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Facultad de Ciencias Astronómicas y Geofı́sicas, Universidad Nacional de La Plata, Paseo del bosque S/N, 1900 La Plata, Argentina

Accepted 1997 November 3. Received 1997 September 10; in original form 1996 October 9

A B S T R A C T

A method of classifying generic orbits in arbitrary 2D and 3D potentials is presented. It is

based on the concept of spectral dynamics introduced by Binney & Spergel that uses the

Fourier transform of the time series of each coordinate. The method is tested using a number of

potentials previously studied in the literature and is shown to distinguish correctly between

regular and irregular orbits, to identify the various families of regular orbits (boxes, loops,

tubes, boxlets, etc.), and to recognize the second-rank resonances that bifurcate from them.

The method returns the position of the potential centre and, for 2D potentials, the orientation of

the principal axes as well, should this be unknown. A further advantage of the method is that it

has been encoded in a FORTRAN program that does not require user intervention, except for ‘fine

tuning’ of search parameters that define the numerical limits of the code. The automatic

character makes the program suitable for classifying large numbers of orbits.

Key words: celestial mechanics, stellar dynamics – galaxies: kinematics and dynamics.

1 I N T RO D U C T I O N

Stellar orbits constitute the basic set of building blocks for the

dynamics of galaxies. This is so because galaxies are, to a large

extent, collisionless systems and thus orbits are a well-defined

concept. Although the most important function to a modeller is

the phase-space distribution function, it is not the explicit depen-

dence on phase-space coordinates, but an implicit one given by an

underlying orbital structure, that is sought after. The fundamental

problem of determining whether a self-consistent dynamical model

can be built with a given potential, ultimately depends on the orbital

structure supported by the potential. In recent times, a new approach

to building 3D dynamical models has been developed that expressly

makes use of a suitable exploration of the orbits supported by the

potential (e.g. Schwarzschild 1979; Richstone 1980, 1984; Statler

1987; Levison & Richstone 1987; see de Zeeuw 1994, section 3.4,

for a review).

Although the Jeans theorem (Jeans 1915) apparently allows

one to bypass detailed orbital knowledge to build self-consistent

dynamical models, questions as to irregularity, chaos, and non-

analytical integrals of motion, limit its use to integrable systems, or

to those cases in which irregular orbits are not important (Binney

1982b). Given the proliferation of irregular orbits on more realistic

dynamical systems it seems that, in the end, we need to get back to a

proper orbital assessment, even if it is only to ensure that the system

can be modelled without the difficulties introduced by the irregular

orbits.

The orbital structure may have a bearing on other important

issues: irregular orbits in a model in which the curvature of

isopotentials changes rapidly with radius may limit its flattening,

as conjectured by Binney (1982a). Even regular orbits may limit the

flattening in triaxial systems (Miralda-Escudé & Schwarzschild

1989; Lees & Schwarzschild 1992; Pfenniger & de Zeeuw 1989;

Schwarzschild 1993). The time-scale on which irregular orbits

cover their allowed region in phase space may introduce another

relaxation time-scale, much shorter than the two-body relaxation

time-scale (Schwarzschild 1993; Merritt & Fridman 1996).

Integrable potentials (e.g. Stäckel 1890; Kuzmin 1956; Lynden-

Bell 1962; de Zeeuw 1985) provide us with the basic templates for

the most important regular orbits on generic potentials, and an

insight into the way in which other orbits may arise. Their study,

however, can carry us some distance only, as the problem of finding

the factors in a potential that give rise to a particular orbital

structure, or whether it is integrable or not, is still one of the

fundamental unsolved problems of dynamics. Thus the study of the

orbital structure of potentials of interest in stellar dynamics has

remained an active enterprise (e.g. Binney 1982a and Miralda-

Escudé & Schwarzschild 1989 for 2D potentials; Schwarzschild

1979, 1993, Richstone 1982, Merritt & de Zeeuw 1983, Gerhard &

Binney 1985, Lees & Schwarzschild 1992 and Merritt & Fridman

1996 for non-rotating 3D potentials; Heisler, Merritt & Schwarz-

schild 1982, Mulder & Hooimeyer 1984 and Pfenniger 1984 for

rotating 3D potentials; Wilkinson & James 1982, Pfenniger &

Friedli 1991, 1993, Hasan, Pfenniger & Norman 1993 for potentials

extracted from N-body systems). In these and related studies, it is

important to have a tool that can quickly, and efficiently, classify the

orbits obtained. Such a tool is the goal of the present work.

In Section 2 we summarize some notions about orbits and

methods to classify them, and a consistent orbit nomenclature is

presented. Section 3 describes the procedure by which lines are
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extracted from the Fourier spectra, the first step of our classification

scheme. In Section 4, all the previous information is used to develop

a spectral classification method for 2D orbits. Section 5 shows how

to obtain information about the potential centre and principal axes.

Section 6 discusses some numerical points of our classifier. Section

7 presents the results obtained for orbits in 2D potentials. In Section

8 we extend the spectral classification scheme to 3D orbits. In

Section 9 we present results obtained in 3D potentials. Section 10

presents our conclusions.

2 P R E L I M I NA RY N OT I O N S

Here we review some notions about orbits, their structure in phase

space, methods of classifying them, orbital resonances and their

role in parenting orbit families. The basic characteristics of each

orbit that we will use in the spectral classification are identified, and

an orbital nomenclature that synthesizes the most important orbit

properties is introduced.

2.1 Integrals of motion and types of orbits

Orbits are shaped, to a large extent, by their isolating integrals

(Binney & Tremaine 1987, hereafter BT87, section 3.1.1). Each

such integral lowers by one dimension the region open to an orbit. If

the number M of isolating integrals equals the number N of degrees

of freedom, the orbital manifold is diffeomorphic to an N-dimen-

sional torus, i.e. we can find a one-to-one map between the manifold

and the torus that covers both completely (Arnold 1989, chapter 10;

Lichtenberg & Lieberman 1992, section 1.3). Such orbits are called

regular and their motion is quasi-periodic. For them we can define a

special set of canonical coordinates, the so-called action–angle

variables, in which the motion is constant in the actions and there is

uniform rotation in the angle variables.

A regular orbit with additional isolating integrals (M > N) is

further constrained. This occurs when there are resonances between

the rotation of two or more angle variables, in which case the orbit is

no longer dense on the torus. Since the rotation frequencies in the

angle coordinates are fixed on a given orbital manifold, all orbits

sharing the same manifold will be identical, except for a phase

difference (even when M ¼ N, there is an infinite number of orbits

sharing the same orbital manifold). We thus speak of non-resonant

(M ¼ N), and resonant (M > N) orbital tori; although both are

dense in the integrable region of phase space, only the former

form a set of non-zero measure.

If there is full resonance (i.e., M ¼ 2N ¹ 1), the orbit closes on

itself after a finite number of turns around the torus and it becomes

periodic. Such orbits are very important, because they can generate

their own family of orbits: if a periodic orbit is stable (BT87, p. 175),

neighbouring orbits will move on concentric tori nested around the

stable periodic orbit and form an orbital family. A method for

identifying all stable periodic orbits thus gives us the regular orbital

families supported by a given potential. Although numerical meth-

ods have been devised (e.g. Contopoulos & Magenant 1985;

Pfenniger & Friedli 1993), these require a long, detailed examina-

tion of a large set of orbits.

Irregular orbits, on the other hand, do not have such a torus-like

structure. They have, in general, complicated shapes and may be

chaotic, in the sense of having exponential divergence of neigh-

bouring orbits. Irregular orbits make difficult the construction of

self-consistent models; the ones dense on the energy manifold, for

instance, are limited by the equipotential surfaces, which, except for

a spherical configuration, are different in shape from the isodensity

surfaces of the corresponding mass distribution.

2.2 Orbit classification methods

The dimensionality of the region in which an orbit moves is the

feature exploited by a popular method used to classify orbits in 2D

potentials. The surface of section (SoS) (see e.g. BT87, section 3.3)

is usually taken as a 2D cut of phase space. Intersections of an orbit

with this section lie in a region with one dimension less than the

original orbital manifold. Thus, in 2D potentials, irregular orbits,

open regular orbits, and closed regular orbits define a ‘sea’, a line,

and a finite set of points, respectively. Unfortunately, distinguishing

among these cases involves a visual inspection of the section, and

this results in a subjective and time consuming procedure. Besides,

this method is not yet generalized to 3D potentials: a 2D section of

the corresponding 5D energy manifold does not suffice to disen-

tangle orbits moving on three or fewer dimensions (regular) from

those moving on higher dimensions (irregular).

Another, increasingly popular, way to ascertain whether or not an

orbit is regular is by the computation of its Lyapunov characteristic

exponents (see e.g. Lichtenberg & Lieberman 1992), which give the

exponential rate at which nearby trajectories diverge from the

original one. It can be shown that a regular orbit has vanishing

Lyapunov exponents; unfortunately, it is not clear whether an

irregular orbit will necessarily have at least a non-zero real

exponent. A positive real exponent signals the onset of a more

disordered behaviour called chaos. (Although it is generally

assumed that irregular and chaotic orbits are the same in Hamil-

tonian systems, this has not been proven in general.) Another

drawback is that their numerical computation is difficult and time

consuming. Additionally, unlike SoSs and the method to be pre-

sented here, the Lyapunov exponents do not give any further

information regarding regular orbits, for instance, whether or not

they are closed (Merritt & Valluri 1996).

There is another technique first introduced in stellar dynamics by

Binney & Spergel (1982, 1984), and more recently extended in a

different form by Laskar (1993), that relies on one of the funda-

mental properties of regular orbits: the fact that they move winding

on a torus-like manifold and are thus quasi-periodic. Then, the

Fourier spectra of the time series of the coordinates of a regular orbit

should consist of discrete lines the frequencies of which can be

expressed as integer linear combinations of the frequencies associ-

ated to the N angle variables. We will call these latter frequencies

the base frequencies (BFs) to stress this property. If the orbit is

further constrained, this will manifest itself in a reduced number of

incommensurate BFs. If the orbit is closed, only one BF will exist.

Irregular orbits, not being quasi-periodic, will produce Fourier

spectra with lines the frequencies of which cannot be reduced to

integer combinations of less than N frequencies. If the orbit is

chaotic, the spectrum will be continuous (Tabor 1989, section

4.5.b).

So, if we compute the Fourier transform of the coordinates of an

orbit, identify its peaks, extract the corresponding frequencies, and

look for the BFs (if any), then the orbit could be classified. It turns

out that a closer inspection of the Fourier spectrum can further

disclose the orbit family to which the orbit belongs as well as the

resonance and resonance rank of its parent, so we need first to

describe these orbit families and their resonant parents and examine

the concept of resonance rank.

2.3 Orbit families and rank of resonant parents

We start with 2D potentials. Apart from the trivial case of a particle

at rest at the centre of a potential, the simplest orbits are the axial
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orbits that move along each axis; these orbits are simple loops in

phase space and appear as single points at the origin in the SoS

orthogonal to them. When they are stable, the circulation of the

daughter orbits around the parent orbit introduces an additional

frequency which, in general, is not commensurable with the unique

BF of its parent; these orbits are dense in the nested tori. Additionally,

these daughter orbits do not have a fixed sense of rotation around the

centre and are dense within a box-like region in configuration space.

Their intersections with an SoS lie on loops that encircle the single

fixed point that corresponds to the axial orbit. We will call these p-box

orbits to emphasize their frequency incommensurability and the fact

that they do not circulate around the origin.

As we move through the nested tori, the BFs will change in

general, and for an infinite but countable number of tori, the

frequencies will be commensurable (only one frequency will be a

BF) and the corresponding orbits will close again. These first-rank

resonance orbits are analogous to closed Lissajous figures in

configuration space and produce a finite set of points around the

axial orbit in the SoS. There is, however, a fundamental difference

between the 1:1 resonance and the others: while the former

corresponds to a simple loop in configuration space and thus has

a definite sense of rotation – except for the cases of 0 or p

coordinate phase differences – the latter do not. To emphasize

this important fact we will call the 1:1 resonance the closed 1:1

loop, and the rest, the closed m:n boxes. As we move in energy,

some of these resonant orbits may become stable and generate, in

turn, families of daughter orbits that move on nested tori around

them and inherit the parent property of rotating, or not, around the

centre (Fig. 1). Similar to the case of p-boxes, these daughter orbits

will be open in general, as the newly introduced oscillating

frequency will be, in general, incommensurable with the parent

unique BF. We will call these orbits open m:n boxes and open 1:1

loops, depending on the parent identity.

When any of the daughter orbits spawned by a first-rank

resonance becomes resonant itself, we obtain a second-rank reso-

nant orbit. The orbit parenting process repeats itself on top of the

orbits that become stable as we move further in energy. Their

corresponding new daughter orbits appear in an SoS as islands that

enclose the discrete set of points produced by the closed second-

rank parent (Fig. 1). The second-rank resonance will be denoted by

an extra integer k, which represents the number of turns which it has

to give around the parent before closing on itself (k ¼ 2 for the

example in the figure). We will thus speak of closed and open

km:kn boxes and k:k loops. The common factor k will signal the

higher-rank resonance.

In three dimensions, the 1:1 loops orthogonal to the long and

short potential axes give rise to corresponding tubes, when per-

turbed orthogonal to the loop plane (the intermediate axis loops are

unstable and do not generate tubes, BT87 p. 154). The planar closed

m:n boxes, when stable, can also spawn families of 3D orbits. All of

these orbits may have an additional resonance in the direction

orthogonal to their planar parent, l:m:n resonances, which could

give rise to higher rank orbits as well.

Table 1 summarizes our nomenclature for 2D orbits and includes,

in parenthesis, the corresponding customary name. Although it is

common to refer to m:n resonances as boxlets, and a rich and

whimsical nomenclature exists for some of the resonances (banana

2:1, fish 2:3, pretzel 3:4, etc.), in our scheme we prefer to have all

orbits that circulate around the origin be called ‘loops’ and all that

Orbit classification 3
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Figure 1. Left: a stable first-rank 2:1 resonance orbit, and surrounding torus of one of its daughter orbits, around an open zeroth-rank torus. Right: second-rank

resonant orbit and daughter orbit torus. All tori have been cut open to show the closed resonant parent in each case. A plane corresponding to an SoS has been

introduced in both graphs.

Table 1. 2D orbit classification according to resonance rank.

Resonance No circulation Circulation

Rank around the centre around the centre

0th parent axial

daughter p-box

(box)

1st parent closed m:n box closed 1:1 loop

(closed boxlet) (closed loop)

daughter open m:n box open 1:1 loop

(open boxlet) (open loop)

2nd parent closed km:kn box closed k:k loop

(higher order (closed looplet)

resonance boxlet)

daughter open km:kn box open k:k loop

(?) (open looplet)
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do not ‘boxes’. Parent and daughter orbits share the name of the

parent resonance, the distinction being the ‘closed’ or ‘open’

qualification. A common factor in a resonance specification

naturally indicates a second-rank resonance. (Although there is

no provision for third and higher-ranked resonances, this notation

could be extended to them.) These are the basic properties that

define the morphology of an orbit and which are of utmost

importance when trying to build a self-consistent model. As we

will see, the procedure presented in this work allows us to recognize

all these orbital properties. The extension of this nomenclature to

3D orbits is presented in Section 8.

3 E X T R AC T I N G WAV E S F RO M T H E F O U R I E R

S P E C T RU M

We now describe in some detail the way in which line frequencies

are extracted from the computed Fourier spectrum of the orbit, the

first step in the orbit classification.

3.1 One wave

To classify, we must compute, from its Fourier spectrum, the

sinusoidal components that build up the orbit. Here we develop a

method for extracting them, which differs from that used by Binney

& Spergel (1982). We first concentrate on the issue of a unique

wave.

Let us suppose that at times tk ¼ kd; k ¼ 0; . . . ; N ¹ 1 (N even),

the values zk ; zðtkÞ of a complex function are recorded. The

discrete Fourier transform of the set fzkg is

Zj ¼
1

N

X

N¹1

k¼0

zk exp ¹
i2pjk

N

� �

; ð1Þ

where j ¼ ¹N=2 þ 1; . . . ; N=2. The Fourier spectrum then consists

of N waves of amplitudes jZjj, phases gj ; argðZjÞ, and frequencies

qj ¼ 2pfj ¼ 2pj=Nd. Let us suppose, to begin with, that zðtÞ is a

plane wave,

zðtÞ ¼ AeiðqstþfÞ
: ð2Þ

Our goal is to recover the amplitude A, initial phase f, and

frequency qs from the Fourier spectrum. For convenience, we put

qs ¼ 2ps=Nd, where s is a (real) number. If s equals any of the j (i.e.,

if qs ¼ qj for some j), then the resulting spectrum will be simply

Zj ¼ A expðifÞ if j ¼ s, and Zj ¼ 0 otherwise. This shows that the

choice of a normalization 1=N, a negative sign on the exponent, and

indices ¹N=2 þ 1 # j # N=2 for the Fourier transform, yields the

correct results. Were any of the above chosen other way, further

transformations would have been required to get the correct

answers.

When s is not an integer, every frequency qj has a non-zero

amplitude. To see this, we now obtain an expression for the

amplitudes. Replacing equation (2) into equation (1) yields

Zj ¼
Aeif

2Nf1 ¹ cos½2pðs ¹ jÞ=Nÿg
ðr þ ijÞ; ð3Þ

where we have defined

r; 1 ¹ cos½2pðs ¹ jÞ=Nÿ ¹ cos½2pðs ¹ jÞÿ

þ cos½2pðs ¹ jÞðN ¹ 1Þ=Nÿ; ð4aÞ

j; sin½2pðs ¹ jÞ=Nÿ ¹ sin½2pðs ¹ jÞÿ

þ sin½2pðs ¹ jÞðN ¹ 1Þ=Nÿ: ð4bÞ

Now, from equation (3) we can compute

jZjj ¼
A

N

1 ¹ cos½2pðs ¹ jÞÿ

1 ¹ cos½2pðs ¹ jÞ=Nÿ

� �1=2

: ð5Þ

This equation includes s ¼ j as a limiting case. Note that the

phase f has disappeared. To solve for the remaining unknowns A

and s, since we have N equations – one for each value of j – we may

take any two, namely, j ¼ m1 and j ¼ m2. Now we can eliminate A

by dividing them:

1 ¹ cos½2pðs ¹ m1Þÿ

1 ¹ cos½2pðs ¹ m2Þÿ
¼

1 ¹ cos
2pðs ¹ m1Þ

N

h i

1 ¹ cos
2pðs ¹ m2Þ

N

h i

jZm1
j
2

jZm2
j2

: ð6Þ

m1 and m2, however, are integers, so the first member is equal

to 1. Using the identity 1 ¹ cos a ¼ 2 sin2
ða=2Þ, and defining

k ¼ pðm2 ¹ m1Þ=N and a ¼ pðs ¹ m1Þ=N to simplify the notation,

the foregoing equation becomes

cos k ¹ cot a sin kj j ¼
jZm1

j

jZm2
j
: ð7Þ

Depending on whether cos k ¹ cot a sin k _ 0, we have

tan a ¼
sin k

cos k 7 jZm1
j=jZm2

j
: ð8Þ

Now, since jm2 ¹ m1j < N=2, then jkj < p=2, and the inequalities

cos k ¹ cot a sin k _ 0 can be written in the form cot a tan k + 1.

However, since js ¹ m1j < N=2 also, a is an angle of the first or

fourth quadrants. In the former case, the upper sign implies

m1; m2 < s, and the lower sign m1 < s < m2. In the latter case, the

upper sign implies s < m1; m2, and the lower sign m2 < s < m1. So, if

we always choose m1 and m2 such that s is in between, we can safely

take the lower sign. Now we are able to compute a (and therefore s)

from equation (8) with the plus sign.

Our next goal is to compute the amplitude. Since we now know s,

from equation (5) we have, taking any j,

A ¼ NjZjj
1 ¹ cos

2pðs ¹ jÞ
N

1 ¹ cos 2pðs ¹ jÞ

" #1=2

: ð9Þ

Now the phase f. Equation (3) can be written

jZjjðcos gj þ i sin gjÞ ¼
Aðcos f þ i sin fÞðr þ ijÞ

2Nf1 ¹ cos½2pðs ¹ jÞ=Nÿg
: ð10Þ

From the foregoing equation we obtain

tan f ¼
f1 ¹ cos½2pðs ¹ jÞ=Nÿgðr sin gj ¹ j cos gjÞ

f1 ¹ cos½2pðs ¹ jÞ=Nÿgðr cos gj þ j sin gjÞ
: ð11Þ

We keep the factors f1 ¹ cos½2pðs ¹ jÞ=Nÿg so that we do not lose

any signs in finding the quadrant of f.

There only remains the choice of m1, m2, and the j of equations

(8) and (11); so far, the only restriction is that s must be between m1

and m2. We note that, from equation (5), the amplitudes of the

(discrete) spectrum peak at the value of j nearest to s. Now let us

suppose that zðtÞ contains another plane wave with frequency s
0. If

we choose m1 close to s
0
, the information of m1 regarding s will be

greatly shadowed by the presence of this second wave. Therefore, it

is convenient to choose m1 to be the value of j nearest to s (i.e., the

frequency at the peak), and, for the same reason, to take m2 such that

m2 ¼ m1 6 1 and s lies in between, such that m2 is the adjacent

frequency with the greater amplitude. It is also convenient to choose

j ¼ m1 to save numerical work, for the computations involving m1

can then be reused.

4 D. D. Carpintero and L. A. Aguilar
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Thus, the computation proceeds as follows. First, we look for the

greatest amplitude in the Fourier spectrum; its frequency j will be

m1, and that of its neighbour with the greater amplitude will be m2.

Then equations (8), (9), and (11) are used, in turn, to obtain s (or qs),

A, and f. Once this triplet has been computed, we say, following

Binney & Spergel (1982), that a ‘line’ has been extracted.

3.2 More than one wave

If zðtÞ has more than one plane wave, first we compute A, f, and s for

the wave corresponding to the greatest peak in the spectrum. Next,

we subtract its contribution (equation 3):

Zj ← Zj ¹
Aeif

2Nf1 ¹ cos½2pðs ¹ jÞ=Nÿg
ðr þ ijÞ: ð12Þ

This eliminates the peak from all the frequencies. Now we look

for the second greatest peak, extract the corresponding line, and so

on. Unfortunately, this is not an exact procedure as with a single

wave, because the first line will be contaminated with information

regarding the others; the closer two lines are, the more inaccurately

their parameters will be computed. This will affect the subtraction,

and so errors are carried into the next lines. To reduce this problem,

we extract the lines twice. For the second extraction, we start from

the naked spectrum resulting from the complete first extraction.

Then we add the first extracted line which, being alone, will be

much less contaminated than before. We re-extract this line, and

subtract it with the new computed values. Then we add the second

line, and so on. As we will see below, this procedure proves to be

very successful, even in cases in which two nearby lines have

comparable amplitudes, thus strongly influencing each other.

A subtlety remains to be considered, since, in the case of an orbit,

zðtÞ is a real function. Let us suppose that

zðtÞ ¼ A cosðqt þ fÞ ¼
A

2
e

iðqtþfÞ
þ e

¹iðqtþfÞ
� �

: ð13Þ

We are not interested in the values A=2, 6f, and 6q of the plane

waves, but in the values A, f, and q of the original cosine. We may

merely take the positive portion of the spectrum, extract the line,

and double the amplitude. However, since every peak found in the

positive portion of the spectrum has a negative twin, the tails of the

latter may make a non-negligible contribution to the former,

particularly if the peak is at a frequency near zero. So instead of

simply neglecting the negative portion, we subtract both peaks

simultaneously.

We measured the accuracy of the method with the incomplete-

ness parameter i (Binney & Spergel 1982):

i2 ¼

X

10

n¼1

q2
max ðdxnÞ

2
þ ðdynÞ

2
� �

þ ðdẋnÞ
2

þ ðdẏnÞ
2

� 	

X

10

n¼1

q2
max x

2
n þ y

2
n

ÿ �

þ ẋ
2
n þ ẏ

2
n

� �

; ð14Þ

where xn ; xðtnÞ, etc; dxn ¼ xn ¹ x̄n, etc; ½xðtÞ; yðtÞÿ is the orbit,

½x̄ðtÞ; ȳðtÞÿ is the orbit reconstructed from the lines; t1; . . . ; t10 are

ten reference times, and qmax is the frequency of the line of

maximum amplitude. To compare our method of extraction

with that used by Binney & Spergel (1982), we choose

an orbit in the potential F ¼ ln r
2
, with initial conditions

ðx0; y0; ẋ0; ẏ0Þ ¼ ð0:6; 0; 0; 1:115Þ, which yields an energy per unit

mass E ¼ ¹0:4 and an eccentricity e . 0:22. We extracted all the

lines with amplitudes greater than 5 × 10
¹5

times the greatest

(Fig. 2). Taking ten equidistant times along a period of integration

of 100 units (.45 orbital periods), we obtained i ¼ 0:003. As a

comparison, Binney & Spergel obtained i ¼ 0:025 for this same

orbit.

Also, the parameter i allows us to measure the benefits of the

double-extraction algorithm mentioned above. We generated syn-

thetic orbits with two sines in x and two in y, all with the same

amplitude, and with phases 08 and 908, respectively. On each

coordinate one wave had a fixed frequency, and the other had a

frequency which was varied between experiments. We computed i

Orbit classification 5
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Figure 2. Left: Fourier spectrum of the x coordinate of the orbit mentioned in the text. The points have been joined with solid lines in order to improve visibility.

Right: amplitudes of the extracted lines of the orbit, on a logarithmic scale, as a function of frequency.
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as a function of the separation of the frequencies. Fig. 3 shows

how a second extraction greatly improves the computation of the

lines.

4 S P E C T R A L C L A S S I F I C AT I O N O F 2 D

O R B I T S

Now we describe the spectral characteristics which allow us to

classify 2D orbits. We denote as Fx and Fy the frequencies

corresponding to the greatest amplitudes of the x and y line spectra,

respectively, calling them dominant frequencies. Note that a domi-

nant frequency is not neccesarily a base frequency. We assume a

coordinate system with its x axis aligned with the major axis of the

potential, and with its origin coinciding with the centre of the

potential.

In all the examples in this section, we have used one of the

following potentials, where v
2
0, Rc, q, and Re are constants, and

R ¼ ðx
2

þ y
2
Þ
1=2.

(i) Logarithmic potential:

FLðx; yÞ ¼
v

2
0

2
ln R

2
c þ x

2
þ

y
2

q2

� �

: ð15Þ

(ii) Binney potential (Binney 1982a):

FBðx; yÞ ¼
v

2
0

2
ln R

2
c þ x

2
þ

y
2

q2
¹

Rðx
2

¹ y
2
Þ

Re

� �

: ð16Þ

(iii) Hénon–Heiles potential (Hénon & Heiles 1964):

FHðx; yÞ ¼
1

2
R

2
þ 2x

2
y ¹

2

3
y

3

� �

: ð17Þ

All our orbits were integrated using a Runge–Kutta–Fehlberg

integrator, with Cash–Karp coefficients (Press et al. 1994), with

double precision. We get an energy conservation better than one

part in 106 in all cases.

4.1 p-box orbits

Since a p-box orbit does not put any constraint on the ratio Fy=Fx,

this will in general be an irrational number, and we are already left

with two independent frequencies, i.e., neither of the two is a

multiple of the other, nor they are multiples of a common third

frequency. Since the y axis is aligned with the minor axis of the

potential, one expects, in general, that Fy > Fx. Sometimes it occurs

that Fy < Fx, but in these cases there is always another y line

symmetric to Fy with respect to Fx, and with a similar amplitude;

this is explained by a simple model of a librating oscillator (Binney

& Spergel 1982). When we come upon this, we do not hesitate to

call the latter frequency the dominant frequency.

The remaining lines must be integer linear combinations of Fx

and Fy, in order to ensure regularity. Thus, we already have a

criterion to classify an orbit as a p-box orbit: it must have an

irrational ratio of dominant frequencies, and integer linear depen-

dence of the rest of the spectra with respect to the former. Fig. 4

shows a typical p-box orbit and some of its extracted lines.

4.2 First- and second-rank box orbits

The basic spectral difference between m:n box orbits and p-box

orbits is that Fx and Fy are commensurable in the former case,

corresponding therefore to the same BF. Moreover, the resonance is

simply the quotient Fy=Fx. We will call unit frequency the greatest

common divisor of Fx and Fy, i.e., the frequency in terms of which

they are integers. This unit frequency may or may not be occupied

by a line. If the rest of the lines are multiples of the BF, the m:n box

orbit is closed, for we have only one BF. However, if one line is

independent (i.e., its ratio with the BF is irrational), and the rest of

the lines are linearly dependent of both the BF and the new line, then

we have an open m:n box orbit. This new frequency can in general

be associated with the libration of the orbit around its parent. Figs 5

and 6 show examples of closed and open m:n box orbits, and their

extracted lines.

As we saw, a resonant orbit may parent orbits with the same

resonance but higher rank. This happens, for example, when a

line, in what otherwise would have been an open m:n box orbit,

matches a submultiple of the unit frequency: now this line can

be regarded as a new unit frequency, thus multiplying m and n

by the same factor, and generating a closed second-rank m:n

box, i.e., a closed km:kn box. If there is an additional BF, the

orbit becomes open. Fig. 7 shows an example of a km:kn box

orbit and some of its lines.

4.3 First- and second-rank loop orbits

From a spectral point of view, loop orbits and m:n box orbits differ

only in the order of the resonance: in the former, the ratio

Fy=Fx ¼ m:n ¼ 1:1 (Fx is, in this case, the frequency of rotation

around the centre of the potential, and we talk of a 1:1 loop orbit),

whereas in the latter, this ratio is any other rational. As before, if the

orbit is closed, the other lines will be multiples of a single BF; but if

it is open, the rest of the lines must be integer linear combinations of

two BFs. Fig. 8 shows an example of an open 1:1 loop orbit and its

extracted lines.

A closed loop orbit can close itself after one turn (a 1:1

resonance), but it can also close itself after k turns; we speak in

this case of a k:k loop orbit. Any one of these may give birth to a

family of open librating loop orbits with the same k:k resonance. As

before, we can compute this higher-rank resonance with the aid of

6 D. D. Carpintero and L. A. Aguilar
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Figure 3. Incompleteness parameter i as a function of the separation in

frequency of two equal-amplitude lines. Open triangles show the results

when a single extraction of the lines is performed; filled circles are the results

when the lines are extracted twice.
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the unit frequency. Figs 9 and 10 show examples of a closed 3:3 and

an open 2:2 loop orbits, respectively, and their extracted lines.

4.4 Irregular orbits

Since irregular orbits do not have line-like spectra that can be

expressed as integer linear combinations of BFs (in the case of a

truly chaotic orbit, even a continuum will appear), the lines

extracted by our algorithm do not describe the orbit, i.e., its

incompleteness parameter i is large. Sometimes, irregular orbits

are close to regular orbits in phase space, and this is reflected in their

spectra; but they always have some extra lines that are not integer

combinations of the BFs, which gives them away. Fig. 11 shows an

example of an irregular orbit and its spectra.

A relatedproblem is that of irregularorbits highly confinedbetween

regular regions, sometimes called ‘sticky’ or ‘semi-stochastic’ orbits

Orbit classification 7
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Figure 4. Left: a p-box orbit, obtained by launching a particle in the potential FL, with v
2
0 ¼ 1, Rc ¼ 0:14, q ¼ 0:9, and initial conditions x0 ¼ 1, y0 ¼ 1:3,

ẋ0 ¼ 0, and ẏ0 ¼ 0. Right: amplitudes of the extracted lines versus frequency for the x (top) and y (bottom) coordinates. In all of the examples presented, only

those lines with amplitudes greater than 2 per cent of the strongest line, in each coordinate, are shown; this number is further constrained to five lines at most (i.e.,

only the lines used to classify the orbit are shown). The actual spectra bear many more lines. The dominant frequencies are also marked.

Figure 5. As Fig. 4, but for a closed 2:1 box orbit, obtained by launching a particle in the potential FL, with v
2
0 ¼ 1, Rc ¼ 0, q ¼ 0:7, and with initial conditions

x0 ¼ 0, y0 ¼ 0:13, ẋ0 ¼ 1:83496, and ẏ0 ¼ 0.
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(Goodman & Schwarzschild 1981). Such orbits must be given

sufficient time to reveal their irregularity without ambiguity, i.e.

they need longer integrations to be properly classified. An example

will illustrate this. Let us launch a particle in the potential FL

with ðv0; Rc; qÞ ¼ ð1; 0; 0:7Þ, and initial conditions ðx0; y0; ẋ0; ẏ0Þ ¼

ð0; 0:2663; 1:39029; 0Þ, so that E ¼ 0. This orbit is classified as a 2:1

box, but only if we integrate it for fewer than about 400 orbital periods.

For longer integrations, our algorithm tells us that it is an irregular

orbit. Fig. 12 shows what happens. Fig. 12(a) shows the

ðy; ẏ; x ¼ 0; ẋ > 0Þ SoS of this orbit, sampled during some 400 orbital

periods. We can see how closely it resembles a regular orbit. Fig. 12(b)

shows the same SoS for an integration five times longer. We see that

the phase space visited has grown, and now we clearly have an

irregular orbit. This is just what the algorithm showed. Unfortunately,

there is no way to tell in these cases whether or not a further

integration period is needed to establish a good classification. On

the other hand, the orbit has behaved as a regular orbit during the time

in which it was classified as such. This orbit was also integrated with a

different implementation of the Runge–Kutta–Fehlberg integrator

(Fehlberg 1968), attaining an energy conservation of one part in 109.

8 D. D. Carpintero and L. A. Aguilar
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Figure 6. Same as Fig. 4, but for an open 4:3 box orbit, obtained by launching a particle in the potential FL, with v
2
0 ¼ 1, Rc ¼ 0, q ¼ 0:9, and with initial

conditions x0 ¼ 0, y0 ¼ 0:13, ẋ0 ¼ 1:95121, and ẏ0 ¼ 0:25.

Figure 7. Same as Fig. 4, but for an open 4:2 (second-rank) box orbit, obtained by launching a particle in the potential FL, with v
2
0 ¼ 1, Rc ¼ 0, q ¼ 0:7, and with

initial conditions x0 ¼ 0, y0 ¼ 0:064, ẋ0 ¼ 2:15750, and ẏ0 ¼ 0:36.
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In the end we must distinguish between a mathematical definition

of irregular orbit and a pragmatic one: although the above orbit is

strictly speaking irregular, what matters to an astronomer is its

behaviour during the time-scales of interest. The same orbit may

play the role of a regular or irregular orbit, depending on the ratio of

its diffusion time-scale in phase space to the dynamical time-scale

of the modelled system (Goodman & Schwarzschild 1981;

Schwarzschild 1993; Merritt & Fridman 1996). Our classifier

gives the correct pragmatic answer.

Fig. 13 summarizes our 2D classification in terms of BFs and

resonances between dominant frequencies.

5 W H E N T H E O R I E N TAT I O N A N D C E N T R E

O F T H E P OT E N T I A L A R E U N K N OW N

The results of the previous section are based upon the assumptions

that (i) the x axis of coordinates is on the long axis of the potential,

and (ii) the origin of coordinates lies on the centre of the potential.

This is fine if we know the potential a priori. However, we may want

to classify an orbit which, for instance, has been obtained from an

N-body simulation for which the orientation and centre of the

system are unknown, or at least are not known with adequate

accuracy. We will show here that the algorithm is able to classify

Orbit classification 9
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Figure 8. Same as Fig. 4, but for an open 1:1 loop orbit, obtained by launching a particle in the potential FL, with v
2
0 ¼ 3, Rc ¼ 1, q ¼ 1, and with initial

conditions x0 ¼ 1, y0 ¼ 0, ẋ0 ¼ 0, and ẏ0 ¼ 0:3.

Figure 9. Same as Fig. 4, but for a closed 3:3 loop orbit, obtained by launching a particle in the potential FL, with v
2
0 ¼ 40, Rc ¼ 1, q ¼ 1, and with initial

conditions x0 ¼ 1, y0 ¼ 0, ẋ0 ¼ 0, and ẏ0 ¼ 6:28318.
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orbits without knowledge of the orientation or of the centre of the

potential, and that it can even provide us with this information.

5.1 Orientation

It is clear that loop orbits are immune to any rotation of the

coordinate system; for other reasons, irregular orbits also are

immune. Box orbits, on the other hand, are not. To see this, let us

take the long axis oscillator, with amplitude A, with the coordinate

system aligned with the potential. Then, a single line will appear on

the x spectrum, with amplitude A, and nothing will appear on the y

spectrum. Now let the coordinate system be rotated anticlockwise

by an angle b. The amplitude of the x-line will shrink to A cos b, and

a line will appear on the y spectrum at the same frequency, with

amplitude A sin b. The phases of both lines will be the same. Had we

rotated by a clockwise angle b, the amplitudes and frequencies

would be the same as above, but the phases would differ by an angle

p. Since, in this context, b and b þ p are equivalent angles, we have

covered any possible angle with the example above.

To recover the original alignment, we seek to learn whether the

frequencies are equal, and then compute tan b from the amplitudes.

Since this computation always yields an angle b belonging to the

10 D. D. Carpintero and L. A. Aguilar
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Figure 10. Same as Fig. 4, but for an open 2:2 loop orbit, obtained by launching a particle in the potential FH with initial conditions x0 ¼ ¹0:48, y0 ¼ 0, ẋ0 ¼ 0,

and ẏ0 ¼ 0:30768.

Figure 11. Same as Fig. 4, but for an irregular orbit, obtained by launching a particle in the potential FB, with v
2
0 ¼ 1, Rc ¼ 0:14, q ¼ 0:9, Re ¼ 1:5, and with

initial conditions x0 ¼ 0:2, y0 ¼ 0:2, ẋ0 ¼ ¹0:8, and ẏ0 ¼ 0:55401.
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first quadrant, we fix the sign through the phases. This scheme is not

in conflict with the recognition of a loop orbit (we recall that the

presence of equal frequencies in both x and y spectra is the criterion

for loop orbits) because once the coordinate system is rotated, then

(i) if the orbit is a loop, nothing changes and we still have equal

frequencies in both spectra; or (ii) if the orbit is a box, one of the

lines vanishes.

If the spectra have more than one line, they are irrelevant to the

above discussion, because, in order to make the rotation, it suffices

to take the line with the maximum amplitude (whether it appears on

the x or on the y spectrum) to make the rotation.

Before leaving the subject, we must work out a subtle problem.

We have seen that the long axis of the potential, i.e., the pros-

pective x axis of coordinates, bears the maximum amplitude

of oscillation of a box orbit, and the above rotation is based on

this assumption. However, it turns out that there are orbits in which

the maximum amplitude lies on the short axis of the potential.

If this is the case, we are left with a coordinate system wrongly

rotated 908. To avoid this, since the ratio Fy=Fx is always greater

than one, we simply rotate the coordinate axes by 908 whenever

Fy=Fx < 1.

5.2 Translation

A displacement of the coordinate system reflects on the spectra of

an orbit only in its zero-frequency slot; the rest is left unchanged.

Then the most simple way to centre the orbit is to nullify the

amplitude of the zero frequency. This centring is most useful in

dealing with orbits in the meridional plane of an axisymmetric

potential.

One last comment about loop orbits: we might have tried to

classify loop orbits based on their constant sense of motion,

instead of through their spectra. If this were the case, a translation

does change matters, because the constant sense of rotation is true

only if measured from within the ‘hole’ of the orbit. We can still

make a translation eliminating the frequency zero, but if the orbit

has a very tiny hole, then the translation might fail to put the

origin exactly inside the hole, and the sense of rotation will come

out wrong. Also we would run into trouble if trying to classify a

loop orbit in the meridional plane of an axisymmetric potential,

for in this case one cannot say beforehand where the hole is

(unless one visually inspects the orbit). It is safer to deal with the

spectra.

6 N U M E R I C A L A L G O R I T H M A N D L I M I T S O F

T H E C L A S S I F I C AT I O N

Compromises that involve decisions are unavoidable when we

translate the above considerations into a finite precision, numerical

algorithm. Here we discuss the most important.

One decision to make is how many lines should be extracted in

order to properly classify an orbit. We want to establish a limit, both

to save time and to avoid tiny noisy lines. One way to do this is by

limiting the number of lines, Nl; another one is to put a lower limit

on the amplitude of the line, for example with respect to the

strongest. We used both criteria and found that Nl ¼ 5 per coordi-

nate, and a minimum amplitude of 0.02 times that of the greatest

suffices to achieve a good classification.

We also must decide whether or not two numerically com-

puted frequencies a and b are equal. We have used the following

Orbit classification 11
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Figure 12. Left: SoS of an orbit (see text), integrated during 400 orbital periods. Right: the same, but for some 2000 orbital periods.

Figure 13. Summary of 2D spectral orbit classification.
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criterion,

a ¼ b ⇔
ja ¹ bj

jaj þ 1
< « D; ð18Þ

where D is the difference in frequency between two adjacent

Fourier slots, and « is a parameter to fix. We found that « . 0:25

is a good compromise.

A further problem arises from the time-span of the orbit

integration. It is clear that an orbit that was integrated for too

short a time may yield an incorrect Fourier spectrum. As Fig. 14

shows, we found that, with N ¼ 4096 points that sample uniformly

the orbit in time, the classification is reliable when the orbit has been

integrated over 100 orbital periods. Fortunately, since the orbital

period is, generally speaking, the inverse of Fx, the program itself

can estimate the number of orbital periods over which an orbit was

integrated, and can warn the user if neccesary.

As a further security, the classification is performed at least

twice for each orbit: one with the original time-span, and once

again with a portion of the orbit removed. If the classifications

differ (which sometimes happens), a third pass is made in order to

resolve the question. We found that this solves almost all

uncertain cases. The rare cases left undecided are signalled by

the classifier so that a more detailed examination may be

performed by other means.

The most challenging numerical problem consists of determining

whether two (finite precision) numbers have a low-order quotient.

(Note that this is not the problem of reconstructing a numerator and

a denominator from their rational quotient.) If a and b are those

numbers, and m and n are (small) integers, we found that comparing

a=b with m=n with the aid of equation (18) suffices in most cases. If

the ratio is found to be rational, then the resonance is automatically

m:n, and the unit frequency arises at once. However, this procedure

is not guaranteed to succeed, because we do not have an infinite

frequency resolution. This means that resonances that do not

generate orbit families will no longer be a set of measure zero,

but will appear as ribbons of finite width. Decreasing « in

equation (18) will result in a narrowing of the ribbons, but the

price paid will be that many real rational ratios, because of

12 D. D. Carpintero and L. A. Aguilar
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Figure 14. Orbit classification as a function of the time-span of orbit integration, for several assorted orbits. A dot indicates a successful classification, a cross

marks a discrepant one.
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Figure 15. Ratio of dominant frequencies versus initial x coordinate in the

potential FL described in the text.
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Figure 16. Orbital structure of the logarithmic potential FL, with v0 ¼ 1, Rc ¼ 0 and q ¼ 0:7, at E ¼ 0.

Figure 17. Orbital content of the Binney potential with q ¼ 0:9, Rc ¼ 0:14, v
2
0 ¼ 1, and Re ¼ 1:5, at E ¼ ¹0:6348.
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inaccuracies in the determination of their frequencies, will be

considered irrational, thus resulting in spurious irregular orbits. In

the end, one must recognize that any numerical tool will have limits

in resolution.

However, the classifier is still a powerful tool. We integrated a

series of orbits in the potential FL with v0 ¼ 1, q ¼ 0:9, and

Rc ¼ 0:14, at an energy E ¼ ¹0:337 (BT87, fig. 3.8), with initial

conditions 0:6 # x0 # 0:7, ẋ0 ¼ y0 ¼ 0, and ẏ0 chosen to match the

energy. Thus, this series crosses from the loop to the box region of

the potential. Fig. 15 shows the ratio of dominant frequencies along

this series. The classifier sharply recognizes the border between

families (qy=qx ¼ 1 for loops, > 1 for p-boxes). The first two orbits,

from left to right, with ratios > 1, were classified as irregulars. The

rest were classified as loops (left) or p-boxes (right).

7 R E S U LT S F O R 2 D P OT E N T I A L S

To test our classifier, we analysed the orbital structure of several

potentials previously studied, so that we could compare the results.

Fig. 16 shows a grid of orbits that we have classified on the SoS

for the logarithmic potential FL, with q ¼ 0:7, Rc ¼ 0, v
2
0 ¼ 1, that

corresponds to an energy per unit mass E ¼ 0 (in this and other

examples in this section, every symbol in the corresponding figure

represents the initial point of an orbit that was integrated and

classified separately). This is to be compared with fig. 1 of

Miralda-Escudé & Schwarzschild (1989). As indicated by these

authors, there is a complete lack of p-box orbits, and irregular orbits

fill the phase space between the different classes of regular orbits.

All resonances found by these authors have been found by our

classifier, and, at the higher resolution of our grid, further fine detail

is beginning to appear. Resonances as high as 8:5 appear close to

y , 0 and ẏ < 1:4 (labelled as ‘other’ in the figure), narrow strips of

k:k loops at the border and within the region occupied by the open

1:1 loops orbits, and also narrow strips of 2k:k boxes within the

region of 2:1 boxes. The ‘irregular sea’ in this SoS appears to be all

connected as can be seen in Fig. 12(b), which shows an irregular

orbit that loiters around almost all of the irregular bands between

regular zones in this SoS. The few irregulars close to the 2k:k orbits,

when inspected, reveal themselves as 4:2 boxes, so we are here at

the limit of frequency resolution of the classifier.

Fig. 17 shows a similar SoS grid, but for the Binney potential

FB, with q ¼ 0:9, Rc ¼ 0:14, v
2
0 ¼ 1, and Re ¼ 1:5, at

E ¼ ¹0:6348. As can be seen, there are islands of regular

orbits in a sea of irregularity. Again, second-rank resonance

orbits begin to show up. This figure can be compared with figs

3–27 of BT87, where some orbits were sketched. Our classifier

combined with a finer grid gives us a higher resolution picture of

the orbital structure of this particular SoS.

Fig. 18 shows an SoS of the Hénon–Heiles potential FH, at

E ¼ 0:1602. As is already known, at this relatively high energy

most orbits are irregular. Our classifier shows also that there exists a

large regular region populated mainly by 1:1 and k:k loops. There

are also a few m:n box orbits with high resonances; however, these

isolated orbits are most likely a consequence of the finite frequency

resolution of our classifier.

Table 2 reports the percentage of orbits of each type found on the

orbital grids studied in this section.

8 S P E C T R A L C L A S S I F I C AT I O N O F 3 D

O R B I T S

The Fourier analysis and subsequent extraction of lines proceeds as

14 D. D. Carpintero and L. A. Aguilar
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Figure 18. Orbital content of the Hénon–Heiles potential at E ¼ 0:1602.
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in 2D. The only change is in the classification itself. We assume that

the x, y, and z axes correspond to the large, intermediate, and short

axes of the potential, respectively. First, we determine the dominant

frequencies in each coordinate, denoting them Fx, Fy, and Fz.

Now we take each couple of coordinates ðx; yÞ, ðx; zÞ, ðy; zÞ in turn.

For each case, we analyse whether the second-dominant line must

bear the title of dominant, as we explained in Section 4.1. Then,

again for each pair, we compute whether or not they have a rational

ratio, i.e., whether a resonance is present. If this is the case, we

compute the integer numerator and denominator, as described in

Section 6. In each case, we search for the possibility of an improper

quotient related to a higher-rank resonance, and compute numera-

tors and denominators accordingly. Once the three pairs of coordi-

nates have been surveyed, we are left with zero, one, two or three

resonances encountered.

If we find three resonances, i.e., one resonance in each pair of

coordinates, then all three dominant frequencies are multiples of a

single unit frequency. We then build the relationship between the

three coordinates in the form of a proportion among integers X:Y:Z,

taking into account any present higher-rank resonance.

When the program finds only two resonances (which is, of

course, not possible), what happens is that one of the quotients is

likely to be formed by two large integers beyond the range searched

by the classifier. We then reconstruct the lost resonance from the

other two, ensuring that no spurious improper resonances leak in.

If we find only one resonance, say Y=X, then it means that Fz has

an irrational relation with respect to Fx and Fy. In this case, we will

denote the irrational ratios by putting Z ¼ p, thus yielding the

triplet X:Y:p. Of course, the same holds if Z=X or Z=Y were the case.

If no resonances are encountered, all three dominant frequencies

are irrationally related. This corresponds to the 3D analogues of the

2D p-boxes. Extending our foregoing notation, we will call them

3D p-boxes.

We can now establish the number of BFs among the dominant

frequencies: if there are three resonances, there is one BF; if there is

one resonance, there are two BFs; and if no resonances were found

at all, there are three BFs. With these figures, we go on searching for

additional BFs, i.e., frequencies present in the orbit but that are not

integer linear combinations of the dominant-born BFs. The proce-

dure goes much as in the 2D case, but now we make room for up to

four possible independent frequencies.

The last step is to classify the orbit from the data collected above.

First, we consider the total number of BFs: if we find a total of more

than three BFs, the orbit is irregular and the BFs are not really BFs.

If fewer than four BFs are found, we have regular orbits that are

closed (one BF) or open (three BFs). If there are two BFs, the orbit

moves on a 2D manifold in configuration space. Following the usual

nomenclature, we will call these orbits thin.

Secondly, we consider the number of resonances. When there are

no resonances, then the orbit is an axial orbit (one BF), a 2D p-box

(two BFs) or a 3D p-box (three BFs). If there is one resonance, we

have a 2D closed box (one BF), a thin box (two BFs) or an open box

(three BFs); except when the resonance is 1:1, in which case we

have closed loops, thin tubes and open tubes, respectively. Finally,

the orbits whose dominant frequencies are all in resonance, and

with three or two BFs, are boxes or tubes the parents of which are

the corresponding 3D closed resonant orbits with one BF.

The particular case of a 1:1 resonance between two coordinates

gives rise to the familiar z-tubes, if x and y are resonant, or x-tubes, if

y and z are resonant. (In rare cases, as in a fully harmonic 3D

potential, we may also have y-tubes or two or three k:k relations).

Although we were not able to find any distinguishing feature

between so-called outer x-tubes and inner x-tubes (de Zeeuw

1985) spectra, we can fill this gap with a simple routine, computing

from the coordinates of the orbit whether it is concave (outer x-tube)

or convex (inner x-tube) in the x direction. However, it turned out

that this routine could not handle all the cases properly, as some-

times the curvature was subtle. A better routine remains to be

created.

Fig. 19 summarizes the classification. The columns arrange orbits

according to whether they are closed, thin or open. The rows corre-

spond to family sequences in which the parent is 1-, 2- or 3D. We

have added a 0 in the notation to indicate an absent coordinate.

Our notation, however, has a difficulty which did not appear

before. In 2D, a common factor was used to signal a second-rank

resonance; in 3D, such a factor may be spurious. Let us suppose, for

example, that we have a 9:4:2 resonance. Have we the resonances

9:4, 9:2 and the second-rank 4:2, or is the third pair a 2:1 resonance

converted to 4:2 by the first two pairs? Clearly, we must extend our

notation to break the ambiguity. We use a prime to signal a pair of

numbers with a common factor which do not represent a real

second-rank resonance. In the example above, a 4:2 resonance

would yield the standard 9:4:2, whereas a 2:1 resonance would be

written as 9:40:20. When there are two pairs of numbers having a

common factor, as in 9:6:4, it may be that there are no second-rank

resonances, in which case we put 9
0
:6

0
:4

0
to indicate the resonances

3:2, 9:4 and 3:2. If there is only one second-rank resonance, say 6:4,

we write 90:60:4, marking individual 3:2, 9:4 and 6:4 resonances.

Finally, 9:6:4 signals that both 9:6 and 6:4 are second-rank

resonances.

Orbit classification 15
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Table 2. Percentages of orbits in the studied

potentials.

Orbit type FL FB FH

Irregular 8 68 82

p-box 0 2 1

1:1 41 8 8

k:k 4 2 9

2:1 22 9 0

2k:k 1 2 0

3:2 15 5 <1

3k:2k 0 1 0

4:3 1 1 0

5:3 4 1 0

5:4 0 <1 0

Other m:n 3 <1 <1

Total of orbits 3556 4237 7084

Figure 19. Summary of 3D spectral orbit classification.
a

The order of the

indices does not change the classification name, just the spatial orientation.
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As in the 2D case, we perform a second classification by

removing a portion of the orbit; if the classification differs, a third

pass is made with another orbital portion removed.

The position of the centre of the 3D potential is obtained by

means of a simple extrapolation of the method described in 2D. The

orientation, on the other hand, is far from this simple. We have not

yet developed the corresponding algorithm.

9 R E S U LT S F O R 3 D P OT E N T I A L S

As for the 2D case, we study some potentials the orbital structure of

which is either simple, or has been determined independently, to test

the validity of our classifier.

We first tested the classifier with orbits in a 3D harmonic

oscillator, obtaining good classifications in all cases.

A non-trivial and fully regular and well-studied potential is the

‘perfect ellipsoid’ (de Zeeuw 1985; BT87), a member of the family

of Stäckel potentials (Stäckel 1890). Although it has its simpler

form in ellipsoidal coordinates, which is not very convenient for

numerical integration, we have used this potential because it has the

major four families of 3D orbits, and by computing the three

integrals of motion, one can know a priori which type of orbit

one is working with, and then confront this result with the output of

our classifier.

Fig. 20 shows some examples. The orbit of Fig. 20(a) was

integrated in the perfect ellipsoid potential with parameters

16 D. D. Carpintero and L. A. Aguilar
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(d)

Figure 20. Spectra of orbits in the Stäckel potentials described in the text. (a) Spectra of the orbit obtained by launching a particle from

x0 ; ðx0; y0; z0Þ ¼ ð¹1:3; ¹0:5; 0:3Þ, and with initial velocity v0 ; ðvx0; vy0; vz0Þ ¼ ð0:25; 0:1; 0:2Þ. x-lines are solid, y-lines dotted, and z-lines dashed. The

resulting classification is a p-box. (b) The same, but with ðx0; v0Þ ¼ ð1; 1; 0:1; ¹0:2901; 0:3; 0:1Þ. The dashed–dotted lines belong to both x and y coordinates. It is

an open 1:1:p z-tube. (c) The same, but with ðx0; v0Þ ¼ ð0:01; ¹1; 0; 0:05678; 0:01; 0:35Þ. Dashed–dotted lines indicate both y and z lines. It is a thin 9:130:130

inner x-tube. (d) The same, but with ðx0; v0Þ ¼ ð1; ¹3:1; ¹5:4; 0:3; ¹0:1; 0:1Þ. Dashed–dotted lines indicate both y and z lines. It is an open p:1:1 outer x-tube.
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a ¼ ¹1, b ¼ ¹0:390 625, and g ¼ ¹0:25. It is a 3D p-box; lines of

each coordinate are marked with different line types. Note how each

pair of coordinates makes a 2D p-box spectrum on its own. Fig.

20(b) shows the spectra of an open 1:1:p tube (a z-tube), integrated

in the same potential with parameters a ¼ ¹2, b ¼ ¹1, and

g ¼ ¹0:5; in this case, the lines belonging to the x and y coordinates

have the same frequencies, and so the amplitude shown is only the

greatest among x and y. Fig. 20(c) shows an example of a thin inner

x-tube, integrated in the prolate limit of the perfect ellipsoid

potential (de Zeeuw 1985) with parameters a ¼ ¹4 and b ¼ ¹1;

here the frequencies of the y- and z-lines are the same. Fig. 20(d)

shows the spectra of a p:1:1 outer x-tube, integrated in the same

potential of Fig. 20(a).

Schwarzschild (1993) has investigated the possibility of self-

consistent models in a singular, triaxial logarithmic potential,

expanded in spherical harmonics. We have used this reference

because the orbital classification for 3600 orbits on six variants of

this potential in two so-called ‘start spaces’ is given, and the precise

resonance is listed for 64 stable, closed orbits, together with their

initial conditions (tables 3 and 4 of Schwarzschild 1993). These

orbits span a rich variety of resonances as high as 31:42:51. The

classification accomplished in this work represents a tour de force,

achieved by considering the symmetry and behaviour of the mean

angular momenta and positions along each axis, as well as the

corresponding extrema. The way in which the precise resonance

order has been found is through a visual inspection of the plots of

the individual time series for each coordinate (Schwarzschild,

private communication), a daunting task indeed, when considering

the high order of some resonances.

We have integrated all stable closed orbits listed in this work for

80 periods. We were pleased to see that for all but 4 of the 64 orbits,

we obtained the same classification as Schwarzschild, including the

resonance, the closeness, and all the second-rank resonances, which

Schwarzschild calls ‘higher period multiples’. Here follows an

account of the discrepant cases.

(i) In table 3 of the above reference, we found that orbit number

3 of the C ¼ 0:7, T ¼ 0:5 model, and orbit number 3 of the C ¼ 0:3,

T ¼ 0:5 model, were thin 1:p:2 boxes, i.e. there were two BFs, and

therefore they were not closed. The classification given by

Schwarzschild is 1:S:2. We note that a letter ‘S’ appears in his

tables 3 and 4 whenever there is no motion on a coordinate, except

on these two cases where, according to us, it should indicate a non-

resonant coordinate; interestingly enough, an S is used to indicate

precisely this on his table 1.

(ii) In his table 4, orbit number 7 of the C ¼ 0:7, T ¼ 0:5 model

was found to be a p:42:51 box, instead of a 31:42:51 box. That is,

our program found two irrational quotients instead of the relations

31:42 and 31:51, and a 14:17 resonance which turned out to be

improper, becoming the 42:51 quotient. We can tune the algorithm

in order to detect even these high quotients (we did it and found the

right classification); this practice, however, may render the algo-

rithm unable to find irrational quotients (see Section 6). We prefer to

stick with a ‘safe’ algorithm, losing high resonances, which are not

very important.

(iii) In table 4 of Schwarzschild (1993), orbit number 3 of the

C ¼ 0:3, T ¼ 0:98 model was found to be a 2:3:0 box (a planar

fish), instead of a reported 2:3:5. This is clearly a mere misprint in

the reference, which must then read 2:3:S.

As a further step, we tried to reproduce the orbital content of the

x-z start space for the six models used by Schwarzschild (fig. 4 in

that reference). Fig. 21 shows the outcome. In this figure, the x loop

stands for planar 0:1:1 orbits, which we are unable to classify as

inner or outer long tubes. We have explicitly separated saucers

(1:1:2) and fans (1:2:2) from the rest of the bananas and tubes, in

order to compare our results with the work of Schwarzschild. The

greatest difference turns out to be the lack of saucers in the third and

fourth models, which are conspicuous in those models in Schwarz-

schild (1993). However, this may be due to a slight inconsistency in

Schwarzschild’s definition of saucers, since they are defined as

1:1:2 resonances in his table 1, but are searched for simply as

‘significant Lz, asymmetric in z’, conditions that orbits other than

saucers can fulfil. Also, comparison between our Fig. 21 and fig. 4

of Schwarzschild shows that a finer resolution can easily be attained

with our automated classification. However, there appear several

suspicious orbits: inner tubes immersed in regions of outer tubes,

isolated irregulars in otherwise regular zones, or box orbits

embedded in a sea of tubes. We closely examined a number of

these orbits. The inner tubes studied turned out to be outer tubes:

their concavities were small, and so our routine was fooled. On the

other hand, suspicious irregulars and boxes had very close lines in

different coordinates, which should be at the same frequency if

those orbits were to follow the family of their neighbours; in fact, by

augmenting « in equation (18), we recovered the correct classifica-

tions. This demonstrates how the value of « is a compromise

between a finer resolution in frequency space, and a compensating

factor for the numerical inaccuracies in extracting the lines.

1 0 S U M M A RY A N D C O M PA R I S O N W I T H

P R E V I O U S S P E C T R A L M E T H O D S

We have developed a method to automatically classify an orbit,

given its coordinates as a function of time. It is based on the analysis

of the Fourier spectrum of the orbit, and takes advantage of the

quasi-periodic property of regular orbits. It can distinguish not only

between regular and irregular orbits, but also between loop, box,

and other resonant orbits up to orders comparable to those studied

previously. It can also identify higher-rank resonances. An addi-

tional feature is the ability to classify orbits, even when the

coordinate system is not centred, nor (for the 2D case), aligned

with the potential. For orbits to be classified reliably, they should be

integrated for about 100 orbital periods.

The main limitation of the present method is its resolution in

frequency space, an unavoidable limitation of any finite precision

computation. Its main advantage is the automatic character of the

classification, which permits the reliable classification of a large

number of orbits, leaving only a few doubtful cases to be examined

further in detail. This advantage should greatly facilitate detailed

orbital structure investigations of generic potentials. We have also

introduced a consistent orbit nomenclature based on the spectral

features used for the classification. This nomenclature has the virtue

of including most types of orbits previously studied, in a notation

that is compact and physically meaningful. Although this notation

encompasses up to second-rank resonances, it can be extended in

the future, should it be necessary to study higher-rank resonances.

Binney & Spergel (1982) first introduced the spectral method in

galactic dynamics. In that first work they studied box and loop

orbits in the 2D logarithmic potential. They recognized the line-like

spectra as the basic distinguishing feature of regular orbits in

frequency space, and interpreted the two BFs for these orbits in

terms of a simple physical model. In a follow-up work (Binney &

Spergel 1984), they showed the way in which the actions can be

computed from the Fourier representation of the orbits. They came

back to the logarithmic potential and were able to show several

Orbit classification 17
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18 D. D. Carpintero and L. A. Aguilar
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Figure 21. Orbital content of the x–z start space in the (a) first, (b) second, (c) third, (d) fourth, (e) fifth and (f) sixth scale-free logarithmic models used in

Schwarzschild (1993).
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Figure 21 – continued

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
8
/1

/1
/9

7
6
0
8
3
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



20 D. D. Carpintero and L. A. Aguilar

q 1998 RAS, MNRAS 298, 1–21

Figure 21 – continued
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important results, e.g. the way in which regular orbit families fit in

action space.

More recently, Laskar (1993) has reintroduced the spectral

method within the context of stability studies of orbits in conserva-

tive dynamical systems. Laskar obtains the BFs using phase-space

coordinates in an iterative numerical algorithm that results in a very

accurate determination of frequencies and phases. Papaphilippou &

Laskar (1996) have used this method to study the same logarithmic

potential studied by Binney & Spergel. The actions of box and loop

orbits are then approximated by means of the spectral representa-

tion. The main thrust of this work is the study of the orbital structure

by means of a 1D map from one phase-space variable to frequency

space. Resonances as high as 9:16 are identified by means of this

technique.

Our approach has been different, as our main goal has been to get

an automatic orbit classifier. Our procedure for extracting lines is

better than the one originally used by Binney & Spergel, but does

not seem to be as good as the one claimed by Laskar. Our precision,

however, seems to be adequate to obtain the desired classification.

The identification of the particular behaviour of line frequencies in

Fourier space, which we use to accomplish the classification, was

not contemplated in those earlier references.

In computing the BFs for an orbit, we are obtaining the basic

frequencies that occur in action–angle theory. This being of

importance itself, further work remains to be done; in particular,

the computation of the action integrals for 3D orbits extending the

method introduced by Binney & Spergel (1984) is of paramount

importance, because they provide a natural coordinate system on

which to study the phase-space distribution of regular dynamical

systems. Another interesting line of work would be to investigate

whether chaotic orbits can be identified by means of the continuum

they produce in Fourier space. We hope to pursue these lines of

investigation in the future.

The program developed to accomplish the orbit classification is

available for general use upon request.
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