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ABSTRACT
Researchers involved in designing network services and protocols
rely on results from simulation and emulation environments to eval-
uate correctness, performance and scalability. To better understand
the behavior of these applications and to predict their performance
when deployed across the Internet, the generated topologies that
serve as input to simulated and emulated environments must closely
match real network characteristics, not just in terms of graph struc-
ture (node interconnectivity) but also with respect to various node
and link annotations. Relevant annotations include link latencies,
AS membership and whether a router is a peering or internal router.
Finally, it should be possible to rescale a given topology to a variety
of sizes while still maintaining its essential characteristics.

In this paper, we propose techniques to generate annotated, Inter-
net router graphs of different sizes based on existing observations of
Internet characteristics. We find that our generated graphs match a
variety of graph properties of observed topologies for a range of tar-
get graph sizes. While the best available data of Internet topology
currently remains imperfect, the quality of our generated topologies
will improve with the fidelity of available measurement techniques
or next generation architectures that make Internet structure more
transparent.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topology;
G.2.2 [Graph Theory]: Network problems

General Terms
Measurement, Design, Theory

Keywords
Network topology, degree correlations
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1. INTRODUCTION
There has been growing interest in understanding the structure of

Internet topologies. Some highlights of this work include the ob-
servation that: i) Internet AS peering relationships follow a power
law distribution [12], ii) simply considering the degree distribu-
tion is insufficient to reproduce the complexity found in router-level
topologies [16], and iii) considering the interconnectivity of neigh-
borhoods of increasing size can reproduce arbitrary graph metrics
(with neighborhoods of size 3 sufficient to reproduce all known im-
portant properties of Internet graphs) [18].

We are interested in applying recent strides in the understanding
of Internet structure to generate random Internet router graphs ap-
propriate for simulation [24], emulation [10, 30, 32], and testbed
deployment [2, 14] studies. Topology characteristics can impact a
range of experiments, including performance of routing protocols,
the spread of worms, end-to-end application behavior and conges-
tion, and the resilience of distributed protocols and services to net-
work failures. These studies typically require as input a range of
Internet topologies. We identify a number of requirements for any
generator of such topologies.

First, such generators should produce both router- and AS-level
graphs that accurately reflect the interconnectivity characteristics of
the Internet based on the best available measurements. Further, the
tool should export knobs to make it easy to explore alternatives to
measured network characteristics, e.g., to understand application
sensitivity to current Internet structure, to project to some future
network topology based on an understanding of evolving trends in
network connectivity, or to propose corrections based on suspicions
of bias in measurement or sampling error in available datasets.
Third, the tool should produce router and AS topologies of a range
of sizes, from small-scale topologies appropriate for deployment
to larger-scale topologies to support simulation and emulation. In
all cases, the topologies should maintain important characteristics
of measured Internet topologies. That is, users should be able to
feed the tool measured topologies of a range of sizes, and the tool
should produce random graphs of a target (rescaled) size that still
reproduce characteristics of the input graph to the extent possible.

Finally, the tool should support a range of annotations important
to higher-level studies. For instance, nodes in the generated topol-
ogy should be annotated with AS membership information to en-
able studies that account for routing behavior. Similarly, the busi-
ness relationships among peering ASes (peering, customer, etc.)
should be included. Without such annotations, Internet routing
would have to default to shortest path between end hosts. Other
important annotations include link latencies, loss rates, and capac-
ities.



Unfortunately, the current state of the art in topology generation
fails to meet the above requirements along a number of dimensions.
Existing techniques either produce AS-level graphs, representing
entire Autonomous Systems as a single node in the graph with
links between ASes representing peering relationships, or router-
level graphs with no associated AS information. In the latter case,
earlier work [16] shows that existing tools do not reproduce the
complex structure of router topologies. These tools include either
no annotations or use simple heuristics known not to reflect Internet
characteristics. Finally, existing techniques typically either cannot
perform graph rescaling or do not do so in a manner that reflects
known patterns of network evolution.

Thus, the goal of this paper is to produce a topology generator ca-
pable of outputing a range of annotated Internet topologies of vary-
ing sizes based on available measurements of network connectivity
and characteristics. We employ earlier work on the dK-series [18]
to characterize and reproduce network topologies. The dK-series
uses degree distributions of node sets of increasing size to charac-
terize an input topology. This model has the advantage of capturing
and reproducing all of the important graph properties proposed in
the literature to date [18]. As one example, we have used it to pro-
duce random graphs that capture the complex interconnectivity of
Internet router topologies.

In this context, this paper makes three primary contributions.
First, we present an algorithm to rescale an input degree distri-
bution to a graph of different size from the original (Section 4).
There are a range of possible techniques for performing rescaling;
we propose considering historical Internet connectivity data to in-
form such rescaling. We experimentally show that we are able to
produce graphs of a variety of sizes while still maintaining other
important graph characteristics. Second, we present a top-down
technique for generating router-level topologies annotated with AS
membership (Section 5). Once again, starting with observations re-
garding AS interconnectivity, we generate rescaled AS graphs and
then backfill per-AS router topologies that follow appropriate size
and degree distributions based on available measurement data.

Finally, we compare our randomly generated, annotated router
topologies to observed Internet router topologies (Section 6). We
find close matches for a range of graph metrics proposed in the liter-
ature, demonstrating that our techniques maintain important graph
properties while rescaling and annotating our generated topologies.
We are making the source code for our topology generator publicly
available and hope that it will benefit a range of studies. In Sec-
tion 7, we discuss a number of scenarios that could benefit from
our topology generation techniques.

2. BACKGROUND
We use the dK-series [18] as the basis for characterizing a given

graph and also for generating random graphs that match a given
dK-distribution. The goal of the dK-series is to unify the wide
range of graph metrics proposed in the literature. These metrics di-
rectly influence the performance and behavior of various network
applications and services. We briefly discuss some of the more
widely known ones in this section, while a more thorough discus-
sion of these metrics and their impact on networking applications
and protocols can be found in [19].

• The spectrum of a graph is the set of eigenvalues of its Lapla-
cian matrix, with all the eigenvalues lying between 0 and 2.
The smallest non-zero and largest eigenvalues, λ1 and λn−1,
where n is the graph size, are especially significant.

Table 1: Scalar metric notations.
Metric Notation
Average degree k̄
Maximum degree kmax

Assortativity coefficient r
Average clustering C̄
Average distance d̄
Standard deviation of distance distribution σd

Smallest eigenvalue of the Laplacian λ1

Largest eigenvalue of the Laplacian λn−1

• The distance distribution d(x) or path-length distribution is
the number of pairs of nodes at a distance x, divided by the
total number of node pairs n2 (self-pairs included).

• Betweenness, a commonly used measure of centrality, is the
weighted sum of the number of shortest paths passing through
a given node or link. It estimates the potential traffic load on
a node or link, assuming uniformly distributed traffic follow-
ing shortest paths.

• The assortativity coefficient r [22] suggested as a summary
statistic of node interconnectivity. Its low (high) values in-
dicate that links connecting nodes with dissimilar (similar)
degrees prevail.

• Clustering C(k) is a measure of how close neighbors of the
average k-degree node are to forming a clique: C(k) is the
ratio of the average number of links between the neighbors
of k-degree nodes to the maximum number of such links

`
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Throughout this paper, we use the notations from Table 1 to refer
to the scalar statistics associated with the metrics mentioned above.

The dK-series is based on the observation that the most ba-
sic property of a network topology characterizes its connectivity.
Each property in the dK-series provides information on connectiv-
ity within groups of d nodes with degrees k1, ..., kd, where d takes
values from 0 to the total number of nodes, n, in the graph. In
other words, the dK-series describes correlations amongst degrees
of nodes in subgraphs of size d, for d = 0, 1, ..., n. Each element
in the dK-series allows us to generate dK-graphs that reproduce
the specific correlation among the degrees in all d-sized subgraphs
of the given graph.

For d = 0, 0K-graphs reproduce the average degree (also re-
ferred to as 0K-distribution ) of the given graph G(V, E). The
average degree is k̄ = 2m/n, where n = |V | and m = |E| are the
numbers of nodes and links in G. When d = 1, 1K-graphs repro-
duce the degree distribution (1K-distribution), P (k) = n(k)/n,
of the given graph with n(k) nodes of degree k (k-degree nodes).
The 1K-distribution contains more information on node connec-
tivity than 0K-distribution, and it is, therefore, a more restrictive
metric: the set of 1K-graphs is more constrained than the set of
0K-graphs and thus is a subset of the set of 0K-graphs. When
d = 2, 2K-graphs reproduce the joint degree distribution (JDD)
of the given graph. The JDD, or the 2K-distribution, is given by
P (k1, k2) = m(k1, k2)μ(k1, k2)/(2m), where m(k1, k2) is the
number of edges between k1- and k2-degree nodes, and μ(k1, k2)
is 2 if k1 = k2 or 1 otherwise.

Extending this series in a similar fashion, when d = n, the gen-
erated nK-graphs are isomorphic to the given graph, and thus are
guaranteed to reproduce any graph metric currently proposed in the
literature or any future metric of interest. In summary, each prop-
erty in the dK-series embeds increasingly more information about



the given graph structure, and thus the corresponding dK-graphs
are increasingly constrained, until they finally converge to the given
graph.

Earlier work [18] presented several different techniques to con-
struct dK-random graphs, which are random graphs that have the
same dK-distribution as the given graph and that are unbiased with
respect to any other more constraining property. One significant
limitation of [18] was that the generated random graphs had the
same number of nodes as the original graph. One of the principal
goals of this work is to devise techniques for generating graphs of
different sizes, i.e., graphs reproducing appropriately rescaled dK-
distributions of the original graph.

2.1 Other Related Work
One of the earliest network topology models was proposed by

Waxman [31] and is based on the classical Erdős-Rényi random
graphs [11]. This model later was abandoned in favor of other
models such as GT-ITM [34] that incorporated hierarchical struc-
tures observed in the Internet. Seminal work in 1999 [12] presented
evidence that the degree distribution of Internet ASes followed a
power law. Structural models such as GT-ITM failed to reproduce
this specific form of degree distribution. Later, generators such
as PLRG [1], Inet [33], and BRITE [21] focused on reproducing
the observed power-law degree distribution; however, the graphs
so generated do not match the observed topologies with respect to
a wide range of metrics considered important in the literature.

Li et al. [16] consider router capacity constraints, as well as
likelihood to model router-level topologies and advocate under-
standing the evolution of networks in order to accurately model
router-level graphs. For AS-level topologies, recent work [7] con-
siders the technological, economic and political considerations be-
hind whether pairs of ASes peer with another. Thus, this and re-
lated efforts consider the driving evolutionary forces behind the
growth of particular topologies. We consider the study of evolu-
tionary forces to be complementary to the techniques described in
this paper. While we present an approach to scaling graphs based
on observed historical changes in important graph metrics, evolu-
tionary studies focus on the external stimuli behind growth.

3. METHODOLOGY OVERVIEW
To justify our rescaling approach, we first study historic data for

AS topologies collected over the past few years. The historic data
provide insight into how the global and local structures of the net-
work topology change as the network grows. Specifically, our ran-
dom graph generation technique is based on the dK-series [18],
which shows that reproducing the 1K-distribution for AS graphs
matches most important topology metrics proposed in the literature.
We thus want to check if the 1K-distribution of the AS topology
is an invariant of Internet growth. Reproducing 2K-distributions
almost suffices for router topologies [18],1 and in this paper we
present techniques to generate 1K- and 2K-random graphs of any
specified size.

A graph that merely captures the structure of the Internet’s AS-
level or router-level topology, though still useful, might not help
researchers who would like to evaluate the performance of their
network applications and services. One reason is that influence

1We strongly emphasize, however, that one can easily construct
regular synthetic graphs (e.g., chains, rings, grids, etc.) such that
their 2K-random counterparts would be extremely dissimilar to the
original graphs. In other words, it is an empirical observation that
Internet topologies are specific in the sense that they are almost
1K- or 2K-random.

of node and link annotations such as latency, loss-rate, AS mem-
bership, etc., can significantly impact application performance and
protocol behavior. For example, several research studies show that
actual packet paths between Internet hosts are substantially longer
than the corresponding shortest paths [13, 26, 29]. In the absence
of AS membership information in the generated graphs, studies that
require a router-level topology end up computing shortest paths be-
tween pairs of end nodes. These studies will likely yield incorrect
results for packet round-trip times and thus potentially incorrect re-
sults for application performance. Annotating each router with AS
membership will enable us to implement correct routing paths in
the topology, as we can now employ modified shortest-path algo-
rithms such as [20] that respect AS membership and routing poli-
cies between the ASes. In this paper, we focus on techniques for
annotating topologies with AS membership. We have also devel-
oped techniques to annotate topologies with per-hop latencies to
match end-to-end distributions of latency distributions observed in
the Internet. We omit details of our techniques for latency annota-
tion for brevity.

4. RESCALING TECHNIQUES
In this section, we present techniques to generate different-sized

graphs using dK-distributions. Specifically, we describe algorithms
to generate 1K-random and 2K-random graphs with variable num-
bers of nodes given a target distribution for some fixed-sized graph.

We do not need to rescale a 0K-distribution because it is a sin-
gle scalar equal to the average degree. Procedures to construct
arbitrary-sized graphs with a given average degree are straightfor-
ward [18].

Consider the 1K-distribution P (k) however. It is a function of
one integer variable, i.e., node degree k. The support2 of P (k) lies
within [0, n − 1], 0 � supp(P ) � n−1, while the values of P (k)
are between 0 and 1. If we wish to generate a random graph of a
different size n′, then the main question is how the support and val-
ues of P (k) should change to result in the appropriately rescaled
degree distribution P ′(k′) of the new graph. For example, when
scaling a graph from 1000 to 2000 nodes, how should the degrees
itself as well as their corresponding distribution be rescaled in the
new graph? The question becomes more complex when consider-
ing, for instance, 2K-distributions P (k1, k2) that are functions of
two arguments.

We believe that appropriate rescaling techniques depend on the
characteristics of the class of graphs being considered. That is, in-
dividual types of graphs will scale up and down in an application-
specific manner. The way that Internet graphs grow may very well
be different from how social or biological networks grow. Simi-
larly, growth characteristics for a given organization’s router topol-
ogy may well differ from the growth characteristics of the Internet’s
global AS peering graph.

To motivate how our rescaling works in practice, we present, in
Figure 1, visualizations of the 0K-, 1K-, and 2K-randomized ver-
sions of the original-sized HOT router graph from [16] and their
rescaled counterparts. While we will quantify our ability to repro-
duce important graph metrics in subsequent sections, visually we
see that the rescaled graphs maintain much of the same connectiv-
ity structure of their original-sized versions.

2The support supp(f) of function f(x) is the set of values of its
argument x such that f(x) �= 0.



(a) Original 0K-graph (b) Original 1K-graph (c) Original 2K-graph

(d) Rescaled 0K-graph (e) Rescaled 1K-graph (f) Rescaled 2K-graph

Figure 1: The original-sized (939 nodes) dK-random HOT graphs and their rescaled (2000 nodes) versions.

Table 2: Scalar metric values for historic skitter AS-level
topologies.

Year Nodes k̄ kmax r C̄ d̄ σd

2000 3308 5.77 836 -0.25 0.38 3.14 0.41
2001 6021 5.48 1461 -0.22 0.40 3.21 0.42
2002 8359 6.49 2355 -0.24 0.44 2.99 0.35
2003 8512 5.17 1443 -0.23 0.38 3.30 0.43
2004 9204 6.23 2070 -0.24 0.46 3.12 0.37
2005 8500 5.97 1783 -0.23 0.45 3.17 0.39

4.1 Internet topology input data

4.1.1 AS topology historic data
Since we are interested in building an Internet router topology

generator that includes AS information for each router, we decided
to study the historical growth characteristics of Internet AS graphs.
In particular, we considered the dK-distributions for historical AS-
level topologies extracted from skitter [5] and RouteViews [25]
data in March of each year between 2000 and 2005. The AS-level
topology obtained from skitter grew by almost a factor of 3 during
this time period. Our hypothesis is that the graph will demonstrate
some steady growth characteristics and that we could then apply
our understanding of the Internet’s AS growth to generating graphs
of a range of sizes given some initial dK distribution. For brevity,
we only present results for the skitter data, though the conclusion
from the RouteViews data is statistically similar. Figure 2 plots de-
gree distribution and Table 2 presents some of the commonly used
graph metrics for skitter data during this time period.

From the historic skitter AS-level data we make the following
observations:

• As is well-known, the degree distribution follows a power-
law, P (k) ∼ k−γ , with γ ≈ 2.1, and the maximum de-
gree kmax scales almost linearly with the graph size.3

• Up to a certain threshold degree, the values of the degree
distribution stay the same and the power-law exponent γ re-
mains unchanged with the evolution of the topology. The
average degree stays the same due to linear scaling of values
of high degrees in the power-law tail.

• The assortativity coefficient, a scalar summary of the 2K-
distribution, and mean clustering, a partial summary of the
3K-distribution, remain almost constant over the five year
period.

• Some other global metrics such as the distance distribution,
do not drastically change either.

4.1.2 Router topology data
We next consider the characteristics of router topologies within

individual ASes. Unlike AS-level topologies, we do not have ac-
cess to detailed historic router-level topologies to understand their
growth patterns. Instead we gathered router-level topologies for all
the ASes observed in the skitter traceroute data from September
1-15, 2006, by executing the following steps:

3In fact, the expected maximum among n samples of a random
variable distributed according to a power law with exponent −γ is
kmax ∼ n1/(γ−1) [3]. For the observed values of γ, this scaling is
almost linear since 1/(2.1 − 1) ≈ 0.9.
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1. From the traceroute traces, we first extract IP links. Using
the RouteViews data, we assign the source AS of the longest
matching prefix to each IP link.

2. Interface aliases are merged using iffinder [4] into routers.
iffinder sends UDP probe packets to all IP addresses
seen in the traces with destination UDP ports set to presum-
ably unused values. If router R receives such a packet from
prober P destined to R’s IP interface X , while R’s route to P
goes via some other R’s IP interface Y , then R is supposed to
reply to P with ICMP port unreachable message with
the source address set to Y . Prober P can thus conclude that
X and Y belong to the same router [15].

3. We translate IP links from step 1 to router links using the re-
sults from step 2. Next, we assign AS numbers correspond-
ing to the IP links to the router links. Since all traceroute
traces are directed from source to destination, the graph ob-
tained at this step is also directed, i.e., each node is charac-
terized by its in- and out-degree.

4. We discard all nodes with either in-degree 0 or out-degree 0
as majority of nodes removed this way are end hosts.

After applying the above steps, we obtain a router-level topology
of the Internet with more than 200,000 routers. This router-level
topology has information on AS membership, i.e., the AS number
that each link in the graph belongs to. By putting together links that
belong to the same AS, we are able to create a router-level topology
for each of the ASes observed in the data.

The resulting topology suffers from several limitations. In par-
ticular, since skitter sends traceroute probes from the source mon-
itors to the hosts in its destination lists, typically not all routers
inside an AS will be discovered. As a result, the router-level topol-
ogy for a particular AS need not be connected (disjoint traceroutes
may discover different portions of the same AS). We extract the
giant connected component (GCC) from the router-level topology
for each AS and discard ASes where the GCC is less than 75% of
the total number of routers in that AS. We consider the connectivity
information for these ASes to be insufficient to inform subsequent
topology generation. We are left with router-level topologies of
varying sizes for approximately 5700 ASes. There are a number of
other concerns with the quality of obtained topologies. We list just
a few:

• Traceroute explorations are widely known to introduce sam-
pling biases since they find only those links that, roughly, lie
in a collection of shortest-path trees rooted at the monitors;
other links are missing [9].

• Traceroute probes are also susceptible to degree inflation,
since they do not account for layer-2 connectivity. For ex-
ample, when several routers are connected through a switch,
traceroute techniques can mistakenly assume that these route-
rs are directly connected to each other. As a result, the de-
grees of the routers need not be accurate.

• Several concerns stem from using iffinder to map IP in-
terfaces to routers. In particular, while there are no false
positives in the mapping, it is difficult to quantify the false
negatives.

Despite these limitations, the skitter data remains one of the few
sources of router-level data that can be used for topological model-
ing and inference.

We next smooth the obtained router topology statistics. Specifi-
cally, we perform logarithmic binning to group all the router graphs
obtained for each AS into the following four categories based on
the AS size equal to the number of routers within an AS:

AS category AS size S
T1 S < 10
T2 10 � S < 100
T3 100 � S < 1000
T4 S � 1000

We plot the degree distributions and assortativity coefficients aver-
aged for each category in Figures 3 and 4, and make the following
observations:

• Router graphs with more than 100 nodes have degree dis-
tributions that can be loosely approximated by power laws,
although the power law is not as good a fit as was observed
for AS-level topologies. Graphs smaller than 100 nodes have
such scarce degree statistics that any discussion whether their
degree distributions follow any specific laws or not is impos-
sible.

• The observed maximum degree does not scale in a simi-
lar fashion as observed in historic AS-level graphs. In fact,
the maximum degree does not increase significantly with in-
crease in graph size and the observed maximum node degree
is about 330 in the largest router graphs. This observation
agrees with the intuition behind router topologies: the num-
ber of interfaces per router cannot be arbitrarily large; it is
bounded by simple technical network design constraints [16].

• We observe no specific and statistically significant values of
assortativity coefficients for the obtained router graphs of dif-
ferent sizes.

These observations suggest that our rescaling techniques should be
appropriately adjusted to account for the specifics of router topolo-
gies. The maximum degree, for example, cannot scale linearly as



in the AS topology case. Instead, it should be bounded above by a
specific value representing current technological and practical lim-
itations.

4.2 1K-rescaling
We base our rescaling techniques on the observations made in

Section 4.1. In our 1K-rescaling, we attempt to preserve the shape
of the PDF of the graph’s degree distribution. We do so by: i) keep-
ing the proportion of low-degree nodes in the rescaled graph the
same as in the original graph, ii) scaling linearly, with the size of
a rescaled graph, the values of high degrees, and iii) keeping the
number of nodes of rescaled high degrees the same as the corre-
sponding number of nodes in the original graph.

Specifically, our algorithm to rescale 1K-distributions of AS
graphs works as follows.

Input:

• The original graph size n.

• The original degree distribution P (k).

• The new graph size n′.

Output:

• The degree distribution P ′(k′) in the new graph.

Procedure:

1. Find the low-degree threshold kl > 1 defined as the low-
est degree value such that the smoothed degree distribution
behaves as P (kl + 1) > P (kl), i.e., value kl is such that
statistical noise in P (k) becomes significant for k > kl. We
require that kl be sufficiently large such that the nodes of
the remaining degrees account for less than 10% of the total
nodes (the degree distribution PDF does not typically follow
a power law for the first few degrees and most of the nodes
in the graph fall in this range).

2. Find the high-degree threshold kh defined as the lowest de-
gree value such that the smoothed degree distribution P (k)
is a constant function, i.e., value kh is such that the number
of nodes n(k) = nP (k) is approximately the same for all
k > kh.

3. Let k ∈ supp(P ) be the set of degree values k such that
P (k) �= 0, and k′(k) ∈ supp(P ′) be the set of correspond-
ing degree values in the new graph.

4. For k � kl, k′(k) = k and P ′(k) = P (k).

5. For k � kh, k′(k) = kn′/n and n′(k′(k)) = n(k) ⇔
P ′(kn′/n) = n/n′P (k).4

6. Let M = (kl, kh) be an open interval between kl and kh,
and M ′ = (kl, khn′/n) be an open interval between k′(kl)
and k′(kh). For k ∈ M , we use linear rescaling to glue the
two regimes of P ′(k′) defined at steps 4 and 5 as follows:

(a) Let u be the number of nodes in the original graph with
degrees k ∈ M , u = n

P
k∈M P (k), let i = 1, . . . , u

be the rank of node i in the list of nodes with degrees
in M sorted in the order of non-increasing degrees, and
let k(i) be the degree of node i. This way k(1) = kh

and k(u) = kl.
4Rounding to closest integers is assumed whenever needed.

(b) Let u′ be the number of nodes in the new graph that
should have degrees k′ ∈ M ′,
u′ = n′(1 − P

k′ /∈M′ P ′(k′)).

(c) For nodes j = 1, . . . , u′ in the new graph, compute
their linearly rescaled degree values by

k′(j) =
“

1−n′/n
u′−1

(j − 1) + n′
n

”
k

h
u−1
u′−1

(j − 1) + 1
i
.

(d) Let l(x) be a linear function such that l(k′
l) = P ′(k′

l)
and l(k′

h) = P ′(k′
h), i.e., l(x) = ax + b, where a =

(n/n′P (khn′/n) − P (kl))/(khn′/n − kl) and b =
P (kl) − akl. Let ρ be a small random variable uni-
formly and symmetrically distributed around 0. For
values k′ in the new graph produced by step 6c, com-
pute the corresponding values of the degree distribution
by P ′(k′) = c(l(k′)+ρ), where the constant c is deter-
mined from the normalization condition for the whole
P ′(k′), i.e.,

P
k′∈supp(P ′) P ′(k′) = 1.

We then supply the output degree distribution P ′(k′) as input to the
1K-random topology generation algorithms described in [18] to
obtain the final graph. Similar to the methodology followed in [18],
we extract the GCC from the generated graph.

To rescale router topologies of sizes smaller than 100 nodes, we
also maintain the degree distribution of the given graph. Rescaling
router topologies larger than 100 nodes, we impose an additional
constraint on the maximum degree to not exceed 330. We stress
that this value can be configured by the user based on better data
for Internet connectivity or updated router technology information.

4.3 2K-rescaling
The main idea behind our 2K-rescaling is the same as in the 1K

case—we try to preserve the shape of the 2K-distribution P (k1, k2).
In other words, we want the degree correlation “profile” of rescaled
graphs be similar to the original. We preserve it by means of the
following algorithm:

Input:

• The original graph size n.

• The original joint degree distribution (JDD) P (k1, k2).

• The new graph size n′.

Output:

• The JDD in the new graph P ′(k′
1, k

′
2).

Procedure:

1. Compute the 1K-distribution from the given 2K-distribution
by P (k) = k̄/k

P
k1

P (k, k1).

2. Rescale P (k) to P ′(k′) of the new graph as in Section 4.2.

3. Let k̂′(k) be the mapping between the old and new degree
values induced by 1K-rescaling. Specifically, let M =

(kl, kh) be as in Section 4.2. If k /∈ M , then k̂′(k) = k′(k)
from steps 4 and 5 in Section 4.2. Otherwise, if k ∈ M ,
k̂′(k) is given by the degree mapping from step 6c in Sec-
tion 4.2.

4. Let X = |supp(P )|M and X ′ = |supp(P ′)|M′ be the sizes
of supports of P (k) and P ′(k′) within the M and M ′ inter-
vals respectively. When scaling up, n′ > n, X ′ � X , and



the 2K-distribution is computed as follows:

P ′(k̂′
1(k1), k̂

′
2(k2)) =

8>>>>><
>>>>>:

P (k1, k2), if k1 /∈ M

and k2 /∈ M,`
X
X′

´2
P (k1, k2), if k1 ∈ M

and k2 ∈ M,`
X
X′

´
P (k1, k2), otherwise.

When scaling down, n′ < n, X ′ � X , and

P ′(k′
1, k

′
2) =

X
k1,2|k̂′

1,2(k1,2)=k′
1,2

P (k1, k2)

That is, the JDD shapes before and after rescaling are the
same, while the above expressions guarantee that the JDDs
of both original and new graphs are properly normalized.

As in the 1K case, we then supply the produced 2K-distribution
P ′(k′

1, k
′
2) to 2K-random graph construction algorithms from [18]

to obtain the final graph.

4.4 1K + r-rescaling
We have also experimented with a rescaling technique lying some-

what in-between 1K- and 2K-rescaling. The motivation for it is
that for the AS-level graphs, the assortativity coefficient r, a sum-
mary statistic of the 2K-distribution, has remained roughly con-
stant over time (see Table 2). We can thus perform 1K-rescaling
and then move the resulting graph to a target value of r by a se-
quence of 1K-preserving r-targeting rewirings. At each rewiring
step, we select a random pair of edges (v1, v2) and (v3, v4) and
rewire them to the pair (v1, v4) and (v2, v3) only if the 1K-distribu-
tion does not change and the value of r after rewiring is closer to
its target value than before (see [18] for further details).

Compared to 2K-rescaling, this technique is simpler and can
easily be extended to higher-order statistics since we can always
compute scalar summaries of a given dK-distribution [18]—the
mean clustering and correlation of degrees of nodes located at dis-
tance 2 from each other are such summaries for the 3K-distribution,
for example. However, this simplicity comes with a price: no
scalar metric can capture all of the information contained in, for
instance, a 2K-distribution (that must be encoded as a matrix).
Hence, 1K + r-rescaling may give up some accuracy. We present
detailed comparison of our rescaling techniques in Section 6.

5. AS ANNOTATIONS
Given our ability to generate graphs of a range of sizes, in this

section we describe techniques for annotating generated router-level
topologies with AS membership information. The traceroute data
described in Section 4.1 includes information on both ASes and
router connectivity. Given AS annotation information in an origi-
nal router topology, there are two possible techniques for maintain-
ing AS annotations in the randomly generated rescaled graph. The
first, bottom up technique, would simply rescale the input router
topology and then devise techniques to “grow” contiguous ASes
to match some target number of ASes, making some assumptions
about how the number of ASes scales with the total number of
routers and using observations of the number of routers per AS in
the original topology.

Unfortunately, we could not devise any straightforward tech-
niques for filling in the details of this bottom up technique. Thus,
we propose a top down technique for generating a rescaled, anno-
tated topology. This technique consists of the following high-level
phases illustrated in Figure 5:

1. Generate AS-level topology of desired size.

2. Populate each AS with a router-level topology using infor-
mation on correlations between AS degrees and sizes mea-
sured by the number of routers within an AS.

3. Select peering (i.e., inter-AS or border) routers for each AS
based on the peering router statistics extracted from the tracer-
oute data.

4. Glue per-AS router topologies into a global router topology
by connecting peering routers.

While we describe details of our methodology in the context of skit-
ter below, we note that our approach is general to a variety of data
sources. For example, we could use Rocketfuel [27] or iPlane [17]
data to generate router-level topologies for each AS.

To provide more details about our annotation techniques, we first
describe some additional post-processing of the skitter data from
Section 4.1. In addition to size-based AS categories T1, . . . , T4

from Section 4.1.2, we also use logarithmic binning to coarsely
smooth the AS degree distribution and split all ASes into the fol-
lowing degree-based classes C1, C2, C3:

AS class AS degree K
C1 K < 10
C2 10 � K < 100
C3 K � 100

Note that after the data processing in Section 4.1.2, we do not have
ASes with K > 1000.

We next statistically relate AS classes c = C1, C2, C3 and cat-
egories t = T1, . . . , T4. Let A(c, t) be the set of ASes of class c
and category t. For each combination (c, t), we keep the following
statistics:

• The number of ASes N(c, t) in A(c, t).

• The collection Ja(c, t), a = 1, . . . , N(c, t), of the intra-AS
router topology JDDs of all ASes in A(c, t). Each Ja(c, t)
denotes the whole 2K-distribution P (k1, k2) of the router
topology of AS a ∈ A(c, t).

• The corresponding collection Da(c, t) of the peering router
degree distributions. For each AS a, Da(c, t) = PB(k),
where PB(k) is proportional to the number of routers within
AS a that have degree k and that peer with routers in other
ASes.

Having prepared the statistics above, we generate rescaled AS-
annotated router graphs as follows:

1. Rescale the AS-level graph as in Section 4 (Figure 5(a)).

2. For each AS A in the rescaled AS graph:

(a) Determine A’s class c.

(b) Randomly select A’s category t with a conditional prob-
ability proportional to N(c, t).

(c) Select an AS a from A(c, t) uniformly at random.

(d) Populate A with a 2K-random router topology based
on P (k1, k2) = Ja(c, t) (Figure 5(b)).

(e) Choose peering routers within AS a having degree k
based on a probability proportional to PB(k) = Da(c, t)
(Figure 5(c)).

3. Walk over the pairs of adjacent ASes in the rescaled AS
graph and connect random pairs of designated peering routers
in each AS.



(a) Generating AS-
graph

(b) Generating router
graphs for each AS

(c) Assigning peering
routers for each AS

(d) Connecting peering
routers

Figure 5: Generating a router-level topology annotated with AS-membership

6. EVALUATION
In this section, we conduct a number of experiments to demon-

strate the ability of our approach to reproduce important graph met-
ric values discussed in Section 2. Using these metrics, we compare
our generated topologies with the original observed topologies ex-
tracted from the data described in Section 4.1. We use notations
in Table 1. The results below represent averages over 10 generated
graphs in each case. The standard deviations for all the metrics
from their mean values are negligible.

Table 3: Scalar metrics for 1K-rescaled skitter AS topologies
(Section 4.2)

Number of nodes
Metric Original 9200 6000 12000 15000 30000

(9200)
k̄ 6.29 6.34 6.17 6.38 6.35 6.44
r -0.24 -0.24 -0.23 -0.23 -0.22 -0.21
C̄ 0.46 0.25 0.23 0.25 0.27 0.27
d̄ 3.12 3.11 3.18 3.15 3.13 3.1
σd 0.37 0.4 0.44 0.42 0.41 0.39
λ1 0.1 0.03 0.1 0.09 0.09 0.08
λn−1 1.9 1.97 1.89 1.9 1.9 1.93
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Figure 6: Degree distribution for 1K-rescaled skitter AS
topologies
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Figure 7: Degree distribution for 1K-rescaled HOT topologies

6.1 1K-rescaling for AS-graphs
The skitter AS-level topology for March 2004 has 9200 ASes,

with an average degree of 6.29 and an assortativity coefficient of
-0.24. As shown in [18], a 1K-random graph with 9200 nodes re-
produces most metric values of the original skitter topology except
for clustering. We generate random graphs of varying sizes using
the 1K-rescaling algorithm and summarize our results in Table 3.
In Figure 6, we plot the degree distribution of these different-sized
graphs. We find that the metric values are invariant for most graph
sizes, and they closely match the corresponding values of the input
skitter topology. The average degree, average distance and the as-
sortativity coefficient remain constant even as the graph grows or
shrinks in size. The distance distribution across different-sized skit-
ter graphs is the same as that of the original skitter graph, hence we
do not show the plot for brevity. We generated larger size graphs
containing up to 80,000 nodes and note that the average degree and
assortativity coefficient values are maintained for these graphs as
well.

6.2 1K-rescaling for router-graphs
Next, we experimented with a synthetic router-level topology,

the HOT graph from [16]. As shown in [18], 2K-random graphs
reproduce metric values of the original graph much better than their
1K-random counterparts. The original HOT graph has 939 nodes
with an assortativity coefficient of -0.22. We generate graphs of a
variety of sizes for the HOT topology using our 1K-rescaling tech-
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Figure 8: Distance distribution for 1K-rescaled HOT topolo-
gies

Table 4: Scalar metrics for 1K-rescaled HOT graphs (Sec-
tion 4.2)

Number of nodes
Metric Original 939 250 2000 5000 8000

(939)
k̄ 2.1 2.58 2.09 2.24 2.41 2.52
r -0.22 -0.14 -0.32 -0.11 -0.1 -0.11
C̄ 0 0.009 0.002 0.002 0.005 0.006
d̄ 6.81 4.41 5.4 5.02 4.94 5.4
σd 0.57 0.72 1.09 0.91 0.86 1.01
λ1 0.004 0.034 0.006 0.013 0.015 0.007
λn−1 1.997 1.967 1.994 1.987 1.985 1.994

nique for router-graphs described in Section 4.2. We report met-
ric values for different-sized HOT graphs in Table 4 and Figures 7
and 8. Unlike AS-level topologies, we notice that the 1K-random
graphs do not accurately reproduce most metric values such as as-
sortativity coefficient and average distance. These observations,
once again, verify that reproducing HOT’s 1K-distribution is in-
sufficient for accurate capturing important global properties of the
HOT topology [18].

6.3 2K-rescaling for AS-graphs
Next, we generate different-sized skitter graphs using our 2K-

rescaling algorithm (Section 4.3) and present metric values for these
graphs in Table 5. As in the 1K case, we notice that for variable-
sized 2K-random graphs, all metric values accurately mimic that of
the original skitter graph, except for clustering. Earlier work [18]
shows that clustering can be reproduced by a 3K-generator. We
have not yet implemented 3K-rescaling, though we note that em-
ploying rewiring toward a target clustering value should result in
appropriate clustering values for the rescaled graphs. For brevity,
we do not plot the degree distribution of these graphs as they match
their 1K-counterparts. Finally, Figure 9 plots the distance distri-
bution of these graphs. We see that for all the graphs, the distance
distribution remains almost unchanged, matching the trends in the
input graph data for a variety of graph sizes.

6.4 1K + r-rescaling for AS-graphs
Next, we generate the graphs using our 1K-rescaling algorithm

and then subject them to the 1K-preserving r-targeting rewiring

Table 5: Scalar metrics for 2K-rescaled skitter AS topologies
(Section 4.3)

Number of nodes
Metric Original 9200 6000 12000 15000 30000

(9200)
k̄ 6.29 6.29 6.09 6.31 6.35 6.44
r -0.24 -0.24 -0.22 -0.23 -0.23 -0.22
C̄ 0.46 0.29 0.26 0.28 0.28 0.27
d̄ 3.12 3.08 3.1 3.1 3.1 3.12
σd 0.37 0.35 0.38 0.36 0.35 0.35
λ1 0.1 0.15 0.13 0.13 0.15 0.12
λn−1 1.9 1.85 1.87 1.88 1.88 1.91

Table 6: Scalar metrics for 1K + r-rescaled skitter AS topolo-
gies (Section 4.4)

Number of nodes
Metric Original 6000 12000 15000 30000

(9200)
k̄ 6.29 6.17 6.38 6.35 6.44
r -0.24 -0.24 -0.24 -0.24 -0.24
C̄ 0.46 0.24 0.26 0.25 0.25
d̄ 3.12 3.1 3.09 3.09 3.2
σd 0.37 0.24 0.36 0.33 0.34
λ1 0.1 0.13 0.13 0.15 0.12
λn−1 1.9 1.88 1.88 1.89 1.91

process. The process terminates upon reaching required value of r.
We present the metric values for the skitter graphs in Table 6. Since
all the generated 1K-random skitter graphs have values for r close
to the required r value of the original graph, a few rewirings are
sufficient for all the graphs to reach their target state. In the case
of skitter, the loss of accuracy from using the r value instead of
the entire JDD matrix appears minimal. In fact, for all metrics we
considered, the r-targeting rewiring performs as well as the 2K-
rescaling technique. The reason behind this effect is that the skitter
AS topology is almost 1K-random [18], i.e., it can be accurately
captured using only its 1K-distribution.

6.5 2K-rescaling for router-graphs
Next, we generate different-sized 2K-random HOT graphs us-

ing our 2K-rescaling technique. We present the metric values for
these graphs in Table 7 and plot the distance distribution in Fig-
ure 10 and the normalized betweenness distribution in Figure 11.
Betweenness is a hard metric to reproduce for the HOT graph, but
all the 2K random-graphs reproduce the shape of the betweenness
curve exactly. The difference in the betweenness values for these
graphs is due to the difference in their sizes. The 2K-random hot
graphs better reproduce the metric values of the original HOT graph
than the 1K-random HOT graphs, even when scaling up by a factor
of 10 or scaling down by a factor of 4.

6.6 1K + r-rescaling for router-graphs
Next, we present results for our 1K + r rescaling of router

graphs. Unlike 1K-random AS graphs, for the 1K-random HOT
graphs, reaching the target r values takes longer as the r values of
1K-random HOT graphs are not close to the target value. We re-
port some of the scalar metric values for the HOT graph in Table 8.
While most metric values are similar to the HOT graphs from the
2K-rescaling technique, the average distance value is higher for all



Table 7: Scalar metrics for 2K-rescaled HOT
graphs(Section 4.3)

Number of nodes
Metric Original 939 250 2000 5000 8000

(939)
k̄ 2.1 2.18 2.2 2.19 2.3 2.41
r -0.22 -0.23 -0.36 -0.19 -0.18 -0.18
C̄ 0 0.0001 0.0005 0.0004 0.0005 0.0001
d̄ 6.81 6.32 5.4 6.4 6.6 6.92
σd 0.57 0.71 0.84 0.83 0.97 1.02
λ1 0.004 0.005 0.01 0.004 0.004 0.005
λn−1 1.997 1.996 1.986 1.997 1.996 1.996
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Figure 9: Distance distribution for 2K-rescaled skitter AS
topologies

the graphs obtained using the r-targeting technique. This increase
in value for the average distance and, correspondingly, in the dis-
tance distribution results from employing the scalar summary of
the 2K-distribution instead of the entire function. Since the HOT
graph is not 1K-random but almost 2K-random [18], the full in-
formation contained in its 2K-distribution is required to accurately
capture all its global properties. Of course, its 1K + r-random ver-
sion must closer to the original than the 1K-random version, but
farther than the 2K-random one.

6.7 AS annotations
Given our ability to accurately rescale graphs, we now evaluate

our techniques for performing AS-membership annotations in our
generated router topologies. Since this topology combines both
router and AS information, in addition to evaluating metrics for the
overall graph, we present results on the fraction of peering-routers
within an AS, and degree distribution of routers within an AS.

We classify the ASes in the AS-level topology based on their de-
grees (see Section 5). Our AS-level topology consists of a total of
5662 ASes. Of all the ASes, 97% belong to class C1, 2.6% belong
to class C2, and the remaining ASes belong to class C3. Figure 12
plots the PDF for the number of routers in an AS for every AS class.
As expected, we observe that the majority of the ASes belonging to
class C1 have fewer than 10 routers in their router-level topology.
The distribution of the number of routers belonging to C1-ASes ap-
pears more widespread than for C2- and C3-ASes. The maximum
number of routers observed for a C1-AS is 1774. The number of
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Figure 10: Distance distribution for 2K-rescaled HOT topolo-
gies
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Figure 11: Betweenness distribution 2K-rescaled HOT topolo-
gies

routers for C2-ASes ranges from 10 to 1996. For C3-ASes, the
minimum number of routers is 150. This agrees well with the pre-
vious results relating AS degrees and sizes [28].

Next, we present the degree distributions of all routers within an
AS for each AS class for the original and generated graphs in Fig-
ures 13(a), 13(b), and 13(c). These plots allow us to compare how
close the extracted and generated topologies match with respect to
the degree distribution of all the routers belonging to each AS class.
We observe reasonably good matches between the two for all AS
classes.

Finally, Table 9 presents some scalar metric values to compare
the generated combined AS+router-level graph with the correspond-
ing topology extracted from the skitter traces. These metrics are
for the overall router-level topology across all of the ASes for both
the original as well as the generated graphs. We randomly choose
50,000 unique paths from our original and generated graphs and
compute the average distance for these sampled paths using shortest-
path algorithm. We note that average distance for the generated
graph compares well with that of the original graph.

7. DISCUSSION AND CONCLUSIONS
While we are satisfied with our ability to both rescale Internet

topologies and to annotate them, there are a number of interesting
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Table 8: Scalar metrics for 1K + r-rescaled HOT graphs (Sec-
tion 4.4)

Number of nodes
Metric Original 250 2000 5000 8000

(939)
k̄ 2.1 2.09 2.24 2.41 2.52
r -0.22 -0.22 -0.2 -0.19 -0.18
C̄ 0 0.005 0.0006 0.0003 0.0005
d̄ 6.81 5.4 7.3 7.41 7.8
σd 0.57 0.89 0.82 .73 0.74
λ1 0.004 0.01 0.001 0.002 0.003
λn−1 1.997 1.989 1.998 1.998 1.998
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questions that we intend to explore as future work. For example,
given our heuristics for rescaling, one question is the maximum
rescaling factor that we can safely apply to a given graph. We be-
lieve that given the data sources available to us and our analysis of
this data, scaling by a factor of approximately 10 and perhaps 100
is meaningful using our methodology. However, it would not, for
instance, be meaningful to scale a 10-node topology to one with
a million nodes. Such scaling would likely require a fundamen-
tal understanding of the laws governing the evolution of a given
graph [7] rather than the observation-based techniques we employ
in our rescaling techniques. Given that we do not yet have a firm
grasp of such evolutionary laws, our methodology and our gener-
ator that combines both AS and router-level information presents

Table 9: Scalar metric values for router-level topologies anno-
tated with AS membership

k̄ r kmax d̄
Original 4.25 0.006 1141 9.14
Generated 3.9 -0.0009 1333 8.53

an intermediate solution for researchers interested in evaluating the
performance of services and protocols for a range of graph sizes.

Our ability to reproduce observed input graph properties is lim-
ited by the quality of available Internet measurements. In fact,
we found limitations with existing measurements that impacted
our ability to reconstruct Internet graph connectivity characteris-
tics. However, the methodology and algorithms for generating an-
notated, rescaled topologies constitute the primary contributions
of this work, and not necessarily the particular generated graphs.
While we can verify that our topologies match observed router
topology characteristics, we cannot claim that either the input or
generated topologies accurately reflect reality. The quality of our
generated topologies will improve with the quality of available mea-
surements.

At the same time, improvements in Internet measurement tech-
niques or some future network architecture that exports topology
will not obviate the need to generate random network topologies
for at least two reasons. First, even with complete knowledge of
network topology, we still require techniques to either scale the
graphs up (e.g., to understand how routing behavior scales with
graph size) or down (e.g., to serve as manageable input for simu-
lations, emulations, or testbed deployments). Second, our method-
ologies for random graph generation enable rewiring techniques to
explore variations in a particular graph property/parameter while
holding all other graph characteristics steady. Even with much im-
proved understanding of Internet topologies, research ranging from
routing, to congestion control, to overlay protocols would benefit
from quantifying behavioral sensitivity to alternate network topolo-
gies. These alternate network topologies may be a consequence,
for instance, of a shift in the evolutionary behavior of the Internet
or some suspected bias in the measurement methodology.

This paper restricts its attention to AS annotations for gener-
ated router topologies. We are currently investigating a number
of techniques to also support annotations for link latency and ca-
pacity based on available measurement sources. It remains to be
seen whether such annotations can match the distributions found
in real networks but we are encouraged by available data sets both
for end-to-end and per-hop latency distributions. Similarly, data



sources are available for distributions of access link bandwidths
and network capacity in the core of the Internet.

Overall, we believe that our topology generator will serve as
valuable input to a range of research studies. We outline a num-
ber of cases here. Studying routing protocol scalability and conver-
gence requires knowledge of both topology and AS relationships
and hence our work can serve as valuable input to such work. Many
studies of congestion control protocols employ simple “dumbbell”-
style topologies. While such simple topologies are appropriate
starting points, it will be valuable to consider more complex topolo-
gies, for instance with more variable round trip times and multiple,
changing bottlenecks. Many overlay and peer-to-peer systems at-
tempt to create application-level logical topologies that match the
characteristics of the underlying network. Similarly, developing
network coordinates [8, 23] and geo-localization [6] has recently
become an important research area. Our topology generator can
supply a range of inputs and potential deployment scenarios in sup-
port of such studies.

Emerging network testbeds such as VINI [2] and GENI [14] will
enable network topology configuration for deployed systems run-
ning across the wide area. Once again, running with a range of
topologies, scaled to fit available resources, will allow more accu-
rate conclusions to be drawn for emerging network architectures.
Finally, multiple aspects of network security efforts, including de-
fenses against denial of service attacks and large-scale worm out-
breaks depend on network topology. The ability to both experiment
with a range of random graphs that match Internet characteristics to
understand the sensitivity of particular techniques to network topol-
ogy (and to variations in network topology) will be of significant
value.
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