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Abstract—We introduce a new class of constant dimension
codes called orbit codes. The basic properties of these codes
are derived. It will be shown that many of the known families
of constant dimension codes in the literature are actually orbit
codes.

I. INTRODUCTION

In network coding one is looking at the transmission of

information through a directed graph with possibly several

senders and several receivers. One can increase the throughput

by linearly combining the information vectors at intermediate

nodes of the network. If the underlying topology of the

network is unknown we speak about random linear network

coding. Since linear spaces are invariant under linear combi-

nations, they are what is needed as codewords [1]. It is helpful

(e.g. for decoding) to constrain oneself to subspaces of a fixed

dimension, in which case we talk about constant dimension

codes. Different approaches of constructing constant dimen-

sion codes have been investigated, e.g. in [1], [2], [3], [4], [5]

and [6].

The structure of the paper is the following: In the second

section we give some preliminaries. The main body of the

paper is Section 3 where we study actions of discrete groups

on the finite Grassmann variety. For this note that one can

view a constant dimension code as a discrete subset of the

Grassmann variety G(k, n). We are interested in situations

when this discrete subset is also an orbit under the action of

a finite group. We call such codes orbit codes. Like for linear

block codes one has a homogeneity property in the sense that

the distance of a code can be determined through the distance

of one fixed element with all the other elements.

In Section 4 we show how the Reed-Solomon type codes

introduced by Kötter and Kschischang [1] as well as the spread

codes described in [7] can be seen as special instances of orbit

codes.

II. PRELIMINARIES

Let Fq be the finite field with q elements (where q = pr

and p prime). The projective space P
n−1 of dimension n− 1

over Fq is the set of all 1-dimensional subspaces of F
n
q , the

set of all subspaces of F
n
q of dimension k is called Grassmann

variety, denoted by G(k, n).

It is a well-known result that

|G(k, n)| =

[

n
k

]

q

:=

∏n
i=n−k+1(q

i − 1)
∏k

i=1(q
i − 1)

Let U ∈ Matk×n(Fq) be a full–rank matrix and U :=
rowspace(U) ∈ G(k, n). One can notice that for any T ∈
GLk(Fq)

U = rowspace(U) = rowspace(TU).

The subspace distance [1] is a metric on G(k, n) given by

dS(U ,V) = 2 (k − dim(U ∩ V))

= 2 rank

[

U
V

]

− 2k

for any U ,V ∈ G(k, n) and some respective matrix represen-

tations U and V .
A constant dimension code C is simply a subset of the

Grassmann variety G(k, n). The minimum distance is defined

in the usual way. A code C ⊂ G(k, n) with minimum distance

dS(C) is called a [n, dS(C), |C|, k]-code.
Given U ∈ Matk×n(Fq) a full–rank matrix, U ∈ G(k, n)

its rowspace and A ∈ GLn(Fq), we define

U ·A := rowspace(UA).

Because of the following lemma, the operation here defined

is independent from the representation of U .
Lemma 1: Let U,U ′ ∈ Matk×n(Fq) be matrices such that

rowspace(U) = rowspace(U ′). Then rowspace(U · A) =
rowspace(U ′ ·A) for any A ∈ GLn(Fq).

We can now define the following group action on the

Grassmann variety:

GLn(Fq) × G(k, n) → G(k, n)
(A,U) 7→ U ·A

Proposition 2: The subspace distance is GLn(Fq)-
invariant.

Proof:

dS(U ,V) = dS(U ·A,V ·A), ∀A ∈ GLn(Fq).

Based on this homogeneity property it will be possible to

compute the minimum distance of orbit codes in a simple

manner (see Proposition 8).
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III. ORBIT CODES

Definition 3: Let U ∈ G(k, n). Then the stabilizer group of

U is defined as

Stab(U) := {A ∈ GLn(Fq) | U ·A = U}.

This gives rise to an equivalence relation for all A,B ∈
GLn(Fq) through

A ∼ B :⇐⇒ ∃S ∈ Stab(U) : A = SB.

Theorem 4: For any U ∈ G(k, n) it holds that

G(k, n) ∼= GLn(Fq)/Stab(U).

Proof: Fix U ∈ Matk×n(Fq) such that U =
rowspace(U). We prove that the following map is bijective:

ϕ : GLn(Fq)/Stab(U) → G(k, n)

[M ] 7→ rowspace(UM),

where [M ] denotes the class in GLn(Fq)/Stab(U) for which

M ∈ GLn(Fq) is a representative.

Consider V ∈ G(k, n) and V ∈ Matk×n(Fq) such that V =
rowspace(V ). Then the map is surjective since for any full–

rank matrix V ∈ Matk×n(Fq) there exists a M ∈ GLn(Fq)
such that V = UM .

Let M1,M2 ∈ GLn(Fq). We show that the row space of

UM1 is equal to the row space of UM2 if and only if [M1] =
[M2] ∈ GLn(Fq)/Stab(U):

rowspace(UM1) = rowspace(UM2)

⇐⇒ ∃ M ∈ GLk(Fq) : UM1 = MUM2

⇐⇒ rowspace(U) = rowspace(UM2M
−1
1 )

⇐⇒ M2M
−1
1 ∈ Stab(U)

⇐⇒ ∃ S ∈ Stab(U) : M2 = SM1

⇐⇒ [M1] = [M2]

This proves that ϕ is also injective, hence it is a bijection.

Example 5: Consider the case

U = rowspace
[

Ik×k 0k×n−k

]

.

One verifies that

Stab(U) =

{(

A1 0
A2 A3

)

| A1 ∈ GLk(Fq),

A2 ∈ Matk×(n−k)(Fq), A3 ∈ GLn−k(Fq)
}

.

The following proposition shows that any other stabilizer

group is conjugated to this special one.

Proposition 6: Let U ,V ∈ G(k, n). Then Stab(U) is con-

jugated to Stab(V). This implies that

|Stab(U)| = |Stab(V)|.

Proof: Let A ∈ GLn(Fq) such that U = V ·A. Then

S ∈ Stab(U) if and only if

U ·S = U ⇐⇒ (V ·A)·S = V ·A

which is equivalent to saying that ASA−1 ∈ Stab(V).

Definition 7: Let U ∈ G(k, n) be fixed and G a subgroup

of GLn(Fq). Then

C = {U ·A | A ∈ G}

is called an orbit code. An orbit code is cyclic if the defining

group is cyclic.

The name orbit code arises because G is a group acting on

G(k, n), i.e. the code is the orbit of the subspace U under the

action of G.

Proposition 8: Let C = {U ·A | A ∈ G} be an orbit code.

Then it holds that

|C| =
|G|

|G ∩ Stab(U)|

and

dS(C) = min
A∈G\ Stab(U)

dS(U ,U ·A).

Moreover dS(U ,U ·A1) = dS(U ,U ·A2) if A1 ∼ A2.

Proof: The cardinality follows from Proposition 6,

whereas the distance between any two elements V1 and V2

in the code is

dS(V1,V2) = dS(U ·A1,U ·A2) = dS(U ,U ·A2A
−1
1 )

for some A1, A2 ∈ G. Moreover A2A
−1
1 ∈ G.

A similar property holds for linear block codes in classical

coding theory, where the minimum distance is attained be-

tween a non-zero vector and the zero-vector. Hence this can be

seen as another analogon of linearity in the subspace setting,

different from the one proposed in [8].

Definition 9: If C ⊆ G(k, n) one defines the dual code as

C⊥ := {U⊥ ∈ G(n−k, n) | U ∈ C}.

We use the name dual to point out the relation with the dual

codes in classical coding theory. In [1] this class of codes was

first called complementary codes and it was shown that if C
is a [n,M, 2δ, k]-code then C⊥ is a [n,M, 2δ, n − k]-code.

Theorem 10: The dual code C⊥ of an orbit code C is again

an orbit code.

Proof: One immediately verifies that (U ·A)⊥ = U⊥ ·
(A−1)t. It follows that

C⊥ = {U⊥ ·(A−1)t | A ∈ G}

and {(A−1)t | A ∈ G} = {At | A ∈ G} is again a group.

Proposition 11: Given an orbit code C = {U ·A | A ∈ G},

there exists an isometric orbit code

Ĉ = {rowspace
[

I 0
]

·A | A ∈ Ĝ}

for some group Ĝ. In particular one has

|C| = |Ĉ|

and

dS(C) = dS(Ĉ).



Proof: Let U ∈ Matk×n(Fq) be a representation matrix

of U , and assume B ∈ GLn(Fq) to be a matrix such that

UB =
[

I 0
]

. Define the group

Ĝ := {B−1AB | A ∈ G}

Then

Ĉ = {rowspace
[

I 0
]

·A | A ∈ Ĝ}

has the desired properties.

For the rest of the paper let us fix

U :=
[

Ik×k 0k×(n−k)

]

and U = rowspace(U).

Proposition 12: Let

A =

(

A1 A2

A3 A4

)

where A1 ∈ Matk×k(Fq), A2 ∈ Matk×(n−k)(Fq), A3 ∈
Mat(n−k)×k(Fq) and A4 ∈ Mat(n−k)×(n−k)(Fq). Then

UA =
[

A1 A2

]

and if A1 ∈ GLk(Fq)

dS(U ,U ·A) = k + rank(A2)

Remark 13: If A1 is full–rank we can canonically assume

A1 = I because

rowspace
[

A1 A2

]

= rowspace
[

I (A−1
1 A2)

]

IV. EXAMPLES

We will now give some examples of orbit codes with good

distance properties.

A. Cyclic orbit codes

Over the binary field let G be the group generated by

G =









0 1 1 0
0 0 0 1
0 1 0 0
1 0 1 0









and

U =

(

1 0 0 0
0 1 0 0

)

, U⊥ =

(

0 0 1 0
0 0 0 1

)

.

Then Stab(U) is as in Example 5, order(G) = 4 and

G,G2, G3, G4 are pairwise not equivalent. One can easily

check that dS(U ,U ·Gi) = 4 for i = 1, . . . , 3, thus C =
{U ·Gi | i = 1, . . . , 4} and C⊥ = {U⊥ ·(Gt)i | i = 1, . . . , 4}
are [4, 4, 4, 2]-codes.

B. Reed-Solomon-like codes

Gabidulin proved that in the rank distance setting codes of

maximal size can be constructed for any given distance [9]. In

[1] a Reed-Solomon-like construction for constant dimension

codes was introduced and Silva et al. showed that lifting (i.e.

concatenating an identity block in front of a matrix and taking

the row space) maximum rank distance codes leads to exactly

the same codes [4]. The cardinality of Reed-Solomon-like

codes is q(n−k)(k−δ+1) for given ambient space dimension n,

subspace dimension k and minimum distance 2δ.

Lemma 14: Let H be an additive subgroup of Matk×(n−k)

such that all its elements are of rank greater than or equal to

dS(C)/2. Furthermore, for any Hi ∈ H let

Gi =

(

Ik×k Hi

0 I(n−k)×(n−k)

)

and G be the group generated by all Gi. The resulting orbit

code C = {U ·A | A ∈ G} is a [n, dS(C), |H|, k]-code.

Moreover if H is a maximum rank distance code, then the

orbit code is a Reed-Solomon-like code.

Proof: Any element of G has the shape of G. Indeed
(

I H1

0 I

)

·

(

I H2

0 I

)

=

(

I H1 + H2

0 I

)

where, if H1,H2 ∈ H then H1 + H2 ∈ H. Then

U ·G =
[

I H
]

and

dS(U ,U ·G) = 2·rank

[

I 0
I H

]

− 2k

= 2·rank(H)

≥ dS(C)

The second statement follows from the fact that the resulting

code words are of the type
[

I H
]

(where H ∈ H) which

corresponds exactly to lifting the maximum rank distance

code H.

C. Spread codes

In the case that n = j × k Manganiello et al. showed

how to construct maximum size codes for maximal minimum

distance, i.e. 2δ = 2k , as follows [7] : Let P be the companion

matrix of a monic primitive polynomial over Fq of degree k.

Then Fq[P ], the Fq-algebra of P , is a field of order qk and P
is a generating element of Fq[P ]\{0}. The set of all

[

I Pi1 Pi2 . . . Pij−1

]

[

0 I Pi1 . . . Pij−2

]

...

[

0 0 . . . 0 I
]

for Pm ∈ Fq[P ] is called a spread code. It has minimum

distance 2k and size qn−1
qk−1

.













I P i1 P i2 . . . P ij−1

0 I 0 . . . 0
. . .

. . .

0 0 0 . . . I











,















0 I P i1 . . . P ij−2

I 0 0 . . . 0
0 0 I . . . 0

. . .
. . .

. . .

0 0 0 . . . I















, . . . ,















0 . . . 0 0 I
0 . . . 0 I 0
0 . . . I 0 0

. . .
. . .

. . .

I . . . 0 0 0















Fig. 1. Generating matrices of the group G from Remark 16.

Now let n = 2k and Fq[P ] be the Fq-algebra of P where

P is the companion matrix of a monic primitive polynomial

over Fq . Moreover, let

Gi =

(

I P i

0 I

)

G′ =

(

0 I
I 0

)

be the generators of a group G.

Lemma 15: The resulting orbit code C is the

[n, n, qn−1
qn/2−1

, n
2 ]-spread code.

Proof: The blocks are always a linear combination of

0, I and elements of H, thus each block is again an element

of H. Letting G act on U , we get spaces represented by
[

P i P j
]

.
If P i is non-zero it holds that

rowspace
[

P i P j
]

=rowspace
[

I (P i)−1P j
]

,

hence the elements of C are precisely the row spaces of
[

0 I
]

and all
[

I P i
]

, which is the definition of a

spread code.

Remark 16: The construction can be generalized to n = j·k
and works for H being any subgroup of GLn/j(Fq) with field

structure. For the construction of a [n, n, qn−1
qn/j−1

, n
j ]-spread

code the generating matrices of G are of the shape shown

in Fig. 1.

V. CONCLUSION AND OUTLOOK

In this work we introduced orbit codes a new class of codes

for random network coding. These codes can be described as

the discrete orbit under a natural group action within the finite

Grassmann variety G(k, n). We derived the basic properties

of these codes. The importance of this class of codes is

underlined by the fact that several of the known algebraic

construction of constant dimension codes can be seen as orbit

codes. E.g. the Reed-Solomon-like codes introduced in [1]

as well as the spread codes described [7] can be seen as

orbit codes. It is our hope that this approach opens up new

possibilities for constructing and decoding constant dimension

codes.

In current work we investigate irreducible representations

of some of the classical groups and we are interested in the

resulting distance properties of the associated orbit codes.
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