

condition).

3. The fact that FC′ and GC′ are orbi-sheaves can be checked by a straightforward diagram chasing and

the universal property of fiber products.
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Set-up 3.4. — In Set-up 3.1, let X̂C1 and ŶC2 be the global Mumford covers associated to

C1 and C2, respectively (see the construction in Subsection 2.6.2) and set G1 := Gal(X̂C1/X)

and G2 := Gal(ŶC2/X). Let Ẑ be the normalization of X in a Galois field extension of C(X)

containing all the function field extensions C(Zαβ), and with GẐ := Gal(Ẑ/X), resulting in

the commutative diagram:

Ẑ
f̃2 //

f̃1

��

**

ŶC2

��
fŶC2

��

Zαβ
gαβ //

fαβ

��

hαβ

&&

Yβ

gβ

��
X̂C1 //

f
X̂C1

33Xα

fα // X.

In the next proposition, we show that Chern classes for compatible orbi-sheaves are well-

defined.

Proposition 3.5. — (Invariance of Chern classes for compatible orbi-sheaves)

Let X be a normal projective variety and D a Q-effective divisor such that (X,D) has a set

of orbi-structures J = {Ci} in codimension k > 1. Let {FCi} be a collection of compatible

locally free (or reflexive) orbi-sheaves. Then, as multilinear forms on N1(X)n−kQ , the Chern

classes ck of FCi are all equal.

If additionally, the structures Ci satisfy Assumption 1, then the powers cp` of the Chern

classes of FCi , seen as multilinear forms on N1(X)n−`pQ , are all equal provided that `p 6 k.

Proof. — Let C1, C2 ∈ J . It suffices to show that the desired Chern classes for FC1 and FC2
coincide with the assumption that both are locally free. Let X◦ be the maximal open subset

of X over which C1 = {(U◦α, f◦α, X◦α)} and C2 = {(U◦β , g◦β , Y ◦β )} are defined. In the situation

of Set-up 3.4 after replacing X by X◦ we have

Ẑ◦
f̃2 //

f̃1
��

Ŷ ◦C2

fŶ ◦C2
��

X̂◦C1

f
X̂◦C1 // X◦,

where Ẑ◦, X̂◦C1 and Ŷ ◦C2 play the role of Ẑ, X̂C1 and ŶC2 in Set-up 3.4.

The isomorphism between the two locally-free sheaves f̃∗1 (F̂C1) and f̃∗2 (F̂C2) implies that

ck(f̃∗1 F̂C1) = ck(f̃∗2 F̂C2) ∈ Ak(Ẑ◦).
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The first part of proposition now follows by using the projection formula for Chern classes,

cf. [Ful98, Thm. 3.2], together with the commutativity of the above diagram. The sec-

ond part is entirely similar granted that Assumption 1 ensures that the map ψ• from the

construction in § 2.6.3 is a ring morphism.

Next we show that, for compatible orbi-sheaves, semistability is also a well-defined notion.

Proposition 3.6. — (Independence of semistability for compatible orbi-

sheaves).

Let C1 and C2 be two orbi-structures over X in codimension one. Let FC1 and FC2 be any

two compatible locally free orbi-sheaves. Then, the orbi-sheaf FC1 is semistable with respect

to a nef divisor P ⊂ X, if and only if FC2 is semistable.

Proof. — Let X◦ be the locus of X over which C1 and C2 are both defined. We will follow

the notations and constructions in Set-up 3.4 over X◦.

Assume that FC1 is P -semistable and that FC2 is not P -semistable, as orbi-sheaves.

Then, F̂C2 is not semistable. This implies that f̃∗2 (F̂C2) is not semistable. Then from the

isomorphism

f̃∗1 (FC1) ∼= f̃∗2 (FC2)

it follows that f̃∗1 (F̂C1) is not semistable; let G ⊂ f̃∗1 (F̂C1) be a destabilizing subsheaf. Now,

according to [HL10, Thm. 4.2.15], there exists a subsheaf H ⊂ F̂C1 such that

G = f̃∗1 (H ).

Noting that µP (FC1) = µP (FC2) (thanks to Proposition 3.5), it follows that H properly

destabilizes F̂C1 , contradicting the semistability assumption on FC1 .

3.1. The second Chern class of a pair (X,D). — In this section, we explain how to

define the second Chern class of a mildly singular pair (X,D).

Notation 3.7 (Orbi-Chern classes of pairs). — Let J = {Ci} be the collection of strict,

orbi-structures for a given pair (X,D) satisfying Assumption 1. Assume that members of

J are étale orbi-structures so that c2(Ω1
Ci), c

2
1(Ω1
Ci) are independent of the choice of i. We

define c2(X,D) := c2(Ω1
Ci) and c21(X,D) := c21(Ω1

Ci).

One can define the square of the first Chern class as well as the second Chern class of any

pair (X,D) that satisfies the assumptions of Theorem B. Indeed,

• the proof of Proposition 2.16 shows that Assumption 1 is satisfied up to a strictly

adapted cover f : Y → X. Therefore, when Dorb 6= 0, it is possible to define

first and second Chern classes of the orbifold cotangent sheaf as cycles on the

adapted cover Y and then, by an abuse of notation, define ci(X,D), for i = 1, 2

(resp. c1(X,D)2), to denote their cycle theoretic pushforward on X, divided by

the degree of f .
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• Furthermore, the orbi-étalité of these covers on Y coupled with a slight generaliza-

tion of the proof of Proposition 3.5 guarantees that these definitions are independent

of the choice of the orbifold structure on Y and the adapted morphism f : Y → X.

In particular, for i = 1, 2, the cycle ci(X,D) (resp. c1(X,D)2) in X is well-defined.

Example 3.8 (The log smooth reduced case). — If (X,D) is log smooth and D

is reduced, then one can check from residue exact sequence that c2(X,D) = c2(ΩX) +

KX ·D + c2(OD). If we write D =
∑
Di its decomposition into irreducible components,

then c2(OD) =
∑
iD

2
i +

∑
i<j Di·Dj = D2 −

∑
i<j Di·Dj .

Example 3.9 (The general log smooth case). — If (X,D) is log smooth with coeffi-

cients in [0, 1] ∩Q and D =
∑

(1− bi
ai

)Di is its decomposition into irreducible components,

then (X,D) admits an orbi-étale structure (defined over the whole X). In particular, one

can define c1(X,D) and c2(X,D); let us check that one recovers the classical classes, cf e.g.

[Tia94].

Given a (local) strict orbi-étale cover f : Y → (X,D) of degree N :=
∏
i ai, we have an

exact sequence

(3.1) 0 −→ Ω1
(Y,f,D) −→ f∗Ω1

X(log pDq) −→
⊕
i,k(i)

ObiDikY −→ 0

where D
ik(i)
Y is the collection of prime divisors defined by f∗Di and the sum runs over all

indices i and k(i) such that ai 6= +∞. As c1(ObiDikY ) ∩ [Y ] = bi[D
ik
Y ] and f∗D

ik
Y = N

ai
Di, we

get

c1(X,D) =
1

N
f∗

(
c1(Ω1

(Y,f,D)) ∩ [Y ]
)

=c1
(
Ω1
X(log pDq)

)
−
∑
i,k(i)

bi
N
f∗(D

ik
Y ∩ [Y ])

=c1(KX +D).

For the computation of c2(X,D), we will need the identity

(3.2) c2

(⊕
i

ObiDikY
)

=
∑
i,k

b2i c1(OY (Dik
Y ))2 +

∑
i,j,k,l
i6j,k<l

bibjc1(OY (D
ik(i)
Y ))· c1(OY (D

jl(j)
Y )).

along with the standard formula

c2(Ω1
X(log pDq)) = c2(ΩX) + c1(KX)·

∑
Di +

∑
i<j

Di·Dj +
∑
i

D2
i ,

where as usual we don’t distinguish between Di and its class [Di] ∈ An−1(X). Relying on

the exact sequence (3.1) and the identity

f∗

(∑
k,l

c1(OY (Dik
Y )) · c1(OY (Djl

Y )) ∩ [Y ]
)

=
N

aiaj
Di ·Dj ,
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we get

c2(X,D) =
1

N
f∗
(
c2(Ω1

(Y,f,D)) ∩ [Y ]
)
−

1

N
f∗
(
c2(

⊕
i;ai 6=+∞

ObiDikY ) ∩ [Y ]
)
−
∑
i

c1(KX + D) ·
bi

ai
Di

=c2
(
Ω1
X(log pDq)

)
−
∑
i

b2i
a2i

D2
i −

∑
i<j

bibj

aiaj
Di ·Dj −

∑
i

c1(KX) ·
bi

ai
Di

−
∑
i

(
1−

bi

ai

) bi
ai

D2
i −

∑
i<j

( bi
ai

+
bj

aj
− 2

bibj

aiaj

)
Di ·Dj

=c2(Ω1
X) + c1(KX) ·D +

∑
i

(
1−

bi

ai

)
D2
i +

∑
i<j

(
1−

bi

ai

)(
1−

bj

aj

)
Di ·Dj .

Here, i, j range among all indices (not just those with ai 6= +∞) unless specified otherwise.

The next example shows that unlike c1(X,D), the second Chern class c2(X,D) does not

only depend on the class of linear equivalence of D, so that one needs to be very careful

when one modifies the divisor.

Example 3.10. — Let X = P2, let x ∈ X, let π : Y = BlxX → X, and let E ⊂ Y the

exceptional divisor. Choose H1, H2 two hyperplanes such that x ∈ H1 and x /∈ H2. Let

us denote by H ′1 (resp. H ′2) the strict transform of H1 (resp. H2) by π. Then one has

π∗H1 = H ′1 +E and π∗H2 = H ′2. As π∗H2 and π∗H1 are linearly equivalent, the formula in

Example 3.8 shows that c2(Y, π∗H2)− c2(Y, π∗H1) = H ′1·E = 1.

3.2. Continuity of Chern numbers. — The following intuitive result shows that the

approximation procedure introduced in Proposition 2.16 will not affect the properties of

Chern classes. More precisely, let (X,Dm) be the klt pair from Proposition 2.16 with its

orbifold structure Cα(m) in codimension 2 (which is not the obvious structure associated to

Dm = D + 1
mH). Then we have:

Proposition 3.11. — (Continuity of orbifold intersection numbers). With the

notations of Proposition 2.16, the orbifold structure Cα(m) for pair (X,Dm) satisfies:

lim
m→+∞

c1(X,Dm) = c1(X,D)

lim
m→+∞

c2(X,Dm) = c2(X,D)

as multilinear forms on N1(X)n−1
Q and (Nef(X)Q)n−2, respectively.

Proof. — Recall that Dm = D + 1
mH, and as c1(X,Dm) = c1(KX + Dm) (see, for in-

stance, [CKT16, Cor. 3.9]), the first identity follows.

To prove the second equality, we will assume that D is reduced; as Dorb is independent

of m, the fractional case follows from identical arguments. We shall utilize the orbi-étale

structure constructed in Proposition 2.16 and we will follow the notations introduced in this

construction with Uα(m) = Vα(m) (see the proof of Proposition 2.16). Let us also decompose

gα(m) into orbi-étale morphisms tα(m) : Xα(m) → (Wα(m),
1
mAWα(m)

) and uα(m) : Yα(m) →
(Xα(m), (1− 1/m)DXα(m)

):
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Yα(m)

fα(m)

))

gα(m)

++uα(m) // Xα(m)

dα(m)

++tα(m) // Wα(m)

hα(m) // Uα(m),

where AWα(m)
:= h−1

α(m)(A) and DXα(m)
:= d−1

α(m)(D). Define dα(m) := tα(m) ◦ hα(m). By

Proposition 2.16 we know that f∗α(m)(D) is snc and therefore we have:

0→ Ω1
(Yα(m),fα(m),Dm) → u∗α(m)

(
Ω1

(Xα(m),dα(m),
1
mA) log(d∗α(m)D)

)
→
⊕
ODijYα(m)

→ 0,

where {DY ij
α(m)
}j are irreducible components of f∗α(m)(Di). Let FCα(m)

and GCα(m)
be the

two orbi-sheaves associated to u∗α(m)

(
Ω1

(Xα(m),dα(m),
1
mA)

log(d∗α(m)D)
)

and
⊕
ODijYα(m)

, re-

spectively, so that

(3.3) c2(X,Dm) = c2(FCα(m)
)− 1

m

(
(KX +Dm) ·D

)
− c2(GCα(m)

)

(see Example 2.27). From the equality (3.3) it is clear that it suffices to prove the following

two claims.

Claim 3.12. — limm→∞ c2(FCα(m)
) = c2(X,D).

Claim 3.13. — limm→∞ c2(GCα(m)
) = 0.

Proof of Claim 3.12. — We use the exact sequence

0→ Ω1
(Xα(m),dα(m),

1
mA) → Ω1

(Xα(m),dα(m),
1
mA) log(d∗α(m)D)→

⊕
ODijXα(m)

→ 0,

where Dij
Xα(m)

are irreducible components of d∗α(m)(Di). From this sequence it follows that

the equality

c2(FCα(m)
) = c2(X,

1

m
A) + c2(HCα(m)

) + (KX +
1

m
A) ·D,

holds, where HCα(m)
is the orbi-sheaf associated to

⊕
ODijXα(m)

. Next, we use the fact that

tα(m) is flat and unbranched at the generic point of D together with standard Chern class

calculations to show that

c2(HCα(m)
) = c2(H ′

Cα(m)
),

where H ′
Cα(m)

is the orbi-sheaf associated to
⊕

iODiWα(m)

, with DWα(m)
:= h∗α(m)(D) =∑

Di
Wα(m)

.

On the other hand, we have

c2(X) +KX ·D + c2(H ′
Cα(m)

) = c2(X,D).

Therefore, to prove Claim 3.12 it suffices to show the following assertion.

Subclaim 3.14. — limm→∞ c2(X, 1
mA) = c2(X).
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Proof of Subclaim 3.14. We use the exact sequence

(3.4) 0→ Ω1
(Xα(m),tα(m),

1
mA) → d

[∗]
α(m)Ω

[1]
Uα(m)

log(A)→
⊕
i

OÂiXα(m)

→ 0,

where ÂiXα(m)
= (m− 1)AiXα(m)

, AiXα(m)
being the irreducible components of d−1

α(m)(A).

Let ACα(m)
be the orbi-sheaf associated to

⊕
OÂiXα(m)

. Using the exact sequence (3. 4)

we have

c2(X,
1

m
A) = c2(X) +KX ·A+ c2(ACα(m)

)− c2(ACα(m)
)− (KX +

1

m
A) ·

(m− 1

m

)
·A.

We can now establish Subclaim 3.14 by taking m→∞.

This finishes the proof of Claim 3.12.

Proof of Claim 3.13. — Chern class calculations in Example 3.9, Equation 3.2, with ai = m

and bi = 1 show that

(3.5) c2(GCα(m)
) 6

1

m2
·D2,

as multilinear forms on Nef(X)n−2
Q . Now, as m → ∞, the right hand side of (3. 5) goes to

zero and thus so does c2(GCα(m)
).

The proof of Proposition 3.11 is now complete.

4. Semistability of the orbifold tangent sheaf

4.1. Metrics with conic and cusp singularities. — Given numbers d1, . . . , dk ∈ (0, 1)

and a number k 6 p 6 n one can consider for D = {z ∈ C : |z| < 1} the following model

Kähler metric on (D∗)p × Dn−p:

(4.1) ωmod =

k∑
j=1

idzj ∧ dz̄j
|zj |2dj

+

p∑
j=k+1

idzj ∧ dz̄j
|zj |2 log2 |zj |2

+
∑
j>p

idzj ∧ dz̄j

The metric ωmod is called the standard metric with mixed conic and cusp singularities

along D :=
∑k
j=1 dj [zj = 0] +

∑p
j=k+1[zj = 0]. It has cone singularities with cone angles

2π(1−dj) along [zj = 0] for 1 6 j 6 k and cusp singularities along [zj = 0] for k+1 6 j 6 p.

Now, if X is a Kähler manifold and D =
∑
i diDi a divisor with simple normal crossings

support and coefficients di ∈ [0, 1], one says that a Kähler metric ω on X r Supp(D) has

mixed conic and cusp singularities along D if for any x ∈ X and any open set Ω 3 x endowed

with local holomorphic coordinates (z1, . . . , zn) such that the pair (Ω, D) is isomorphic to

((D∗)p ×Dn−p,
∑k
j=1 dj [zj = 0] +

∑p
j=k+1[zj = 0]), there exists a constant C > 0 such that

under that isomorphism, one has

C−1ωmod 6 ω 6 Cωmod

on Ω r Supp(D).
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Given a compact Kähler manifold X and a divisor D =
∑p
j=1 djDj with coefficients

dj ∈ [0, 1] and simple normal crossings support, it is easy to give examples of such metrics.

Moreover, if the real cohomology class c1(KX+D) ∈ H2(X,R) is assumed to be Kähler (that

is, it contains a Kähler metric) then there exists a unique Kähler metric ω on X r Supp(D)

with mixed conic and cusp singularities along D such that Ricω = −ω. This is the content

of [Gue14], [GP16, Thm. 6.3]. More precisely, it is shown there that any (weak) solution

ωX + ddcϕ of a Monge-Ampère equation of the type

(ωX + ddcϕ)n =
eϕ+F∏p

j=1 |σj |2dj
ωnX

has mixed conic and cusp singularities along D. Here, ωX is a reference Kähler form on X,

F ∈ C∞(X), and σj is the canonical section of Dj , measured with respect to an arbitrary

smooth hermitian metric |· | on OX(Dj) and ϕ ∈ E(X,ωX) is the unknown function, cf

[GZ07] for the definition of the latter functional space.

Let us conclude this section by explaining how the model metric ωmod from (4.1)

pulls-back to ramified covers along D when D has fractional coefficients. More pre-

cisely, if one writes dj = 1 − bj/aj and if f0 : Dn → Dn is defined by f0(w1, . . . , wn) =

(wa11 , . . . , wakk , wk+1, . . . , wn), then

f∗0ωmod =

k∑
j=1

|zj |2(bj−1)idzj ∧ dz̄j +

p∑
j=k+1

idzj ∧ dz̄j
|zj |2 log2 |zj |2

+
∑
j>p

idzj ∧ dz̄j

In particular, in the case where D has standard coefficients (that is, bj = 1) and bDc = 0,

f∗0ωmod is equal to the euclidian metric. One sometimes say that in that case, ωmod is

smooth in the orbifold sense.

In general though, f∗0ωmod will have zeros (and not poles anymore) along
∑k
j=1 dj [zj = 0].

A useful observation is that f∗0ωmod induces a continuous hermitian semipositive metric on

the trivial vector bundle on Dn generated by

z1−b1
1

∂

∂z1
, . . . , z1−bk

k

∂

∂zk
, zk+1

∂

∂zk+1
, . . . , zp

∂

∂zp
,

∂

∂zp+1
, . . . ,

∂

∂zn

which is degenerate precisely along f∗0 bDc.

Note that one has a similar phenomenon if instead of choosing this very particular cover, one

chooses a cover of the form w 7→ (wN1 , . . . , w
N
k , wk+1, . . . , wn) where N is divisible by any

of the aj ’s. In that case, the pull-back of ωmod by γ is equal to
∑k
j=1 |zj |2(Nbj/aj−1)idzj ∧

dz̄j +
∑p
j=k+1

idzj∧dz̄j
|zj |2 log2 |zj |2 +

∑
j>p idzj ∧ dz̄j .

4.2. Setting. — Let (X,D) be a n-dimensional projective log canonical pair. Let us set as

before D =
∑r
i=1(1− bi

ai
)Di for some positive integers ai, bi satisfying bi < ai and (ai, bi) = 1.

One allows the possibility ai = +∞. One considers a strong log resolution π : X̃ → X of the
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pair (X,D); one can write π∗D = D̃ + (exc. div.) where D̃ =
∑

(1 − bi/ai)D̃i is the strict

transform of D. One has:

(4.2) KX̃ + D̃ = π∗(KX +D) + E

where E =
∑
cjEj is a π-exceptional divisor with coefficients cj > −1. Finally, let us

set N = lcm{ai, 1 6 i 6 r} and choose a sufficiently ample divisor H on X̃; Kawamata’s

construction allows us to get a cover adapted to (X̃, D̃). More precisely, one can find is a

finite morphism f : Ỹ → X̃ which is a ramified Galois cover of group G and it satisfies the

following properties:

(4.0.3) f is étale over the complement of
∑
ai<+∞ D̃i +H;

(4.0.4) The support of f∗(D̃ +H) has simple normal crossings;

(4.0.5) Near any point y0 ∈ Ỹ , there exist a G-invariant open set Ω0 3 y0, a system of

coordinates (wk) centered at y0, a system of coordinates (zk) near f(y0) and an

integer p = p(y0) such that with respect to these coordinates, the map f can be

locally expressed as

f(w1, . . . , wn) = (wN1 , . . . , w
N
p , wp+1, . . . , wn)

where for each 1 6 k 6 p, (zk = 0) is a local equation (near γ(y0)) of one of the

components of
∑
ai<+∞ D̃i +H.

Note that we have chosen that particular cover (with equal ramification index along all the

divisors) only to simplify the notations, as any smooth adapted cover would have worked

for what follows. Let us set

D′ = f∗D̃ =
∑

ai<+∞

(
N − Nbi

ai

)
·D′i +

∑
ai=+∞

D′i

and f∗H = NH ′. With these notations, the divisors D′i’s and H are reduced. With

these notations, the ramification divisor of f becomes (N − 1)
∑
D′i + (N − 1)H ′. By the

ramification formula, one gets:

KỸ +
∑(

1− Nbi
ai

)
D′i = f∗

(
KX̃ + D̃ +

(
1− 1

N

)
H

)
or equivalently

KỸ +
∑(

1− Nbi
ai

)
D′i + (1−N)H ′ − f∗E = f∗π∗ (KX +D)

Here, the index i varies over all possible indices (and not just those for which ai 6= +∞). To

lighten notation, let us set B =
∑
eiBi where Bi is either one of the divisors D′i in which

case ei := 1 − Nbi/ai or Bi = H ′ in which case ei := 1 − N . One gets a divisor B with

integral coefficients and simple normal crossings support which satisfies

KỸ +B = f∗π∗ (KX +D) + f∗E.

Note that neither B nor −B is effective in general (unless either dDe = 0 in which case

B 6 0 or D is reduced in which case f = IdX̃ and B = D̃ > 0). On Ỹ , the orbifold tangent
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sheaf of the pair (X̃, D̃), i.e. T(Ỹ ,f,D̃), coincides with (the sheaf of sections of) the vector

bundle defined as the locally free OỸ -module generated by

ze11

∂

∂z1
, . . . , zepp

∂

∂zp
,

∂

∂zp+1
, . . . ,

∂

∂zn

whenever B is locally given by (ze11 · · · z
ep
p = 0) – up to relabelling the coefficients ei. In

order to lighten notation slightly, we will denote by TỸ (− logB) the latter vector bundle

and identify it freely with its associated (locally free) sheaf of sections.

4.3. The semistability theorem. — We can now prove the slope-semistability of orbi-

tangent sheaves for minimal pairs of log-general type, noting that this theorem holds ir-

respective of the choice of the orbifold structure, consisting of adapted or strictly adapted

charts.

Theorem 4.1 (Semistability of orbi-tangent sheaves). — In the setting 4.2, assume

that KX +D is nef and big. Then T(Ỹ ,f,D̃) is semistable with respect to f∗π∗(KX +D).

Remark 4.2. — In the course of the proof, we actually do not use the bigness assumption.

However, semistability with respect to an arbitrary nef class is not a very meaningful notion.

Proof. — Let σi (resp. tj) a section of OX(D̃i) (resp. OX(Ej)) cutting out D̃i (resp.

Ej). One chooses smooth hermitian metrics hi (resp. hj) on these bundles and a Käh-

ler form ωX̃ on X̃. Finally, let ωX ∈ c1(KX + D) be a smooth form (not necessarily

semipositive). Because of (4.2), there exists a smooth volume form dV on X̃ such that

−Ric (dV ) +
∑
i(1−

bi
ai

)Θhi(D̃i) = π∗ωX +
∑
j cjΘhj (Ej).

For t > 0, the cohomology class {π∗ωX + tωX̃} is Kähler; therefore, one can solve for any

ε > 0 the following Monge-Ampère equation:

(4.6) (π∗ωX + tωX̃ + ddcϕt,ε)
n =

∏
(|tj |2 + ε2)cj(1−t)eϕt,εdV∏

|σi|
2
(

1− biai
)

and obtain a Kähler current ωt,ε := π∗ωX + tωX̃ + ddcϕt,ε that is smooth outside Supp(D̃)

and has mixed conic and cusp singularities along D̃ – with cone angles 2πbi
ai

along D̃i if

ai < +∞, or cusp singularities along D̃i otherwise. This follows from [GP16, Thm 6.3], as

explained in §4.1.

Moreover, ωt,ε is an approximation of the Kähler-Einstein metric in the sense that:

(4.7) Ricωt,ε = −ωt,ε + tωX̃ − ((1− t)Θε + tΘ(E)) + [D̃]

where Θε :=
∑
j cj

(
ε2|D′tj |2

(|tj |2+ε2)2 +
ε2Θhj (Ej)

|tj |2+ε2

)
is an approximation of [E], the current of

integration along E and Θ(E) :=
∑
j cjΘhj (Ej). The reason we change cj into (1 − t)cj is

to prevent ϕt,ε from getting unbounded along
∑
cj=−1Ej when ε → 0, t > 0 being fixed.

Pulling back ωt,ε by f , one gets a positive current f∗ωt,ε which satisfies:
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(4.2.8) f∗ωt,ε is smooth outside Supp(D′ +H ′) = Supp(B).

(4.2.9) f∗ωt,ε has cone angles 2πNbi
ai

along D′i (if ai < +∞) and 2πN along H ′; and f∗ωt,ε

has cusp singularities along dD′e. Equivalently, f∗ωt,ε has cone angles 2π(1 − ei)
along Bi if ei < 1 and cusp singularities along Bi if ei = 1.

(4.2.10) Ric (f∗ωt,ε) = −f∗ωt,ε + tf∗ωX̃ − (1− t)f∗Θε − tf∗Θ(E)− [B].

This is a consequence of the third property of the Kawamata cover γ recalled above, cf last

paragraph of §4.1. Let us recall what Item (4.2.9) means. Denoting B− (resp. B+) the union

of components of B with negative coefficients (resp. positive coefficients, or equivalently

coefficients equal to 1) and choosing a chart Ω ⊂ Ỹ along with local coordinates (z1, . . . , zn)

for which Supp(B−) ∩ Ω = (z1 · · · zp = 0) and B+ ∩ Ω = (zp+1 · · · zr = 0), then f∗ωt,ε is

quasi-isometric (on Ω) to the model metric below:

(4.11)

p∑
k=1

|zk|−2ek idzk ∧ dz̄k +

r∑
k=p+1

idzk ∧ dz̄k
|zk|2 log2 1

|zk|2
+

n∑
k=r+1

idzk ∧ dz̄k

Recall that for 1 6 k 6 p one has ek 6 0 so that the model metric above has zeros along

B− and ”poles” along B+.

From now on, one will set ω := f∗ωt,ε. Because of (4.2.8)-(4.2.9), ω induces a bounded

hermitian metric on TỸ (− logB) which is smooth outside Supp(B). The strategy is to use

this metric to derive the semistability property of the bundle; it is inspired from [CP16]

and [Gue16].

If F is a reflexive subsheaf of TỸ (− logB) of rank p, then it induces a generically injective

map of sheaves (ΛpF )∗∗ −→ ΛpTỸ (− logB). Setting L := (ΛpF )∗∗ to be the determinant

of F , one gets a non-zero section u of ΛpTỸ (− logB)⊗ L−1. As ω is smooth (and Kähler)

outside Supp(B), it induces a smooth hermitian metric h on the vector bundle TỸ (− logB)

on that locus. Let us choose some fixed smooth metric hL on L. This enables one to

compute the squared norm |u|2 of the section u with respect to h⊗ h−1
L ; this is a bounded

function on Ỹ . In order to apply the vector bundle version of Lelong-Poincaré formula to

ddc log |u2|h⊗h−1
L

, one needs some additional regularization processes.

First, as |u|2 may not be smooth along Supp(B), one introduces (χη)η>0 a family of

cut-off functions for Supp(B); one can arrange that the L1 norm of ddcχη (computed with

respect a smooth metric on Ỹ ) tends to zero when η → 0, cf e.g. [CGP13, §9]. Then to

prevent log |u|2 from being unbounded (below), one chooses a constant λ > 0, and evaluate

the smooth quantity (outside Supp(B)):

(4.12)

ddc log(|u|2+λ2) =
1

|u|2 + λ2

(
|D′u|2 − |〈D

′u, u〉|2

|u|2 + λ2
− 〈Θh⊗h−1

L
(ΛpTỸ (− logB)⊗ L−1)u, u〉

)
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Here, D′ is the (1, 0)-part of the Chern connection of h ⊗ h−1
L and for a (vector-valued)

(1, 0)-form α, one uses the notation |α|2 := α ∧ ᾱ. Outside the support of B, one can

identify TỸ (− logB) with TỸ ; moreover, one will identify in the following Θh(ΛpTỸ ) with

Θh(ΛpTỸ ) ⊗ IdL−1 . Finally, as |〈D′u, u〉|2 6 |D′u|2· |u|2, one deduces from the equality

(4.12) above:

(4.13) ddc log(|u|2 + λ2) >
|u|2

|u|2 + λ2

(
ΘhL(L)−

〈Θh(ΛpTỸ )u, u〉
|u|2

)
Wedge inequality (4.13) with χη ω

n−1 and integrate on Ỹ :

(4.14)

−
∫
Ỹ

log(|u|2 + λ2) ddcχη ∧ ωn−1 >
∫
Ỹ

χη|u|2

|u|2 + λ2

(
ΘhL(L)−

〈Θh(ΛpTỸ )u, u〉
|u|2

)
∧ ωn−1

Recall that t, ε being fixed, ω is equivalent to the model metric given in (4.11). In

particular, it follows that ±ddcχη ∧ ωn−1 is uniformly dominated by the volume form of

a metric with cusp singularities along Supp(B) – whose mass is finite. As χη converges

smoothly to zero outside Supp(B), Lebesgue’s dominated convergence theorem shows that

the left hand side converges to 0 when η tends to 0, λ > 0 being fixed. By the same token,

the first integral in the right hand side converges to
∫
Ỹ

ΘhL(L) ∧ ωn−1 when η, λ approach

zero. As the potentials of ω have finite energy (cf [Gue14, Prop. 2.3]), this integral is

nothing but the intersection number L· {ω}n−1 = c1(F )·
(
f∗π∗(KX +D) + tf∗{ωX̃}

)
. So

one is left to estimating the second integral in the right hand side.

By the symmetries of the curvature tensor, one has the following identity (outside

Supp(B)): nΘω(TỸ ) ∧ ωn−1 = (]Ricω)ωn where ] : Ω0,1

Ỹ
→ T 1,0

Ỹ
is the standard isomor-

phism induced by ω which extends to an operator Ω1,1

Ỹ
→ End(TỸ ). As a result,

nΘh(ΛpTỸ ) ∧ ωn−1 = (]Ricω)∧p ωn

where for any endomorphism f of an n-dimensional vector space V , one defines

f∧p : ΛpV → ΛpV by f∧p(v1∧ . . .∧vp) :=
∑p
k=1 v1∧ . . .∧vk−1∧f(vk)∧vk+1∧ . . .∧vn. These

two operations preserve positivity (of (1, 1) forms and hermitian endomorphisms respec-

tively). Moreover, it is easily checked that for any (1, 1)-form α, one has trEnd(]α) = trωα,

and if f is any positive semidefinite endomorphism of V , then trEnd(f∧p) 6
(
n
p

)
trEnd(f).

Thanks to item (4.2.10) in the properties of ω = f∗ωt,ε one sees that outside Supp(B),

(]Ricω)∧p = −pIdΛpTỸ
+ t]f∗(ωX̃)∧p − (1− t)(]f∗Θε)

∧p − t]f∗(Θ(E))∧p

Let ωỸ be a reference Kähler form on Ỹ ; there exists C > 0 such that 0 6 f∗ωX̃ 6 CωỸ ,

and therefore

(4.15) trEnd(f∗ωX̃)∧p ωn 6 nC

(
n

p

)
ωỸ ∧ ω

n−1
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As a consequence,
∫
Ỹ

〈t(]f∗ω
X̃

)∧pu,u〉
|u|2 ·ωn 6 tC ′

∫
Ỹ
ωỸ ∧ ω

n−1 which is independent of ε and

tends to zero when t goes to zero. The same argument shows that
∫
Ỹ
〈t(]f∗Θ(E))∧pu,u〉

|u|2 ·ωn

converges to zero when ε and then t approach zero.

Furthermore, f is generically unramified along Supp(E) hence f∗E has simple normal

crossings support and f∗Θε is a standard approximation of the current of integration along

f∗E. Write f∗E =
∑
cjE

′
j ; then f∗Θε =

∑
cj(αj,ε+βj,ε) with αj,ε = ε2

(|t′j |2+ε2)2 · |D
′t′j |2 and

βj,ε = ε2

|t′j |2+ε2 · f
∗Θhj (Ej) where t′j = f∗tj . Until the end of this paragraph, one will drop

the indexes j and ε to lighten notation. One needs to evaluate the quantity (](α+β))∧pωn.

The term (]α)∧pωn is positive and dominated by n
(
n
p

)
IdΛpTỸ

·α∧ωn−1. The term (]β)∧pωn

is dominated (in norm) by Cε2

|t′|2+ε2 · IdΛpTỸ
· f∗ωX̃ ∧ ω

n−1. Therefore,∣∣∣∣ 〈](α+ β))∧pu, u〉
|u|2

∣∣∣∣ωn 6 Cα ∧ ωn−1 +
Cε2

|t′|2 + ε2
· f∗ωX̃ ∧ ω

n−1

= C(α+ β) ∧ ωn−1 − Cβ ∧ ωn−1 +
Cε2

|t′|2 + ε2
· f∗ωX̃ ∧ ω

n−1

6 C(α+ β) ∧ ωn−1 +
C ′ε2

|t′|2 + ε2
· f∗ωX̃ ∧ ω

n−1

so that:∫
Ỹ

∣∣∣∣ 〈(]f∗Θε)
∧pu, u〉

|u|2
∧ ωn−1

∣∣∣∣ 6 C

∫
Ỹ

f∗Θε ∧ ωn−1 + C
∑
j

∫
Ỹ

ε2

|t′j |2 + ε2
· f∗ωX̃ ∧ ω

n−1

As E is π-exceptional, the first integral on the right hand side equals tE· {ωX̃}; in

particular, it does not depend on ε and converges to 0 when t → 0. The term equals

C|G|
∑
j

∫
X̃

ε2

|tj |2+ε2 ·ωX̃ ∧ ω
n−1
t,ε which converges to zero by Lemma 4.3 stated at the end of

this proof.

Putting everything together, one obtains:∫
Ỹ

χη|u|2

|u|2 + λ2

〈Θh(ΛpTỸ )u, u〉
|u|2

∧ ωn−1 = I1 + I2 + I3

where:

I1 = − p
n

∫
Ỹ

χη|u|2

|u|2 + λ2
ωn, I2 =

t

n

∫
Ỹ

χη|u|2

|u|2 + λ2

〈(]f∗(ωX̃ −Θ(E)))∧pu, u〉
|u|2

∧ ωn−1

and

I3 = −1− t
n

∫
Ỹ

χη|u|2

|u|2 + λ2

〈(]f∗Θε)
∧pu, u〉

|u|2
∧ ωn−1

We claim that I2 and I3 converge to zero when ε, t go to 0, say for η = λ = 0. More precisely,

one can dominate point-wise the absolute value of the integrands of I2 and I3 by an (n, n)-

form αt,ε independent of both η > 0 and λ > 0 that satisfies limt→0 limε→0

∫
Ỹ
αt,ε =

0. Dominated convergence enables to first pass to the limit when, in that order: η, λ, ε, t

converge to zero.
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Moreover, dominated convergence show that I1 converges to − p
n

∫
Ỹ
ωn when η, λ converge

to 0. As the potentials of ω have finite energy, this integral is nothing but − p
n{ω}

n and this

quantity (depending on t only) converges to − p
n ([f∗π∗(KX +D)]n) when t→ 0. Combining

this with (4.14), one finds:

n c1(F )· [f∗π∗(KX +D)]n−1 6 −p ([f∗π∗(KX +D)]n)

Now the determinant of the dual of TỸ (− logB) is KỸ + B = f∗π∗(KD + D) + f∗E. As

E is π-exceptional, the intersection of c1(TỸ (− logB)) with [f∗π∗(KX +D)]n−1 is precisely

−([f∗π∗(KX +D)]n), hence semistability of TỸ (− logB) follows.

In the course of the proof above, we used the following result:

Lemma 4.3. — The positive current ωt,ε solution of the Monge-Ampère equation (4.6)

satisfies, for each fixed t > 0 and each index j:

lim
ε→0

∫
X̃

ε2

|tj |2 + ε2
ωX̃ ∧ ω

n−1
t,ε = 0

Remark 4.4. — Note that because the potentials of ωt,ε are unbounded, one cannot di-

rectly use an argument based on Chern-Levine-Nirenberg inequality as in [GGK19, Claim

9.5]. Moreover, because of the conic part in (4.6), one cannot reproduce the arguments of

[Gue16, Lem. 2.1] based on [Gue16, Prop. 1.1] as it would involve (among other things)

having at hand a model conic/cusp metric with bisectional curvature bounded above and,

as far as we know, such a metric has not yet been proved to exist.

Proof of Lemma 4.3. — Let Vε := {|tj |2 < ε}. One has∫
X̃rVε

ε2

|tj |2 + ε2
ωX̃ ∧ ω

n−1
t,ε 6 ε

∫
X̃

ωX̃ ∧ ω
n−1
t,ε

and this quantity is dominated by ε{ωX̃}· {ωt,ε}
n−1 which obviously converges to zero.

Here we have used that because the potentials of ωt,ε have finite energy, the mass of the

(mixed) Monge-Ampère products of ωt,ε is computed in cohomology. We are left to prove

the following:

(4.16) lim
ε→0

∫
Vε

ωX̃ ∧ ω
n−1
t,ε = 0

The first observation is that thanks to [GW16, Thm. A], the potentials ϕt,ε of ωt,ε satisfy

(4.17) ϕt,ε =
∑

ai=+∞
− log log2 |σi|2 +Rt,ε

where supX̃ |Rt,ε| 6 Ct for some constant Ct > 0 independent of ε. Moreover, one has

uniform Ck estimates for ϕt,ε on any compact subset of X̃ r Supp(D + E); therefore any

weak limit ψt of ϕt,ε (when ε approaches 0) satisfies:
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• ψt is smooth on X̃ r Supp(D + E), and satisfies the following equation on that

locus:

(4.18) (π∗ωX + tωX̃ + ddcψt)
n =

∏
|tj |2cj(1−t)eψtdV∏
|σi|

2
(

1− biai
)

• supX̃
∣∣ψt −∑ai=+∞− log log2 |σi|2

∣∣ < +∞

It follows from the second point and [Gue14, Prop. 2.3] that ψt has finite energy with

respect to any Kähler form ω such that ω + ddcψt > 0. In particular, the equation (4.18)

is satisfied on the whole X̃ (as the Monge-Ampère of ψt puts no mass on pluripolar sets).

As (4.18) admits a unique solution (by comparison principle, cf [BG14, Prop. 4.1]), all

subsequential limits of (ϕt,ε)ε>0 when ε → 0 agree, and therefore ϕt,ε converges weakly to

the solution ϕt of (4.18). We want to show that the convergence is actually strong. For

that purpose, one observes that the quantity

I(ϕt, ϕt,ε) :=

∫
X̃

(ϕt − ϕt,ε)(MA(ϕt,ε)−MA(ϕt))

converges to zero when ε→ 0 thanks to Lebesgue dominated convergence theorem (by (4.17),

ϕt − ϕt,ε is uniformly bounded). By [BBE+19, Prop. 2.3], this implies that ϕt,ε converges

strongly to ϕt. In particular, the measures (ωX̃ + ωϕt,ε)
n = (ωX̃ + π∗ωX + tωX̃ + ddcϕε,t)

n

converge weakly to the non-pluripolar measure (ωX̃ + ωϕt)
n when ε→ 0, t > 0 being fixed.

Now, assume that (4.16) does not hold. As (ωX̃ + ωϕt,ε)
n > ωX̃ ∧ ω

n−1
ϕt,ε , this would imply

that

lim sup
ε→0

∫
Vε

(ωX̃ + ωϕt,ε)
n > 0

In particular, denoting Mt := {ωX̃ + π∗ωX + tωX̃}
n, one could find δ > 0 and a sequence

(εk)k>0 converging to 0 such that for any k > 0:∫
X̃rVεk

(ωX̃ + ωϕt,εk )n 6Mt − δ

In particular, given k0 > 0, one would have for any k > k0:∫
X̃rVεk0

(ωX̃ + ωϕt,εk )n 6Mt − δ

As weak convergence of measures does not increase the mass, one would find:∫
X̃rVεk0

(ωX̃ + ωϕt)
n 6Mt − δ

As this holds for any k0 > 0, one deduces:∫
X̃r{tj=0}

(ωX̃ + ωϕt)
n 6Mt − δ

which contradicts the fact that ϕt has finite energy with respect to (1 + t)ωX̃ + π∗ωX .

Therefore (4.16) is proved, and the lemma follows.
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4.4. Proof of Theorem C. — Let f : Y → (X,D =
∑
di · Di) be a strictly adapted

morphism, provided for instance by Example 2.11. We note that Y is not necessarily lc. Let

π : X̃ → X be a strong log-resolution for the pair (X,D). Set D̃ ⊂ X̃ to be the birational

transform of D by the morphism π. Let Ŷ be the irreducible component of the normalization

of (Y ×X X̃) inducing surjective morphisms π̂ : Ŷ → Y , f̂ : Ŷ → X̃ and the corresponding

commutative diagram:

Ŷ
f̂ //

π̂

��

X̃

π

��

Ỹ
f̃oo

Y
f // X

Note that as π is a projective birational morphism, the finite morphism f̂ : Ŷ → X̃ is

Galois. Let f̃ : Ỹ → (X̃, D̃) be an adapted morphism such that the two orbi-cotangent

sheaves Ω1
(Ỹ ,f̃ ,D̃)

and Ω1
(Ŷ ,f̂ ,D̃)

are compatible (see Example 3.3).

Now, according to Theorem 4.1 we know that Ω1
(Ỹ ,f̃ ,D̃)

is semistable with respect to

π∗(KX + D). Therefore, by Proposition 3.6, so is Ω1
(Ŷ ,f̂ ,D̃)

. We now claim that Ω1
(Y,f,D) is

semistable with respect to KX +D.

Otherwise, there exists a reflexive subsheaf F ⊂ Ω1
(Y,f,D) such that

µf∗(KX+D)(F ) > µf∗(KX+D)(Ω
1
(Y,f,D)).

But then the subsheaf F̂ ⊂ Ω1
(Ŷ ,f̂ ,D)

defined by

F̂ := (π̂∗F ) ∩ Ω1
(Ŷ ,f̂ ,D)

,

which verifies the equality µπ̂∗f∗(KX+D)(F̂ ) = µf∗(KX+D)(F ), destabilizes Ω1
(Ŷ ,f̂ ,D̃)

; a con-

tradiction.

Remark 4.5. — We would like to emphasize that, as evident from the proof, Theorem C

is valid for any choice of an orbifold structure for (X,D) and not necessarily those that are

strict.

5. Orbifold Miyaoka-Yau inequality for minimal pairs

5.1. Proof of Theorem B. — Let H be the ample divisor in Proposition 2.16 and set

Cα(m) = {(Uα(m), fα(m), Xα(m))} to be the orbi-structure for the klt pair (X,Dm) in codi-

mension two. To avoid unnecessarily cumbersome notations we will assume thatD−bDc = 0.

Step 1. Restriction to a general surface Sm.

Let f ′m : Ym → (X,Dm) be a morphism strictly adapted to Dm decomposed as in (2.

10). By Theorem C, the sheaf Ω1
(Ym,f ′m,Dm) is semistable with respect to KX + Dm. As

semistability is determined in codimension one, its coherent extension Ω
[1]
(Ym,f ′m,Dm) is also

semistable, the latter being a reflexive sheaf on Ym. Now, according to Flenner’s restriction

theorem ([Fle84]) —which generalizes Mehta-Ramanathan’s theorem to normal varieties—



34 HENRI GUENANCIA & BEHROUZ TAJI

for sufficiently large, positive integer am, there is a complete intersection curve Cm := D1 ∩
. . .∩Dn−1, where Di are general members of |am · (KX +Dm)| such that (Ω1

(Ym,f ′m,Dm)|CYm )

is semistable, where CYm := (f ′m)−1(Cm).

We observe that as Ω1
(Ym,f ′m,Dm) and Ω1

Cα(m)
are compatible in codimension one, thus so

are their restrictions Ω1
(Ym,fm,Dm)|CYm and Ω1

Cα(m)
|Cm (4). Therefore, using Proposition 3.6,

it follows that Ω1
Cα(m)

|Cm is also semistable. In particular, for Sm := D1 ∩ . . . ∩Dn−2, the

restriction Ω1
Cα(m)

|Sm is semistable with respect to the orbifold structure CSm,α(m) on Sm

naturally induced by the restriction of Cα(m).

Step 2. Construction of a stable orbi-Higgs sheaf.

Let OCα(m)
is the orbi-sheaf defined by {OXα(m)

}. Define the orbi-Higgs sheaf by ECα(m)
:=

Ω1
Cα(m)

⊕OCα(m)
together with the canonically defined Higgs map θCα(m)

: ECα(m)
→ ECα(m)

⊗
Ω1
Cα(m)

defined by the isomorphism

Ω1
Cα(m)

→ OCα(m)
⊗ Ω1

Cα(m)

when restricted to the first factor and zero when restricted to OCα(m)
.

Now, consider the restriction

ECSm,αm := ECm |Sm = Ω1
Cα(m)

|Sm ⊕ OCα(m)
|Sm = Ω1

Cα(m)
|Sm ⊕ OCSm,αm ,

with the Higgs field θCSm,αm defined by the composition

ECSm,αm

θCα(m)
|Sm

// ECSm,αm ⊗ Ω1
Cα(m)

|Sm // ECSm,αm ⊗ Ω1
CSm,αm

.

As Sm is general and ECα(m)
is reflexive, it follows that ECSm,αm is locally free. (To be clear,

ECSm,αm is not the orbi-sheaf Ω1
CSm,αm

⊕OCSm,αm .)

Claim 5.1. — The locally free orbi-Higgs sheaf (ECSm,αm , θCSm,αm ) is Higgs stable with

respect to (KX +Dm)|Sm .

Proof of Claim 5.1. — Let FCSm,αm ⊂ ECSm,αm be an orbi-Higgs subsheaf. As there are

no non-trivial subsheaves of (Ω1
Cm)|Sm that are invariant under the Higgs operator θCSm,αm ,

the orbi-sheaf FCSm,αm must have a non-trivial projection onto an orbi-subsheaf LCSm,αm
of OCSm,αm . Let

(5.1) 0 // GCSm,αm
// FCSm,αm

// LCSm,αm
// 0

be the resulting exact sequence of orbi-sheaves, where GCSm,αm is a locally free subsheaf

of Ω1
Cαm
|Sm . The rest of our arguments are now very similar to those in [GKPT19, §7].

From (5.1) and the inclusion LCSm,αm ⊂ OCSm,αm it follows that

(5.2) c1(FCSm,αm ) 6 c1(GCSm,αm ).

4. By the notation Ω1
Cα(m)

|Cm we mean the pullback of Ω1
Cα(m)

to the orbi-sheaf on Cm with its naturally

induced orbifold structure. We refer to [GKPT19, Subsect. 3.6.2] for more details in the more classical

setting of Q-varieties (which readily generalizes to the current context).
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Let r := rank(FCα(m)
). By dividing the two sides of (5.2) by (r− 1) and using the semista-

bility of Ω1
Cαm |Sm , we find that

µ(FCSm,αm ) = µ(GCSm,αm ) · r − 1

r

6
1

n
((KX +Dm)|Sm)2 · r − 1

r
by the semistability of Ω1

Cαm
|Sm

<
1

n+ 1
((KX +Dm)|Sm)2

= µ
(
Ω1
Cαm
|Sm ⊕OCSm,αm

)
,

as required (here µ is the slope with respect to KX +Dm).

Step 3. The Miyaoka-Yau inequality.

Let gm : Ŝm → Sm be the global Mumford cover associated to the orbi-structure CSm,αm
on Sm and Gm := Gal(Ŝm/Sm). Following Subsection 2.6.2, let ÊCSm,αm be the locally free

Gm-sheaf on Ŝm associated with ECSm,αm . It comes naturally equipped with a Higgs field

θ̂CSm,αm such that

θ̂CSm,αm : ÊCSm,αm → ÊCSm,αm ⊗Wm,

where Wm ⊂ Ω
[1]

Ŝm
is a locally free subsheaf. Set Hm := (KX+Dm)|Sm and Ĥm := (gm)∗Hm.

Claim 5.2. — For an equivariant resolution πm : S̃m → Ŝm, there exists an ample divisor

H̃m ⊂ S̃m such that the locally free Higgs sheaf

(ẼCSm,αm , θ̃CSm,αm ) := (πm)∗(ÊCSm,αm , θ̂CSm,αm )

is Higgs Gm-stable with respect to H̃m, that is for the Higgs, Gm-subsheaf F̃CSm,αm ⊂
ẼCSm,αm , we have µH̃m(F̃CSm,αm ) < µH̃m(ẼCSm,αm ). Moreover, one can arrange that

(πm)∗H̃m = Ĥm, as 1-cycles on Ŝm.

Proof of Claim 5.2. — First, we notice that from the orbi-Higgs stability of (ECSm,αm , θCSm,αm )

it follows that the locally free Higgs sheaf (ÊCSm,αm , θ̂CSm,αm ) is Gm-stable, i.e.

(5.3) µĤm(F̂CSm,αm ) < µĤm(ÊCSm,αm )

for every Higgs, Gm-subsheaf F̂CSm,αm ⊂ ÊCSm,αm . This is because, every such sub-

sheaf (which we may assume to be saturated) descends to an orbi-Higgs subsheaf

(FCSm,αm , θCSm,αm ) ⊂ (ECSm,αm , θCSm,αm ) on Sm, i.e. F̂CSm,αm = q∗αm(FCSm,αm ), cf. [HL10,

Thm. 4.2.15]. Here, the morphism qαm : Ŝαm → Sαm factors gm:

ŜCSm,αm Sm

Ŝαm Sαm Vαm ,

gm

qαm pαm
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as defined in Subsection 2.6.2. Therefore the orbi-stability of (ECSm,αm , θCSm,αm ) ensures

that Inequality 5. 3 holds. As a result, the pull-back Higgs bundle (ẼCSm,αm , θ̃CSm,αm ) is

Gm-stable with respect to π∗mĤm.

Now, let E be an effective exceptional divisor that is relatively anti-ample. As stability

is an open condition, it follows that for any sufficiently small ε ∈ Q+ we can guarantee that

H̃m := (π∗mĤm − ε · E) is ample and that (ẼCSm,αm , θ̃CSm,αm ) is Higgs stable with respect

H̃m. This finishes the proof of Claim 5.2.

From the original result of Simpson on the existence of HYM metrics, cf. [Sim88,

Prop. 3.4], it thus follows that ẼCSm,αm verifies the Bogomolov-Gieseker inequality. Hence,

by projection formula, so does ÊCSm,αm and thus the inequality

(5.4)
(
2(n+ 1) · c2(Ω1

(Cα(m),Dm))− n · c
2
1(Ω1

(Cα(m),Dm))
)
· (KX +D +

1

m
·H)n−2 > 0

holds for all m > 2. The inequality in Theorem B now immediately follows from (5. 4) by

taking the limit m→∞, using the continuity property in Proposition 3.11.

5.2. About the assumptions on the singularities. —

A more general setting to prove Miyaoka-Yau inequality would be the one for pairs (X,D)

such that (X,D) has log canonical singularities with KX + D nef. As mentioned in the

Subsection 2.4, this context is too general for a workable definition of an orbifold second

Chern class c2(X,D), even if the space X is assumed to be klt.

Looking carefully at the proof of Theorem B, one may observe that what we really need is

the existence of an orbi-étale structure in codimension two for (X,D) as well as for (X,Dm),

cf. Proposition 2.16. Both of these conditions are satisfied in two particular cases: if (X,D)

is log smooth or if X klt and D is reduced.

∗ Assume that (X,D) is log smooth. Then the existence of an orbi-étale structure

on the whole X follows from Example 2.9. In particular, in view of Example 3.9,

one has for any log smooth, log canonical pair (X,D) such that KX +D is nef and

big, say: (
2(n+ 1) · c2(X,D)− n · c21(X,D)

)
· (KX +D)n−2 > 0

where c2(X,D) = c2(ΩX) + c1(ΩX)·D +
∑
i<j

(
1 − bi

ai

)(
1 − bj

aj

)
Di·Dj +

∑
i

(
1 −

bi
ai

)
D2
i . This generalizes [SW16, Prop. 4.2 and 4.5].

∗∗ Assume that X is klt and that D is reduced. The main point is to obtain

[GKKP11, Prop. 9.14] in this setting. This can be checked using the classifica-

tion of pairs (S,C) where S is a klt surface and C a reduced curve with (S,C) lc,

cf e.g. [K+92, Chapt. 10 p.117] combined with the reduction argument given in

[GKKP11, Sect. 9].
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6. Appendix. Products of orbifold Chern classes

We will be following the notations and settings of Section 2, in particular those of Sub-

section 2.6.3. Our aim is to prove that the natural map

ψ• : A•(X̂◦C)
G ⊗Q→ An−•(X

◦)⊗Q

can be used to equip A(X◦) with a ring structure. This can be achieved, as in [Mum83] in

the case of Q-varieties, by using the following lemma.

Lemma 6.1. — Assuming that C = {(U◦α, fα, X◦α)} verifies Assumption 1, the map ψ• is

a group isomorphism.

Proof. — The proof follows from the arguments of [Mum83, Thm. 3.1]. Let Z◦ ∈
An−k(X◦). We first show that Z◦ naturally gives rise to an orbifold sheaf.

Consider (p′α)−1(Z) as a reduced subscheme of Vα.

Claim 6.2. — The collection of Gα-sheaves{
p∗α
(
O(p′α)−1(Z◦)

)}
is an orbifold sheaf.

Proof of Claim 6.2. It suffices to establish the compatibility condition for overlaps. To this

end, consider another local orbifold chart

X◦β
pβ

adapted
// W ◦β

p′β

quasi-étale
// X◦,

where W ◦β is smooth, with the resulting commutative diagram of fibre products:

X◦αβ
fβα //

fαβ

��

gαβ

**

X◦β

pβ

��
W ◦αβ

p′βα //

p′αβ

��

W ◦β

p′β

��
X◦α

pα // W ◦α
p′α // X◦.

Here, W ◦αβ = W ◦α ×X◦ W ◦β and X◦αβ is the normalization of X◦α ×X◦ X◦β with gαβ being the

morphism induced by the universal property of fibre products.

Now, since both W ◦α and W ◦β are smooth and p′βα and p′αβ are quasi-étale, it follows from

the purity of branch locus that p′αβ and p′βα are in fact étale. As a result we have

(p′αβ)∗
(
O(p′α)−1(Z◦)

) ∼= (p′βα)∗
(
O(p′β)−1(Z◦)

)
.

On the other hand, from the commutativity of the diagram we find:

(6.1) f∗αβ
(
p∗αO(p′α)−1(Z◦)

)
= g∗αβ

(
(p′αβ)∗O(p′α)−1(Z◦)

)
,
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(6.2) f∗βα
(
p∗βO(p′β)−1(Z◦)

)
= g∗αβ

(
(p′βα)∗O(p′β)−1(Z◦)

)
.

As the right hand side of (6.1) and (6.2) are isomorphic, so are the sheaves on the left

hand side, as required. Compatibility over triple overlaps follow similarly. This proves the

claim.

The rest of the proof is now identical to the arguments of Mumford, cf. [Mum83, p. 287].
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